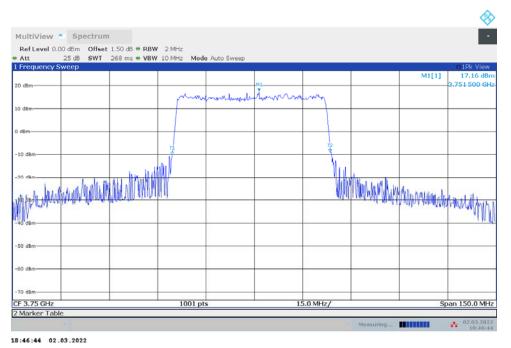





#### n78H,50MHz(-26dBc)


|                 | Emission Bandwidth (-26dBc) (MHz) |            |  |  |  |
|-----------------|-----------------------------------|------------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK                   | DFT-s-QPSK |  |  |  |
| 3750            | 49.300                            | 49.000     |  |  |  |

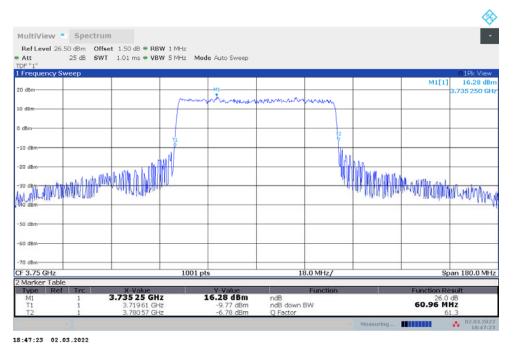
#### n78H,50MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)



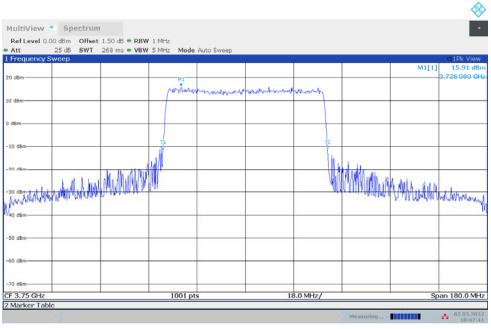
18:46:26 02.03.2022

## n78H,50MHz Bandwidth,DFT-s-QPSK (-26dBc BW)









#### n78H,60MHz(-26dBc)

|                 | Emission Bandwidth (-26dBc) (MHz) |            |  |  |  |
|-----------------|-----------------------------------|------------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK                   | DFT-s-QPSK |  |  |  |
| 3750            | 60.960                            | 61.140     |  |  |  |

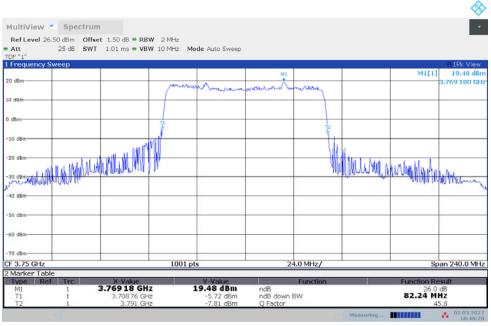
#### n78H,60MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)



# n78H,60MHz Bandwidth,DFT-s-QPSK (-26dBc BW)

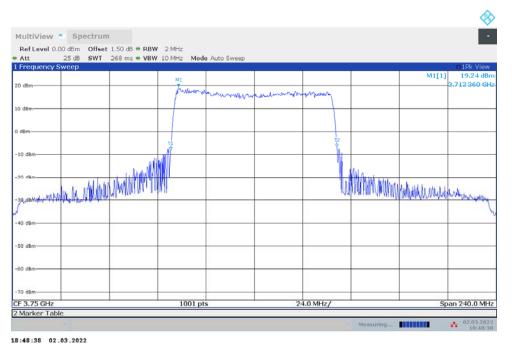


18:47:41 02.03.2022






#### n78H,80MHz(-26dBc)


|                 | Emission Bandwidth (-26dBc) (MHz) |            |  |  |  |
|-----------------|-----------------------------------|------------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK                   | DFT-s-QPSK |  |  |  |
| 3750            | 82.240                            | 82.480     |  |  |  |

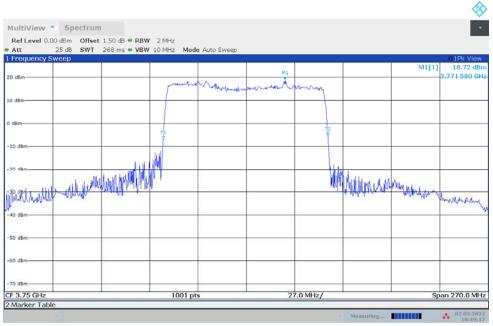
#### n78H,80MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)



18:48:20 02.03.2022

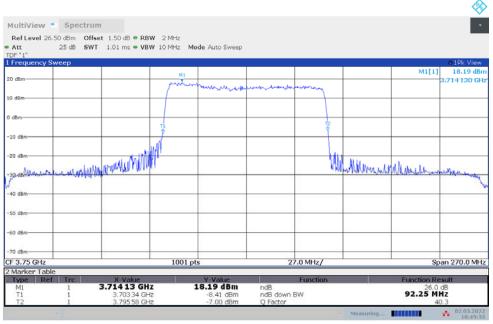
## n78H,80MHz Bandwidth,DFT-s-QPSK (-26dBc BW)








#### n78H,90MHz(-26dBc)


|                 | Emission Bandwidth (-26dBc) (MHz) |            |  |  |  |
|-----------------|-----------------------------------|------------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK                   | DFT-s-QPSK |  |  |  |
| 3750            | 91.980                            | 92.250     |  |  |  |

#### n78H,90MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)

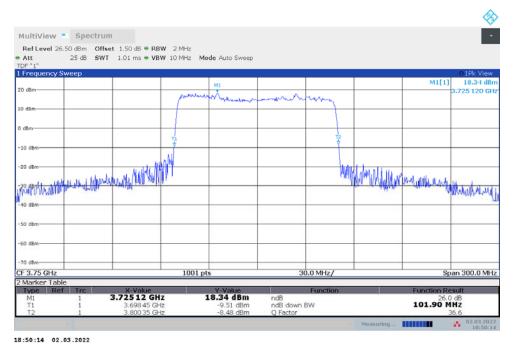


18:49:17 02.03.2022

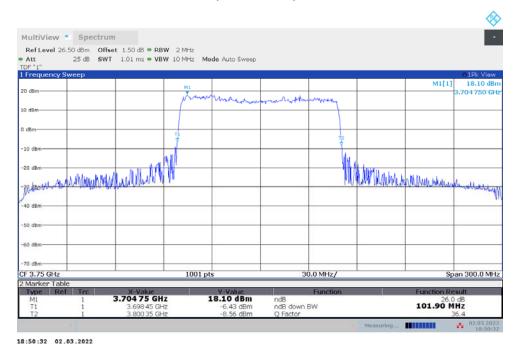
## n78H,90MHz Bandwidth,DFT-s-QPSK (-26dBc BW)



18:49:35 02.03.2022







#### n78H,100MHz(-26dBc)

|                 | Emission Bandwidth (-26dBc) (MHz) |            |  |  |  |
|-----------------|-----------------------------------|------------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK                   | DFT-s-QPSK |  |  |  |
| 3750            | 101.900                           | 101.900    |  |  |  |

#### n78H,100MHz Bandwidth,DFT-s-pi/2 BPSK (-26dBc BW)



#### n78H,100MHz Bandwidth,DFT-s-QPSK (-26dBc BW)







## A.6 Band Edge Compliance

#### A.6.1 Measurement limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

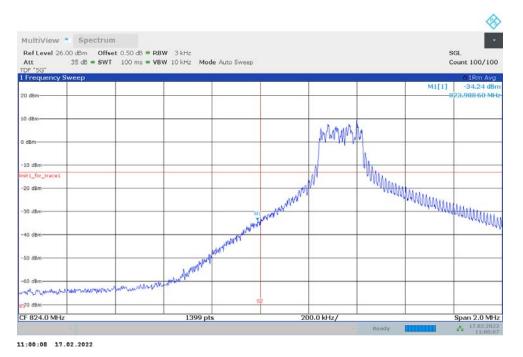
Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(h) for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.



