

TEST REPORT No. I21Z61640-WMD01

for

TCL Communication Ltd.

GSM/UMTS/LTE Mobile phone

Model Name: 5007S

FCC ID: 2ACCJH130

with

Hardware Version: 04

Software Version: v2F21UZ10

Issued Date: 2021-09-27

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number Revision		Description Issue Date	
I21Z61640-WMD01	Rev.0	1 st edition	2021-09-27

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TEST LABORATORY	.4
1.1.	INTRODUCTION & ACCREDITATION	.4
1.2.	TESTING LOCATION	.4
1.3.	TESTING ENVIRONMENT	. 5
1.4.	PROJECT DATA	.5
1.5.	SIGNATURE	.5
2.	CLIENT INFORMATION	. 6
2.1.	APPLICANT INFORMATION	. 6
2.2.	MANUFACTURER INFORMATION	. 6
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 7
3.1.	ABOUT EUT	.7
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	. 7
4.	REFERENCE DOCUMENTS	8
5.	LABORATORY ENVIRONMENT	.9
6.	SUMMARY OF TEST RESULT	10
7.	TEST EQUIPMENTS UTILIZED	11
ANI	NEX A: MEASUREMENT RESULTS	12
A	.1 Output Power	12
	.2 Emission Limit	
A	3 BAND EDGE COMPLIANCE	22
ANI	NEX B: ACCREDITATION CERTIFICATE	27

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0 and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1: CTTL (huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China 100191

Location 2: CTTL(Shouxiang)

Address: Shouxiang Building, No. 51 Xueyuan Road, Haidian

District, Beijing 100191, P. R. China

1.3. <u>Testing Environment</u>

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.4. Project Data

Testing Start Date: 2020-09-07 Testing End Date: 2021-09-26

1.5. Signature

Dong Yuan
(Prepared this test report)

Zhou Yu (Reviewed this test report)

赵慧麟

Zhao Hui Lin
Deputy Director of the laboratory
(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address /Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact: Gong Zhizhou

Email: zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address /Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact: Gong Zhizhou

Email: zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM/UMTS/LTE Mobile phone

Model Name 5007S

FCC ID 2ACCJH130 Antenna Embedded

Output power 28.66dBm maximum EIRP measured for PCS1900

Extreme vol. Limits 3.5VDC to 4.4VDC (nominal: 3.85VDC)

Extreme temp. Tolerance -20°C to +60°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Date of receipt
UT09a	015794000205345	04	v2F21UZ10	2021-08-30
UT02a	015794000205337	04	v2F21UZ10	2021-09-03

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID* Description AE1 Battery

AE1

Model TLp034G1
Manufacturer BYD
Capacitance 3500mAh

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-20
		Edition
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-20
		Edition
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment	2016
	Measurement and Performance Standards	
ANSI C63.26	American National Standard for Compliance Testing of	2015
	Transmitters Used in Licensed Radio Services	
KDB 971168 D01	MEASUREMENT GUIDANCE FOR CERTIFICATION OF	v03r01
	LICENSED DIGITAL TRANSMITTERS	

5. Laboratory Environment

Fully-anechoic chamber FAC-3 (9 meters × 6.5 meters × 4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 M
Ground system resistance	< 4
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

6. Summary Of Test Result

GSM850

Items	List	Clause in FCC rules	Verdict
1	Output Power	22.913	Р
2	Emission Limit	2.1051/22.917	Р
3	Band Edge Compliance	22.917	Р

PCS1900

Items	List	Clause in FCC rules	Verdict
1	Output Power	24.232	Р
2	Emission Limit	2.1051/24.238	Р
3	Band Edge Compliance	24.238	Р

Terms used in Verdict column

Р	Pass. The EUT complies with the essential requirements in the standard.
NP	Not Performed. The test was not performed by CTTL.
NA	Not Applicable. The test was not applicable.
BR	Re-use test data from basic model report.
F	Fail. The EUT does not comply with the essential requirements in the
	standard.

