




## Calibration Laboratory of Schmid & Partner





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary

| and booking i |                                 |
|---------------|---------------------------------|
| TSL           | tissue simulating liquid        |
| ConvF         | sensitivity in TSL / NORM x,y,z |
| N/A           | not applicable or not measured  |
|               |                                 |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853\_Jul20

Page 2 of 8





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.5 ± 6 %   | 1.84 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 13.3 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 52.5 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 6.17 W/kg                |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.4 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 13.4 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 52.4 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 6.22 W/kg                |

Certificate No: D2450V2-853\_Jul20

Page 3 of 8





## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.6 Ω + 4.9 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 23.9 dB       |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.9 Ω + 5.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 25.0 dB       |  |

## General Antenna Parameters and Design

| Electrical Delay (one direction) 1.162 ns |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 | SILAU |

Certificate No: D2450V2-853\_Jul20

Page 4 of 8



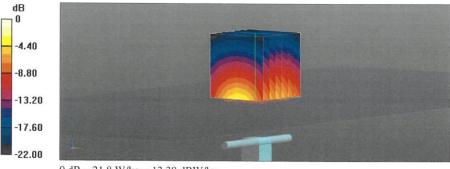


#### **DASY5 Validation Report for Head TSL**

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.84 S/m;  $\varepsilon_r$  = 38.5;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

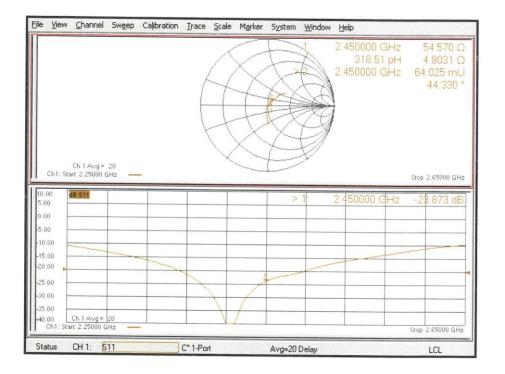
- Probe: EX3DV4 SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 118.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.2 W/kg **SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.17 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 21.8 W/kg



0 dB = 21.8 W/kg = 13.38 dBW/kg


Certificate No: D2450V2-853\_Jul20

Page 5 of 8





## Impedance Measurement Plot for Head TSL



Certificate No: D2450V2-853\_Jul20

Page 6 of 8



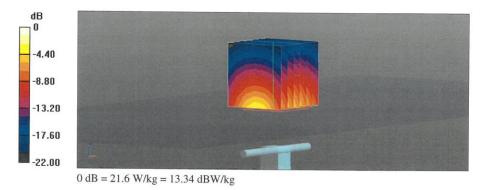


## **DASY5 Validation Report for Body TSL**

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 2.02 S/m;  $\epsilon_r$  = 51.4;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

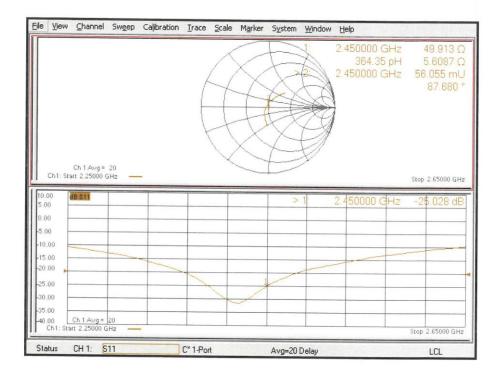
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 111.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 52.9% Maximum value of SAR (measured) = 21.6 W/kg