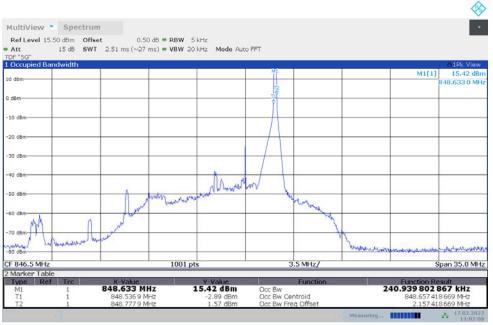



# A.6.2 Measurement result NR n5

## OBW: 1RB-LOW\_offset

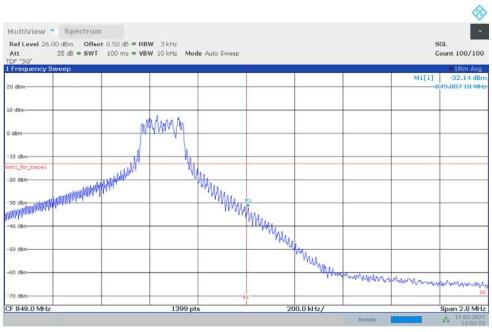


10:59:20 17.02.2022


## LOW BAND EDGE BLOCK-1RB-LOW\_offset





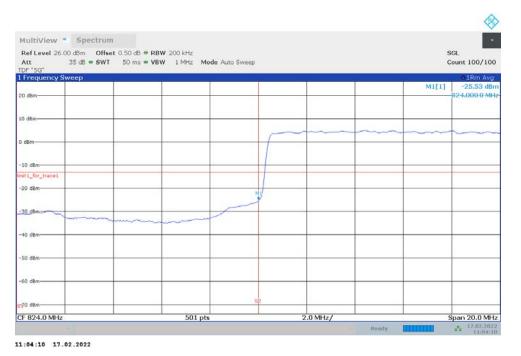



#### OBW: 1RB-HIGH\_offset

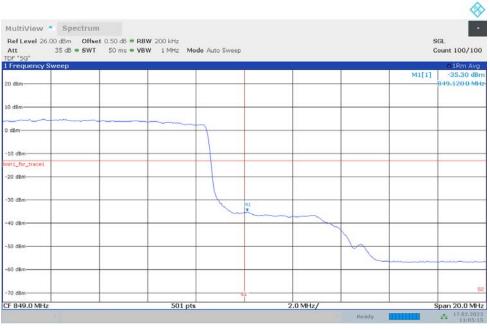


11:02:08 17.02.2022

## HIGH BAND EDGE BLOCK-1RB-HIGH\_offset




11:02:56 17.02.2022



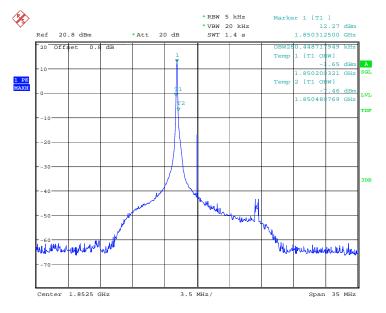



#### LOW BAND EDGE BLOCK-20M-100%RB



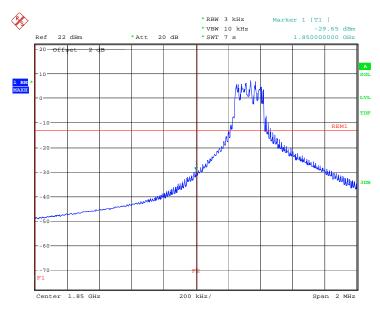
#### HIGH BAND EDGE BLOCK-20M-100%RB




11:05:16 17.02.2022





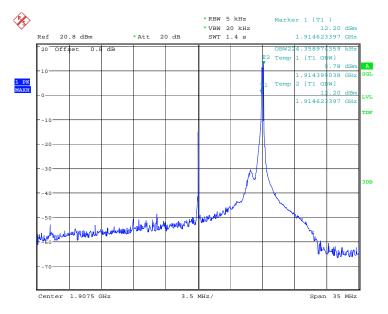

## LTE Band 12+NR n25

## OBW: 1RB-LOW\_offset



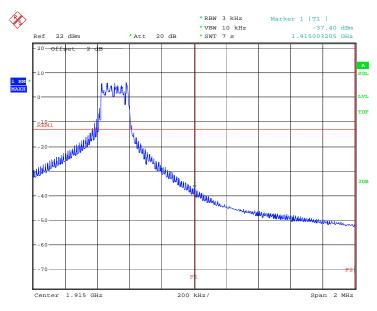
Date: 29.0CT.2021 19:53:22

## LOW BAND EDGE BLOCK-1RB-LOW\_offset




Date: 29.0CT.2021 19:53:41

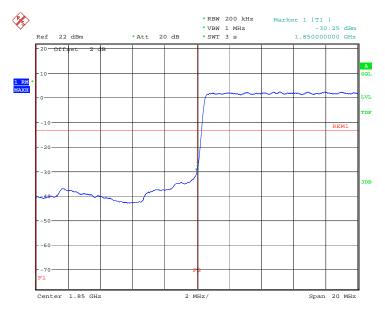





#### OBW: 1RB-HIGH\_offset



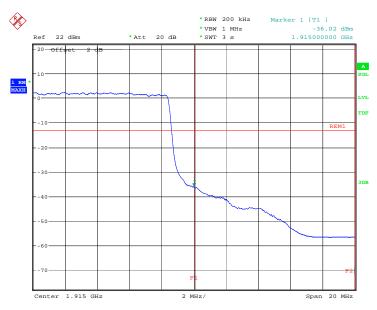
Date: 29.0CT.2021 19:55:11


#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset



Date: 29.0CT.2021 19:55:31



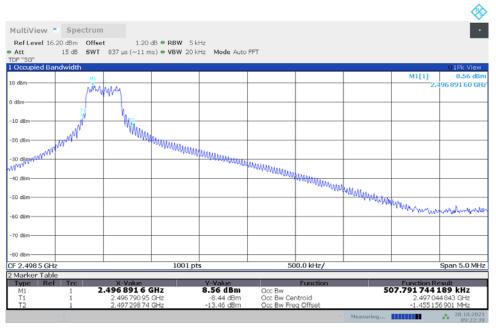





#### LOW BAND EDGE BLOCK-20M-100%RB

Date: 29.0CT.2021 19:57:12

#### HIGH BAND EDGE BLOCK-20M-100%RB




Date: 29.0CT.2021 19:58:46



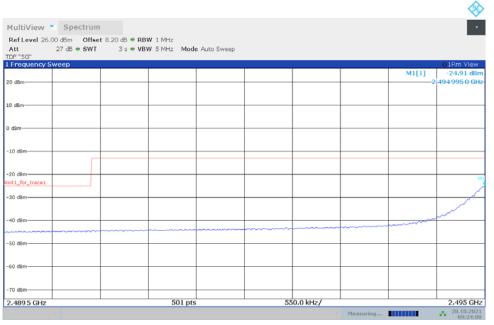


## NR n41 OBW: 1RB-LOW\_offset



Date:28.0CT.2021 09:22:39

## LOW BAND EDGE BLOCK-1RB-LOW\_offset


| MultiView Spectr                       |                                        |               |                |   |   |             |       |                                                 |
|----------------------------------------|----------------------------------------|---------------|----------------|---|---|-------------|-------|-------------------------------------------------|
| Ref Level 26.00 dBm O<br>Att 27 dB = S | ffset 8.20 dB ● RBV<br>WT 3 s ● VBV    |               | de Auto Sween  |   |   |             |       |                                                 |
| DF "5G"                                | 0000                                   | 1001012 110   | au nate enterp |   |   |             |       |                                                 |
| Frequency Sweep                        |                                        |               |                |   |   |             | M1[1] | <ul> <li>1Rm View</li> <li>-33.62 dB</li> </ul> |
| 20 dBm                                 |                                        |               |                |   |   |             |       | 95 999 00 G                                     |
|                                        |                                        |               |                |   |   |             |       |                                                 |
| 0 dBm                                  |                                        |               |                |   |   |             |       |                                                 |
|                                        |                                        |               |                |   |   |             |       |                                                 |
| dam                                    |                                        |               |                |   |   |             |       |                                                 |
| den .                                  |                                        |               |                |   |   |             |       |                                                 |
| 10 dām                                 |                                        |               |                |   |   |             |       |                                                 |
| nit1_for_trace1                        |                                        |               |                |   |   |             |       |                                                 |
|                                        |                                        |               |                |   |   |             |       |                                                 |
| 20 dBm                                 |                                        |               |                |   |   |             |       |                                                 |
|                                        |                                        |               |                |   |   |             |       |                                                 |
| 30 d8m                                 |                                        |               |                |   |   |             |       |                                                 |
|                                        |                                        |               |                |   |   |             | min   | m                                               |
| 40 d8m                                 |                                        |               |                |   | m | Cooperation |       |                                                 |
|                                        |                                        |               | mm             |   |   |             |       |                                                 |
| 50 dBm                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~ · · · · |                |   |   |             |       |                                                 |
|                                        |                                        |               |                |   |   |             |       |                                                 |
| 60 dBm                                 |                                        |               |                |   |   |             |       |                                                 |
|                                        |                                        |               |                |   |   |             |       |                                                 |
|                                        |                                        |               |                | 1 | 1 |             |       | 1                                               |