Explanation of worst-case configuration

The worst-case scenario for all measurements is based on the conducted output power measurement investigation results unless otherwise stated. The test results shown in the following sections represent the worst case emission.

The Equipment Under Test (EUT) is a Class 2 Permissive Change to 5007S (FCC ID: 2ACCJH130), Output Power, Emission Limit and Band Edge Compliance are tested. For detail differences between two models please refer the Declaration of Changes document.

7. Test Equipments Utilized

Description	Туре	Series Number	Manufacture	Cal Due Date	Calibration Interval
Universal Radio	CMU200	100646	Dec	2024 42 47	1 1000
Communication Tester	CMU200	108646	R&S	2021-12-17	1 year
Spectrum Analyzer	FSU	200030	R&S	2022-06-02	1 year
Climate chamber	SH-242	93008556	ESPEC	2023-12-23	3 years
Test Receiver	E4440A	MY48250642	Agilent	2022-03-04	1 year
Universal Radio Communication Tester	CMW500	143008	R&S	2021-12-01	1 year
EMI Antenna	VULB9163	9163-235	Schwarzbeck	2022-04-07	1 year
Signal Generator	N5183A	MY49060052	Agilent	2022-07-11	1 year
EMI Antenna	3117	00058889	ETS-Lindgren	2021-09-22	1 year
EMI Antenna	3117	00119021	ETS-Lindgren	2022-01-14	1 year

Note1: The above Test Equipments Utilized were used by I21Z61640.

Annex A: Measurement Results

A.1 Output Power

A.1.1 Summary

During the process of testing, the EUT was controlled via communication tester to ensure max power transmission and proper modulation.

In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth.

A.1.2.2 Measurement Result

GSM850

GSM(GMSK)

Frequency (MHz)	Power Step	Output power (dBm)
824.2	5	31.60
836.6	5	31.65
848.8	5	31.49

GPRS(GMSK,1Slot)

Frequency (MHz)	Power Step	Output power (dBm)
824.2	3	31.58
836.6	3	31.63
848.8	3	31.50

EGPRS(8PSK,1Slot)

Frequency (MHz)	Power Step	Output power (dBm)
824.2	6	25.19
836.6	6	25.29
848.8	6	25.04

PCS1900 GSM(GMSK)

Frequency (MHz)	Power Step	Output power (dBm)	
1850.2	0	29.15	
1880.0	0	29.28	
1909.8	0	29.40	

GPRS(GMSK,1Slot)

Frequency (MHz)	Power Step	Output power (dBm)
1850.2	3	29.18
1880.0	3	29.30
1909.8	3	29.39

EGPRS(8PSK,1Slot)

Frequency (MHz)	Power Step	Output power (dBm)	
1850.2	5	24.91	
1880.0	5	25.12	
1909.8	5	25.56	

A.1.3 Radiated

A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts".

Part 24.232(c) specifies "Mobile and portable stations are limited to 2 watts EIRP".

A.1.3.2 Method of Measurement

ANSI C63.26 chapter 5.2.5.5: when working in decibels (i.e., logarithmic scale), the ERP and EIRP represent the sum of the transmit antenna gain (in dBd or dBi, respectively) and the conducted RF output power (expressed in dB relative to watts or milliwatts).

The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation (1) as follows:

ERP or EIRP=P_{Mea}+ G_T

Where

ERP or EIRP	effective radiated power or equivalent isotropically radiated power,
	respectively
	(expressed in the same units as P_{Mea} , e.g., dBm or dBW)
P_{Mea}	measured transmitter output power or PSD, in dBm or dBW
G_T	gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

GSM 850-ERP

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EGPRS	6	≤38.45dBm (7W)

Measurement result

GSM(GMSK)

Frequency	Dower Sten	Output power Conducted	Output power Radiated(dBm)
(MHz)	Power Step	(dBm)	(GT – LC = -3.9)
824.2	5	31.60	25.55
836.6	5	31.65	25.60
848.8	5	31.49	25.44

