

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

- [1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
 - American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1023_Aug22

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	112.2 V/m = 41.00 dBV/m
Maximum measured above low end	100 mW input power	108.6 V/m = 40.72 dBV/m
Averaged maximum above arm	100 mW input power	110.4 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

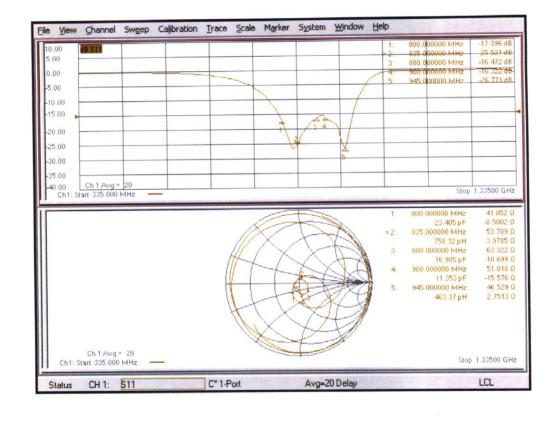
Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	17.4 dB	41.1 Ω - 8.5 jΩ
835 MHz	25.5 dB	53.8 Ω + 4.0 jΩ
880 MHz	16.5 dB	63.3 Ω - 10.7 jΩ
900 MHz	16.3 dB	51.0 Ω - 15.6 jΩ
945 MHz	26.8 dB	46.5 Ω + 2.8 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1023_Aug22

Certificate No: CD835V3-1023_Aug22

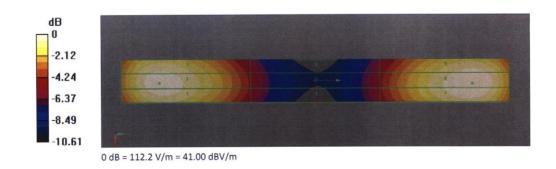
Page 4 of 5

Date: 25.08.2022

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 28.12.2021
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 22.12.2021
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 132.6 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dB RF audio interference level = 41.00 dBV/m Emission category: M3

	Grid 2 M3 40.72 dBV/m	Grid 3 M3 40.44 dBV/m
	Grid 5 M4 35.88 dBV/m	Grid 6 M4 35.61 dBV/m
Grid 7 M3 40.95 dBV/m		Grid 9 M3 40.62 dBV/m

Certificate No: CD835V3-1023_Aug22

Dipole 1880 MHz

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CTTL (Auden)

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Certificate No: CD1880V3-1018 Aug22

bject	CD1880V3 - SN:	1018	
libration procedure(s)	ration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air		
	Calibration Proces	dure for validation Sources in an	
alibration date:	August 25, 2022		
his calibration certificate document	ts the traceability to natio	onal standards, which realize the physical uni	ts of measurements (SI).
te measurements and the uncerta	inties with confidence pr	obability are given on the following pages and	u are part of the certificate.
	the stand laboration	to facility any ironment temperature (22 + 3)°C	and humidity < 70%
I calibrations have been conducte	d in the closed laborator	y facility: environment temperature $(22 \pm 3)^{\circ}C$	and normany s rows.
alibration Equipment used (M&TE	critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
ower sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
ower sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
eference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
pe-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
robe EF3DV3	SN: 4013	28-Dec-21 (No. EF3-4013_Dec21)	Dec-22
AE4	SN: 781	22-Dec-21 (No. DAE4-781_Dec21)	Dec-22
	1	Ohania Data (in hause)	Scheduled Check
econdary Standards	ID # SN: GB42420191	Check Date (in house) 09-Oct-09 (in house check Oct-20)	In house check: Oct-23
ower meter Agilent 4419B ower sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-20)	In house check: Oct-23
ower sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-20)	In house check: Oct-23
F generator R&S SMT-06	SN: 837633/005	10-Jan-19 (in house check Oct-20)	In house check: Oct-23
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	PINA
			Signature Signature
			0.1
pproved by:	Sven Kühn	Technical Manager	010-
	the second second second		2.00
			Issued: August 25, 2022

