

n77H,100MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3840	101.600	102.200

n77H,100MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n77H,100MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L

n78L,10MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	9.530	9.560

n78L,10MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,10MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,15MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	14.341	14.251

n78L,15MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,15MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,20MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	19.481	19.720

n78L,20MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,20MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,40MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	38.720	38.960

n78L,40MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,40MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,50MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	49.000	49.300

n78L,50MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,50MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,60MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	60.960	61.140

n78L,60MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,60MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,70MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	67.760	68.600

n78L,70MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,70MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,80MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	82.480	83.200

n78L,80MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,80MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,90MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	90.900	91.170

n78L,90MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,90MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78L,100MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3500.01	101.900	102.200

n78L,100MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78L,100MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H

n78H,10MHz(-26dBc BW)

Frequency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)	
	DFT-s-pi/2 BPSK	DFT-s-QPSK
3750	9.530	9.560

n78H,10MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,10MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,15MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	14.251	14.341			

n78H,15MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,15MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,20MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	19.600	19.960			

n78H,20MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,20MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,40MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	38.480	38.720			

n78H,40MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,40MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,50MHz(-26dBc BW)

Froguency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	48.850	49.150			

n78H,50MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,50MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,60MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	60.600	60.780			

n78H,60MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,60MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,70MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	67.760	67.970			

n78H,70MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,70MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,80MHz(-26dBc BW)

Froguency (MHz)	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	82.240	82.720			

n78H,80MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,80MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,90MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	90.900	91.170			

n78H,90MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,90MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

n78H,100MHz(-26dBc BW)

	Emission Bandwidth (-26dBc BW) (MHz)				
	DFT-s-pi/2 BPSK	DFT-s-QPSK			
3750	101.600	101.600			

n78H,100MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

n78H,100MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

Note: Expanded measurement uncertainty is U = 3428 Hz, k = 2

A.5 BAND EDGE COMPLIANCE

A.5.1 Measurement limit

Part 22.917,Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10 log(P) dB.

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40+ 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43+10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55+10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43+10log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55+10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 +10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43+10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(n) states for base station operations in the 3450-3550 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz. Compliance with the provisions of this paragraph (n)(1) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed, but limited to a maximum of 200 kHz. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Notwithstanding the channel edge requirement of -13 dBm per megahertz, for base station operations in the 3450-3550 MHz band, the conducted power of any emission below 3440 MHz or above 3560 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3430 MHz or above 3570 MHz shall not exceed -40 dBm/MHz.

Part 27.53(I) states for base station operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz. Compliance with this paragraph (I)(1) is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The spectrum analyzer readings are corrected by [10 log (1/duty cycle)] for the non-continuous transmitting scenario.

A.5.2Measurement result Only worst case result is given below DC_5A_n2A

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-20M-100%RB

MultiView * Spectrum									
Ref Level 27.	00 dBm Offse	t 0.90 dB 🖷 RBN	N 200 kHz						_
Att TDF "1"	36 dB 🖷 SWT	50 ms 🖷 VBV	N 1 MHz Mo	de Auto Sweep					
1 Frequency S	weep								●1Rm View
20 dBm								M1[1]	-24.07 dBm 1.8500000 GHz
10 dBm						~~~~~	. ~~~~.		
0 dBm									
-10 dBm									
limit1_for_trace1									
-20 dBm				N	/				
-30 dBm				/					
~40'dBm~~~~~									
-50 dBm									
-60 d9m									
-oo usm									
5.1 70 dBm				s	2				
CF 1.85 GHz			501 pts		2	.0 MHz/		5	pan 20.0 MHz
							Measuring		06.01.2023 15:32:41

HIGH BAND EDGE BLOCK-20M-100%RB

DC_66A_n5A

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

No.B22N02633-RF NR

MultiView	- Spec	trum							•
Ref Level 26	.00 dBm	Offset 0.70	dB 🗢 RBW – 5 kH	z					
Att TDF "1"	35 dB	SWT 2.51 ms (~27 n	ns) 🗢 VBW 20 kH	z Mode Auto	> FFT				
1 Occupied Ba	andwidth								●1Pk View
00 d0m								M1[1]	14.93 dBm
20 08/1					M1				848.5280 MHz
10 dBm					1				
10 0.0.11									
0 dBm					т17				
-10 dBm					<u>⊢ / </u>				
-20 dBm					\vdash / \vdash				
-30 dBm									
-40 dBm									
11.	n	. N			1				
150 dBm	when the war	white many the	May Amount Maria	WWW Morrison		NAL A			
<0.40m						WManak			
-60 UBM							Mr. Webyoh Mr.	maderia	www.www.www.
-70 dBm									
			1001 pto			E MUS /			non 3E O MUIS
2 Marker Tab	le		1001 pts		3			2	pan 55.0 MHZ
Type Re	f Trc	X-Value		Y-Value		Function		Function Re	sult
M1	1	848.528 MH	lz 14	.93 dBm	Occ Bw		2	66.6680640	47 kHz
11 T2	1	848.3044 M 848 5711 M	-12 -17	-2.94 dBm 0.25 dBm	Occ Bw Cer	ntroid a Offset		848.43772	0784 MHz 0784 MHz
	~	0.00071110		2.20 00.11	000 000 110	-	Measuring		06.01.2023