GPRS(GMSK,1Slot)

Frequency	Dower Sten	Output power Conducted	Output power Radiated(dBm)
(MHz)	Power Step	(dBm)	$(G_T - L_C = -3.9)$
824.2	3	31.58	25.53
836.6	3	31.63	25.58
848.8	3	31.50	25.45

EGPRS(8PSK,1Slot)

Frequency	Dower Sten	Output power Conducted	Output power Radiated(dBm)
(MHz)	Power Step	(dBm)	$(G_T - L_C = -3.9)$
824.2	6	25.19	19.14
836.6	6	25.29	19.24
848.8	6	25.04	18.99

PCS1900-EIRP

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EGPRS	5	≤33dBm (2W)

Measurement result

PCS1900

GSM(GMSK)

Frequency (MHz)	Power Step	Output power Conducted (dBm)	Output power Radiated(dBm) (G _T – L _C =)
1850.2	0	29.15	28.65
1880.0	0	29.28	28.78
1909.8	0	29.40	28.90

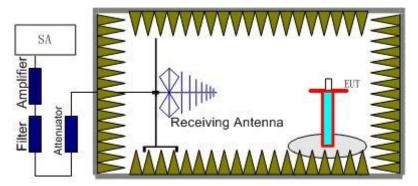
GPRS(GMSK,1Slot)

Frequency (MHz)	Power Step	Output power Conducted (dBm)	Output power Radiated(dBm) (G _T – L _C =)
1850.2	3	29.18	28.68
1880.0	3	29.30	28.80
1909.8	3	29.39	28.89

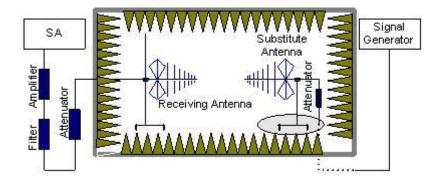
EGPRS(8PSK,1Slot)

Frequency (MHz)	Power Step	Output power Conducted (dBm)	Output power Radiated(dBm) (G _T – L _C =)
1850.2	5	24.91	24.41
1880.0	5	25.12	24.62
1909.8	5	25.56	25.06

A.2 Emission Limit


A.2.1 Measurement Method

The measurement procedures in TIA-603E-2016 are used.


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5-meter-high non-conductive stand at a 3-meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power (EIRP) = $P_{Mea} - P_{pl} - G_a$

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

A.2.2 Measurement Limit

Part 22.917 and Part 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
GSM 850MHz	Low	30MHz-10GHz	Pass
	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
GSM 1900MHz	Low	30MHz-20GHz	Pass
	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
850MHz	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1900MHz	5~8	1 MHz	3 MHz	3
1900IVITZ	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

Measurement Results:

GSM Mode Channel 128/824.2MHz

Frequency	P _{Mea}	Path	Antenna	Correction	Peak ERP	Limit	Margin	Polarization
(MHz)	(dBm)	Loss(dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	(dB)	Polarization
1648.01	-39.58	3.56	5.23	2.15	-40.06	-13.00	27.10	V
2472.00	-29.50	4.59	6.02	2.15	-30.22	-13.00	17.20	V
3297.02	-44.27	5.29	7.71	2.15	-44.00	-13.00	31.00	V
4124.02	-39.38	6.04	9.02	2.15	-38.55	-13.00	25.60	Н
4948.01	-51.96	6.69	9.85	2.15	-50.95	-13.00	37.90	V
5773.01	-50.50	7.23	10.55	2.15	-49.33	-13.00	36.30	Н