Certificate No: D2450V2-853\_Jul20

Page 7 of 8





## Impedance Measurement Plot for Body TSL



Certificate No: D2450V2-853\_Jul20

Page 8 of 8





## 2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL-BJ (Auden)

Certificate No: D2600V2-1012\_Jul20

S

С

S

| Object                                                                                                                                                                     | D2600V2 - SN:                                                                                                 | 1012                                                                                                                                                                                                                       |                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                   | QA CAL-05.v11<br>Calibration Proc                                                                             | edure for SAR Validation Source                                                                                                                                                                                            | es between 0.7-3 GHz                                                                                                                        |
| Calibration date:                                                                                                                                                          | July 21, 2020                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                             |
|                                                                                                                                                                            | ted in the closed laborato                                                                                    | tional standards, which realize the physical u<br>probability are given on the following pages a<br>pry facility: environment temperature $(22 \pm 3)$                                                                     | and are part of the certificate.                                                                                                            |
| Primary Standards                                                                                                                                                          | ID #                                                                                                          | Cal Date (Certificate No.)                                                                                                                                                                                                 |                                                                                                                                             |
| Power meter NRP                                                                                                                                                            | SN: 104778                                                                                                    | 01-Apr-20 (No. 217-03100/03101)                                                                                                                                                                                            | Scheduled Calibration                                                                                                                       |
| ower sensor NRP-Z91                                                                                                                                                        | SN: 103244                                                                                                    | 01-Apr-20 (No. 217-03100/03101)                                                                                                                                                                                            | Apr-21                                                                                                                                      |
| ower sensor NRP-Z91                                                                                                                                                        | SN: 103245                                                                                                    | 01-Apr-20 (No. 217-03100)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| eference 20 dB Attenuator                                                                                                                                                  | SN: BH9394 (20k)                                                                                              | 31-Mar-20 (No. 217-03106)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| pe-N mismatch combination                                                                                                                                                  | SN: 310982 / 06327                                                                                            | 31-Mar-20 (No. 217-03106)                                                                                                                                                                                                  | Apr-21                                                                                                                                      |
| eference Probe EX3DV4                                                                                                                                                      | SN: 7349                                                                                                      | 29-Jun-20 (No. EX3-7349_Jun20)                                                                                                                                                                                             | Apr-21                                                                                                                                      |
| AE4                                                                                                                                                                        | SN: 601                                                                                                       | 27-Dec-19 (No. DAE4-601_Dec19)                                                                                                                                                                                             | Jun-21<br>Dec-20                                                                                                                            |
|                                                                                                                                                                            | 1.5.                                                                                                          | Check Date (in house)                                                                                                                                                                                                      | Scheduled Check                                                                                                                             |
| econdary Standards                                                                                                                                                         | ID #                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                             |
| ower meter E4419B                                                                                                                                                          | ID #<br>SN: GB39512475                                                                                        | Check Date (in house)<br>30-Oct-14 (in house check Eeb-19)                                                                                                                                                                 |                                                                                                                                             |
| ower meter E4419B<br>ower sensor HP 8481A                                                                                                                                  | 1.22 11                                                                                                       | 30-Oct-14 (in house check Feb-19)                                                                                                                                                                                          | In house check: Oct-20                                                                                                                      |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A                                                                                                          | SN: GB39512475                                                                                                | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)                                                                                                                                                     | In house check: Oct-20<br>In house check: Oct-20                                                                                            |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06                                                                                | SN: GB39512475<br>SN: US37292783                                                                              | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)                                                                                                                | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                                                                  |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06                                                                                | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317                                                            | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)                                                                                                                                                     | In house check: Oct-20<br>In house check: Oct-20                                                                                            |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06<br>etwork Analyzer Agilent E8358A                                              | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972                                              | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)                                                                           | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20              |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06<br>letwork Analyzer Agilent E8358A                                             | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477                            | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)                                      | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>Signature |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>iF generator R&S SMT-06<br>letwork Analyzer Agilent E8358A<br>alibrated by:                           | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477<br>Name<br>Jeffrey Katzman | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)<br>Function<br>Laboratory Technician | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>Signature |
| Recondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>IF generator R&S SMT-06<br>letwork Analyzer Agilent E8358A<br>alibrated by: | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477<br>Name                    | 30-Oct-14 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19)<br>Function                          | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20              |





#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



- Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012\_Jul20

Page 2 of 8





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.9 ± 6 %   | 2.01 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 14.5 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 57.0 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 6.40 W/kg                |

## Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.0 ± 6 %   | 2.20 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 14.0 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 55.1 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 6.20 W/kg                |

Certificate No: D2600V2-1012\_Jul20

Page 3 of 8





# Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 47.0 Ω - 5.6 ίΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.7 dB       |

## Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 44.6 Ω - 4.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.7 dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.152 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufacture     |       |
|-----------------|-------|
| Manufactured by | SPEAC |
|                 | SPEAG |

Certificate No: D2600V2-1012\_Jul20

Page 4 of 8



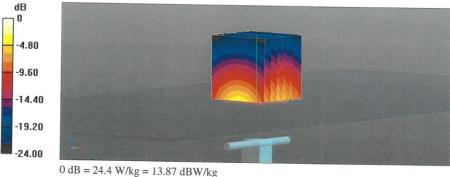


## DASY5 Validation Report for Head TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma$  = 2.01 S/m;  $\epsilon_r$  = 37.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

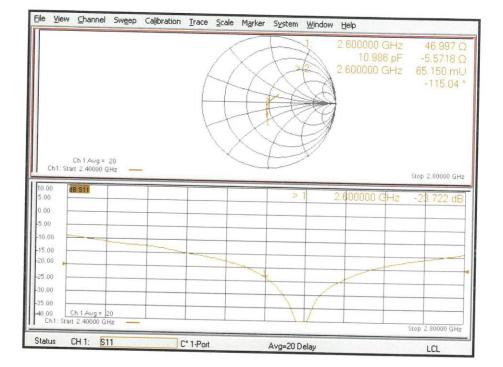
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.54, 7.54, 7.54) @ 2600 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 121.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.40 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 49.4% Maximum value of SAR (measured) = 24.4 W/kg




3 d D = 24.4 W/kg = 13.87 d D W/k

Certificate No: D2600V2-1012\_Jul20

Page 5 of 8







Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012\_Jul20

Page 6 of 8

©Copyright. All rights reserved by CTTL.