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-20M-100%RB

MultiView * Spectrum									
Ref Level 27.00 dBm Offset 0.70 dB • RBW 200 kHz									
Att TDF "1"	36 dB 🖷 SWT	50 ms 🖷 VBV	V 1 MHz Mo	de Auto Sweep					
1 Frequency S	weep								01Rm View
00 40								M1[1]	-21.95 dBm 824.0000 MHz
20 UBM									
10 dBm									
0 dBm									
-10 dBm									
limit1_for_trace1]				
-20 dBm				/	/				
-30 dBm			~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		m	~~						
-40 dBm									
50 d0m									
-50 ubm									
-60 dBm									
				s	2				
5170 dBm									
CF 824.0 MHz			501 pts		2	.0 MHz/		ş	pan 20.0 MHz
							Measuring		06.01.2023 15:42:24

## HIGH BAND EDGE BLOCK-20M-100%RB





n7

## OBW: 1RB-LOW_offset



# LOW BAND EDGE BLOCK-1RB-LOW_offset



# LOW BAND EDGE BLOCK-1RB-LOW_offset



MultiView Spectrum									
Ref Level 27.00 dBm Offset 1.10 dB • RBW 1 MHz									
Att TDF "1"	35 dB 🖷 SW I	50 ms 🖷 VBV	V 5 MHz Mode	e Auto Sweep					
1 Frequency S	Sweep								O1Rm View
								M1[1]	-5.18 dBm
20 dBm-									
10. dBm									
10 000									
0 dBm									
									M1
-10 dBm									/
						(			
-20 dBm									
limit1_for_trace1	4								
-30 dBm									
-40 dBm						l			
50.40.0									
-50 UBM									
-60 dBm									
-70 dBm									
2.4895 GHz	1	1	501 pts		95	0.0 kHz/		1	2,499 GHz
	~					~	Measuring		06.01.2023 15:48:06

# **Channel power**



#### OBW: 1RB-HIGH_offset

# No.B22N02633-RF NR



MultiView Spectrum									
Ref Level 26.00 dBm Offset 1.10 dB RBW 5 kHz									
Att TDF "1"	34 dB SWT	2.51 ms (~27 n	ns) 🖶 VBW 20 k	KHz Mode Aut	o FFT				
1 Occupied	Bandwidth				1	1	1		o1Pk View
20 dBm								M1[1]	15.29 dBm
20 0011			X NI						2.5694860 GHz
10 dBm			<u> </u>						
			T2						
0 dBm			1						
			₩						
-10 dBm			$\square$						
			$  / \rangle$						
-20 dBm-			/						
-20 d9m									
-30 UBIII		1							
-40 dBm									
-50 dBm		h and		N.	A				
www.www.ww	un the work	with	1 W	MARAM	here of	),			
-60 dBm				* * W'W	Mr. M. March M. V	Whyto the start of	moundation	man man	manne
-70 dBm									
CF 2.5755 G	GHz		1001 pt	S	. 3	8.5 MHz/			Span 35.0 MHz
2 Marker Ta	able	V U-1		V 11-1		<b>-</b>		E	
M1		2.569486 G	Hz 1	L5.29 dBm	Occ Bw	Function	2	80.8693946	39 kHz
T1	1	2.5692815 0	iHz	-6.91 dBm	Occ Bw Centroid			2.56942	1939 GHz
T2	1	2.5695624 0	iHz	0.40 dBm	Occ Bw Fre	eq Offset		-6.07806	0/61 MHz
							Measuring		15:49:11

# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



#### HIGH BAND EDGE BLOCK-1RB-HIGH_offset



MultiView Spectrum									
RefLevel 27.00 dBm Offset 1.10 dB ● RBW 1 MHz									
Att 35 db SWI 50 ms VBW 5 MHz Mode Auto sweep TDF "1"									
1 Frequency S	weep	1							●1Rm View
								M1[1]	-5.00 dBm
20 dBm									2.5710000 GHz
10 dBm									
0 dBm									
$\sum_{i=1}^{n}$									
limit1_for_trace1									
-20 dBm									
20. d0m	1								
-30 UBM		1							
-40 dBm								mm	m
			L				ham	T	min
-50 dBm									
-60 dBm									
-70 dBm									
2.571 GHz			501 pts			900.0 kHz/			2.58 GHz
	~						Measuring		06.01.2023
							nousuningm		15:50:33

## **Channel power**



## LOW BAND EDGE BLOCK-20M-100%RB

# No.B22N02633-RF NR



MultiView Spectrum									
Ref Level 27.00 dBm Offset 1.10 dB ● RBW 500 kHz									
Att TDF "1"	35 dD - 5WI	50 ms 🖶 VBV	Y JIMHZ IVIO	de Auto Sweep					
1 Frequency S	weep								●1Rm View
20 dBm								M1[1]	-7.87 dBm 50000000 GHz
10 dBm									
0 d0m									
o ubiii									М1
10-dBm limit1_for_trace1									
								m	ř
-20 dBm							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
~30-dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
2 499 GHz	1		501 nts		10	  0_0_kHz/			2.5.GHz
21133 012	v		501 pts			· · · · · · · · · · · · · · · · · · ·	Measuring		06.01.2023 15:52:05

