

Impedance Measurement Plot

Certificate No: CD2450V3-1021_Aug20

Page 4 of 5

DASY5 E-field Result

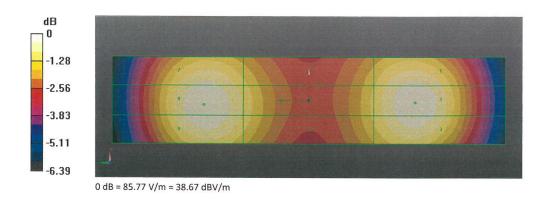
Date: 18.08.2020

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1021

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW ; Frequency: 2450 MHz \\ \mbox{Medium parameters used: } \sigma = 0 \ S/m, \ \epsilon_r = 1; \ \rho = 0 \ kg/m^3 \\ \mbox{Phantom section: RF Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \end{array}$

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2450 MHz; Calibrated: 31.12.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 27.12.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm

Reference Value = 76.28 V/m; Power Drift = 0.02 dBApplied MIF = 0.00 dBRF audio interference level = 38.67 dBV/mEmission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.36 dBV/m	38.62 dBV/m	38.53 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
37.54 dBV/m	37.77 dBV/m	37.72 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.36 dBV/m	38.67 dBV/m	38.6 dBV/m

Certificate No: CD2450V3-1021_Aug20

Page 5 of 5

Dipole 2600 MHz

Client

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CTTL-BJ (Auden)

Client CTTL-BJ (Aude	atter a stort a the		Certificate No: CD2600V3-1017_Aug2			
CALIBRATION C	ERTIFICAT	E				
Object	CD2600V3 - SN: 1017					
Calibration procedure(s)	QA CAL-20.v7 Calibration Proce	ces in air				
Calibration date:	August 18, 2020					
This calibration certificate docume	nts the traceability to nati	onal standards, which realize the	physical units of measurements (SI).			
The measurements and the uncert	tainties with confidence p	robability are given on the followin	g pages and are part of the certificate.			
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperatur	e (22 ± 3)°C and humidity < 70%.			
Calibration Equipment used (M&T	E critical for calibration)					
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/0310				
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21			
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21			
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21			
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21			
Probe EF3DV3	SN: 4013	31-Dec-19 (No. EF3-4013_Dec				
DAE4	SN: 781	27-Dec-19 (No. DAE4-781_Dec				
Secondary Standards	ID #	Check Date (in house)				
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-	Scheduled Check			
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-				
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-				
RF generator R&S SMT-06	SN: 837633/005	10-Jan-19 (in house check Jan-				
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-	, and the design of the det Ed			
	Name	Function	Signature			
Calibrated by:	Leif Klysner	Laboratory Technic	ion a training and the second s			
			al /light			
Approved by:	Katja Pokovic	Technical Mac-	Sel Algu			
	- aga r okovio	Technical Manager	letty			
This calibration certificate chall act	ho roproduos d		Issued: August 18, 2020			
This calibration certificate shall not	be reproduced except in	full without written approval of the	laboratory.			
ertificate No: CD2600V3-1017_	Aug20 Pag	e 1 of 5				

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S CCREDITATION S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward
 power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the
 dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms.
 Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one
 line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as
 calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2600V3-1017_Aug20

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum		
Maximum measured above high end	100 mW input power	84.0 V/m = 38.48 dBV/m		
Maximum measured above low end	100 mW input power	83.8 V/m = 38.46 dBV/m		
Averaged maximum above arm	100 mW input power	83.9 V/m ± 12.8 % (k=2)		

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	23.8 dB	44.1 Ω + 1.5 jΩ
2550 MHz	22.0 dB	57.5 Ω + 4.1 jΩ
2600 MHz	20.6 dB	59.4 Ω - 3.8 jΩ
2650 MHz	19.3 dB	55.0 Ω - 10.2 jΩ
2750 MHz	15.7 dB	41.3 Ω - 12.3 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2600V3-1017_Aug20