Date:28.0CT.2021 09:23:20





## LOW BAND EDGE BLOCK-1RB-LOW\_offset



Date:28.0CT.2021 09:24:00



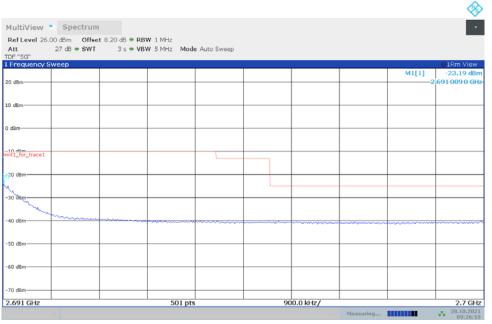


#### OBW: 1RB-HIGH\_offset



Date:28.0CT.2021 09:25:35

#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset

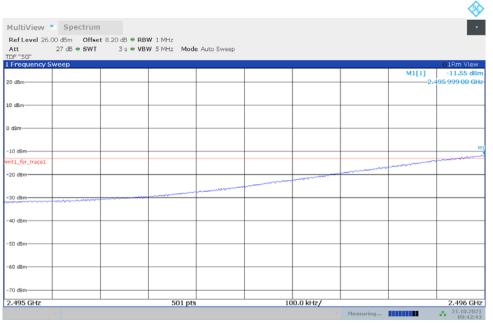



Date:28.0CT.2021 09:26:16



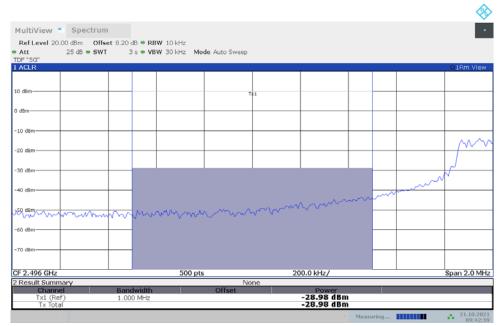


#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset




Date:28.0CT.2021 09:26:56



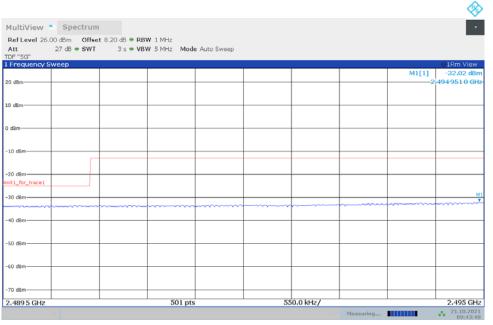



#### LOW BAND EDGE BLOCK-100M-100%RB



Date:21.0CT.2021 09:42:43

#### **Channal Power**




Date:21.0CT.2021 09:43:00





#### LOW BAND EDGE BLOCK-100M-100%RB



Date:21.0CT.2021 09:43:40





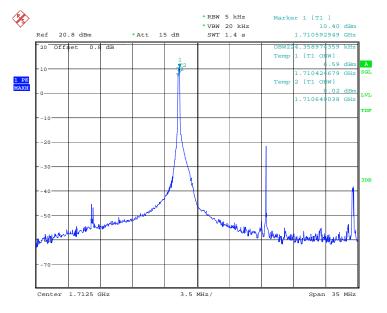
#### HIGH BAND EDGE BLOCK-100M-100%RB

| Ref Level 26.00 dBm Offe | im<br>set 8.20 dB = RBW 1 MF | Ηz                 |                                         |       |                                         | _                           |
|--------------------------|------------------------------|--------------------|-----------------------------------------|-------|-----------------------------------------|-----------------------------|
| Att 27 dB • SW           | T 3 s 🗢 VBW 5 MH             | Hz Mode Auto Sweep |                                         |       |                                         |                             |
| Frequency Sweep          |                              |                    |                                         |       |                                         | 01Rm View                   |
| ) dBm                    |                              |                    |                                         |       | M1[1]                                   | -30.76 dBr<br>690 003 00 GH |
| dBm                      |                              |                    |                                         |       |                                         |                             |
| dBm                      |                              |                    |                                         |       |                                         |                             |
| 1_for_trace1             |                              |                    |                                         |       |                                         |                             |
| 0 d8m                    |                              |                    |                                         |       |                                         |                             |
| i dBm                    |                              |                    |                                         |       |                                         |                             |
|                          |                              |                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                             |
| dam                      |                              |                    |                                         |       |                                         |                             |
| dBm                      |                              |                    |                                         |       |                                         |                             |
| dBm                      |                              |                    |                                         |       |                                         |                             |
|                          |                              |                    |                                         |       |                                         |                             |