## **Channel power**



## LOW BAND EDGE BLOCK-20M-100%RB



MultiView 📲 Spectrum										
Ref Level 27.00 dBm Offset 1.10 dB ● RBW 1 MHz										
Att TDF "1"	TDF "1"									
1 Frequency S	weep		1						O1Rm View	
20 dBm								M1[1]	-21.48 dBm 4989910 GHz	
20 000										
10 dBm										
0.40										
u usm										
-10 dBm										
									M1	
-20 dBm										
limit1_for_trace1										
~-30-dBm										
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm										
2.4895 GHz	1	1	501 pts		95	0.0 kHz/			2.499 GHz	
	v					~	Measuring		06.01.2023 15:53:03	

## HIGH BAND EDGE BLOCK-20M-100%RB



#### HIGH BAND EDGE BLOCK-20M-100%RB

# No.B22N02633-RF NR



MultiView Spectrum									
RefLevel 27.00 dBm Offset 1.10 dB • RBW 1 MHz									
Att TDF "1"	35 dB 🖷 SWT	50 ms 🖷 VBV	N/5 MHz Mode	e Auto Sweep					
1 Frequency S	weep					l.	1		●1Rm View
								M1[1]	-23.61 dBm
20 dBm									2.5716660 GHz
10 dBm									
10 0.011									
0 dBm									
-10-dBm	1								
initia_loi_crossi									
-20 dBm									
20 1000									
-30 dBm									
-40 dBm					~~~~				
-50 dBm									
30 abiii									
-60 dBm									
-70 dBm									
2.571 GHz	1	1	501 pts		2	.9 MHz/	1	1	2.6 GHz
	~						Measuring		06.01.2023


n25

#### OBW: 1RB-LOW_offset



### LOW BAND EDGE BLOCK-1RB-LOW_offset



#### OBW: 1RB-HIGH_offset



MultiView Spectrum									
Ref Level 26	.00 dBm (	Offset 0.90	) dB ● RBW 5	kHz					
Att TDF "1"	32 dB :	SWI 2.51 ms (~2/ )	ms) 🖶 VBW 201	KHZ Mode Auto					
1 Occupied Ba	andwidth				1				o1Pk View
00 J0								M1[1]	15.20 dBm
20 dBm-						N	1		.9144930 GHz
						l í			
10 dBm									
						т	2		
0 dBm						*	·		
-10 dBm									
						/	1		
-20 dBm							1		
-30 dBm									
	1								
-40 dBm									
10 0011				L A.					
50 d0m		M M		L					
-50 UBIII		Munthenne Lumm	mon monter	and there was	he hope when he	m V			
Muggeren encound	Mondall						- www.	mynda y	
-60 dBm								and a manager of the second	mannham
-70 dBm									
CF 1.9075 GH	z		1001 pt	s	3	.5 MHz/			Span 35.0 MHz
2 Marker Tab	le								
Type Re	f Trc	X-Value		Y-Value		Function		Function Re	esult
M1 T1	1	1.914493 G	nz ]		Occ Bw	otroid	2	1 01443	51 KHZ
T2	1	1.9145692 (	GHz	0.65 dBm	Occ Bw Cel	a Offset		6,93501	2992 MHz
	~					~	Measuring		<b>40</b> 06.01.2023

# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



### LOW BAND EDGE BLOCK-20M-100%RB



MultiView = Spectrum									
Ref Level 27.	00 dBm Offse	t 0.90 dB 🖷 RBN	<b>N</b> 200 kHz						_
Att TDF "1"	36 dB 🖷 SWT	50 ms 🖷 VBV	N 1 MHz Mo	de Auto Sweep					
1 Frequency S	weep								O1Rm View
20 dBm								M1[1]	-24.13 dBm 1.8500000 GHz
10 dBm									
U dBm									
-10 dBm									
limit1_for_trace1									
-20 dBm				N	1				
-30 dBm				/					
				~~~~					
~40 dBm	h-h-m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~ ~					
-50 dBm									
-60 dBm									
Sito dam				s	2				
			501			0.111.1			00.015
CF 1.85 GHz			501 pts		2	.u MHz/		Ę	pan 20.0 MHz
							Measuring		06.01.2023 16:00:20

HIGH BAND EDGE BLOCK-20M-100%RB

n38

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	N 1 MHz						_
Att TDF "1"	35 dB 🖷 SWT	3 s ● VB\	N/5MHz Mode	e Auto Sweep					
1 Frequency S	Sweep								O1Rm View
								M1[1]	-27.61 dBm
20 dBm									2.568910 GHz
20 0.011									
10 dBm									
0 dBm									
-10 dBm									1
-20 dBm									
limit1_for_trace1									M1
-30 dBm									
									1
									/
-40 dBm									
-50 dBm									
60 ID									
-ьи авт									
-70 d9m									
-70 0611									
2.48 GHz			501 pts		8	.9 MHz/			2.569 GHz
							Measuring		06.01.2023
									10:04:17