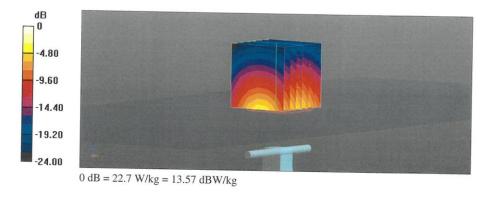


## DASY5 Validation Report for Body TSL

Date: 21.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

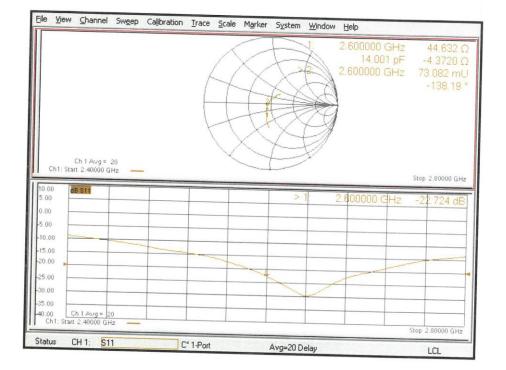

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz;  $\sigma$  = 2.20 S/m;  $\epsilon_r$  = 51.0;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 29.06.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.0 W/kg **SAR(1 g) = 14.0 W/kg; SAR(10 g) = 6.20 W/kg** Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 50.8% Maximum value of SAR (measured) = 22.7 W/kg




Certificate No: D2600V2-1012\_Jul20

Page 7 of 8







Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1012\_Jul20

Page 8 of 8

©Copyright. All rights reserved by CTTL.