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

- [1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
 - American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward
 power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the
 dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms.
 Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one
 line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as
 calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1018_Aug22

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.9 V/m = 38.78 dBV/m
Maximum measured above low end	100 mW input power	86.5 V/m = 38.74 dBV/m
Averaged maximum above arm	100 mW input power	86.7 V/m ± 12.8 % (k=2)

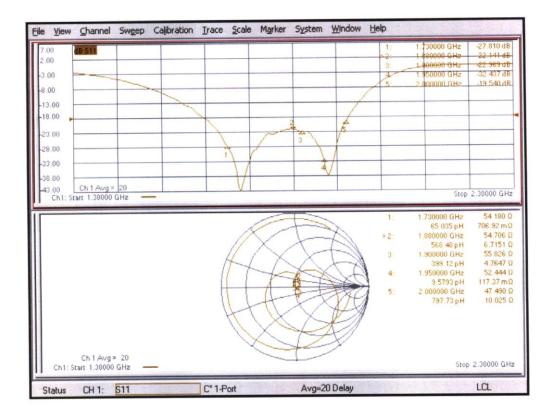
Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	27.8 dB	54.2 Ω + 0.7 jΩ
1880 MHz	22.1 dB	54.7 Ω + 6.7 jΩ
1900 MHz	23.0 dB	55.8 Ω + 4.8 jΩ
1950 MHz	32.4 dB	52.4 Ω + 0.1 jΩ
2000 MHz	19.5 dB	47.5 Ω + 10.0 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1018_Aug22

Page 4 of 5

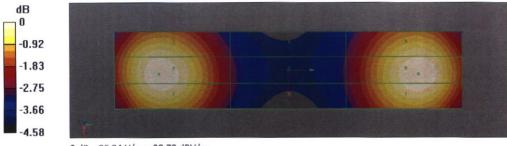
Date: 25.08.2022

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018

Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 28.12.2021 •
- Sensor-Surface: (Fix Surface) •
- Electronics: DAE4 Sn781; Calibrated: 22.12.2021
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 .
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) .

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 157.1 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.78 dBV/m Emission category: M2

MIF scaled E-f	ield
Grid 1 M2	Grid 2 M2

Grid 1 M2 38.66 dBV/m	Grid 2 M2 38.74 dBV/m	
Grid 4 M2 36.05 dBV/m	Grid 5 M2 36.06 dBV/m	
	Grid 8 M2 38.78 dBV/m	Grid 9 M2 38.49 dBV/m

0 dB = 86.94 V/m = 38.78 dBV/m

Certificate No: CD1880V3-1018_Aug22

Dipole 2450 MHz

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Servizio svizzero di taratura Engineering AG S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: CD2450V3-1021_Aug22 Client CTTL (Auden) CALIBRATION CERTIFICATE CD2450V3 - SN: 1021 Object QA CAL-20.v7 Calibration procedure(s) Calibration Procedure for Validation Sources in air August 25, 2022 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) ID # Primary Standards SN: 104778 04-Apr-22 (No. 217-03525/03524) Apr-23 Power meter NRP Apr-23 04-Apr-22 (No. 217-03524) Power sensor NRP-Z91 SN: 103244 Apr-23 Power sensor NRP-Z91 SN: 103245 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) Apr-23 SN: BH9394 (20k) Reference 20 dB Attenuator Apr-23 04-Apr-22 (No. 217-03528) Type-N mismatch combination SN: 310982 / 06327 Dec-22 SN: 4013 28-Dec-21 (No. EF3-4013_Dec21) Probe EF3DV3 22-Dec-21 (No. DAE4-781_Dec21) Dec-22 SN: 781 DAE4 Scheduled Check Check Date (in house) ID # Secondary Standards In house check: Oct-23 Power meter Agilent 4419B SN: GB42420191 09-Oct-09 (in house check Oct-20) SN: US38485102 05-Jan-10 (in house check Oct-20) In house check: Oct-23 Power sensor HP E4412A In house check: Oct-23 SN: US37295597 09-Oct-09 (in house check Oct-20) Power sensor HP 8482A In house check: Oct-23 SN: 837633/005 10-Jan-19 (in house check Oct-20) RF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-22 Network Analyzer Agilent E8358A Function Signature Name Laboratory Technician Calibrated by: Leif Klysner Technical Manager Sven Kühn Approved by: Issued: August 25, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: CD2450V3-1021_Aug22

