

In Collaboration with

S perag

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL
NORMx,y,z
ConvF
DCP
CF
A,B,C,D
Polarization Φ
Polarization θ
tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
Φ rotation around probe axis
θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
$\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\theta=0$ (fs 900 MHz in TEM-cell; $f>1800 \mathrm{MHz}$: waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not effect the E^{2}-field uncertainty inside TSL (see below ConvF).
- NORM $(f) x, y, z=$ NORM x, y, z^{*} frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $D C P x, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $A x, y, z ; B x, y, z ; C x, y, z ; V R x, y, z: A, B, C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y, z^{*} ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to $\pm 100 \mathrm{MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

No. 23T04Z80611-01

In Collaboration with
s p e a g
CAICT

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASYIEASY - Parameters of Probe: EX3DV4 - SN:7673

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor Z	Unc $(\boldsymbol{k}=\mathbf{2})$
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.62	0.63	0.60	$\pm 10.0 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	111.4	112.4	110.2	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \boldsymbol{\mu} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	Unc $^{\mathrm{E}}$ $(\boldsymbol{k}=\mathbf{2})$
$\mathbf{0}$	$\mathbf{C W}$	\mathbf{X}	0.0	0.0	1.0	0.00	214.3	$\pm 2.2 \%$
		\mathbf{Y}	0.0	0.0	1.0		219.2	
		\mathbf{Z}	0.0	0.0	1.0		207.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

[^0]Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz$]^{\text {C }}$	Relative Permittivity ${ }^{F}$	Conductivity (S/m) ${ }^{F}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {a }}$	$\begin{gathered} \text { Depth }^{G} \\ (\mathrm{~mm}) \end{gathered}$	Unct. (k=2)
750	41.9	0.89	10.50	10.50	10.50	0.18	1.24	$\pm 12.7 \%$
900	41.5	0.97	10.12	10.12	10.12	0.17	1.34	$\pm 12.7 \%$
1750	40.1	1.37	8.46	8.46	8.46	0.30	0.92	$\pm 12.7 \%$
1900	40.0	1.40	8.20	8.20	8.20	0.30	0.90	$\pm 12.7 \%$
2100	39.8	1.49	8.15	8.15	8.15	0.24	1.06	$\pm 12.7 \%$
2300	39.5	1.67	7.90	7.90	7.90	0.60	0.68	$\pm 12.7 \%$
2450	39.2	1.80	7.65	7.65	7.65	0.66	0.68	$\pm 12.7 \%$
2600	39.0	1.96	7.45	7.45	7.45	0.65	0.68	$\pm 12.7 \%$
3300	38.2	2.71	6.98	6.98	6.98	0.44	0.92	$\pm 13.9 \%$
3500	37.9	2.91	6.78	6.78	6.78	0.41	1.04	$\pm 13.9 \%$
3700	37.7	3.12	6.63	6.63	6.63	0.39	1.04	$\pm 13.9 \%$
3900	37.5	3.32	6.51	6.51	6.51	0.30	1.52	$\pm 13.9 \%$
4100	37.2	3.53	6.45	6.45	6.45	0.30	1.40	$\pm 13.9 \%$
4200	37.1	3.63	6.35	6.35	6.35	0.30	1.52	$\pm 13.9 \%$
4400	36.9	3.84	6.25	6.25	6.25	0.30	1.52	$\pm 13.9 \%$
4600	36.7	4.04	6.14	6.14	6.14	0.35	1.42	$\pm 13.9 \%$
4800	36.4	4.25	6.05	6.05	6.05	0.35	1.52	$\pm 13.9 \%$
4950	36.3	4.40	5.71	5.71	5.71	0.35	1.55	$\pm 13.9 \%$
5250	35.9	4.71	5.19	5.19	5.19	0.35	1.55	$\pm 13.9 \%$
5600	35.5	5.07	4.69	4.69	4.69	0.40	1.52	$\pm 13.9 \%$
5750	35.4	5.22	4.79	4.79	4.79	0.40	1.52	$\pm 13.9 \%$

[^1]Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\mathbf{\pm 7 . 4 \%}$ ($k=2$)

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn

Receiving Pattern (Ф), $\boldsymbol{\theta =} \mathbf{0}^{\circ}$

f=600 MHz, TEM

$\mathrm{f}=1800 \mathrm{MHz}, \mathrm{R} 22$

$-100 \mathrm{MHz}-600 \mathrm{MHz}-1800 \mathrm{MHz} \quad-2500 \mathrm{MHz}$
Uncertainty of Axial Isotropy Assessment: $\pm 1.2 \%(k=2)$
n Collaboration with
sperg

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn

Dynamic Range f(SAR ${ }_{\text {head }}$) (TEM cell, $\mathrm{f}=\mathbf{9 0 0} \mathbf{~ M H z}$)

Certificate No:J23Z60316
Page 7 of 9

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

 f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: $\mathbf{\pm 3 . 2 \%}(\boldsymbol{k}=\mathbf{2)}$

Add: No. 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7673

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (${ }^{\circ}$)	146.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

H. 7 Dipole Calibration Certificate
 835 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

[^2]Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

```
Client CTTL
Beijing
```


CALIBRATION CERTIFICATE

Object	D835V2-SN:4d069		
Calibration procedure(s)	QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$		
Calibration date:	July 14, 2023		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	$1 / 11 \sim$
Approved by:	Sven Kün	Technical Manager	
This calibration cerrificate shall not be reproduced except in full without written approval of the laboratory.			

Certificate No: D835V2-4d069_Jul23
Page 1 of 6

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service
Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.90 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$41.9 \pm 6 \%$	$0.92 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	---

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{~ m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.44 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{9 . 6 2} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 ~ g}\right)$ of Head TSL	condition	
SAR measured	250 mW input power	$1.58 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{6 . 2 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.3 \Omega-1.2 \mathrm{j} \Omega$
Return Loss	-35.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

TTL

DASY5 Validation Report for Head TSL

Date: 14.07.2023
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 835 MHz ; Type: D835V2; Serial: D835V2 - SN: 4d069
Communication System: UID 0 - CW; Frequency: 835 MHz
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.92 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz ; Calibrated: 10.01 .2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 5 m m}$ /Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=63.54 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=3.68 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 4 4} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.58 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=16.8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.9 \%$
Maximum value of SAR (measured) $=3.27 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

ANNEX I Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China
for technical competence in the field of
Electrical Testing
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council
Certificate Number 7049.01
Valid to July 31, 2024

[^0]: A The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Page 4).
 ${ }^{\mathrm{B}}$ Numerical linearization parameter: uncertainty not required.
 E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^1]: C Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128$, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequency up to 6 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for the frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^2]: S Schweizerischer Kalibrierdiens
 C Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