## **5G Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

| alibration procedure(s)   CA CAL-22.v5<br>Calibration Procedure for SAR Validation Sources between 3-10 GHz     alibration date:   July 27, 2020     his calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S):<br>he measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     II calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.     alibration Equipment used (M&TE critical for calibration)     rimary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     rower ensor NRP-291   SN: 104778   01-Apr-20 (No. 217-03100)   Apr-21     ower sensor NRP-291   SN: 103244   01-Apr-20 (No. 217-03100)   Apr-21     ower sensor NRP-291   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     user sensor NRP-291   SN: 103245   01-Apr-20 (No. 217-03106)   Apr-21     user sensor NRP-291   SN: 00327   31-Mar-20 (No. 217-03106)   Apr-21     user sensor NRP-291   SN: 01   27-Ober-19 (No. DAE4-601_Dec19)   Dec-20     ieference Probe EX3DV4   SN: 601   27-Ober-19 (No. DAE4-601_Dec19)   Dec-20     user sensor NRP 8481A   SN: CB39512475   30-Oct+1                                                                                                           | ient CTTL-BJ (Auden                                                                                            | 1)                        | Certificat                                 | e No: D5GHzV2-1060_Jul20            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------|-------------------------------------|
| alibration procedure(s)   QA CAL-22.v5<br>Calibration Procedure for SAR Validation Sources between 3-10 GHz     alibration date:   July 27, 2020     his calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S):<br>he measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     all calibration shave been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.     alibration Equipment used (M&TE critical for calibration)     trimary Standards   D #     Core and the NPP-291   SN: 104778     SN: 103244   01-Apr-20 (No. 217-03100)     tower sensor NPP-291   SN: 103244     SN: 103245   01-Apr-20 (No. 217-03100)     Yape-N mismatch combination   SN: 8149394 (20k)     SN: 601   27-0bec-19 (No. 217-03100)   Apr-21     Yape-N mismatch combination   SN: 601   27-0bec-19 (No. 247-03106)   Apr-21     Yape-N mismatch combination   SN: 601   27-0bec-19 (No. 247-03101)   Apr-21     Yape-N mismatch combination   SN: 601   27-0bec-19 (No. DAE4-601_Dec19)   Dec-20     Yabed 4   SN: 601   27-0bec-19 (No. DAE4-601_Dec19)   Dec-20     Yower sensor NP P481A   SN:                                                                                                                                    | ALIBRATION CI                                                                                                  | ERTIFICATE                |                                            |                                     |
| Calibration Procedure for SAR Validation Sources between 3-10 GHz     Calibration date:   July 27, 2020     This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     ull calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     ull calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.     Calibration Equipment used (M&TE critical for calibration)     Viewer meter NRP   SN: 104778   01-Apr-20 (No. 217-03100)   Apr-21     Vower sensor NRP-291   SN: 103244   01-Apr-20 (No. 217-0310)   Apr-21     Vower sensor NRP-291   SN: 103245   01-Apr-20 (No. 217-0310)   Apr-21     Vower sensor NRP-291   SN: 103245   01-Apr-20 (No. 217-03104)   Apr-21     Vower sensor NRP-291   SN: 103245   01-Apr-20 (No. 217-03104)   Apr-21     Vower sensor NRP-291   SN: 103245   01-Apr-20 (No. 217-03104)   Apr-21     Vower sensor NRP-291   SN: 601   27-Dec-19 (No. DAE4-601_Dec19)   Dec-20               | Dbject                                                                                                         | D5GHzV2 - SN:1            | 060                                        |                                     |
| Calibration Procedure for SAR Validation Sources between 3-10 GHz     Calibration date:   July 27, 2020     This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     All calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     Valibration Equipment used (M&TE critical for calibration)   Cal Date (Certificate No.)   Scheduled Calibration     Primary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Power sensor NRP-Z91   SN: 103244   01-Apr-20 (No. 217-03100)   Apr-21     Yower sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-0310)   Apr-21     Yower sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-0310)   Apr-21     Yower sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-0310)   Apr-21     Yower sensor NRP-Z91   SN: 310384 (20X)   31-Mar-20 (No. 217-03104)   Apr-21     Yower sensor NRP-Z91   SN: 601   27-Dec-19 (No. DAE4-601_Dec19)   Dec-20     Secondary Standards   ID # </td <td></td> <td></td> <td></td> <td></td> |                                                                                                                |                           |                                            |                                     |
| Calibration date:   July 27, 2020     This calibration cartificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calibration procedure(s)                                                                                       | QA CAL-22.v5              |                                            |                                     |
| This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificates.     All calibration Equipment used (M&TE critical for calibration)   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Primary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Power meter NRP   SN: 104778   01-Apr-20 (No. 217-03100)(03101)   Apr-21     Power sensor NRP-Z91   SN: 103244   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Reference 20 dB Attenuator   SN: 5032   31-Mar-20 (No. 217-03104)   Apr-21     Reference Probe EX3DV4   SN: 503   31-Dec-19 (No. DAE4-601_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power sensor HP 8481A   SN: US37282783   07-Oct-15 (in house check Cot-18)   In house check: Cot-20     Power sensor HP 8481A   SN: US37282783   07-Oct-15 (in house check Cot-18)   In house check: Cot-20     Powe                                                                                                                                                    |                                                                                                                | Calibration Proce         | dure for SAR Validation Sour               | ces between 3-10 GHz                |
| This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificates.     All calibration Equipment used (M&TE critical for calibration)   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Primary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Power meter NRP   SN: 104778   01-Apr-20 (No. 217-03100)(03101)   Apr-21     Power sensor NRP-Z91   SN: 103244   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Reference 20 dB Attenuator   SN: 5032   31-Mar-20 (No. 217-03104)   Apr-21     Reference Probe EX3DV4   SN: 503   31-Dec-19 (No. DAE4-601_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power sensor HP 8481A   SN: US37282783   07-Oct-15 (in house check Cot-18)   In house check: Cot-20     Power sensor HP 8481A   SN: US37282783   07-Oct-15 (in house check Cot-18)   In house check: Cot-20     Powe                                                                                                                                                    |                                                                                                                |                           |                                            |                                     |
