
Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60231

Page 8 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7548

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	152.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60231

Page 9 of 9

ANNEX H Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

TT	In Collar	boration with	中国认可国际互认
	CALIBR	ATION LABORATORY	NAS 校准
Add: No.52 HuaYu Tel: +86-10-623046 E-mail: cttl@chinat	533-2079 Fax:	n District, Beijing, 100191, Chi +86-10-62304633-2504 ://www.chinattl.cn	CALIBRATION CNAS L0570
Client AUDE	IN	Certificate No: Z	21-60237
CALIBRATION CI	ERTIFICA	TE	
Object	D835	V2 - SN: 4d120	
	1		
Calibration Procedure(s)	FF-Z1	11-003-01	
	Calibr	ration Procedures for dipole validation kits	
Calibration date:	June	23, 2021	
	easurements ar	e traceability to national standards, which re ad the uncertainties with confidence probabilit	
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environment	temperature (22±3)°C and
Calibration Equipment used	(M&TE critical	for calibration)	
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4 DAE4	SN 3846 SN 549	26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002)	Apr-22 Jan-22
	011 040	00-0all-21(0112-0FEAG,N0.221-00002)	Jan-22
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	0 01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	3 14-Jan-21 (CTTL, No.J21X00232)	Jan-22
Calibrated by:	Name	Function	Signature
panorated by.	Zhao Jing	SAR Test Engineer	See Line
Reviewed by:	Lin Hao	SAR Test Engineer	受研究管
Approved by:	Qi Dianyuan	SAR Project Leader	200
		Issued: June	e 26, 2021
This calibration certificate sh	all not be repro	bduced except in full without written approval	of the laboratory.
This calibration certificate sh		Page 1 of 6	of the laboratory.

Glossary: TSL

ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60237

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		/

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.49 W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	31
SAR measured	250 mW input power	1.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.11 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60237

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8Ω- 0.87jΩ	
Return Loss	- 28.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.307 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

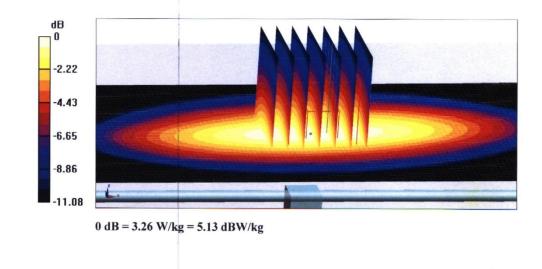
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG	
Wandlactured by		SFEAG	
	a start and a start of		
	a server of the server as a		
	Contraction of the second		
	and the second second		
ificate No: Z21-60237	Page 4 of 6		
	STATISTICS STATISTICS		

DASY5 Validation Report for Head TSL

Date: 06.23.2021

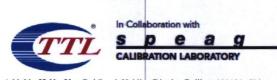

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d120** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 40.96$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

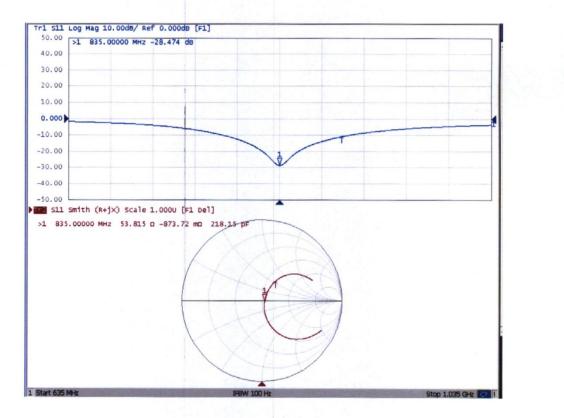
- Probe: EX3DV4 SN3846; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.80 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3!78 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.52 W/kg Smallest distance from peaks to all points 3 dB below = 16.8 mm Ratio of SAR at M2 to SAR at M1 = 62.3%