GSM Mode Channel 190/836.6MHz

Frequency	P _{Mea}	Path	Antenna	Correction	Peak ERP	Limit	Margin	Delerization
(MHz)	(dBm)	Loss(dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	(dB)	Polarization
1674.01	-35.23	3.58	5.19	2.15	-35.77	-13.00	22.80	Н
2510.00	-42.15	4.63	6.12	2.15	-42.81	-13.00	29.80	V
3346.02	-46.84	5.31	7.83	2.15	-46.47	-13.00	33.50	V
4188.02	-39.21	6.18	9.09	2.15	-38.45	-13.00	25.50	Н
5024.01	-53.21	6.56	9.93	2.15	-51.99	-13.00	39.00	Н
5860.01	-46.03	7.27	10.53	2.15	-44.92	-13.00	31.90	Н

GSM Mode Channel 251/848.8MHz

Frequency	P _{Mea}	Path	Antenna	Correction	Peak ERP	Limit	Margin	Polarization
(MHz)	(dBm)	Loss(dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	(dB)	Polarization
1698.01	-29.66	3.60	5.14	2.15	-30.27	-13.00	17.30	Н
2546.00	-35.48	4.66	6.18	2.15	-36.11	-13.00	23.10	V
3395.02	-50.92	5.36	7.95	2.15	-50.48	-13.00	37.50	V
4246.02	-41.08	6.24	9.15	2.15	-40.32	-13.00	27.30	V
5098.01	-47.06	6.77	10.04	2.15	-45.94	-13.00	32.90	Н
5946.01	-42.52	7.47	10.51	2.15	-41.63	-13.00	28.60	Н

GSM Mode Channel 512/1850.2MHz

Frequency	P _{Mea}	Path	Antenna	Peak EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	Loss(dB)	Gain(dBi)	(dBm)	(dBm)	(dB)	Polarization
3701.02	-41.80	6.42	8.48	-39.74	-13.00	26.74	Н
5554.02	-29.49	7.19	10.59	-26.09	-13.00	13.09	Н
7402.01	-50.61	8.12	12.08	-46.65	-13.00	33.65	V
9254.01	-38.23	9.05	13.25	-34.03	-13.00	21.03	V
11110.01	-38.72	9.79	13.18	-35.33	-13.00	22.33	V
12955.01	-46.38	10.48	13.47	-43.39	-13.00	30.39	V

GSM Mode Channel 661/1880.0MHz

Frequency	P _{Mea}	Path	Antenna	Peak EIRP	Limit	Margin	Delerization
(MHz)	(dBm)	Loss(dB)	Gain(dBi)	(dBm)	(dBm)	(dB)	Polarization
3760.02	-48.63	6.26	8.56	-46.33	-13.00	33.33	V
5645.02	-30.85	7.27	10.57	-27.55	-13.00	14.55	Н
7520.01	-48.81	8.31	12.22	-44.90	-13.00	31.90	Н
9406.01	-42.32	9.07	13.34	-38.05	-13.00	25.05	Н
11293.01	-44.27	9.95	13.14	-41.08	-13.00	28.08	V
13173.01	-37.87	10.62	13.74	-34.75	-13.00	21.75	Н

GSM Mode Channel 810/1909.8MHz

Frequency	P _{Mea}	Path	Antenna	Peak EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	Loss(dB)	Gain(dBi)	(dBm)	(dBm)	(dB)	Polarization
3820.02	-46.12	6.08	8.65	-43.55	-13.00	30.55	V
5735.02	-33.41	7.29	10.55	-30.15	-13.00	17.15	Н
7643.01	-48.61	8.17	12.31	-44.47	-13.00	31.47	Н
9555.01	-42.25	9.34	13.34	-38.25	-13.00	25.25	V
11462.01	-50.51	9.91	13.11	-47.31	-13.00	34.31	V
13369.01	-47.33	10.57	14.02	-43.88	-13.00	30.88	V

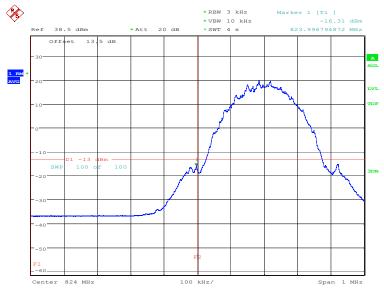
Note: Expanded measurement uncertainty is U = 5.16 dB, k = 2.

