

Parameters of Probe: EX3DV4 - SN:3846

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	58.2	434.80	35.66	16.47	0.12	5.08	1.72	0.27	1.01
v	60.8	458.93	36.20	14.64	0.63	5.08	0.25	0.63	1.01
z	55.2	411.11	35.41	17.17	0.00	5.09	1.93	0.20	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	17.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3846_May23 Page 4 of 23

May 31, 2023 EX3DV4 - SN:3846

Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	17.76	17.76	17.76	0.00	1.25	±13.3%
64	54.2	0.75	13.68	13.68	13.68	0.00	1.25	±13.3%
150	52.3	0.76	12.35	12.35	12.35	0.00	1.25	±13.3%
300	45.3	0.87	11.38	11.38	11.38	0.09	1.00	±13.3%
450	43.5	0.87	10.64	10.64	10.64	0.16	1.30	±13.3%
750	41.9	0.89	8.98	8.99	10.08	0.43	1.27	±12.0%
835	41.5	0.90	8.50	9.01	9.47	0.43	1.27	±12.0%
900	41.5	0.97	7.98	8.23	9.62	0.42	1.27	±12.0%
1450	40.5	1.20	7.49	7.73	8.40	0.53	1.27	±12.0%
1640	40.2	1.31	7.40	7.67	8.37	0.49	1.27	±12.0%
1750	40.1	1.37	7.47	7.79	8.45	0.31	1.27	±12.0%
1810	40.0	1.40	7.37	7.68	8.24	0.33	1.27	±12.0%
1900	40.0	1.40	7.27	7.55	8.11	0.33	1.27	±12.0%
2000	40.0	1.40	7.02	7.30	7.84	0.33	1.27	±12.0%
2100	39.8	1.49	6.97	7.28	7.79	0.33	1.27	±12.0%
2300	39.5	1.67	6.90	7.19	7.69	0.34	1.27	±12.0%
2450	39.2	1.80	6.80	7.06	7.55	0.34	1.27	±12.0%
2600	39.0	1.96	6.72	7.04	7.50	0.32	1.27	±12.0%
3300	38.2	2.71	6.48	6.85	7.25	0.38	1.27	±14.0%
3500	37.9	2.91	6.50	6.78	7.20	0.37	1.27	±14.0%
3700	37.7	3.12	6.38	6.68	7.11	0.37	1.27	±14.09
3900	37.5	3.32	6.36	6.63	7.02	0.38	1.27	±14.09
4100	37.2	3.53	6.31	6.59	6.98	0.38	1.27	±14.09
4200	37.1	3.63	6.29	6.57	6.96	0.38	1.27	±14.09
4400	36.9	3.84	6.22	6.52	6.88	0.41	1.27	±14.0°
4600	36.7	4.04	6.15	6.44	6.82	0.41	1.27	±14.09
4800	36.4	4.25	6.11	6.41	6.76	0.41	1.27	±14.0°
4950	36.3	4.40	5.95	6.21	6.41	0.42	1.36	±14.09

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1%

Certificate No: EX-3846_May23

Page 5 of 23

for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

May 31, 2023 EX3DV4 - SN:3846

Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
5200	36.0	4.66	5.20	5.41	5.66	0.40	1.51	±14.0%
5250	35.9	4.71	5.05	5.27	5.51	0.42	1.53	±14.0%
5300	35.9	4.76	4.98	5.21	5.33	0.41	1.55	±14.0%
5500	35.6	4.96	4.44	4.64	4.90	0.40	1.70	±14.0%
5600	35.5	5.07	4.27	4.47	4.70	0.39	1.75	±14.0%
5750	35.4	5.22	4.54	4.76	4.98	0.41	1.75	±14.0%
5800	35.3	5.27	4.45	4.64	4.88	0.40	1.78	±14.0%

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 and GHz and 13.1% for 3.4 GHz and 13.4 GHz

Page 6 of 23 Certificate No: EX-3846_May23

for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less $than \pm 1\% \ for \ frequencies \ below \ 3 \ GHz \ and \ below \ \pm 2\% \ for \ frequencies \ between \ 3-GHz \ at \ any \ distance \ larger \ than \ half \ the \ probe \ tip \ diameter \ from \ the \ probe \ tip \ diameter \ tip \$ boundary.