Date:21.0CT.2021 09:44:48

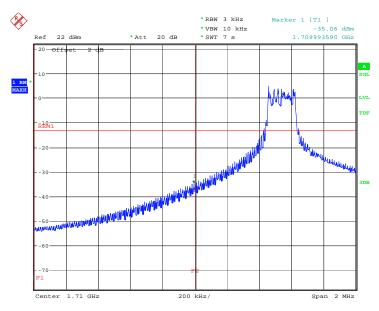
#### HIGH BAND EDGE BLOCK-100M-100%RB




Date:21.0CT.2021 09:45:28





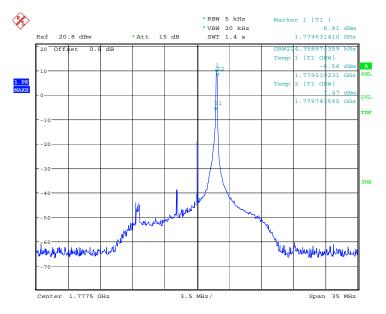

## LTE Band 12+NR n66

## OBW: 1RB-LOW\_offset



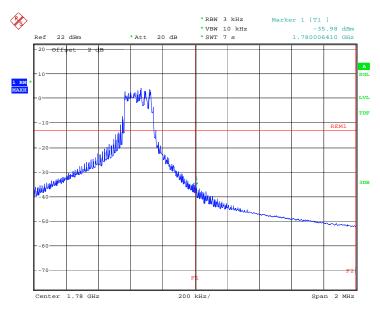
Date: 30.0CT.2021 08:12:56

## LOW BAND EDGE BLOCK-1RB-LOW\_offset




Date: 30.0CT.2021 08:13:16

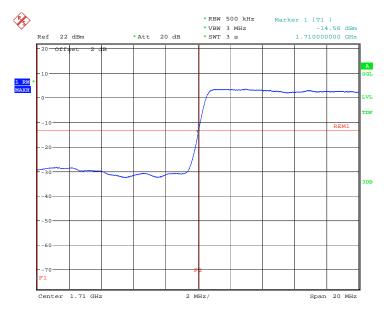





#### OBW: 1RB-HIGH\_offset



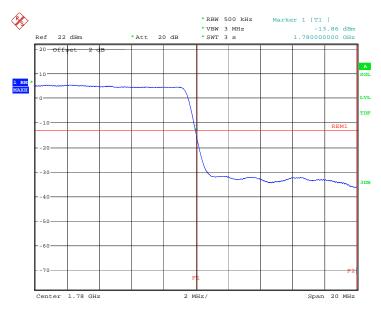
Date: 30.0CT.2021 08:14:39


#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset



Date: 30.0CT.2021 08:14:58





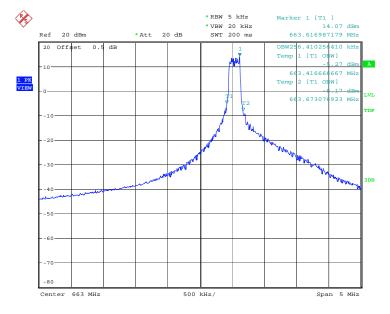



#### LOW BAND EDGE BLOCK-40M-100%RB

Date: 30.0CT.2021 08:16:42

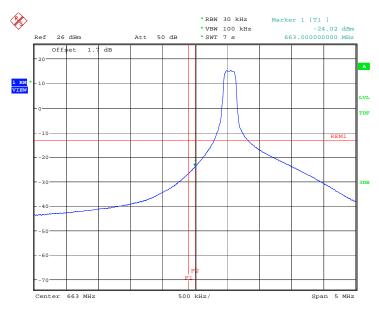
#### HIGH BAND EDGE BLOCK-40M-100%RB




Date: 30.0CT.2021 08:18:21





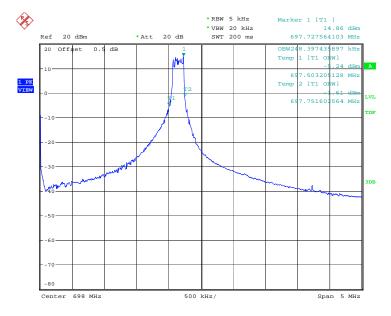

## LTE Band 66+NR n71

## OBW: 1RB-LOW\_offset



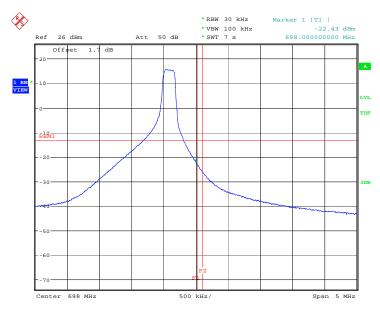
Date: 30.0CT.2021 08:42:26

#### LOW BAND EDGE BLOCK-1RB-LOW\_offset




Date: 30.0CT.2021 08:43:06

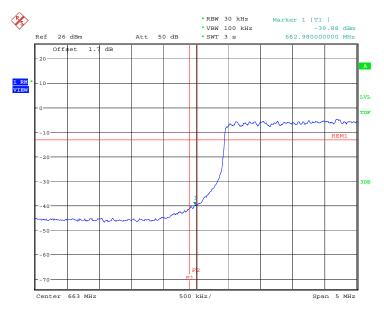





#### OBW: 1RB-HIGH\_offset



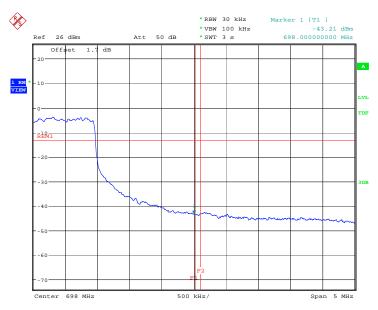
Date: 30.0CT.2021 08:51:12


#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset



Date: 30.0CT.2021 08:57:33



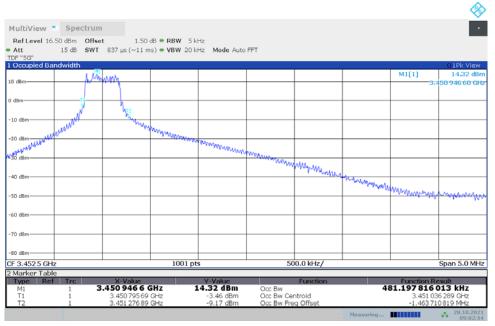





#### LOW BAND EDGE BLOCK-20M-100%RB

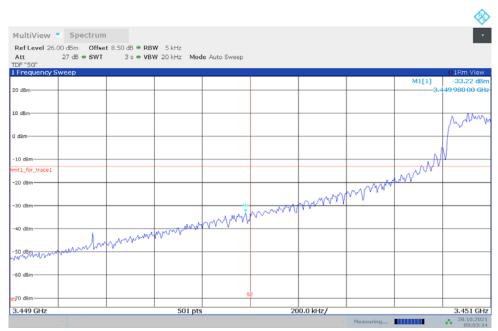
Date: 30.0CT.2021 08:38:27

#### HIGH BAND EDGE BLOCK-20M-100%RB




Date: 30.0CT.2021 08:40:25



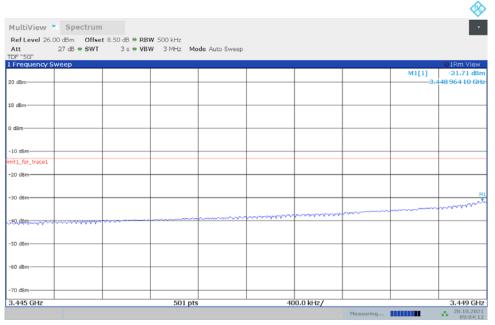



## NR n77L OBW: 1RB-LOW\_offset



Date:28.0CT.2021 09:02:55

## LOW BAND EDGE BLOCK-1RB-LOW\_offset




Date:28.0CT.2021 09:03:35



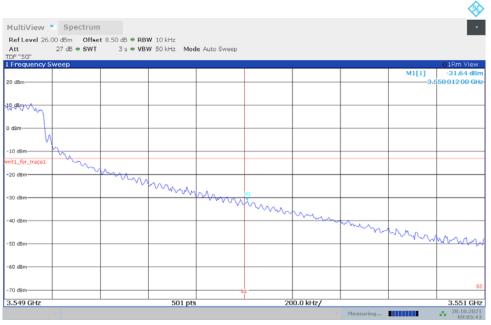


## LOW BAND EDGE BLOCK-1RB-LOW\_offset



Date:28.0CT.2021 09:04:13

#### OBW: 1RB-HIGH\_offset


|                                     | .50 dBm Offse    |                                          | dB = RBW 5 ki |                                    | 657                  |                                         |          |                                     | _                                    |
|-------------------------------------|------------------|------------------------------------------|---------------|------------------------------------|----------------------|-----------------------------------------|----------|-------------------------------------|--------------------------------------|
| DF "5G"<br>Occupied Ba              |                  | o57 µs (~11 m                            | S) - VOW 20 K | nz Mode Auto                       |                      |                                         |          |                                     | 01Pk View                            |
| 0 d8m                               |                  |                                          |               |                                    |                      |                                         | M1       | M1[1]                               | 11.65 dB                             |
|                                     |                  |                                          |               |                                    |                      |                                         | (* ~ *   | 3 1                                 | .340 943 00 Gr                       |
| dBm                                 |                  |                                          |               |                                    |                      |                                         | TIM      | 72                                  |                                      |
|                                     |                  |                                          |               |                                    |                      | AND | Marrie . | . Mary                              |                                      |
| 0 dBm                               |                  |                                          |               |                                    | www.www.             | WWW WWW                                 |          |                                     | C. C. March and a March and a second |
| 10 d8m                              |                  |                                          |               | MWWWWWW                            |                      |                                         |          |                                     |                                      |
| 0 dBm                               |                  | MMMMMM                                   | Manna Mariana |                                    |                      |                                         |          |                                     |                                      |
| onderfrond and the                  | C-2WWIDHAAdanaaa |                                          |               |                                    |                      |                                         |          |                                     |                                      |
| 0 dBm                               |                  |                                          |               |                                    |                      |                                         |          |                                     |                                      |
| '0 d8m                              |                  |                                          |               |                                    |                      |                                         |          |                                     |                                      |
| 10 dBm                              |                  |                                          |               |                                    |                      |                                         |          |                                     |                                      |
| 3.547 5 GH                          | -                |                                          | 1001 pt       | S                                  | 50                   | 0.0 kHz/                                |          |                                     | Span 5.0 Mł                          |
| Marker Tabl<br>Type Ref<br>M1<br>T1 | Trc              | X-Value<br>3.548 943 6 0<br>3.548 619 82 |               | Y-Value<br>11.65 dBm<br>-12.23 dBm | Occ Bw<br>Occ Bw Cer | Function                                | 5        | Function F<br>93.474 143<br>3.548 9 |                                      |