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView 🕈 Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	№ 20 kHz						
Att TDF "1"	35 dB 🖷 SW I	3 s 🖷 VBV	V 100 kHz Mo	de Auto Sweep					
1 Frequency S	weep								●1Rm View
00. JD.::								M1[1] 2.	-36.15 dBm 62000300 GHz
20 dBm-									
10 dBm									
0 dBm									
_10_dBm limit1_for_trace1									
-20 dBm-									
-30 dBm									
M1									
-40 dBm	m								
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	mmm					
-50 dBm					mum				
							- marine	······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm									
-70 dBm									
2.62 GHz			501 pts		10	10.0 kHz/			2.621 GHz
							Measuring		06.01.2023 16:05:42

### HIGH BAND EDGE BLOCK-1RB-HIGH_offset



#### LOW BAND EDGE BLOCK-20M-100%RB



MultiView - Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	№ 500 kHz						_
Att TDF "1"	35 dB 🖷 SW I	3 s ● VBV	N 3 MHz Mo	de Auto Sweep					
1 Frequency S	weep								●1Rm View
								M1[1]	-32.20 dBm
20 dBm								2.	56999500 GHz
10 dBm									
0 dBm									
-10 dBm limit1 for trace1									
-20 dBm									
									M1
-30 dBm-									June 1
-40. d8m			mmmmm	mmm		man			
10 00110-0-0000									
-50 dBm									
-60 dBm									
-70 dBm									
2 569 GHz	1		501 nts	1	10	1 10.0 kHz/	1	1	2 57 GHz
21009 0112			501 pts			010 N12/			2107 012
							Measuring		16:07:36

# LOW BAND EDGE BLOCK-20M-100%RB



#### HIGH BAND EDGE BLOCK-20M-100%RB



MultiView 📲 Spectrum									
Ref Level 27.00	dBm Offset	1.10 dB • RBV	<b>V</b> 500 kHz						
Att 3 TDF "1"	35 dB 🖷 SWI	3 S 🖶 ARA	V 3 MHZ MO	de Auto Sweep					
1 Frequency Sw	reep								O 1Rm View
								MI[1]	-38.00 dBm
20 dBm								2	520000000 GHZ
10 dBm									
0 dBm									
10 d0m									
limit1_for_trace1									
-20 dBm									
-30 dBm									
M1									
-40 dBm									
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~		
-50 dBm									
-60 dBm									
-70 dBm									
2.62 GHz			501 pts		10	0.0 kHz/	I	1	2.621 GHz
	<i>,</i>					~	Measuring		06.01.2023

HIGH BAND EDGE BLOCK-20M-100%RB

MultiView Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	N 1 MHz						
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	N/5MHz Mode	e Auto Sweep					
1 Frequency S	Sweep								●1Rm View
0.0								MI[1]	-39.43 dBm 2.6210240 GHz
20 dBm									
10 40									
10 UBm									
0.48m									
o ubiii									
limit1_för_trace1									
-20 dBm									
-30 dBm									
-40.dBm									
					~				
-50 dBm									
-60 dBm									
-70 dBm									
2.621 GHz	1		501 pts		2	.4 MHz/		·	2.645 GHz
							Measuring		06.01.2023 16:09:57

DC_66A_n41A

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView - Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	N 1 MHz						_
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	N/5 MHz Mode	e Auto Sweep					
1 Frequency S	weep								●1Rm View
								M1[1]	-27.93 dBm
20 dBm								2	.4949950 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
limit1_for_trace1									M1
-30 dBm									
50 GBM									and the second
									and the second s
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
2.4895 GHz			501 pts		55	0.0 kHz/			2.495 GHz
							Measuring		06.01.2023
									16:11:57

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView 📲 Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	N 20 kHz						
Att TDF "1"	35 dB • SWI	3 s 🖷 VBV	V 100 kHz Mo	de Auto Sweep					
1 Frequency S	weep								O1Rm View
								M1[1]	-37.75 dBm
20 dBm								2,	69001300 GHz
10 dBm									
0 dBm									
-10-dBm- limit1 for trace1									
00 d0									
-20 abm									
-30 dBm									
M1									
min .									
-40 dBm	mont	~~~~							
			m	money					
-50 dBm					min	manne			
00 00.								mon	mmm.
									· · · ·~
-60 dBm									
70.10									
-70 asm									
2.69 GHz			501 pts		10	0.0 kHz/			2.691 GHz
							Measuring		06.01.2023 16:13:23

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-100M-100%RB

MultiView Spectrum									
RefLevel 27.00 dBm Offset 1.10 dB ● RBW 1 MHz									
TDF "1"									
1 Frequency Sweep	O1Rm View								
MI[1]	-19.00 dBm								
20 dBm-	2.49599900 GHz								
10 dBm									
0 dBm									
-10 dBm-									
limit1_for_trace1	M1								
-20 dBm									
	multit								
-30 dBm									
-10.49m									
-50 dBm									
-70 dBm									
2.495 GHz 501 pts 100.0 kHz/	2.496 GHz								
v Measuring	06.01.2023								

