

TEST REPORT

No.120N02478-HAC RF

For

TCL Communication Ltd.

GSM/UMTS/LTE Mobile phone

Model Name: 5007S

With

Hardware Version: 03

Software Version: v2D23UZ31

FCC ID: 2ACCJH130

Results Summary: M Category = M4

Issued Date: 2020-10-20

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I20N02478-HAC RF	Rev.0	1st edition	2020-10-20

CONTENTS

1. SUMMARY OF TEST REPORT	5
1.1. Test Items	5
1.2. TEST STANDARDS	5
1.3. TEST RESULT	5
1.4. TESTING LOCATION	5
1.5. Project Data	5
1.6. SIGNATURE	5
2. CLIENT INFORMATION	6
2.1. APPLICANT INFORMATION	6
2.2. MANUFACTURER INFORMATION	6
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1. ABOUT EUT	7
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
3.4. AIR INTERFACES / BANDS INDICATING OPERATING MODES	7
4. MAXIMUM OUTPUT POWER	
5. REFERENCE DOCUMENTS	9
6. OPERATIONAL CONDITIONS DURING TEST	10
6.1. HAC MEASUREMENT SET-UP	10
6.2. PROBE SPECIFICATION	11
6.3. TEST ARCH PHANTOM & PHONE POSITIONER	12
5.4. ROBOTIC SYSTEM SPECIFICATIONS	12
7. EUT ARRANGEMENT	13
7.1. WD RF EMISSION MEASUREMENTS REFERENCE AND PLANE	13
8. SYSTEM VALIDATION	14
8.1. Validation Procedure	14
8.2. VALIDATION RESULT	14
9. EVALUATION OF MIF	15
9.1. Introduction	15
9.2. MIF MEASUREMENT WITH THE AIA	16
9.3. TEST EQUIPMENT FOR THE MIF MEASUREMENT	16
9.4. TEST SIGNAL VALIDATION	16
9.5. DUT MIF RESULTS	17
10. EVALUATION FOR LOW-POWER EXEMPTION	18
10.1. Product testing threshold	18

10.2. CONDUCTED POWER	18
10.3. Conclusion	18
11. RF TEST PROCEDURES	19
12. MEASUREMENT RESULTS (E-FIELD)	20
13. ANSIC 63.19-2011 LIMITS	20
14. MEASUREMENT UNCERTAINTY	21
15. MAIN TEST INSTRUMENTS	22
16. CONCLUSION	22
ANNEX A: TEST LAYOUT	23
ANNEX B: RF EMISSION TEST PLOT	24
ANNEX C: SYSTEM VALIDATION RESULT	26
ANNEX D: PROBE CALIBRATION CERTIFICATE	28
ANNEX E: DAE CALIBRATION CERTIFICATE	38
ANNEX F: DIPOLE CALIBRATION CERTIFICATE	41
ANNEX G: ACCREDITATION CERTIFICATE	51

1. Summary of Test Report

1.1. Test Items

Description:

GSM/UMTS/LTE Mobile phone

Model Name:

5007S

Applicant's name:

TCL Communication Ltd.

Manufacturer's Name:

TCL Communication Ltd.

1.2. Test Standards

ANSI C63.19-2011

1.3. Test Result

Pass

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026

1.5. Project Data

Testing Start Date: 2020-09-17

Testing End Date: 2020-09-18

1.6. Signature

Li Yongfu

(Prepared this test report)

(Reviewed this test report)

Cao Junfei

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	TCL Communication Ltd.	
Addroso:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park,	
Address: Shatin, NT, Hong Kong		
City:	Hong Kong	
Country:	China	
Telephone:	0086-755-36611722	

2.2. Manufacturer Information

Company Name:	TCL Communication Ltd.	
Addross:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park,	
Address: Shatin, NT, Hong Kong		
City:	Hong Kong	
Country:	China	
Telephone:	0086-755-36611722	

3. Equipment under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description:	GSM/UMTS/LTE Mobile phone	
Mode Name:	5007S	
Condition of EUT as received:	No obvious damage in appearance	
Operating mode(a):	GSM 850/900/1800/1900, UMTS FDD 2/4/5, BT, Wi-Fi,	
Operating mode(s):	LTE Band 2/4/5/12/13/66	

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	015794000205444	03	v2D23UZ31

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test HAC with the EUT1.