Date:28.0CT.2021 09:05:03



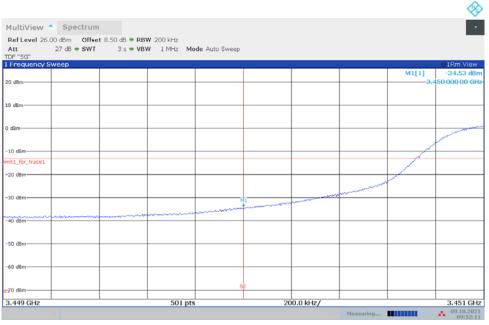


#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset



Date:28.0CT.2021 09:05:43

## HIGH BAND EDGE BLOCK-1RB-HIGH\_offset


| MultiView 🔹 Sp                                  | ectrum       |                             |               |    |    |           | •                                               |
|-------------------------------------------------|--------------|-----------------------------|---------------|----|----|-----------|-------------------------------------------------|
| Ref Level 26.00 dBm           Att         27 dB |              | 18W 500 kHz<br>18W 3 MHz Mo | 1. A.H. C     |    |    |           |                                                 |
| DF "5G"                                         | ● 5W1 38 ● V | BW 3 MHZ MG                 | de Auto Sweep |    |    |           |                                                 |
| Frequency Sweep                                 |              |                             |               | 1  |    |           | <ul> <li>1Rm View</li> <li>-30.91 dB</li> </ul> |
| 0 d8m                                           |              |                             |               |    |    | M1[1]     | -30.91 dB<br>551 059 90 GF                      |
| o ubiii                                         |              |                             |               |    |    |           | 001005500                                       |
| D dBm                                           |              |                             |               |    |    |           |                                                 |
| o den                                           |              |                             |               |    |    |           |                                                 |
| dBm                                             |              |                             |               |    |    |           |                                                 |
| GBM                                             |              |                             |               |    |    |           |                                                 |
| 10 d8m                                          |              |                             |               |    |    |           |                                                 |
| hit1_for_trace1                                 |              |                             |               |    |    |           |                                                 |
| 20 d8m                                          |              |                             |               |    |    |           |                                                 |
| 20 08m                                          |              |                             |               |    |    |           |                                                 |
| M1                                              |              |                             |               |    |    |           |                                                 |
| and dam                                         |              |                             |               |    |    |           |                                                 |
| 40 dBm                                          | mann         | man                         | mm            | mm | mm | <br>0.0.0 |                                                 |
| 40 dbm                                          |              |                             |               |    |    | <br>      | how we will                                     |
|                                                 |              |                             |               |    |    |           |                                                 |
| 50 dBm                                          |              |                             |               |    |    |           |                                                 |
| (a. da.)                                        |              |                             |               |    |    |           |                                                 |
| 60 dBm                                          |              |                             |               |    |    |           |                                                 |
|                                                 |              |                             |               |    |    |           |                                                 |
| 70 d8m                                          |              |                             |               |    |    |           |                                                 |

Date:28.0CT.2021 09:06:21



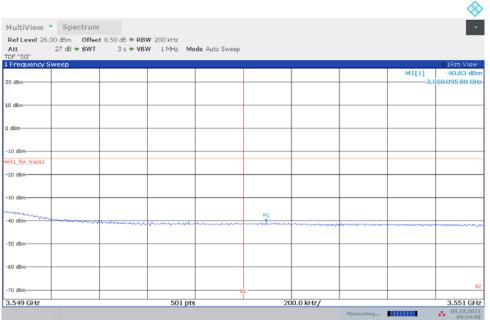


#### LOW BAND EDGE BLOCK-90M-100%RB



Date:9.0CT.2021 09:52:11

#### LOW BAND EDGE BLOCK-90M-100%RB


| MultiView 🝨 Spect        | trum         |            |               |    |          |       |           |
|--------------------------|--------------|------------|---------------|----|----------|-------|-----------|
| Ref Level 26.00 dBm      |              |            |               |    |          |       |           |
| Att 27 dB ● 1<br>DF "5G" | SWT 3 s 🗢 VB | W 3 MHz Mo | de Auto Sweep |    |          |       |           |
| Frequency Sweep          | Ţ            |            |               |    |          |       | 01Rm Viev |
| D dBm                    |              |            |               |    |          | M1[1] | -34.18 dB |
| dom                      |              |            |               |    |          |       | 40070200  |
| ) dBm                    |              |            |               |    |          |       |           |
| dem                      |              |            |               |    |          |       |           |
| dBm                      |              |            |               |    |          |       |           |
| Gom                      |              |            |               |    |          |       |           |
| 10 dBm                   |              |            |               |    |          |       |           |
| it1_for_trace1           |              |            |               |    |          |       |           |
| 20 dBm                   |              |            |               |    |          |       |           |
|                          |              |            |               |    |          |       |           |
| 30 dBm                   |              |            |               |    |          |       |           |
|                          |              |            | ······        |    |          | <br>  |           |
| 40 dBm                   |              |            |               |    |          |       |           |
|                          |              |            |               |    |          |       |           |
| 50 dBm                   |              |            |               |    |          |       |           |
|                          |              |            |               |    |          |       |           |
| i0 dBm                   |              |            |               |    |          |       |           |
|                          |              |            |               |    |          |       |           |
| 70 d8m                   |              |            |               |    |          |       |           |
| 3.445 GHz                |              | 501 pts    |               | 40 | 0.0 kHz/ |       | 3.449 Gł  |

Date:9.0CT.2021 09:52:56





#### HIGH BAND EDGE BLOCK-90M-100%RB



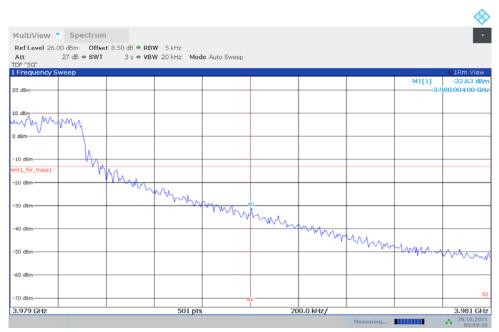
Date:9.0CT.2021 09:54:08

#### HIGH BAND EDGE BLOCK-90M-100%RB

| Ref Level 26.00 dBm (     | Offset 8.50 dB = RBW | 500 kHz   |                                         |    |              | _                         |
|---------------------------|----------------------|-----------|-----------------------------------------|----|--------------|---------------------------|
| Att 27 dB = 5             | SWT 3 s 🗢 VBW        | 3 MHz Mod | e Auto Sweep                            |    |              |                           |
| Frequency Sweep           |                      |           |                                         |    |              | 01Rm View                 |
| 0 dBm                     |                      |           |                                         |    | M1[1]<br>3.8 | -37.18 dB<br>53 574 90 GF |
| 0 dBm                     |                      |           |                                         |    |              |                           |
|                           |                      |           |                                         |    |              |                           |
| dBm                       |                      |           |                                         |    |              |                           |
| 10 d8m                    |                      |           |                                         |    |              |                           |
| nit1_for_trace1<br>20 dBm |                      |           |                                         |    |              |                           |
|                           |                      |           |                                         |    |              |                           |
| 30 dBm-                   |                      |           |                                         | Mi |              |                           |
| 40 dBm                    |                      |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |    | <br>         |                           |
| 50 dBm                    |                      |           |                                         |    |              |                           |
| 50 dBm                    |                      |           |                                         |    |              |                           |
|                           | 1                    |           |                                         |    |              | 1                         |