LOW BAND EDGE BLOCK-100M-100%RB

HIGH BAND EDGE BLOCK-100M-100%RB

MultiView 📲 Spectrum									
Ref Level 27.	00 dBm Offse	t 1.10 dB 🖷 RBV	N 1 MHz						
Att TDF "1"	35 dB 🖷 SW I	3 s 🖷 VBV	N/5 MHz Mode	e Auto Sweep					
1 Frequency S	weep								O1Rm View
00.40								M1[1]	-43.23 dBm 69000100 GHz
20 0811									
10 dBm									
0 dBm									
-10-d9m									
limit1_for_trace1									
-20 dBm									
-30 dBm									
M140 dBm									
·				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
-50 dBm									
-60 dBm									
-70 dBm									
2.69 GHz			501 pts		10	0.0 kHz/			2.691 GHz
							Measuring		06.01.2023 16:16:59

HIGH BAND EDGE BLOCK-100M-100%RB

MultiView Spectrum									
Ref Level 27.00) dBm Offset	t 1.10 dB • RBV	N 1 MHz	0. to C					
TDF "1"		js ● VBV	Y DIMITZ MIDDE	e Auto Sweep					A Des Marco
1 Frequency Sw	reep							141543	O IRm View
								MILI	-44.57 dBm
20 dBm									2.091120 002
10 dBm									
0 dBm									
limit1_for_trace1									
-20 dBm									
-30 dBm									
00 00.00									
M1 ⁴⁰ dBm									
		~~~~~							
-50 dBm									
-60 dBm									
-70 dBm									
2.691 GHz			501 pts		1	1.9 MHz/			2.81 GHz
							Measuring		06.01.2023 16:17:40



#### DC_12A_n66A

#### OBW: 1RB-LOW_offset



### LOW BAND EDGE BLOCK-1RB-LOW_offset



OBW: 1RB-HIGH_offset



MultiView 📲 Spectrum										
Ref Level 26.0	00 dBm Offse	t 0.90	dB 🗢 RBW 5 k	Hz						
Att	35 dB SWT	2.51 ms (~27 n	ns) <b>= VBW</b> 20 k	Hz Mode Auto	> FFT					
1 Occupied Ba	ndwidth								o1Pk View	
								M1[1]	14.48 dBm	
20 dBm					M1				.7793880 GHz	
					ň					
10 dBm					Л2					
0. d9m					7					
U UBM										
-10 dBm										
-20 dBm										
-30 dBm										
40 d0m					$\mathbb{N}$					
-40 UBM				ml	V V					
-50 dBm				ν V	Ľ V	s l				
MEJY	ll Amerik	And a marine	my w		v	h h				
-60 dBm	w ren kunantes		W			Marray Marray	mannen	m tol to the state of the		
									. marchara and and and	
-70 dBm										
CF 1.7775 GHz	2		1001 pt	s	3	.5 MHz/		5	pan 35.0 MHz	
2 Marker Tabl	e					· · · · ·				
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult	
M1 T1	1	1 7791954 G	nz ] Hz	-5.81 dBm	Occ Bw Cer	atroid	2	1 779332	92 KNŽ 1444 GH7	
T2	1	1.7794735 G	iHz	2.58 dBm	Occ Bw Fre	q Offset		1.834443	929 MHz	
	v					~	Measuring		<b>40</b> 06.01.2023	

# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



### LOW BAND EDGE BLOCK-40M-100%RB



MultiView Spectrum										
Ref Level 27.	00 dBm Offse	t 0.90 dB 🖷 RBN	<b>V</b> 500 kHz							
Att TDF "1"	36 dB 🖷 SWT	50 ms 🖷 VBV	V 2 MHz Mo	de Auto Sweep						
1 Frequency S	weep			-					●1Rm View	
								M1[1]	-17.04 dBm	
20 dBm									1.7100000 GHZ	
10 dBm										
0 dBm										
-10 dBm					/					
limit1_for_trace1				2	1					
-20 dBm										
				/						
-30 dBm										
			~~~~							
-40 dBm										
-50 dBm										
-60 dBm										
5170 dBm				s	2					
CF 1.71 GHz	1		501 pts		2	.0 MHz/	1	1	Span 20.0 MHz	
	~					~	Measuring		06.01.2023	

HIGH BAND EDGE BLOCK-40M-100%RB

n71

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-20M-100%RB

MultiView * Spectrum											
Ref Level 27.	Ref Level 27.00 dBm Offset 0.70 dB • RBW 30 kHz										
Att TDF "1"	36 dB 🖷 SWT	50 ms 🖶 VBV	V 100 kHz Mo	de Auto Swee	ер						
1 Frequency S	weep									●1Rm View	
									M1[1]	-32.90 dBm	
20 dBm										03.00000 MHZ	
10 dBm											
o dour											
u usm						ſ	mm	www	m	www	
-10 dBm											
limit1_for_trace1					_						
-20 dBm											
-30 dBm					M	1					
					Å	www.					
-40 dBm	in the Mark	mn.~~~	$\sim \sim $	m m	<u> </u>						
	have a	~~~									
-50 dBm					_						
-60 dBm					_						
					s	2					
-70 dBm				SI	-						
CF 663.0 MHz			501 pts		_	50	0.0 kHz/			Span 5.0 MHz	
								Measuring		06.01.2023 16:40:57	