Maximum value of SAR (measured) = 3.26 W/kg



Certificate No: Z21-60237


Page 5 of 6

Impedance Measurement Plot for Head TSL

1750 MHz Dipole Calibration Certificate

TT	<u>Ľs</u> p		中国认可国际互认权
Add: No.52 Hua Yua Tel: +86-10-623046 E-mail: cttl@chinatt	33-2079 Fax: +	n District, Beijing, 100191, Ch 866-10-62304633-2504 /www.chinattl.cn	CALIBRATION CNAS L0570
Client AUDEN	1	Certificate No: Z21	-60254
CALIBRATION CE	RTIFICAT	ſE	
Object	D1750	V2 - SN: 1023	
Calibration Procedure(s)	FF-Z11	1-003-01	
	Calibra	ation Procedures for dipole validation kits	
Calibration date:	June 2	3, 2021	
All calibrations have been numidity<70%.	conducted in	the closed laboratory facility: environment	temperature (22±3)℃ and
numidity<70%. Calibration Equipment used	(M&TE critical	for calibration)	
numidity<70%. Calibration Equipment used Primary Standards	(M&TE critical f	for calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical ID # 106277	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical f ID # 106277 104291	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21 Sep-21
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical f ID # 106277 104291	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical ID # 106277 104291 SN 3846	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-21 Sep-21 Apr-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical 1 ID # 106277 104291 SN 3846 SN 549 ID # MY49071430	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical ID # 106277 104291 SN 3846 SN 549 ID #	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical 1 ID # 106277 104291 SN 3846 SN 549 ID # ID # MY49071430	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical f ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical 1 ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical 1 ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name Zhao Jing	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by:	(M&TE critical f ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	for calibration) Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer SAR Test Engineer	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60254

Page 2 of 6

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	100
SAR measured	250 mW input power	4.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.9 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60254

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

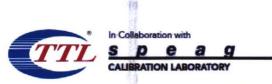
Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω- 1.44jΩ	
Return Loss	- 32.9 dB	

General Antenna Parameters and Design

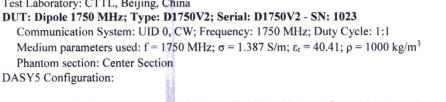
Electrical Delay (one direction)	1.122 ns

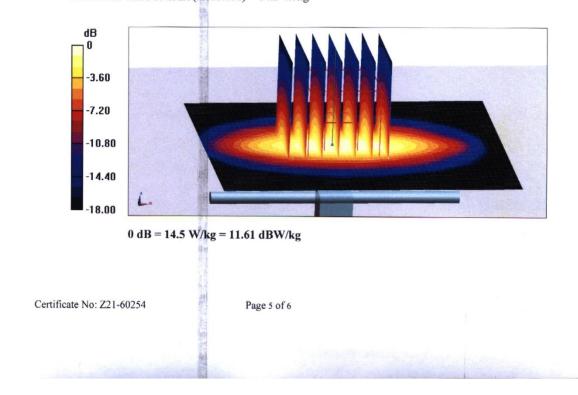
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Manufactured by	SPEAG	
	SFEAG	
	聞 Prove た マン の で 、 や 、 、 や 、 、 や 、 、 、 、 、 、 、 、 、 、 、 、 、	
tificate No: Z21-60254	Page 4 of 6	

Additional EUT Data

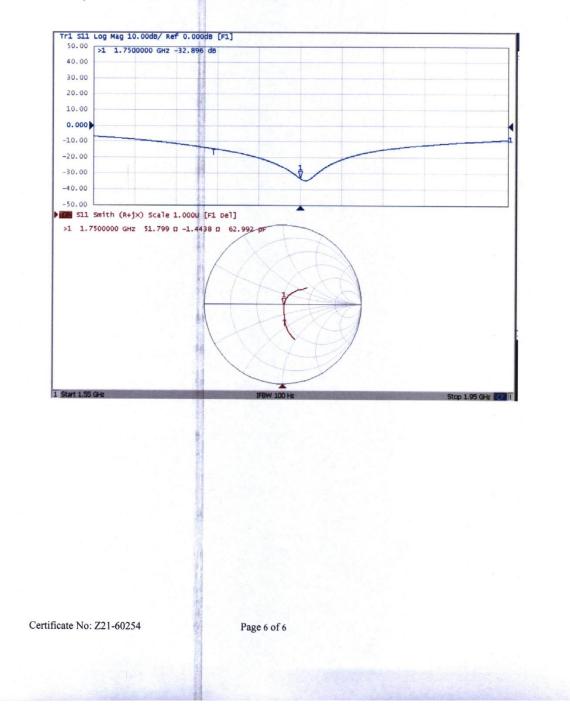



DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 06.23.2021

- Probe: EX3DV4 SN3846; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-04-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn549; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.85 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.75 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.6% Maximum value of SAR (measured) = 14.5 W/kg



Impedance Measurement Plot for Head TSL

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL-BJ (Auden)

Certificate No: D1900V2-5d101_Jul20

S

С

S

bject	D1900V2 - SN:5d	101	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	July 28, 2020		
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an y facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Reference 20 dB Attenuator	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
	314. 3103027 00327		
Type-N mismatch combination	SN: 7349	29-Jun-20 (No. EX3-7349_Jun20)	Jun-21
Type-N mismatch combination Reference Probe EX3DV4		· · · · · · · · · · · · · · · · · · ·	Jun-21 Dec-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 7349 SN: 601	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19)	
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 7349	29-Jun-20 (No. EX3-7349_Jun20)	Dec-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 7349 SN: 601 ID # SN: GB39512475	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house)	Dec-20 Scheduled Check
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 7349 SN: 601 ID #	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19)	Dec-20 Scheduled Check In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 10972 SN: US41080477	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 7349 SN: 601 SN: 6B39512475 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 7349 SN: 601 SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 10972 SN: US41080477	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19)	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 7349 SN: 601 SN: 6B39512475 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 7349 SN: 601 SN: 6B39512475 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function	Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20