| This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificates.     All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                            |                                     |
| This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificates.     All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calibration date:                                                                                              | July 27, 2020             |                                            |                                     |
| The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.     All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                           |                                            |                                     |
| All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                            |                                     |
| Power meter NRP     SN: 104778     01-Apr-20 (No. 217-03100/03101)     Apr-21       Power sensor NRP-Z91     SN: 103244     01-Apr-20 (No. 217-03100)     Apr-21       Power sensor NRP-Z91     SN: 103245     01-Apr-20 (No. 217-03100)     Apr-21       Reference 20 dB Attenuator     SN: BH9394 (20k)     31-Mar-20 (No. 217-03106)     Apr-21       SN: 10924     SN: 31082 / 06327     31-Mar-20 (No. 217-03106)     Apr-21       Reference Probe EX3DV4     SN: 31082 / 06327     31-Mar-20 (No. 217-03104)     Apr-21       DAE4     SN: 601     27-Dec-19 (No. 217-03104)     Apr-21       SN: 601     27-Dec-19 (No. 24-601_Dec19)     Dec-20       Secondary Standards     ID #     Check Date (in house)     Scheduled Check       Power sensor HP 8481A     SN: US37292783     07-Oct-15 (in house check Cot-18)     In house check: Oct-20       Power sensor HP 8481A     SN: 10972     15-Jun-15 (in house check Oct-18)     In house check: Oct-20       RF generator R&S SMT-06     SN: US41080477     31-Mar-14 (in house check Oct-19)     In house check: Oct-20       Natwork Analyzer Agilent E8358A     SN: US41080477     31-Mar-14 (in house check Oct-19)     In house check: Oct-20 </td <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                  |                                                                                                                |                           |                                            |                                     |
| Calibration Equipment used (M&TE critical for calibration)     Primary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Power meter NRP   SN: 104778   01-Apr-20 (No. 217-03100/03101)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03106)   Apr-21     Reference 20 dB Attenuator   SN: BH3934 (20k)   31-Mar-20 (No. 217-03106)   Apr-21     Reference Probe EX3DV4   SN: 310982 / 06327   31-Mar-20 (No. 217-03106)   Apr-21     Reference Probe EX3DV4   SN: 3503   31-Dec-19 (No. DAE4-601_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power sensor HP 8481A   SN: GB39512475   30-Oct-14 (in house check Cot-18)   In house check: Oct-20     Power sensor HP 8481A   SN: W1Y41092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     RF generator R&S SMT-06   SN: US41080477   31-Mar-14 (in house check Oct-18)   In house check: Oct-20     Name   Function   Signature     Calibrated by:   Name   Function   Signature     Approved                                                                                                                                                                                                                                                                                  | The measurements and the uncerta                                                                               | ainties with confidence p | robability are given on the following page | es and are part of the certificate. |
| Calibration Equipment used (M&TE critical for calibration)     Primary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Power meter NRP   SN: 104778   01-Apr-20 (No. 217-03100/03101)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03106)   Apr-21     Reference 20 dB Attenuator   SN: BH3934 (20k)   31-Mar-20 (No. 217-03106)   Apr-21     Reference Probe EX3DV4   SN: 310982 / 06327   31-Mar-20 (No. 217-03106)   Apr-21     Reference Probe EX3DV4   SN: 3503   31-Dec-19 (No. DAE4-601_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power sensor HP 8481A   SN: GB39512475   30-Oct-14 (in house check Cot-18)   In house check: Oct-20     Power sensor HP 8481A   SN: W1Y41092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     RF generator R&S SMT-06   SN: US41080477   31-Mar-14 (in house check Oct-18)   In house check: Oct-20     Name   Function   Signature     Calibrated by:   Name   Function   Signature     Approved                                                                                                                                                                                                                                                                                  |                                                                                                                |                           |                                            |                                     |
| Primary Standards   ID #   Cal Date (Certificate No.)   Scheduled Calibration     Power meter NRP   SN: 104778   01-Apr-20 (No. 217-03100/03101)   Apr-21     Power sensor NRP-Z91   SN: 103244   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03100)   Apr-21     Power sensor NRP-Z91   SN: 103245   01-Apr-20 (No. 217-03106)   Apr-21     Reference 20 dB Attenuator   SN: 81H9394 (20k)   31-Mar-20 (No. 217-03104)   Apr-21     Type-N mismatch combination   SN: 310982 / 06327   31-Mar-20 (No. 217-03104)   Apr-21     Reference Probe EX3DV4   SN: 601   27-Dec-19 (No. DAE4-601_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power sensor HP 8481A   SN: GB39512475   30-Oct-14 (in house check Feb-19)   In house check: Oct-20     Power sensor HP 8481A   SN: US37292783   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     Power sensor HP 8481A   SN: US41080477   31-Mar-14 (in house check Oct-18)   In house check: Oct-20     Re generator R&S SMT-06   SN: US41080477   31-Mar-14 (in house check Oct-18)   In house check: Oct-20 <t< td=""><td>All calibrations have been conducte</td><td>ed in the closed laborato</td><td>y facility: environment temperature (22 ±</td><td>± 3)°C and humidity &lt; 70%.</td></t<>                                                                  | All calibrations have been conducte                                                                            | ed in the closed laborato | y facility: environment temperature (22 ±  | ± 3)°C and humidity < 70%.          |
| Primary Standards     ID #     Cal Date (Certificate No.)     Scheduled Calibration       Power metter NRP     SN: 104778     01-Apr-20 (No. 217-03100/03101)     Apr-21       Power sensor NRP-Z91     SN: 103244     01-Apr-20 (No. 217-03100)     Apr-21       Power sensor NRP-Z91     SN: 103245     01-Apr-20 (No. 217-03100)     Apr-21       Reference 20 dB Attenuator     SN: 8BH9394 (20k)     31-Mar-20 (No. 217-03106)     Apr-21       Type-N mismatch combination     SN: 310982 / 06327     31-Mar-20 (No. 217-03104)     Apr-21       Reference Probe EX3DV4     SN: 601     27-Dec-19 (No. EX3-3503_Dec19)     Dec-20       Secondary Standards     ID #     Check Date (in house)     Scheduled Check       Power sensor HP 8481A     SN: GB39512475     30-Oct-14 (in house check Feb-19)     In house check: Oct-20       Power sensor HP 8481A     SN: US37292783     07-Oct-15 (in house check Oct-18)     In house check: Oct-20       Power sensor HP 8481A     SN: US41080477     31-Mar-14 (in house check Oct-18)     In house check: Oct-20       RF generator R&S SMT-06     SN: US41080477     31-Mar-14 (in house check Oct-18)     In house check: Oct-20       Name     Function                                                                                                                                                                                                            |                                                                                                                |                           |                                            |                                     |
