ANNEX A Graph Results

GSM850 Head ANT0

Date/Time: $12 / 2 / 2023$
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used (interpolated): $\mathrm{f}=836.6 \mathrm{MHz} ; \sigma=0.858 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.071 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, GSM850 3TX (0) Frequency: 836.6 MHz Duty Cycle: 1:2.66993
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.26 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=29.29 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.11 \mathrm{~dB}$ Peak SAR (extrapolated) $=1.77 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.886 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.646 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.36 \mathrm{~W} / \mathrm{kg}$

0.301
0.036
A. 1

GSM850 Body 10 mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=825 \mathrm{MHz} ; \sigma=0.869 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=44.759 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, GSM850 3TX (0) Frequency: 824.2 MHz Duty Cycle: 1:2.66993
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (91x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.583 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=28.01 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.19 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.833 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.401 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.212 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.658 \mathrm{~W} / \mathrm{kg}$

A. 2

GSM850 Body 15mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=848.8 \mathrm{MHz} ; \sigma=0.879 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=44.58 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, GSM850 3TX (0) Frequency: 848.8 MHz Duty Cycle: 1:2.66993
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (91x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.350 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=20.01 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.384 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.286 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 1 8} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.348 \mathrm{~W} / \mathrm{kg}$

A. 3

GSM1900 Head ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1850.2 \mathrm{MHz} ; \sigma=1.447 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.914 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, GSM1900 4TX (0) Frequency: 1850.2 MHz Duty Cycle: 1:1.99986
Probe: EX3DV4 - SN7307 ConvF(8.30, 8.30, 8.30);

Area Scan (71x121x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.21 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=13.72 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.36 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 7 4 6} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 4 1 2} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.10 \mathrm{~W} / \mathrm{kg}$

A. 4

GSM1900 Body 10mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1850.2 \mathrm{MHz} ; \sigma=1.447 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.914 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, GSM1900 4TX (0) Frequency: 1850.2 MHz Duty Cycle: 1:1.99986
Probe: EX3DV4 - SN7307 ConvF(8.30, 8.30, 8.30);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.770 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=13.98 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.16 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.955 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 4 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.289 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.824 \mathrm{~W} / \mathrm{kg}$

A. 5

GSM1900 Body 15mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1850.2 \mathrm{MHz} ; \sigma=1.447 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.914 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, GSM1900 4TX (0) Frequency: 1850.2 MHz Duty Cycle: 1:1.99986
Probe: EX3DV4 - SN7307 ConvF(8.30, 8.30, 8.30);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.289 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=12.44 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.321 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 1 9 3} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.110 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.275 \mathrm{~W} / \mathrm{kg}$

A. 6

W850 Head ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=836.6 \mathrm{MHz} ; \sigma=0.858 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.071 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA850(B5) (0) Frequency: 836.6 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.917 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (6x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=20.10 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.17 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.32 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 2 7} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 8 3} \mathbf{W} / \mathbf{k g}$
Maximum value of SAR (measured) $=0.971 \mathrm{~W} / \mathrm{kg}$

A. 7

W850 Body 10mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used (interpolated): $\mathrm{f}=826.4 \mathrm{MHz} ; \sigma=0.853 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.115 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA850(B5) (0) Frequency: 826.4 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.595 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=20.71$ V/m; Power Drift $=0.01 \mathrm{~dB}$ Peak SAR $($ extrapolated $)=0.790 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.350 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.180 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.606 \mathrm{~W} / \mathrm{kg}$

A. 8

W850 Body 15mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used (interpolated): $\mathrm{f}=826.4 \mathrm{MHz} ; \sigma=0.853 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.115 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA850(B5) (0) Frequency: 826.4 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.239 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=10.93 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.14 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.264 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 1 9 2} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 1 4 5} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.237 \mathrm{~W} / \mathrm{kg}$

A. 9

W1700 Head ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1752.6 \mathrm{MHz} ; \sigma=1.378 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.689 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA1700(B4) (0) Frequency: 1752.6 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.915 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=12.75 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.18 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 6 2 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 3 6} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.903 \mathrm{~W} / \mathrm{kg}$