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S С S

Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

- ANSI-C63.19-2019 (ANSI-C63.19-2011) [1]
 - American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2450V3-1021_Aug22

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2450 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2450 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.0 V/m = 38.69 dBV/m
Maximum measured above low end	100 mW input power	85.8 V/m = 38.67 dBV/m
Averaged maximum above arm	100 mW input power	85.9 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

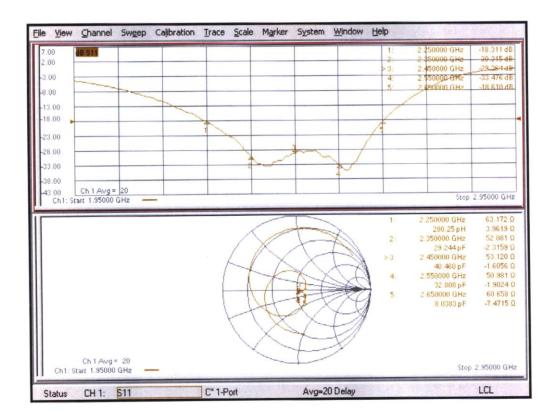
Antenna Parameters

Frequency	Return Loss	Impedance
2250 MHz	18.3 dB	63.2 Ω + 4.0 jΩ
2350 MHz	30.3 dB	52.1 Ω - 2.3 jΩ
2450 MHz	29.4 dB	53.1 Ω - 1.6 jΩ
2550 MHz	33.5 dB	51.0 Ω - 1.9 jΩ
2650 MHz	18.6 dB	60.7 Ω - 7.5 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2450V3-1021_Aug22

Page 4 of 5

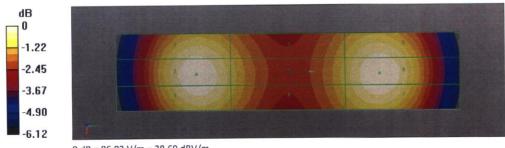
Date: 25.08.2022

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1021

Communication System: UID 0 - CW ; Frequency: 2450 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 28.12.2021 •
- Sensor-Surface: (Fix Surface) ٠
- Electronics: DAE4 Sn781; Calibrated: 22.12.2021
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) .

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 79.61 V/m; Power Drift = 0.02 dB Applied MIF = 0.00 dBRF audio interference level = 38.69 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.56 dBV/m	38.67 dBV/m	38.39 dBV/m
and the second second	Grid 5 M2 37.72 dBV/m	
	Grid 8 M2 38.69 dBV/m	Grid 9 M2 38.45 dBV/m