Certificate No: D1900V2-5d101_Jul20

Page 1 of 8

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

S

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d101_Jul20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.13 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d101_Jul20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω + 5.6 jΩ
Return Loss	- 25.0 dB

Antenna Parameters with Body TSL

45.4 Ω + 5.7 jΩ	
- 22.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1900V2-5d101_Jul20

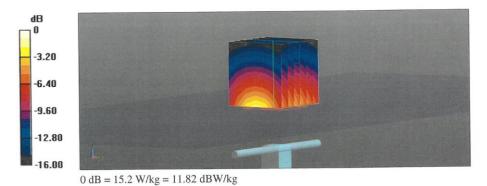
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 28.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101

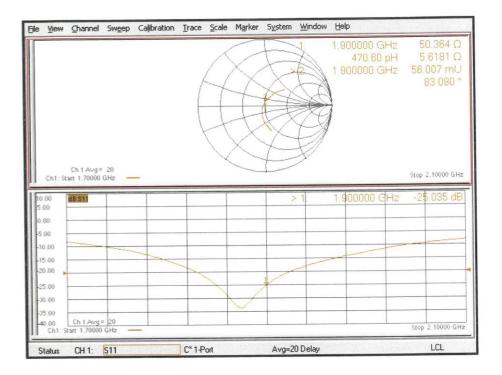

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ε_r = 41.0; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.9 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.80 W/kg; SAR(10 g) = 5.13 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 15.2 W/kg


Certificate No: D1900V2-5d101_Jul20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d101_Jul20

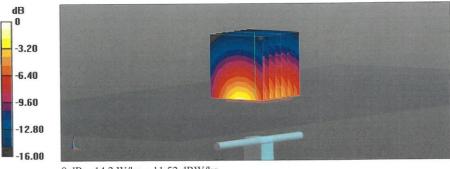
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d101


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

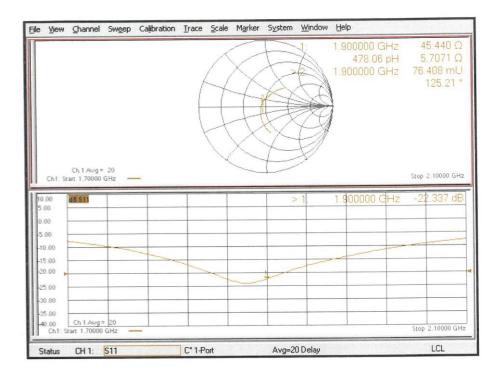
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.21, 8.21, 8.21) @ 1900 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.4 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.16 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 59.5% Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg


Certificate No: D1900V2-5d101_Jul20

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d101_Jul20

Page 8 of 8

2450 MHz Dipole Calibration Certificate

Tel: +86-10-623046 E-mail: cttl@chinatt Client	tl.com http://	86-10-62304633-2504	CNAS L0570
Client AUDE			
	EN .	Certificate No: Z2	21-60255
CALIBRATION CE	ERTIFICAT	E	
Object	D2450	/2 - SN: 869	
Calibration Procedure(s)	EE.711	-003-01	CHARTER PARTY
		tion Procedures for dipole validation kits	
Calibration date:	June 22	2 2021	
			under stehen geschen die Ferster
humidity<70%.		he closed laboratory facility: environment	temperature (22±3)℃ and
humidity<70%. Calibration Equipment used	(M&TE critical fo	or calibration)	
humidity<70%. Calibration Equipment used			temperature (22±3)°C and Scheduled Calibration Sep-21
numidity<70%. Calibration Equipment used Primary Standards	(M&TE critical fo	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	(M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336)	Scheduled Calibration Sep-21 Sep-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	(M&TE critical fo ID # 106277 104291 SN 3846	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084)	Scheduled Calibration Sep-21 Sep-21 Apr-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID #	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Scheduled Calibration Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fo ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-21 Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fe ID # 106277 104291 SN 3846 SN 549 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 23-Sep-20 (CTTL, No.J20X08336) 23-Sep-20 (CTTL, No.J20X08336) 26-Apr-21(CTTL-SPEAG,No.Z21-60084) 08-Jan-21(CTTL-SPEAG,No.Z21-60002) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Scheduled Calibration Sep-21 Apr-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60255

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

TSL

N/A

tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60255

Page 2 of 6