A. 10

W1700 Body 10 mm ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used (interpolated): $\mathrm{f}=1752.6 \mathrm{MHz} ; \sigma=1.378 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.689 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA1700(B4) (0) Frequency: 1752.6 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.793 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=16.11 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.02 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 4 5} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.291 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.838 \mathrm{~W} / \mathrm{kg}$

A. 11

W1700 Body Rear 15mm ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=1712.4 \mathrm{MHz} ; \sigma=1.379 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=43.456 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA 1700 Band4 (0) Frequency: 1712.4 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.541 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=8.651 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.16 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.629 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 3 7 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.224 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.531 \mathrm{~W} / \mathrm{kg}$

A. 12

W1900 Head ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.463 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.378 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA1900(B2) (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR $($ interpolated $)=0.908 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=10.61 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.10 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.14 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.570 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.291 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.944 \mathrm{~W} / \mathrm{kg}$

A. 13

W1900 Body 10mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.463 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.378 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA1900(B2) (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.926 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=12.33 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.22 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.666 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 5 4} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.03 \mathrm{~W} / \mathrm{kg}$

A. 14

W1900 Body 15mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.463 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.378 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, WCDMA1900(B2) (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.495 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=10.19 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.18 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.611 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 3 3 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.190 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.492 \mathrm{~W} / \mathrm{kg}$

A. 15

LTE B2 Head ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1860 \mathrm{MHz} ; \sigma=1.45 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.422 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band2 (0) Frequency: 1860 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.05 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=11.39 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.23 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 6 3 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 2 8} \mathbf{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.01 \mathrm{~W} / \mathrm{kg}$

A. 16

LTE B2 Body 10mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.48 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=43.121 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band2(20MB) (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF (8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.791 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=11.07 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.944 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.507 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.264 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.795 \mathrm{~W} / \mathrm{kg}$

A. 17

LTE B2 Body 15mm ANT2

Date/Time: 12/5/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1880 \mathrm{MHz} ; \sigma=1.463 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.378 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band2 (0) Frequency: 1880 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.3, 8.3, 8.3);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.506 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=11.10 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.11 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.572 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 3 5 2} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.218 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.489 \mathrm{~W} / \mathrm{kg}$

A. 18

LTE B4 Head ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1745 \mathrm{MHz} ; \sigma=1.373 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.708 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band4 (0) Frequency: 1745 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.871 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=11.12 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.11 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.604 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.322 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=0.894 \mathrm{~W} / \mathrm{kg}$

A. 19

LTE B4 Body 10mm ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=1720 \mathrm{MHz} ; \sigma=1.385 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=43.444 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band4 (0) Frequency: 1720 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.505 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=7.416 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.612 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.340 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.186 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.515 \mathrm{~W} / \mathrm{kg}$

A. 20

LTE B4 Body 15 mm ANT2

Date/Time: 12/4/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=1720 \mathrm{MHz} ; \sigma=1.355 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.766 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band4 (0) Frequency: 1720 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(8.59, 8.59, 8.59);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.408 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (6x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$ Reference Value $=8.714 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$ Peak SAR $($ extrapolated $)=0.475 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 8 6} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.178 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.394 \mathrm{~W} / \mathrm{kg}$

A. 21

LTE B5 Head ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=829 \mathrm{MHz} ; \sigma=0.854 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.105 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band5 (0) Frequency: 829 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.03 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (6x6x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=21.89 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.32 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.560 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 0 5} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.983 \mathrm{~W} / \mathrm{kg}$

A. 22

LTE B5 Body 10mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=844 \mathrm{MHz} ; \sigma=0.927 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.43 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band5 (0) Frequency: 844 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.592 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=24.44 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.6 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.761 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.354 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.184 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.593 \mathrm{~W} / \mathrm{kg}$

A. 23

LTE B5 Body 15mm ANT0

Date/Time: 12/2/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=844 \mathrm{MHz} ; \sigma=0.861 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.042 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band5 (0) Frequency: 844 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.304 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=16.88 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.13 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.340 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 4 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.188 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.306 \mathrm{~W} / \mathrm{kg}$