| Power meter NRP     SN: 104778     01-Apr-20 (No. 217-03100/03101)     Apr-21       Power sensor NRP-Z91     SN: 103244     01-Apr-20 (No. 217-03100)     Apr-21       Power sensor NRP-Z91     SN: 103245     01-Apr-20 (No. 217-03100)     Apr-21       Reference 20 dB Attenuator     SN: BH9394 (20k)     31-Mar-20 (No. 217-03106)     Apr-21       SN: 10982 / 06327     31-Mar-20 (No. 217-03106)     Apr-21       Reference Probe EX3DV4     SN: 310982 / 06327     31-Mar-20 (No. 217-03104)     Apr-21       DAE4     SN: 601     27-Dec-19 (No. 217-03104)     Apr-21       Secondary Standards     ID #     Check Date (in house)     Dec-20       Secondary Standards     ID #     Check Date (in house)     Scheduled Check       Power sensor HP 8481A     SN: US37292783     07-Oct-15 (in house check Cot-18)     In house check: Oct-20       Power sensor HP 8481A     SN: 10972     15-Jun-15 (in house check Oct-18)     In house check: Oct-20       RF generator R&S SMT-06     SN: US41080477     31-Mar-14 (in house check Oct-19)     In house check: Oct-20       Name     Function     Signature     Mithael Weber     Laboratory Technician     Mithael Mi                                                                                                                                                                                                                                       | Calibration Equipment used (M& I E                                                                             | critical for calibration) |                                            |                                     |
| Power meter NRP     SN: 104778     01-Apr-20 (No. 217-03100/03101)     Apr-21       Power sensor NRP-Z91     SN: 103244     01-Apr-20 (No. 217-03100)     Apr-21       Power sensor NRP-Z91     SN: 103245     01-Apr-20 (No. 217-03100)     Apr-21       Power sensor NRP-Z91     SN: 103245     01-Apr-20 (No. 217-03101)     Apr-21       Reference 20 dB Attenuator     SN: BH9394 (20k)     31-Mar-20 (No. 217-03104)     Apr-21       SN: 310982 / 06327     31-Mar-20 (No. 217-03104)     Apr-21       SN: 310982 / 06327     31-Mar-20 (No. 217-03104)     Apr-21       SN: 3503     31-Dec-19 (No. 247-03104)     Apr-21       SN: 601     27-Dec-19 (No. 247-03104)     Apr-21       SN: 601     27-Dec-19 (No. 247-03104)     Apr-21       SN: 601     27-Dec-19 (No. DAE4-601_Dec19)     Dec-20       Secondary Standards     ID #     Check Date (in house)     Scheduled Check       Power sensor HP 8481A     SN: GB39512475     30-Oct-14 (in house check Cot-18)     In house check: Oct-20       Power sensor HP 8481A     SN: 109372     15-Jun-15 (in house check Oct-18)     In house check: Oct-20       SN: 109872     SN: US41080477                                                                                                                                                                                                                                                                  | Primary Standards                                                                                              | ID #                      | Cal Date (Certificate No.)                 | Scheduled Calibration               |
| Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21   Reference 20 dB Attenuator SN: 819394 (20k) 31-Mar-20 (No. 217-03106) Apr-21   SN: 910982 / 06327 31-Mar-20 (No. 217-03104) Apr-21   SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21   SN: 3503 31-Dec-19 (No. EX3-3503_Dec19) Dec-20   Secondary Standards ID # Check Date (in house) Scheduled Check   Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20   Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20   Power sensor HP 8481A SN: 103272 15-Jun-15 (in house check Oct-18) In house check: Oct-20   SN: 10972 15-Jun-15 (in house check Oct-18) In house check: Oct-20   SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-20   SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   SN: US41080477 31-Mar-14 (in house check Oct-19) In house                                                                                                                                                                                                                                     | and a second | SN: 104778                |                                            | Apr-21                              |
| Reference 20 dB Attenuator   SN: BH9394 (20k)   31-Mar-20 (No. 217-03106)   Apr-21     Type-N mismatch combination   SN: 310982 / 06327   31-Mar-20 (No. 217-03104)   Apr-21     SN: 3503   31-Dec-19 (No. EX3-5503_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power meter E4419B   SN: GB39512475   30-Oct-14 (in house check Feb-19)   In house check: Oct-20     Power sensor HP 8481A   SN: US37292783   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     Power sensor HP 8481A   SN: W141092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     SN: 10972   15-Jun-15 (in house check Oct-18)   In house check: Oct-20   In house check: Oct-20     RF generator R&S SMT-06   SN: US41080477   31-Mar-14 (in house check Oct-19)   In house check: Oct-20     Name   Function   Signature     Calibrated by:   Name   Function   Signature     Approved by:   Katja Pokovic   Technical Manager   July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                         | Power sensor NRP-Z91                                                                                           | SN: 103244                | 01-Apr-20 (No. 217-03100)                  | Apr-21                              |
| Type-N mismatch combination   SN: 310982 / 06327   31-Mar-20 (No. 217-03104)   Apr-21     Reference Probe EX3DV4   SN: 3503   31-Dec-19 (No. EX3-3503_Dec19)   Dec-20     Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power meter E4419B   SN: GB39512475   30-Oct-14 (in house check Feb-19)   In house check: Oct-20     Power sensor HP 8481A   SN: US37292783   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     SN: 100972   15-Jun-15 (in house check Oct-18)   In house check: Oct-20   In house check: Oct-20     Network Analyzer Agilent E8358A   Ni: W41092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     Name   Function   Signature   In house check: Oct-20   In house check: Oct-20     Name   Function   Signature   Mithael Weber   Laboratory Technician   Mithael Signature     Approved by:   Katja Pokovic   Technical Manager   Jusued: July 28, 2020   July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power sensor NRP-Z91                                                                                           | SN: 103245                | 01-Apr-20 (No. 217-03101)                  | Apr-21                              |
| Reference Probe EX3DV4 SN: 3503 31-Dec-19 (No. EX3-3503_Dec19) Dec-20   DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20   Secondary Standards ID # Check Date (in house) Scheduled Check   Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20   Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20   Power sensor HP 8481A SN: 100372 15-Jun-15 (in house check Oct-18) In house check: Oct-20   RF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   Network Analyzer Agilent E8358A Name Function Signature   Calibrated by: Name Function Signature   Approved by: Katja Pokovic Technical Manager July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference 20 dB Attenuator                                                                                     | SN: BH9394 (20k)          | 31-Mar-20 (No. 217-03106)                  | Apr-21                              |
| DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20   Secondary Standards ID # Check Date (in house) Scheduled Check   Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20   Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20   Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20   RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20   Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   Name Function Signature   Calibrated by: Michael Weber Laboratory Technician Mil/Mbbb   Approved by: Katja Pokovic Technical Manager Jusuet: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type-N mismatch combination                                                                                    | SN: 310982 / 06327        | 31-Mar-20 (No. 217-03104)                  | Apr-21                              |
| Secondary Standards   ID #   Check Date (in house)   Scheduled Check     Power meter E4419B   SN: GB39512475   30-Oct-14 (in house check Feb-19)   In house check: Oct-20     Power sensor HP 8481A   SN: US37292783   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     Power sensor HP 8481A   SN: MY41092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     Power sensor HP 8481A   SN: 100972   15-Jun-15 (in house check Oct-18)   In house check: Oct-20     RF generator R&S SMT-06   SN: US41080477   31-Mar-14 (in house check Oct-19)   In house check: Oct-20     Network Analyzer Agilent E8358A   SN: US41080477   31-Mar-14 (in house check Oct-19)   In house check: Oct-20     Calibrated by:   Name   Function   Signature     Approved by:   Katja Pokovic   Technical Manager   July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference Probe EX3DV4                                                                                         | SN: 3503                  | 31-Dec-19 (No. EX3-3503_Dec19)             | Dec-20                              |
| Power meter E4419B   SN: GB39512475   30-Oct-14 (in house check Feb-19)   In house check: Oct-20     Power sensor HP 8481A   SN: US37292783   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     Power sensor HP 8481A   SN: MY41092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     RF generator R&S SMT-06   SN: 100972   15-Jun-15 (in house check Oct-18)   In house check: Oct-20     Network Analyzer Agilent E8358A   SN: US41080477   31-Mar-14 (in house check Oct-19)   In house check: Oct-20     Name   Function   Signature     Calibrated by:   Michael Weber   Laboratory Technician   Mil/L/L/L     Approved by:   Katja Pokovic   Technical Manager   Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DAE4                                                                                                           | SN: 601                   | 27-Dec-19 (No. DAE4-601_Dec19)             | Dec-20                              |
| Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20   Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20   Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20   Pare generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20   Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   Name Function Signature   Calibrated by: Michael Weber Laboratory Technician Mildbbc   Approved by: Katja Pokovic Technical Manager Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Secondary Standards                                                                                            | ID #                      | Check Date (in house)                      | Scheduled Check                     |
| Power sensor HP 8481A   SN: MY41092317   07-Oct-15 (in house check Oct-18)   In house check: Oct-20     RF generator R&S SMT-06   SN: 100972   15-Jun-15 (in house check Oct-18)   In house check: Oct-20     Network Analyzer Agilent E8358A   SN: US41080477   31-Mar-14 (in house check Oct-19)   In house check: Oct-20     Name   Function   Signature     Michael Weber   Laboratory Technician   Millious     Approved by:   Katja Pokovic   Technical Manager     Issued: July 28, 2020   Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and a second | SN: GB39512475            |                                            | In house check: Oct-20              |
| RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A SN: 100972<br>SN: US41080477 15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-19) In house check: Oct-20<br>In house check: Oct-20   Name Function Signature   Michael Weber Laboratory Technician Millebut   Approved by: Katja Pokovic Technical Manager   Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power sensor HP 8481A                                                                                          | SN: US37292783            | 07-Oct-15 (in house check Oct-18)          | In house check: Oct-20              |
| Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-20   Name Function Signature   Michael Weber Laboratory Technician ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power sensor HP 8481A                                                                                          | SN: MY41092317            | 07-Oct-15 (in house check Oct-18)          | In house check: Oct-20              |
| Calibrated by: Name Function Signature<br>Michael Weber Laboratory Technician Michael Meber<br>Approved by: Katja Pokovic Technical Manager Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RF generator R&S SMT-06                                                                                        | SN: 100972                | 15-Jun-15 (in house check Oct-18)          | In house check: Oct-20              |
| Calibrated by: Michael Weber Laboratory Technician Mildes<br>Approved by: Katja Pokovic Technical Manager Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Network Analyzer Agilent E8358A                                                                                | SN: US41080477            | 31-Mar-14 (in house check Oct-19)          | In house check: Oct-20              |
| Calibrated by: Michael Weber Laboratory Technician Mildes<br>Approved by: Katja Pokovic Technical Manager Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | Namo                      | Eurotion                                   | Signature                           |
| Approved by: Katja Pokovic Technical Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calibrated by:                                                                                                 |                           |                                            |                                     |
| Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Canorated by.                                                                                                  | WIGHAEL WEDEL             | Laboratory recifician                      | Milleset                            |
| Issued: July 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                           |                                            | - 11-                               |
| A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approved by:                                                                                                   | Katja Pokovic             | Technical Manager                          | delle                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                           |                                            | lequed: July 28, 2020               |
| This calibration certificate shall not be reproduced except in full without written approval of the laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | This collibration contificate shall not                                                                        | he reproduced event in    | full without written enpresed of the labor |                                     |

