LTE B25 Head ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1882.5 \mathrm{MHz} ; \sigma=1.465 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.374 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band25 (0) Frequency: 1882.5 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.767 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=11.70 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.04 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 3 0} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 7 9} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.840 \mathrm{~W} / \mathrm{kg}$

A. 34

LTE B25 Body 10mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1882.5 \mathrm{MHz} ; \sigma=1.481 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=43.116 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band25 (0) Frequency: 1882.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF (8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.818 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=10.93 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.971 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 2 1} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.272 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.816 \mathrm{~W} / \mathrm{kg}$

A. 35

LTE B25 Body 15mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1882.5 \mathrm{MHz} ; \sigma=1.465 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.374 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band25 (0) Frequency: 1882.5 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, d y=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.519 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $d x=8 \mathrm{~mm}, d y=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=10.91 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.10 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.593 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.365 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.226 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.508 \mathrm{~W} / \mathrm{kg}$

A. 36

LTE B26 Head ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=831.5 \mathrm{MHz} ; \sigma=0.855 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.094 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band26 15M (0) Frequency: 831.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.07 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (6x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=22.15 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.39 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 7 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 1 3} \mathbf{W} / \mathbf{k g}$
Maximum value of SAR (measured) $=1.03 \mathrm{~W} / \mathrm{kg}$

A. 37

LTE B26 Body 10mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=841.5 \mathrm{MHz} ; \sigma=0.926 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.434 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band26 (0) Frequency: 841.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.562 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=21.68 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.717 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 3 3 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.173 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.531 \mathrm{~W} / \mathrm{kg}$

A. 38

LTE B26 Body 15mm ANT2

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=841.5 \mathrm{MHz} ; \sigma=0.926 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.434 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band26 (0) Frequency: 841.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.300 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=17.45 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.331 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 4 2} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.184 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.297 \mathrm{~W} / \mathrm{kg}$

A. 39

LTE B41(PC3) Head ANT4

Date/Time: 12/9/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=2506 \mathrm{MHz} ; \sigma=1.957 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.185 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band41 (0) Frequency: 2506 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(7.85, 7.85, 7.85);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.943 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.972 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.48 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.612 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.269 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.14 \mathrm{~W} / \mathrm{kg}$

A. 40

Lte B41 PC3 Body 10mm ANT4

Date/Time: 12/10/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=2593 \mathrm{MHz} ; \sigma=2.045 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.484 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band41 (0) Frequency: 2593 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(7.66, 7.66, 7.66);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.818 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x9x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=9.259 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.09 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.511 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 3 2} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.854 \mathrm{~W} / \mathrm{kg}$

A. 41

Lte B41 PC3 Body 15mm ANT4

Date/Time: 12/10/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=2593 \mathrm{MHz} ; \sigma=2.045 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.484 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band41 (0) Frequency: 2593 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(7.66, 7.66, 7.66);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.574 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=3.417 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.698 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.357 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.176 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.567 \mathrm{~W} / \mathrm{kg}$

A. 42

LTE B41(PC2) Head ANT4

Date/Time: 12/9/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=2506 \mathrm{MHz} ; \sigma=1.957 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.185 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band41 (0) Frequency: 2506 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(7.85, 7.85, 7.85);

Area Scan (101x171x1): Interpolated grid: $\mathrm{dx}=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.772 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.478 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=1.18 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 4 9 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 1 9} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.921 \mathrm{~W} / \mathrm{kg}$

A. 43

Lte B41 PC2 Body 10mm ANT4

Date/Time: 12/10/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=2593 \mathrm{MHz} ; \sigma=2.045 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.484 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band41 (0) Frequency: 2593 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(7.66, 7.66, 7.66);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.22 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x9x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=10.36 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.48 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.705 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.320 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.20 \mathrm{~W} / \mathrm{kg}$

A. 44

LTE B41 PC2 Body 15mm ANT4

Date/Time: 12/10/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=2593 \mathrm{MHz} ; \sigma=2.045 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.484 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band41 (0) Frequency: 2593 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(7.66, 7.66, 7.66);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, d y=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.773 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.076 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.1 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.944 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.483 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.238 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.773 \mathrm{~W} / \mathrm{kg}$

A. 45

LTE B48 Head ANT2

Date/Time: 12/20/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=3625 \mathrm{MHz} ; \sigma=2.986 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.263 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band48 (0) Frequency: 3625 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(6.79, 6.79, 6.79);

Area Scan (141x221x1): Interpolated grid: $\mathrm{dx}=1.000 \mathrm{~mm}, \mathrm{dy}=1.000 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.342 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (10x9x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=2.343 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.293 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.109 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.042 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.205 \mathrm{~W} / \mathrm{kg}$

A. 46

TTL

LTE B48 Body 10mm ANT2

Date/Time: 12/20/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=3625 \mathrm{MHz} ; \sigma=2.973 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.585 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band48 (0) Frequency: 3625 MHz
Probe: EX3DV4-SN7307ConvF(6.79, 6.79, 6.79)

Area Scan (81x141x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, d y=1.200 \mathrm{~mm}$
Maximum value of SAR $($ interpolated $)=0.391 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}, d y=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$ Reference Value $=4.353 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.12 \mathrm{~dB}$
Peak SAR (extrapolated) $=0.616 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.210 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.076 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.433 \mathrm{~W} / \mathrm{kg}$
W/kg

A. 47

LTE B48 Body 15mm ANT2

Date/Time: 12/20/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=3625 \mathrm{MHz} ; \sigma=2.986 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.263 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band48 (0) Frequency: 3625 MHz Duty Cycle: 1:1.5787
Probe: EX3DV4 - SN7307 ConvF(6.79, 6.79, 6.79);