HIGH BAND EDGE BLOCK-20M-100%RB

n77L

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView 🕈 Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	V 500 kHz							
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 3 MHz Mo	de Auto Sweep						
1 Frequency S	weep								O1Rm View	
								M1[1]	-36.32 dBm	
20 dBm								3.	44898800 GHz	
10 dBm										
U dBm-										
-10 dBm										
louist for some of										
limit1_for_trace1										
-20 dBm										
-30 dBm										
									MI	
40 d0m									man	
-40 ubm								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-50 dBm										
-60 dBm										
	1									
-70 dBm										
3.445 GHz			501 pts		40	0.0 kHz/			3.449 GHz	
							Measuring		06.01.2023 16:44:59	

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView 📲 Spectrum											
Ref Level 27.	Ref Level 27.00 dBm Offset 1.70 dB • RBW 5 kHz										
Att TDF "1"	35 dB 🖷 SW I	3 s ● VBV	VI30 kHz Mod	e Auto Sweep							
1 Frequency S	weep					1			O1Rm View		
								M1[1]	-41.29 dBm		
20 dBm								3.	55002790 GHz		
10 d8m											
10 0011											
0 dBm											
· · · · · · · · · · · · · · · · · · ·											
-10 dBm											
limit1 for trace1											
VIA .											
-20 dBm - 1	Δ										
× ×	VVAAAAA										
-30 dBm		AAAAAA									
		1 V V V V V V	AAAA								
-40 dBm		· • • • •	V V V V AA	100	M1						
40 0011			V V	VVVVVV	MARAAAA						
				v	A A A A A A A A A A A A A A A A A A A	MAAAAA	Α.,				
-50 dBm						<u> </u>	MMMMM	A a a .			
								ᡃᠯ᠉᠋ᡃᡐᢦ᠕ᠰ	Maran		
-60 dBm									· · · Purvell		
				-					S2		
-70 dBm				5	L						
3.549 GHz			501 pts		20	0.0 kHz/			3.551 GHz		
							Measuring		06.01.2023 16:46:24		

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-100M-100%RB

MultiView * Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	V 200 kHz						_	
Att TDF "1"	35 dB 🖷 SWT	∃s ● VBV	V 1 MHz Mo	de Auto Sweep						
1 Frequency S	weep								o1Rm View	
20 dBm								M1[1] 3.	-45.30 dBm 44997600 GHz	
10 dBm										
0.40.00										
U UBM										
-10 dBm										
limit1_for_trace1									www.	
-20 dBm										
-30 dBm								St.		
-40 dBm										
				M1						
-50 dBm				·						
-60 dBm										
5170 dBm				s	2					
3.449 GHz			501 pts		20	0.0 kHz/			3.451 GHz	
							Measuring		06.01.2023 16:48:15	

LOW BAND EDGE BLOCK-100M-100%RB

HIGH BAND EDGE BLOCK-100M-100%RB

MultiView 🕈 Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	N 200 kHz						_	
Att TDF "1"	35 dB 🖷 SWT	3 s 🖷 VBN	N 1 MHz Mo	de Auto Sweep						
1 Frequency S	weep								O1Rm View	
								M1[1]	-46.90 dBm 55091420 GHz	
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
limit1_for_trace1										
-20 dBm										
-30 dBm										
-40 dBm										
	······································								M1	
-50 dBm						~~~~~~			******	
-60 dBm										
-70 d9m				9	1				52	
-70 ubm			501						0.554.0	
3.549 GHz			501 pts		20	U.U kHz/			3.551 GHz	
							Measuring		06.01.2023 16:49:52	

HIGH BAND EDGE BLOCK-100M-100%RB

MultiView	MultiView - Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	N 500 kHz								
Att TDF "1"	35 dB 🖶 SWI	3 S 🖶 VBV	N 3 MHZ MIO	de Auto Sweep							
1 Frequency S	weep								O1Rm View		
								M1[1]	-42.60 dBm		
20 dBm								3.	55490820 GHz		
10 d8m											
10 000											
0 dBm											
-10 dBm											
limit1 for troop1											
mmer_nor_cracer											
-20 dBm											
-30 dBm											
30 0011											
-40 dBm									M1		
	· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-50 dBm											
-60 dBm											
-70 dBm											
2 551 CH2			501 pte	<u> </u>	40				2 555 CH2		
5.551 GHZ			501 pts		40	1010 KI 12/			06.01.2023		
							Measuring		16:50:31		

n77H

OBW: 1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

LOW BAND EDGE BLOCK-1RB-LOW_offset

MultiView - Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	V 500 kHz							
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 3 MHz Mo	de Auto Sweep						
1 Frequency S	weep								O1Rm View	
								M1[1]	-35.57 dBm	
20 dBm								3.	59898000 GHz	
10 dBm										
10 0011										
0 dBm										
-10 dBm										
limit1_for_trace1										
00.40.0										
-20 dBm										
-30 dBm									141	
									للمبدر	
-40 dBm									m	
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-50 dBm										
-60 dBm										
-70 dBm										
3 695 GH7	[		501 pte		40	0.0 kHz/			3 600 GH-	
3.093 GHZ			501 pts		40	1010 KI 12/			06.01.2023	
							Measuring		16:52:25	