Certificate No: D5GHzV2-1060\_Jul20

Page 1 of 23





#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060\_Jul20

Page 2 of 23





### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                                                                    | V52.10.4                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                                                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                                                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                                                                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5250 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.47 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.94 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 79.1 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.26 W/kg                |

Certificate No: D5GHzV2-1060\_Jul20

Page 3 of 23





### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.52 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.08 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.30 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.9 W/kg ± 19.5 % (k=2) |

Head TSL parameters at 5300 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.3 ± 6 %   | 4.57 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.22 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 $\rm cm^3$ (10 g) of Head TSL | condition          |                          |
|----------------------------------------------------|--------------------|--------------------------|
| SAR measured                                       | 100 mW input power | 2.33 W/kg                |
| SAR for nominal Head TSL parameters                | normalized to 1W   | 23.1 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 4 of 23





Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.0 ± 6 %   | 4.77 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.66 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 86.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.42 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.1 W/kg ± 19.5 % (k=2) |

## Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.9 ± 6 %   | 4.88 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.37 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.37 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 5 of 23





#### Head TSL parameters at 5750 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 5.03 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.09 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.29 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.7 W/kg ± 19.5 % (k=2) |

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.6 ± 6 %   | 5.09 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.16 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.7 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 6 of 23





## Body TSL parameters at 5200 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.8 ± 6 %   | 5.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

and the st

## SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.30 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 72.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.04 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.7 ± 6 %   | 5.53 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.45 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 74.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.8 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 7 of 23





Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.6 ± 6 %   | 5.60 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.36 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.06 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.5 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5500 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.2 ± 6 %   | 5.87 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.86 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 78.3 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>100 mW input power | 2.17 W/kg                |

Certificate No: D5GHzV2-1060\_Jul20

Page 8 of 23





## Body TSL parameters at 5600 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 6.01 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.72 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.15 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.4 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 6.22 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.61 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.11 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul20

Page 9 of 23