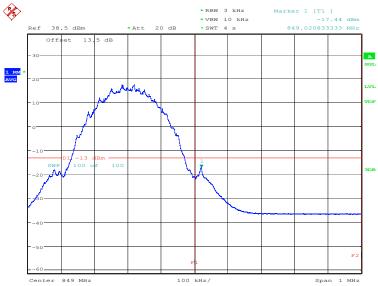
A.3 Band Edge Compliance

A.3.1 Measurement limit

Part 22.917 and Part 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to KDB 971168, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

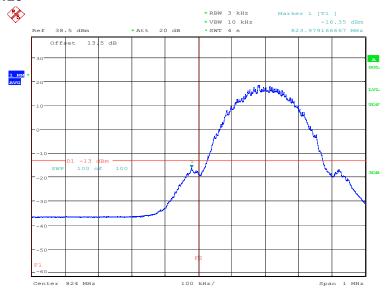

The spectrum analyzer readings are corrected by [10 log (1/duty cycle)] for the non-continuous transmitting scenario.


A.3.2 Measurement result GSM 850

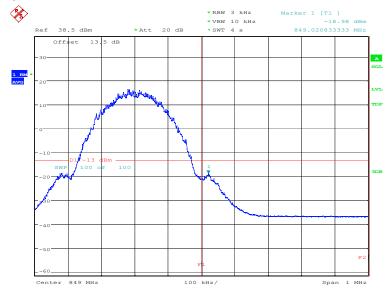
Channel 128

Date: 1.SEP.2021 09:46:53

Channel 251



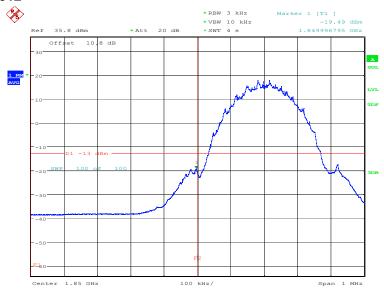
Date: 1.SEP.2021 10:01:50



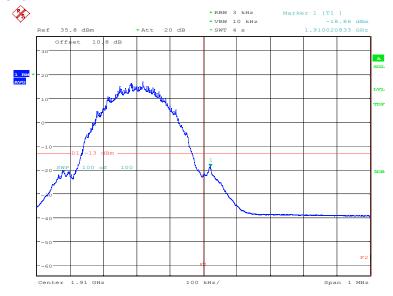
GPRS 850 Channel 128

Date: 1.SEP.2021 10:36:04

Channel 251



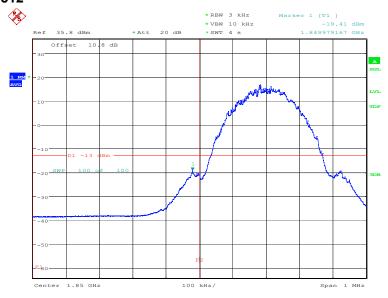
Date: 1.SEP.2021 10:43:14



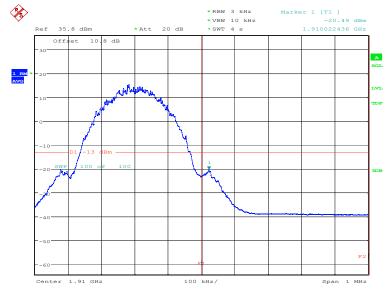
PCS 1900 Channel 512

Date: 31.AUG.2021 08:52:38

Channel 810



Date: 31.AUG.2021 09:07:35



GPRS 1900 Channel 512

Date: 1.SEP.2021 09:06:29

Channel 810

Date: 1.SEP.2021 09:13:39

Annex B: Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2020-09-29 through 2021-09-30

Effective Dates

CANTO STATES OF BARBA

For the National Voluntary Laboratory Accreditation Program

END OF REPORT