Page 3 of 5

Impedance Measurement Plot

	v <u>C</u> hannel	Sweep	Calibration	Trace	<u>S</u> cale	Marker	System	<u>W</u> indow	Help		Sector de la
7.00	dB \$11						1		1:	2.450000 GHz	-23,795 di
									2:	2.\$50900 GHz	21.857 4
-3.00									> 3:	2.800000 GHz	-20.64941
-8.00									4:	2.850000 GHz	-19.340 di
									5:	-2 50000 GHz	-15 735 d
-13.00									-		
-18.00								-5			
23.00				-			e-=	- 5			
				20		2	4				
28.00				1		*					
33.00						-					
38.00				+							
43.00 Cb1· 9	Ch 1 Avg =	20									
										Stop	3.10000 GH
											Statement of the local division of the local
					/				1:	2.450000 GHz	44.112 0
					X		\sim	2		98.742 pH	1.5200 0
					\wedge	\square	F	À	1: 2:	98.742 pH 2.550000 GHz	1.5200 g 57.534 g
				/	$ \land $	$\overline{\langle}$	F		2:	98.742 pH 2.550000 GHz 257.53 pH	1.5200 0 57.534 0 4.1262 0
				4	\int	X	K			98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz	1.5200 0 57.534 0 4.1262 0 59.438 0
				4	$\overline{\langle}$	X			2: ≻3:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF	1.5200 0 57.534 0 4.1262 0 59.438 0 -3.7670 0
				F	- 	X			2:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz	44.112 0 1.5200 0 57.534 0 4.1262 0 59.438 0 -3.7670 0 55.020 0
				4	<u>{</u>				2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF	1.5200 Ω 57.534 Ω 4.1262 Ω 59.438 Ω -3.7670 Ω 55.020 Ω -10.218 Ω
				É	Ł				2: ≻3:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF 2.750000 GHz	1.5200 Ω 57.534 Ω 4.1262 Ω 59.438 Ω -3.7670 Ω 55.020 Ω -10.218 Ω 41.341 Ω
				É	K K K				2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF	1.5200 Ω 57.534 Ω 4.1262 Ω 59.438 Ω -3.7670 Ω 55.020 Ω -10.218 Ω 41.341 Ω
				Ę	X X X				2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF 2.750000 GHz	1.5200 G 57.534 G 4.1262 G 59.438 G -3.7670 Ω 55.020 G -10.218 Ω 41.341 Ω
				4	X + +				2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF 2.750000 GHz	1.5200 G 57.534 G 4.1262 G 59.438 G -3.7670 Ω 55.020 G -10.218 Ω 41.341 Ω
				4		XXX			2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF 2.750000 GHz	1.5200 G 57.534 G 4.1262 G 59.438 G -3.7670 Ω 55.020 G -10.218 Ω 41.341 Ω
	Ch 1 Avg =	20		4					2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 5.8775 pF 2.750000 GHz	1.5200 G 57.534 G 4.1262 G 59.438 G -3.7670 Ω 55.020 G -10.218 Ω 41.341 Ω
Ch1: SI	Ch 1 Avg = Sart 2.10000 G	20	,	Ę					2: ≥3: 4:	98.742 pH 2.550000 GHz 257.53 pH 2.600000 GHz 16.250 pF 2.650000 GHz 2.650000 GHz 2.750000 GHz 4.6971 pF	1.5200 Ω 57.534 Ω 4.1262 Ω 59.438 Ω -3.7670 Ω 55.020 Ω

Certificate No: CD2600V3-1017_Aug20

Page 4 of 5

DASY5 E-field Result

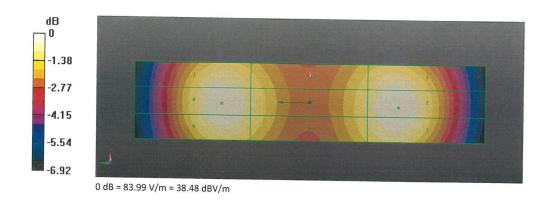
Date: 18.08.2020

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1017

 $\begin{array}{l} \mbox{Communication System: UID 0 - CW ; Frequency: 2600 MHz} \\ \mbox{Medium parameters used: } \sigma = 0 \ S/m, \ \epsilon_r = 1; \ \rho = 0 \ kg/m^3 \\ \mbox{Phantom section: RF Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 31.12.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 27.12.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 65.44 V/m; Power Drift = 0.01 dB

Applied MIF = 0.00 dB RF audio interference level = 38.48 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.23 dBV/m	38.48 dBV/m	38.41 dBV/m
	Contract of the Property of the Property of the	Grid 6 M2
37.58 dBV/m	37.78 dBV/m	37.71 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.22 dBV/m	38.46 dBV/m	38.35 dBV/m

Certificate No: CD2600V3-1017_Aug20

Page 5 of 5

The photos of HAC test are presented in the additional document:

Appendix to test report No.I20Z61503-SEM03

The photos of HAC test