Date:9.0CT.2021 09:54:53



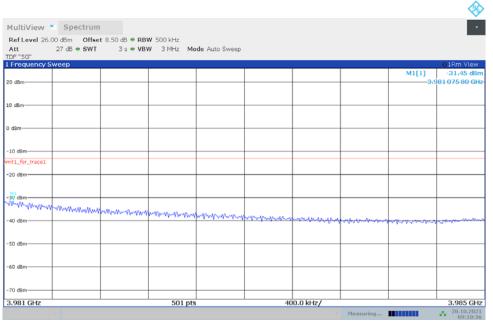



## NR n77H OBW: 1RB-HIGH\_offset



Date:28.0CT.2021 09:09:18

## HIGH BAND EDGE BLOCK-1RB-HIGH\_offset

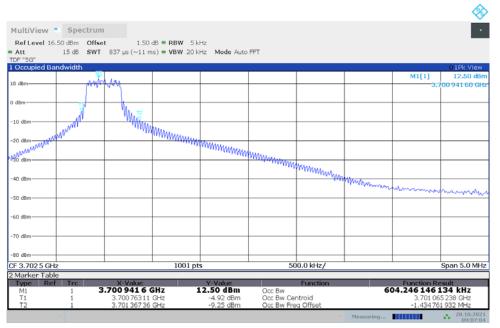



Date:28.0CT.2021 09:09:58



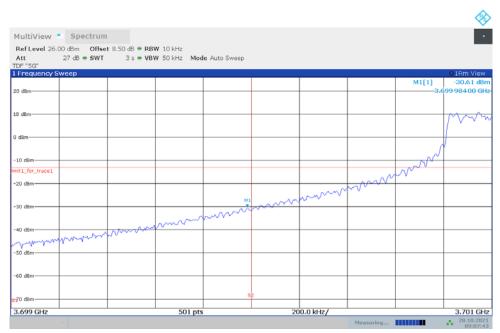


#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset




Date:28.0CT.2021 09:10:36






#### OBW: 1RB-LOW\_offset



Date:28.0CT.2021 09:07:04

#### LOW BAND EDGE BLOCK-1RB-LOW\_offset

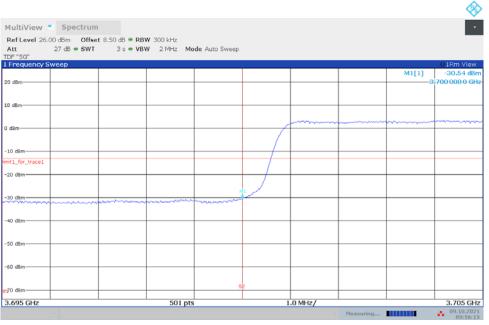


Date:28.0CT.2021 09:07:44



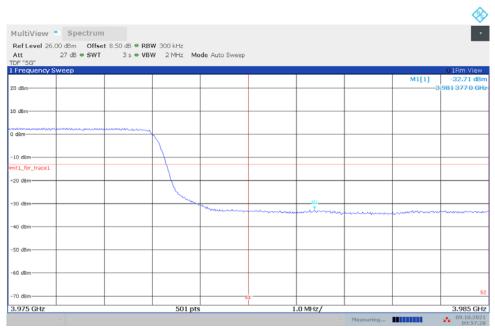


## LOW BAND EDGE BLOCK-1RB-LOW\_offset


|                                |                             |              |                         |               |            |          |                     |           | <u> </u>      |
|--------------------------------|-----------------------------|--------------|-------------------------|---------------|------------|----------|---------------------|-----------|---------------|
| ultiView                       | Spectrum                    |              |                         |               |            |          |                     |           | •             |
| ef Level 26.0<br>Itt<br>F "56" | 00 dBm Offse<br>27 dB • SWT |              | W 500 kHz<br>W 3 MHz Ma | de Auto Sweep |            |          |                     |           |               |
| requency S                     | Sweep                       |              |                         |               |            |          |                     |           | 01Rm View     |
|                                |                             |              |                         |               |            |          |                     | M1[1]     | -28.28 dBr    |
| d8m                            |                             |              |                         |               |            |          |                     | 3.        | 698 988 00 GH |
|                                |                             |              |                         |               |            |          |                     |           |               |
| dBm                            |                             |              |                         |               |            |          |                     |           |               |
|                                |                             |              |                         |               |            |          |                     |           |               |
| Bm                             |                             |              |                         |               |            |          |                     |           |               |
|                                |                             |              |                         |               |            |          |                     |           |               |
| d8m                            |                             |              |                         |               |            |          |                     |           |               |
| 1_for_trace1                   |                             |              |                         |               |            |          |                     |           |               |
| d8m                            |                             |              |                         |               |            |          |                     |           |               |
|                                |                             |              |                         |               |            |          |                     |           | 1             |
| d8m                            |                             |              |                         |               |            |          |                     | Momon Mom | www.www       |
|                                | ~~~~~                       | ADAMAM MANAN | mmmmm                   | mmmm          | www.www.ww | wwwwwww  | And And And And And |           |               |
| d8m                            |                             |              |                         |               |            |          |                     |           |               |
|                                |                             |              |                         |               |            |          |                     |           |               |
| d8m                            |                             |              |                         |               |            |          |                     |           |               |
|                                |                             |              |                         |               |            |          |                     |           |               |
| dBm                            |                             |              |                         |               |            |          |                     |           |               |
|                                |                             |              |                         |               |            |          |                     |           |               |
| I d8m                          |                             |              |                         |               |            |          |                     |           |               |
| 695 GHz                        | 1                           | 1            | 501 pts                 |               | 40         | 0.0 kHz/ | 1                   | 1         | 3.699 GH      |
|                                |                             |              |                         |               |            |          | Measuring           |           | 28.10.202     |

Date:28.0CT.2021 09:08:22



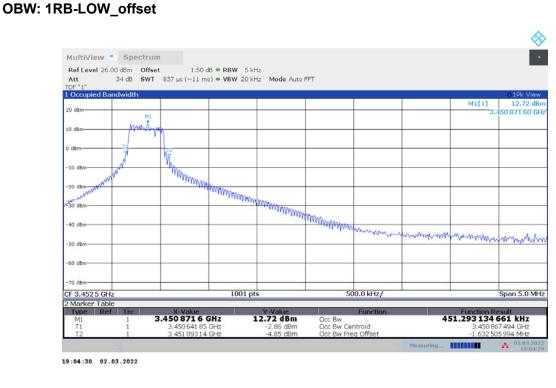



#### LOW BAND EDGE BLOCK-100M-100%RB

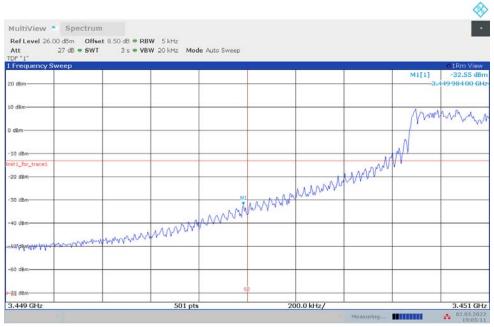


Date:9.0CT.2021 09:56:15

#### HIGH BAND EDGE BLOCK-100M-100%RB




Date:9.0CT.2021 09:57:28

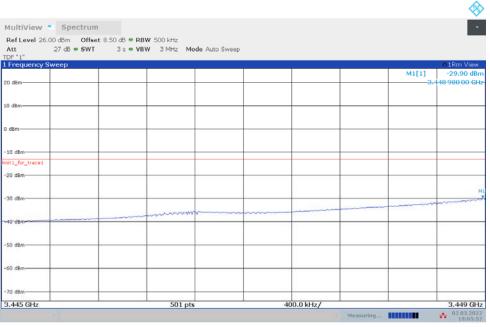





# NR n78L



#### LOW BAND EDGE BLOCK-1RB-LOW\_offset




19:05:12 02.03.2022



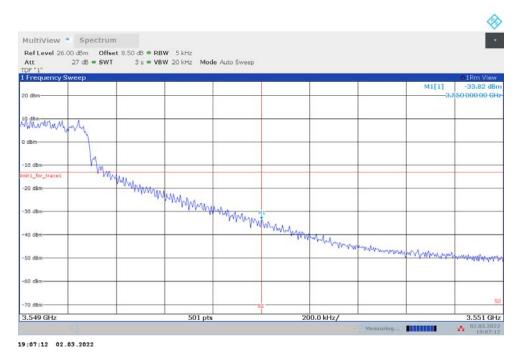



## LOW BAND EDGE BLOCK-1RB-LOW\_offset



19:05:52 02.03.2022

#### OBW: 1RB-HIGH\_offset




19:06:30 02.03.2022

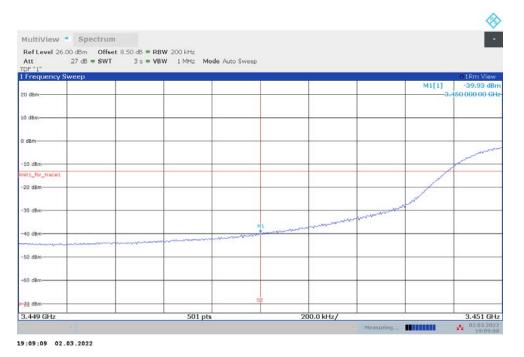




## HIGH BAND EDGE BLOCK-1RB-HIGH\_offset



#### HIGH BAND EDGE BLOCK-1RB-HIGH\_offset


| MultiView Spectrum        |                                            |               |    |                                         |             | -                                     |
|---------------------------|--------------------------------------------|---------------|----|-----------------------------------------|-------------|---------------------------------------|
|                           | .50 dB • RBW 500 kHz<br>3 s • VBW 3 MHz Mo | de Auto Sweep |    |                                         |             |                                       |
| DF "1"<br>Frequency Sweep |                                            |               |    |                                         |             | 01Rm View                             |
| 0 d8m                     |                                            |               |    |                                         | M1[1]<br>3. | -29.85 dBr<br>551 004 00 GH           |
| 0 dBm                     |                                            |               |    |                                         |             |                                       |
| dBm                       |                                            |               |    |                                         |             |                                       |
|                           |                                            |               |    |                                         |             |                                       |
| 10 dBm                    |                                            |               |    |                                         |             |                                       |
| 20 dBm                    |                                            | -             |    |                                         |             |                                       |
| 30-dţm                    |                                            |               |    |                                         |             |                                       |
| 10 dBm                    |                                            |               |    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <br>        | · · · · · · · · · · · · · · · · · · · |
|                           |                                            |               |    |                                         |             |                                       |
| 0 d8m                     |                                            |               |    |                                         |             |                                       |
| i0 dBm                    |                                            |               |    |                                         |             |                                       |
| 70 d8m                    |                                            |               |    |                                         |             |                                       |
| 3.551 GHz                 | 501 pts                                    |               | 40 | 0.0 kHz/                                |             | 3.555 GH                              |