Parameters of Probe: EX3DV4 - SN:3846

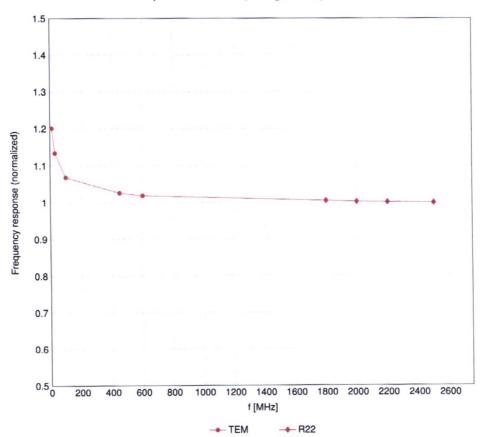
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.15	5.59	5.71	0.20	2.00	±18.6%
7000	33.9	6.65	5.39	5.83	5.88	0.20	2.00	±18.6%

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX-3846_May23 Page 7 of 23

frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.

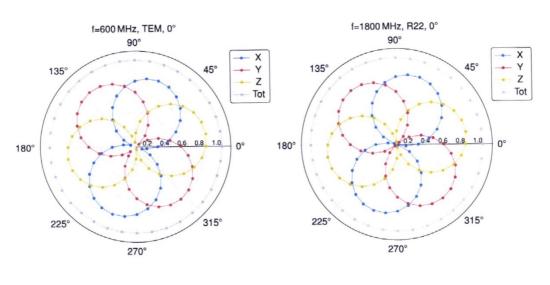

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

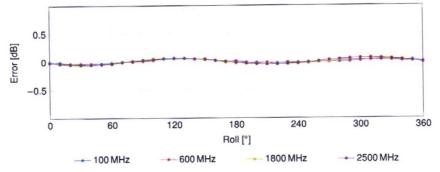
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Page 8 of 23


Certificate No: EX-3846_May23

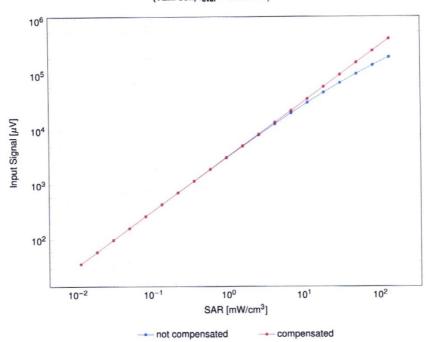


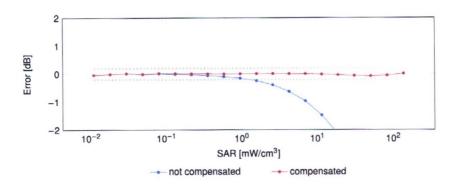
EX3DV4 - SN:3846

May 31, 2023

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

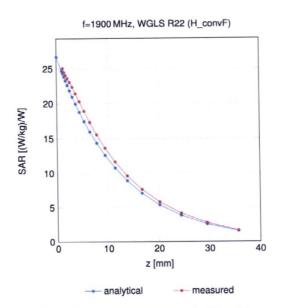
Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)


Certificate No: EX-3846_May23


Page 9 of 23

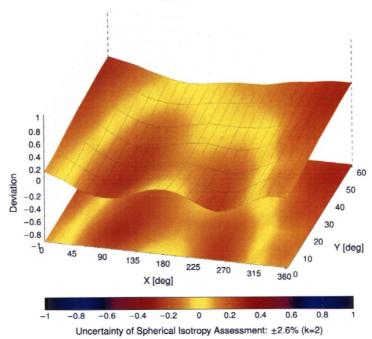
Dynamic Range f(SAR_{head})

(TEM cell, $f_{\text{eval}} = 1900\,\text{MHz})$


Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-3846_May23

Page 10 of 23



Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ) , f = 900 MHz

Certificate No: EX-3846_May23

Page 11 of 23

ANNEX G Dipole Calibration Certificate

750 MHz Dipole Calibration Certificate

中国认可国际互认校准 CALIBRATION CNAS L0570

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client

Potin (Beljing) Technology Co.,Ltd

Certificate No:

J23Z60263

CALIBRATION CERTIFICATE

Object D750V3 - SN: 1196

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 24, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
Network Analyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24
•			

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

The state of the

SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: May 30, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60263

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J23Z60263

Page 2 of 6