Area Scan (141x221x1): Interpolated grid: $d x=1.000 \mathrm{~mm}, \mathrm{dy}=1.000 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.165 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (8x9x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}$, $\mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=0.2080 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.191 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.078 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.033 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.141 \mathrm{~W} / \mathrm{kg}$

A. 48

LTE B66 Head ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1720 \mathrm{MHz} ; \sigma=1.355 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.766 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band66 (0) Frequency: 1720 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.766 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=11.29 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.976 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.544 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.292 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.775 \mathrm{~W} / \mathrm{kg}$

A. 49

LTE B66 Body 10mm ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1770 \mathrm{MHz} ; \sigma=1.417 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=43.341 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band66 (0) Frequency: 1770 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.525 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=8.238 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.627 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.348 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.190 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.529 \mathrm{~W} / \mathrm{kg}$

A. 50

LTE B66 Body 15mm ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1770 \mathrm{MHz} ; \sigma=1.39 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.646 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band66 (0) Frequency: 1770 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.354 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=8.326 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.16 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.416 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.250 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.155 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.351 \mathrm{~W} / \mathrm{kg}$

A. 51

LTE B71 Head ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (extrapolated): $\mathrm{f}=683 \mathrm{MHz} ; \sigma=0.804 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.645 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band71 (0) Frequency: 683 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.746 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (6x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=19.28 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.11 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.449 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 4 1} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.780 \mathrm{~W} / \mathrm{kg}$

A. 52

LTE B71 Body 10mm ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (extrapolated): $\mathrm{f}=683 \mathrm{MHz} ; \sigma=0.857 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.887 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band71 (0) Frequency: 683 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.383 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=18.90 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.439 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 9 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 0 5} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.384 \mathrm{~W} / \mathrm{kg}$

A. 53

LTE B71 Body 15mm ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (extrapolated): $\mathrm{f}=683 \mathrm{MHz} ; \sigma=0.804 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.645 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band71 (0) Frequency: 683 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.271 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=16.42 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.299 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 2 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.170 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.269 \mathrm{~W} / \mathrm{kg}$

A. 54

LTE B2 ANT1 Head

Date/Time: $12 / 5 / 2023$
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.471 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.838 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band2 (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (71x121x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.174 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=3.481 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.13 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.184 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.125 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.080 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.165 \mathrm{~W} / \mathrm{kg}$

A. 55

LTE B2 ANT1 Body 10mm

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.471 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.838 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band2 (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.415 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=8.565 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.10 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.472 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 8 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.161 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.400 \mathrm{~W} / \mathrm{kg}$

A. 56

LTE B2 ANT1 Body 15mm

Date/Time: 12/52023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.471 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.838 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band2 (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.258 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=6.422 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.306 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 1 9 3} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.117 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.264 \mathrm{~W} / \mathrm{kg}$

A. 57

LTE B7 ANT3 Head

Date/Time: 12/9/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=2510 \mathrm{MHz} ; \sigma=1.965 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.686 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band7 (0) Frequency: 2510 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(7.85, 7.85, 7.85);

Area Scan (71x121x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.105 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=0 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.138 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.047 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.017 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.0822 \mathrm{~W} / \mathrm{kg}$

A. 58

LTE B66 ANT1 Head

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1720 \mathrm{MHz} ; \sigma=1.363 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.251 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band66 (0) Frequency: 1720 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (71x121x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.267 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.919 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.18 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.294 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 0 1} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.130 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=0.260 \mathrm{~W} / \mathrm{kg}$

A. 59

LTE B66 ANT1 Body 10mm

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1745 \mathrm{MHz} ; \sigma=1.378 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.151 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band66 (0) Frequency: 1745 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.286 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.083 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.339 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 0 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.121 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.293 \mathrm{~W} / \mathrm{kg}$

A. 60

LTE B66 ANT1 Body 15mm

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1770 \mathrm{MHz} ; \sigma=1.397 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.09 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band66 (0) Frequency: 1770 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.211 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=3.751 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.249 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.159 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.098 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.214 \mathrm{~W} / \mathrm{kg}$

A. 61

LTEB4 Head ANT1

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1732.5 \mathrm{MHz} ; \sigma=1.364 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.739 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band4 (0) Frequency: 1732.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.295 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.899$ V/m; Power Drift $=0.17 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.334 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 2 6} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.148 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.290 \mathrm{~W} / \mathrm{kg}$

A. 62

LTEB4 Body ANT1 10mm

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1732.5 \mathrm{MHz} ; \sigma=1.364 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.739 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band4 (0) Frequency: 1732.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.777 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=16.26 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.15 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.923 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 3 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.304 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.783 \mathrm{~W} / \mathrm{kg}$

A. 63

LTEB4 Body ANT1 15mm

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1732.5 \mathrm{MHz} ; \sigma=1.364 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.739 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band4 (0) Frequency: 1732.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.624 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=9.570 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.17 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.727 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 4 4 6} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.272 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.620 \mathrm{~W} / \mathrm{kg}$

A. 64

N2 Head ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1852.5 \mathrm{MHz} ; \sigma=1.445 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.438 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, 5G NR (0) Frequency: 1852.5 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF (8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.994 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=12.42 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.12 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.29 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.662 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.347 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.06 \mathrm{~W} / \mathrm{kg}$

A. 65

N2 Body 10mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1907.5 \mathrm{MHz} ; \sigma=1.481 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.327 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, 5G NR (0) Frequency: 1907.5 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF (8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=1.08 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=15.67 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.29 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.669 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 3 5} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.04 \mathrm{~W} / \mathrm{kg}$

A. 66