# OBW: 1RB-HIGH_offset



# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



MultiView Spectrum											
Ref Level 27.	Ref Level 27.00 dBm Offset 1.70 dB • RBW 5 kHz										
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 30 kHz Mod	e Auto Sweep							
1 Frequency S	weep					1			●1Rm View		
								M1[1]	-40.19 dBm		
20 dBm								3.	98001200 GHz		
10 d9m											
TO OBII											
Q dBm											
1 W											
-10 dBm											
limit1 for trace1											
Innici_IOI_Clace1											
-20 dBm	ha.										
	1 VILAAAA										
-30 dBm	VVVV	AAA									
		$P \vee V V W A A A$	NA .								
		· Y V	᠈᠈᠈᠋᠋ᢉᡃᠮᠮᡘ᠕	bha	41						
-40 dBm				ᡐ᠋᠋᠋᠋ᡐ᠋᠋ᠰᢂᢂ	AAAAA.						
				1 1 1	$^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$	ARAAA .					
-50 dBm					y v .		AAA AN A				
							1	WWWWW	A.A.A.A.		
50 ID									A MANNA		
-60 dBm											
									52		
-70 dBm				s	1						
3.979 GHz	I		501 pts		20	0.0 kHz/			3.981 GHz		
	v					~	Measuring		06.01.2023 16:53:50		

# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



### LOW BAND EDGE BLOCK-100M-100%RB



MultiView 🕈 Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	<b>№</b> 500 kHz							
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 3 MHz Mo	de Auto Sweep						
1 Frequency S	weep			-					●1Rm View	
20 dBm								M1[1]	-38.53 dBm 3.6999800 GHz	
20 0011										
10 dBm										
0.dBm										
					~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	······	*********	
-10 dBm										
limit1_for_trace1					- /					
-20 dBm										
-30 dBm										
				M	1/					
-40 dBm				······································						
-50 dBm										
-60 dBm										
				s	2					
5470 dBm										
3.695 GHz	•		501 pts		1	.0 MHz/			3.705 GHz	
							Measuring		06.01.2023 16:55:41	

# HIGH BAND EDGE BLOCK-100M-100%RB





n78L

### OBW: 1RB-LOW_offset



### LOW BAND EDGE BLOCK-1RB-LOW_offset



### LOW BAND EDGE BLOCK-1RB-LOW_offset



MultiView 🕈 Spectrum										
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	<b>V</b> 500 kHz							
Att TDF "1"	35 dB 🖷 SWT	3 s 🖷 VBV	V 3 MHz Mo	de Auto Sweep						
1 Frequency S	weep								●1Rm View	
								M1[1]	-36.42 dBm	
20 dBm								3.	44898000 GHz	
10 dBm										
U dBm-										
-10 dBm										
louist for some of										
limit1_for_trace1										
-20 dBm										
-30 dBm										
									M1	
40 d0m									· ······	
-40 ubm							m			
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
-50 dBm										
-60 dBm										
-70 dBm										
3.445 GHz			501 pts		40	0.0 kHz/			3.449 GHz	
							Measuring		06.01.2023 17:15:20	

OBW: 1RB-HIGH_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

MultiView Spectrum									
Ref Level 27.00 dBm Offset 1.70 dB • RBW 5 kHz									
Att 35 dB • SWT 3 s • VBW 30 kHz Mode Auto Sweep TDF "1"									
Frequency Sweep o 1Rm View									
						M1[1]	-41.44 dBm		
20 dBm						3.	55000400 GHz		
10 dBm									
0 dBm									
-10 dBm									
limit1_for_trace1									
-20 d8m									
IVNAAA.									
-30 dBm									
1 V V V V	MAAAAAA								
-40 dBm		1Anna *	1						
	i li i i i i i i i i i i i i i i i i i	1 V V V V V V	MAMMA.						
- E0 d8m			<u>, , , , , , , </u>	MAMMMAN	A .A				
-30 0611					rvvvvvv	Arman			
						A North MANN	mon		
-60 dBm		<u> </u>							
-70 dBm		S	1				52		
3.549 GHz	501 pts		20	1 00.0 kHz/			3.551 GHz		
~				•	Measuring		06.01.2023		

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

LOW BAND EDGE BLOCK-100M-100%RB

MultiView Spectrum										
Ref Level 27.	Ref Level 27.00 dBm Offset 1.70 dB • RBW 200 kHz									
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 1 MHz Mo	de Auto Sweep						
1 Frequency S	weep								●1Rm View	
20 dBm								M1[1] 3.	-45.51 dBm 44998400 GHz	
10 dBm										
0 dBm										
-10 dBm									مىمىيىرىر	
limit1 for trace1									www.www.	
20. d0m								and the second		
-20 080								and the second sec		
-30 dBm								e de la companya de la		
-40 dBm				MI			sources.			
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
-50 dBm										
-60 dBm										
5.170 dBm				s	2					
3.449 GHz	1	1	501 pts		20	) 0.0 kHz/			3.451 GHz	
	v					~	Measuring		06.01.2023 17:18:36	