19:07:53 02.03.2022

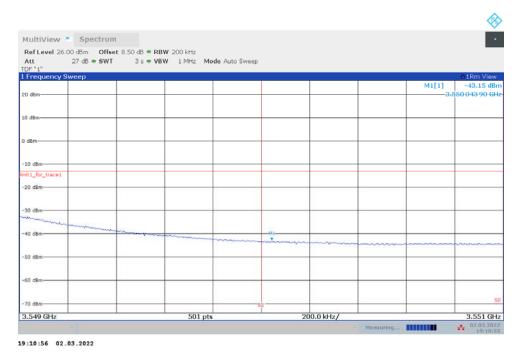




#### LOW BAND EDGE BLOCK-90M-100%RB



#### LOW BAND EDGE BLOCK-90M-100%RB


| MultiView Spect           |             | BW EOO LU- |               |    |          |   |       |                             |
|---------------------------|-------------|------------|---------------|----|----------|---|-------|-----------------------------|
| Att 27 dB 🖷 5             | SWT 3s = VI |            | de Auto Sweep |    |          |   |       |                             |
| DF "1"<br>Frequency Sweep |             |            |               |    |          |   |       | 01Rm View                   |
| 0 dBm                     |             |            |               |    |          |   | M1[1] | -40.13 dBr<br>448 772 50 GH |
|                           |             |            |               |    |          |   |       |                             |
| 0 dBm                     |             |            |               |    |          |   |       |                             |
| dBm                       |             |            |               |    |          |   |       |                             |
| 10 dBm                    |             |            |               |    |          |   |       |                             |
| it1_for_trace1            |             |            |               |    |          |   |       |                             |
| 20 dBm                    |             |            |               |    |          |   |       |                             |
| 30 dBm                    |             |            |               |    |          |   |       |                             |
| 10. dBm                   |             |            |               |    |          |   |       | M1                          |
| 0 dBm                     |             |            |               |    |          |   |       |                             |
|                           |             |            |               |    |          |   |       |                             |
| i0 dBm                    |             |            |               |    |          | - |       | -                           |
| 70 dBm                    |             |            |               |    |          |   |       |                             |
| .445 GHz                  |             | 501 pts    |               | 40 | 0.0 kHz/ |   | 1     | 3.449 GH                    |

19:09:49 02.03.2022

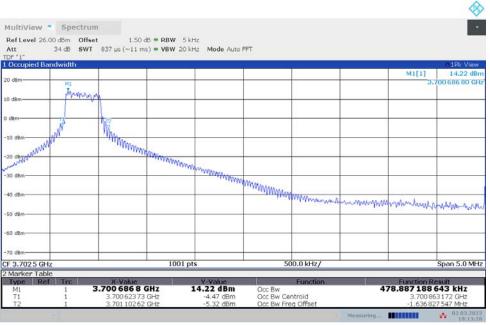




#### HIGH BAND EDGE BLOCK-90M-100%RB

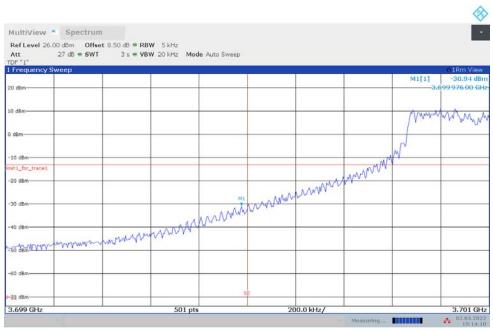


#### HIGH BAND EDGE BLOCK-90M-100%RB


| Att 27 dB • SWT |                       | And a strength of the strength |       |       |                                                  |
|-----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------|
| DF "1"          | 3s <b>⇔VBW</b> 3MHz N | Node Auto Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| Frequency Sweep |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       | <ul> <li>1Rm View</li> <li>-40.18 dBr</li> </ul> |
| 0 dBm           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | M1[1] | -40.18 dB                                        |
| , down          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 010   | 01091000                                         |
| ) dBm           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| ) dsm           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| dBm             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| 10 dBm          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| it1_for_trace1  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| 20 dBm          |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>- |       |                                                  |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| 10 dBm          |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>  |       |                                                  |
| M1              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| 107.dBm         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>  |       |                                                  |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| 50 dBm          |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>  |       | -                                                |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
| i0 dBm          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>_ |       |                                                  |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                                                  |

19:11:36 02.03.2022



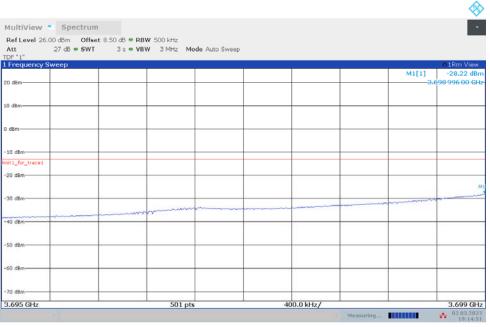



# NR n78H OBW: 1RB-LOW\_offset



19:13:28 02.03.2022

## LOW BAND EDGE BLOCK-1RB-LOW\_offset




19:14:10 02.03.2022



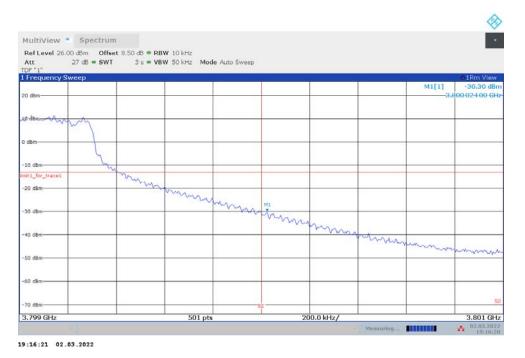


## LOW BAND EDGE BLOCK-1RB-LOW\_offset



19:14:51 02.03.2022

#### OBW: 1RB-HIGH\_offset




19:15:39 02.03.2022

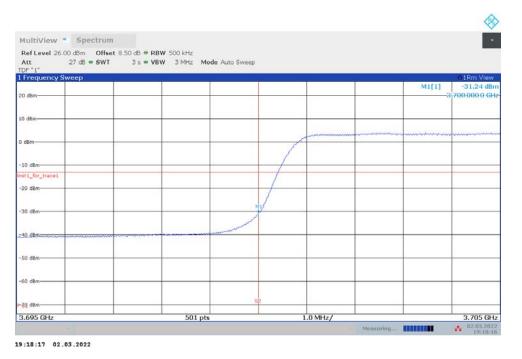




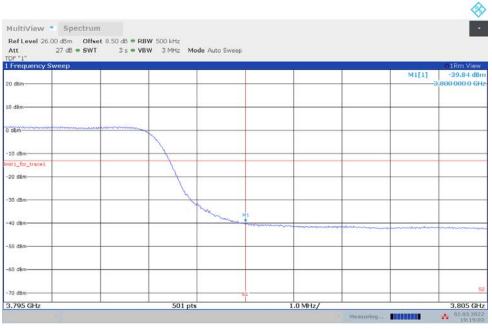
## HIGH BAND EDGE BLOCK-1RB-HIGH\_offset



## HIGH BAND EDGE BLOCK-1RB-HIGH\_offset


| MultiView Spectrum<br>Ref Level 26.00 dBm Offse |                              |            |    |                    |
|-------------------------------------------------|------------------------------|------------|----|--------------------|
| Att 27 dB • SWT                                 | 3 s = VBW 3 MHz Mode Auto Sw | eep        |    |                    |
| DF "1"<br>Frequency Sweep                       |                              |            |    | •1Rm View          |
| 0 d8m                                           |                              |            | M1 | [1] -30.50 dBr<br> |
|                                                 |                              |            |    |                    |
| 0 dBm                                           |                              |            |    |                    |
| dBm                                             |                              |            |    |                    |
| 10 dBm                                          |                              |            |    |                    |
| it1_for_trace1                                  |                              |            |    |                    |
| 20 dBm                                          |                              |            |    |                    |
| 30 dBm                                          |                              |            |    |                    |
|                                                 |                              |            |    |                    |
| 40 dBm                                          |                              |            |    |                    |
| 50 dBm                                          |                              |            |    |                    |
| 50 dBm                                          |                              |            |    |                    |
| 70 dBm                                          |                              |            |    |                    |
| 3.801 GHz                                       | 501 pts                      | 400.0 kHz/ |    | 3.805 GH           |