A. 24

LTE B7 Head ANT4

Date/Time: 12/9/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=2535 \mathrm{MHz} ; \sigma=1.974 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.13 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band7 (0) Frequency: 2535 MHz Duty Cycle: 1:1
Probe: EX3DV4-SN7307 ConvF(7.85, 7.85, 7.85);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.09 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=4.670 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.10 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.72 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.688 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 2 9 1} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=1.30 \mathrm{~W} / \mathrm{kg}$

A. 25

LTE B7 Body 10 mm ANT4

Date/Time: 12/9/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used: $\mathrm{f}=2510 \mathrm{MHz} ; \sigma=1.957 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.038 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band7-20M (0) Frequency: 2510 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(7.85, 7.85, 7.85);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.818 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=2.541 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.11 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.519 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.232 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.863 \mathrm{~W} / \mathrm{kg}$

A. 26

LTE B7 Body 15 mm ANT4

Date/Time: 12/9/2023
Electronics: DAE4 Sn777
Medium: H700-6000M

Medium parameters used: $\mathrm{f}=2510 \mathrm{MHz} ; \sigma=1.961 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.177 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band7 (0) Frequency: 2510 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(7.85, 7.85, 7.85);

Area Scan (101x171x1): Interpolated grid: $d x=1.200 \mathrm{~mm}, \mathrm{dy}=1.200 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.383 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=2.044 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.18 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.479 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.237 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.115 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.381 \mathrm{~W} / \mathrm{kg}$

A. 27

LTE B12 Head ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=711 \mathrm{MHz} ; \sigma=0.803 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.521 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band12 (0) Frequency: 711 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=0.886 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=23.36 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.35 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 5 3 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 0 5} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.931 \mathrm{~W} / \mathrm{kg}$

A. 28

LTE B12 Body 10mm ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=704 \mathrm{MHz} ; \sigma=0.802 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.554 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band12 (0) Frequency: 704 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.288 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}$, $\mathrm{dy}=8 \mathrm{~mm}$, $\mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=17.09 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.321 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 3 4} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.181 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.286 \mathrm{~W} / \mathrm{kg}$

A. 29

LTE B12 Body 15mm ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=704 \mathrm{MHz} ; \sigma=0.802 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.554 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band12 (0) Frequency: 704 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.285 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=16.97 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$ Peak SAR $($ extrapolated $)=0.319 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{0 . 2 3 3} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.179 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.287 \mathrm{~W} / \mathrm{kg}$

A. 30

LTEB13 Head ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=782 \mathrm{MHz} ; \sigma=0.833 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.242 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band13 (0) Frequency: 782 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$
Maximum value of SAR (interpolated) $=1.11 \mathrm{~W} / \mathrm{kg}$
Zoom Scan (6x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=21.94 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=1.43 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.579 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{0 . 3 1 5} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.993 \mathrm{~W} / \mathrm{kg}$

A. 31

LTE B13 Body 10 mm ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=782 \mathrm{MHz} ; \sigma=0.9 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.614 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band13 (0) Frequency: 782 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $d x=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.462 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=18.34 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.538 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.353 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.242 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.469 \mathrm{~W} / \mathrm{kg}$

A. 32

LTE B13 Body 15 mm ANT0

Date/Time: 12/1/2023
Electronics: DAE4 Sn777
Medium: H700-6000M
Medium parameters used (interpolated): $\mathrm{f}=782 \mathrm{MHz} ; \sigma=0.9 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=45.614 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Ambient Temperature: $23.3^{\circ} \mathrm{C} \quad$ Liquid Temperature: $22.5^{\circ} \mathrm{C}$
Communication System: UID 0, LTE Band13 (0) Frequency: 782 MHz Duty Cycle: 1:1
Probe: EX3DV4 - SN7307 ConvF(10.45, 10.45, 10.45);

Area Scan (81x141x1): Interpolated grid: $\mathrm{dx}=1.500 \mathrm{~mm}, \mathrm{dy}=1.500 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=0.415 \mathrm{~W} / \mathrm{kg}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $\mathrm{dx}=8 \mathrm{~mm}, \mathrm{dy}=8 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=21.54 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.12 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=0.468 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=0.344 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=0.262 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=0.422 \mathrm{~W} / \mathrm{kg}$

A. 33