# LOW BAND EDGE BLOCK-100M-100%RB



#### HIGH BAND EDGE BLOCK-100M-100%RB



MultiView = Spectrum									
Ref Level 27.00 dBm Offset 1.70 dB • RBW 200 kHz									
Att TDF "1"	35 dB 🖷 SWT	3 s 🖷 VBV	N 1 MHz Mo	de Auto Sweep					
1 Frequency S	weep								●1Rm View
								M1[1]	-47.20 dBm
20 dBm								3.	55014370 GHz
10 dBm									
0 dBm									
-10 dBm									
limit1_for_trace1									
-20 dBm									
20 000									
-30 dBm									
10.10.0									
-40 dBm-									
mm					MT				
-50 dBm									
-ьи dBm									
-70 dBm				s	1				52
3 549 GHz			501 nts		20	  0_0_kHz/			3 551 GHz
01010 012			501 pts		20	0101012/			06.01.2023
							Measuring		17:20:16

# HIGH BAND EDGE BLOCK-100M-100%RB

MultiView Spectrum										
Ref Level 27.00 dBm Offset 1.70 dB   RBW 500 kHz										
Att TDF "1"	35 dB 🖷 SWT	3 s 🖷 VBN	V 3 MHz Mo	de Auto Sweep						
1 Frequency Sweep 01Rm View										
								M1[1]	-42.74 dBm	
20 dBm								3.	55497210 GHz	
10 dBm										
0.49m										
C GDIII										
-10 dBm-										
limit1_for_trace1										
-20 dBm										
-30 dBm										
-40 dBm									Mal	
			·····							
-50 dBm										
-60 dBm										
-70 dBm										
3.551 GHz	I	I	501 pts		40	0.0 kHz/	I		3.555 GHz	
	~					~	Measuring		06.01.2023	



n78H

#### OBW: 1RB-LOW_offset



### LOW BAND EDGE BLOCK-1RB-LOW_offset



### LOW BAND EDGE BLOCK-1RB-LOW_offset



MultiView - Spectrum									
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	<b>V</b> 500 kHz						
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 3 MHz Mo	de Auto Sweep					
1 Frequency S	weep								IRm View
								M1[1]	-35.60 dBm
20 dBm								3.	69898800 GHz
10 dBm									
0 dBm									
-10 dBm									
limit1_for_trace1									
00. d0m									
-20 dBm									
-30 dBm									
									M1
									······
-40 dBm						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-50 dBm									
-60 dBm									
-70 dBm									
3 605 GHz	1		501 pte		40	0.0.6477			3 600 CH-
2110 6607			501 pts		40	010 KHZ/			06.01.2023
							Measuring		17:22:49

# OBW: 1RB-HIGH_offset



#### HIGH BAND EDGE BLOCK-1RB-HIGH_offset



MultiView Spectrum									
Ref Level 27.	00 dBm Offse	t 1.70 dB 🖷 RBV	V 5 kHz						
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 30 kHz Mod	e Auto Sweep					
1 Frequency S	weep					1			●1Rm View
								M1[1]	-41.19 dBm
20 dBm								3,	80001600 GHZ
10 dBm									
0 dBm+									
wein									
10 d0m									
-10 dBm									
Imit1_for_trace1									
-20 dBm /	ña -								
	PVNAA.								
-30 dBm	Y'V V V	MAAAAA							
		. , , , , , , , , , , , , , , , , , , ,	MAAAAA						
-40 dBm			· · · · · · · · · · · · · · · · · · ·	AAAAAA	M1				
					MAAAAA	ALM N.			
-50 dBm						VVIAAAA	MADO		
00 0011							[ V V V V V V V	Mamon	0.0.0
									www.www.ww
-60 dBm									
									52
-70 dBm				S	1				
3.799 GHz			501 pts		20	0.0 kHz/			3.801 GHz
							Measuring		06.01.2023 17:23:46

# HIGH BAND EDGE BLOCK-1RB-HIGH_offset



### LOW BAND EDGE BLOCK-100M-100%RB


MultiView Spectrum									
Ref Level 27.00 dBm Offset 1.70 dB • RBW 500 kHz									
Att TDF "1"	35 dB 🖷 SWT	3 s ● VBV	V 3 MHz Mo	de Auto Sweep					
1 Frequency S	weep			-					●1Rm View
20 dBm								M1[1]	-38.75 dBm .7000000 GHz
20 000									
10 dBm									
0. d0m									
0 ubin							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-10 dBm									
limit1_for_trace1					- /				
-20 dBm									
-30 dBm									
				M	1				
-40 dBm									
-50 dBm									
-60 dBm									
5.170 dBm				s	2				
3.695 GHz	1	1	501 nts		1	.0 MHz/		1	3.705 GHz
	v		001 pta			····/	Measuring		06.01.2023 17:25:09

## HIGH BAND EDGE BLOCK-100M-100%RB





## A.6 CONDUCTED SPURIOUS EMISSION

## A.6.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:
  - a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
  - b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than 2×span/RBW

## A. 6.2 Measurement Limit

Part 22.917,Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10 log(P) dB.

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40+ 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43+10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55+10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43+10log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55+10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 +10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43+10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(n) states for base station operations in the 3450-3550 MHz band, the conducted power