19:17:01 02.03.2022






#### LOW BAND EDGE BLOCK-100M-100%RB



#### HIGH BAND EDGE BLOCK-100M-100%RB



19:19:03 02.03.2022





# A.7 Conducted Spurious Emission

## A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than  $2 \times \text{span/RBW}$ .

## A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

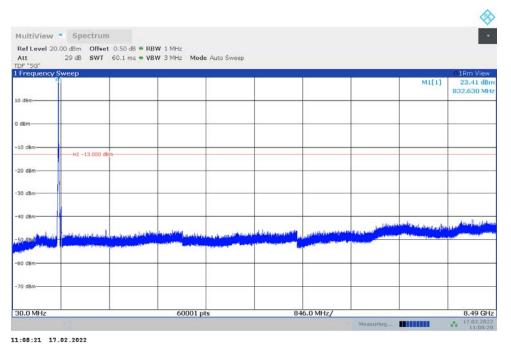
Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(h) for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution



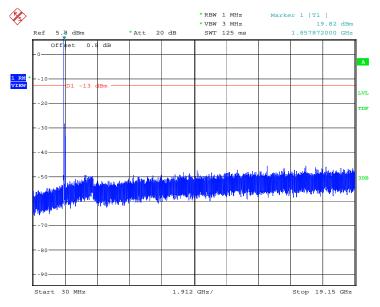


bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.






#### A. 7.3 Measurement result

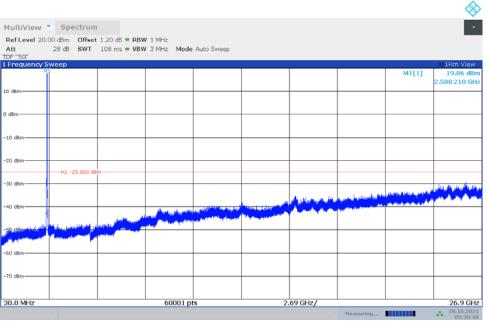

#### n5

NOTE: peak above the limit line is the carrier frequency.



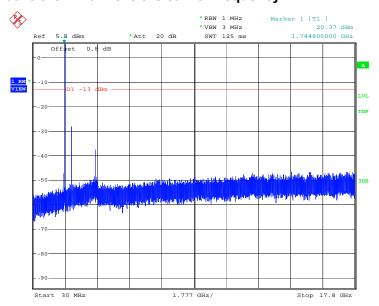
## LTE Band 12+NR n25

NOTE: peak above the limit line is the carrier frequency.




Date: 29.0CT.2021 19:18:50



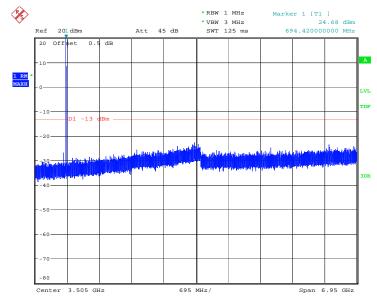



# n41 NOTE: peak above the limit line is the carrier frequency.



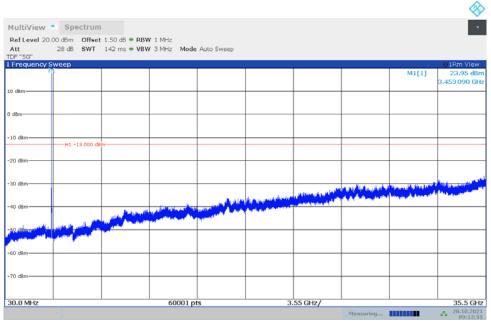
Date:28.0CT.2021 09:30:41

## LTE Band 12+NR n66 NOTE: peak above the limit line is the carrier frequency.




Date: 29.0CT.2021 19:20:34



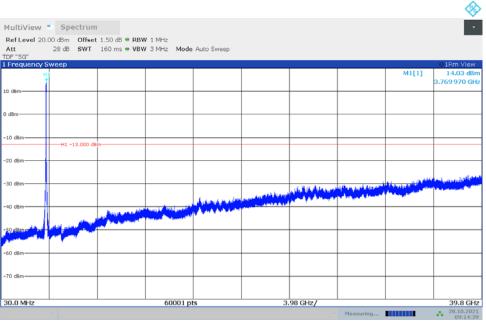



# LTE Band 66+NR n71 NOTE: peak above the limit line is the carrier frequency.



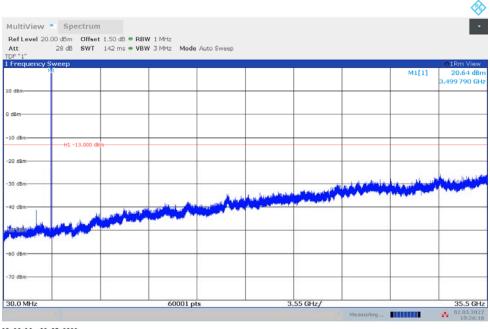
Date: 30.0CT.2021 09:00:51

## n77L NOTE: peak above the limit line is the carrier frequency.




Date:28.0CT.2021 09:12:36

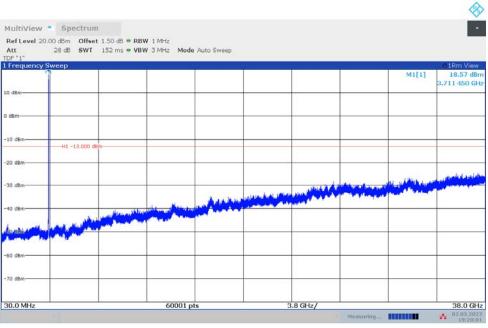





# n77H NOTE: peak above the limit line is the carrier frequency.



Date:28.0CT.2021 09:14:40


## n78L NOTE: peak above the limit line is the carrier frequency.







# n78H NOTE: peak above the limit line is the carrier frequency.



19:28:02 02.03.2022





## A.8 Peak-to-Average Power Ratio

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Record the maximum PAPR level associated with a probability of 0.1%.

## Measurement results LTE Band 12+NR n25,20MHz

|                 |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |
| 1882.5          | 5.60            | 6.28       | 7.26        | 7.14        | 7.40         | 8.88    | 9.26     | 9.02     | 8.72      |  |  |

## n41,100MHz

|                 |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |  |
| 2592.99         | 4.86            | 5.63       | 6.43        | 6.63        | 6.79         | 8.11    | 8.19     | 8.24     | 8.63      |  |  |  |

#### LTE Band 12+NR n66,40MHz

|                 |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |  |
| 1745            | 5.70            | 6.15       | 6.80        | 6.97        | 7.00         | 8.66    | 8.67     | 8.85     | 8.73      |  |  |  |

#### LTE Band 66+NR n71,20MHz

| Frequency (MHz) |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|
| Frequency (MHZ) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |
| 680.5           | 5.60            | 6.90       | 7.56        | 7.39        | 7.62         | 9.37    | 9.36     | 9.44     | 9.33      |  |  |

#### n77L,90MHz

|                 |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |  |
| 3500.01         | 4.85            | 5.77       | 6.44        | 6.66        | 6.79         | 8.27    | 8.25     | 8.27     | 8.41      |  |  |  |

#### n77H,100MHz

|   | Frequency (MHz)  |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |
|---|------------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|
| 1 | Frequency (MIRZ) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |
|   | 3840             | 3.70            | 4.85       | 6.30        | 6.51        | 6.55         | 8.03    | 7.84     | 8.06     | 8.26      |  |  |





## n78L,90MHz

|                 |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |
| 3500.01         | 4.39            | 5.65       | 6.36        | 6.50        | 6.51         | 8.36    | 8.37     | 8.40     | 8.33      |  |  |


## n78H,100MHz

|                 |                 | PAPR (dB)  |             |             |              |         |          |          |           |  |  |
|-----------------|-----------------|------------|-------------|-------------|--------------|---------|----------|----------|-----------|--|--|
| Frequency (MHz) | DFT-s-pi/2 BPSK | DFT-s-QPSK | DFT-s-16QAM | DFT-s-64QAM | DFT-s-256QAM | CP-QPSK | CP-16QAM | CP-64QAM | CP-256QAM |  |  |
| 3750            | 3.99            | 4.63       | 6.13        | 6.40        | 6.48         | 8.34    | 8.33     | 8.42     | 8.23      |  |  |





# Annex B: Accreditation Certificate



\*\*\*END OF REPORT\*\*\*