0 dB = 86.03 V/m = 38.69 dBV/m

Certificate No: CD2450V3-1021_Aug22

Dipole 2600 MHz

chmid & Partner Engineering AG ughausstrasse 43, 8004 Zurich, S	of Switzerland		Service suisse d'étalonnage
credited by the Swiss Accreditation e Swiss Accreditation Service is	one of the signatories	to the EA	Accreditation No.: SCS 0108
ient CTTL (Auden)	gnition of calibration c		lo: CD2600V3-1017_Aug
CALIBRATION C	ERTIFICATE		
Dbject	CD2600V3 - SN:	1017	
Calibration procedure(s)	QA CAL-20.v7 Calibration Proce	dure for Validation Sources in a	air
Calibration date:	August 25, 2022		
All calibrations have been conducte	inties with confidence pr	robability are given on the following pages y facility: environment temperature (22 ± 3	and are part of the certificate.
The measurements and the uncerta	inties with confidence pr	robability are given on the following pages	and are part of the certificate.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	inties with confidence p d in the closed laborator critical for calibration)	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	color color <td< td=""><td>and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23</td></td<>	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	collability are given on the following pages y facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	robability are given on the following pages y facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	collability are given on the following pages y facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	and are part of the certificate.)°C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013	robability are given on the following pages y facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) Check Date (in house) 09-Oct-09 (in house check Oct-20)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Scheduled Check In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 8482A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # ID # SN: GB42420191 SN: US38485102 SN: US37295597	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 8482A RF generator R&S SMT-06	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 10-Jan-19 (in house check Oct-20)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP 8482A RF generator R&S SMT-06	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: US37295597 SN: US37633/005 SN: US41080477	coll Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP E4412A Power sensor HP E442A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005 SN: US41080477 Name	coll Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) 09-Oct-09 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by:	inties with confidence provide in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837633/005 SN: US41080477 Name Leif Klysner Sven Kühn	cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 28-Dec-21 (No. EF3-4013_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) 22-Dec-21 (No. DAE4-781_Dec21) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Dec-22 Dec-22 Scheduled Check In house check: Oct-23 In house check: Oct-24 Signature Signature

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

- [1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
 - American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2600V3-1017_Aug22

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.0 V/m = 38.69 dBV/m
Maximum measured above low end	100 mW input power	85.7 V/m = 38.66 dBV/m
Averaged maximum above arm	100 mW input power	85.9 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

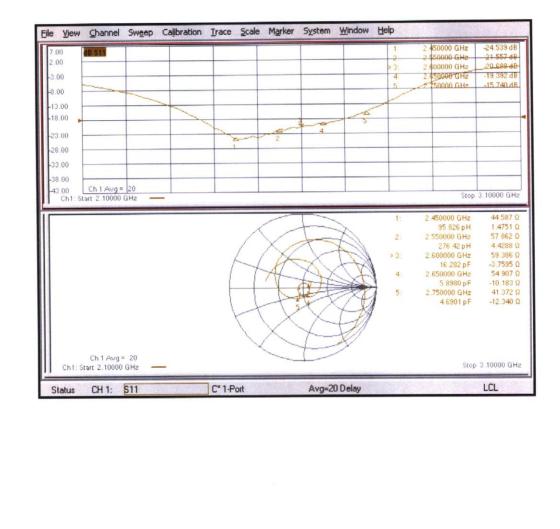
Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	24.5 dB	44.6 Ω + 1.5 jΩ
2550 MHz	21.6 dB	57.9 Ω + 4.4 jΩ
2600 MHz	20.7 dB	59.4 Ω - 3.8 jΩ
2650 MHz	19.4 dB	54.9 Ω - 10.2 jΩ
2750 MHz	15.7 dB	41.4 Ω - 12.3 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2600V3-1017_Aug22

Page 4 of 5

Certificate No: CD2600V3-1017_Aug22

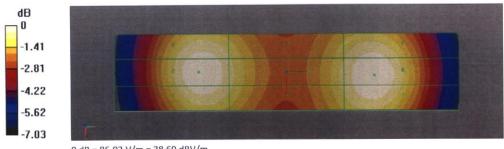
Date: 25.08.2022

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1017

Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m^3 Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 28.12.2021
- . Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 22.12.2021 .
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 ٠
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 69.34 V/m; Power Drift = -0.03 dB Applied MIF = 0.00 dBRF audio interference level = 38.69 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.49 dBV/m	38.66 dBV/m	38.46 dBV/m
	Grid 5 M2 37.97 dBV/m	
		Grid 9 M2
38.62 dBV/m	38.69 dBV/m	38.42 dBV/m

0 dB = 86.03 V/m = 38.69 dBV/m

Certificate No: CD2600V3-1017_Aug22

The photos of HAC test are presented in the additional document:

Appendix to test report No.I23Z61283-SEM02/03

The photos of HAC test