3.3. Internal Identification of AE used during the test

AE ID*	Description	escription Type Manufacturer	
AE1	Battery	TLp034G1	BYD

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Air Interfaces / Bands Indicating Operating Modes

Air-interface	Band(MHz)	Туре	C63.19/tested	Simultaneous Transmission s	Name of Voice Service	
GSM	850	VO	VO V	CMRS Voice		
GSIVI	1900	VO	Yes	BT, WLAN	CIVIRS VOICE	
GPRS	850	DT	Voo	DI, WLAIN	Coogle due	
/EDGE	1900	DT	Yes		Google duo	
	850					
WCDMA	1700	VO	Yes	BT, WLAN	CMRS Voice	
(UMTS)	1900					
	HSPA	DT	Yes		Google duo	
LTE FDD	Band2/5/12/13/66	V/D	Yes	BT, WLAN	VoLTE, Google	
LIEFUU	Danu2/5/12/13/00	V/D	res	DI, WLAIN	duo	
ВТ	2450	DT	NA	GSM, WCDMA,	NA	
БІ	2430	וט	INA	LTE	INA	
WLAN	2450	V/D	Yes	GSM, WCDMA, LTE	NA	

NA: Not Applicable VO: Voice Only V/D: CMRS and IP Voice Service over Digital Transport DT: Digital Transport

Note1 = No Associated T-Coil measurement has been made in accordance with 285076 D02 T-Coil testing for CMRS IP

^{*} HAC Rating was not based on concurrent voice and data modes, Non current mode was found to represent worst case rating for both M and T rating

4. Maximum Output Power

GSM	Tune up (dBm)		
850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
Voice	33.3	33.3	33.3
EDGE	30.5	30.5	30.5
GSM		Tune up(dBm)	
1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
Voice	29.5	29.5	29.5
EDGE	27.8	27.8	27.8
WCDMA		Tune up (dBm)	
850MHz	Channel 4233(846.6MHz)	Channel 4182(836.4MHz)	Channel 4132(826.4MHz)
RMC	24	24	24
HSPA	23	23	23
WODAA		Tune up (dBm)	
WCDMA	Channel 1513	01 14440 (4700 4711)	Channel 1312
1700MHz	(1752.6MHz)	Channel 1412 (1732.4MHz)	(1712.4MHz)
RMC	24	24	24
HSPA	23	23	23
WCDMA		Tune up (dBm)	
WCDMA 1900MHz	Channel 0529/1007 (MU-)	Channel 0400/4990MU=\	Channel
190011112	Channel 9538(1907.6MHz)	Channel 9400(1880MHz)	9262(1852.4MHz)
RMC	24	24	24
HSPA	23	23	23
LTE Band2		Tune up (dBm)	
LIE Balluz	Channel 19100(1900MHz)	Channel18900(1880MHz)	Channel 18700(1860MHz)
QPSK	23.3	23.3	23.3
16QAM	22.3	22.3	22.3
LTE Band5		Tune up (dBm)	
LIE Ballus	Channel 20600(844MHz)	Channel 20525(836.5MHz)	Channel20450(829MHz)
QPSK	23.3	23.3	23.3
16QAM	22.3	22.3	22.3
LTE Band12		Tune up (dBm)	
LIE Ballu 12	Channel 23130(711MHz)	Channel 23095(707.5MHz)	Channel23060(704MHz)
QPSK	23.3	23.3	23.3
16QAM	22.3	22.3	22.3
LTE Band13	Tune up (dBm)		
LIE Dailu 13	Channel 23230(782MHz)		
QPSK	23.3		
16QAM	22.3		
LTE Band66	Tune up (dBm)		

	Channel 132572(1770MHz)	Channel 132322(1745MHz)	Channel 133072(1720MHz)
QPSK	23.3	23.3	23.3
16QAM	22.3	22.3	22.3
2.404-		Tune up (dBm)	
2.4GHz 802.11b	Channel 11 (2462MHz)	Channel 6 (2437MHz)	Channel 1 (2412MHz)
002.11D	16.8	16.8	16.8

5. Reference Documents

The following document listed in this section is referred for testing.

Reference	Title	Version
ANSI C63.19-2011	American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids	2011 Edition
FCC 47 CFR §20.19	Hearing Aid Compatible Mobile Headsets	2015 Edition
KDB 285076 D01	Equipment Authorization Guidance for Hearing Aid Compatibility	v05r01

6. Operational Conditions During Test

6.1. HAC Measurement Set-up

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core2 1.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

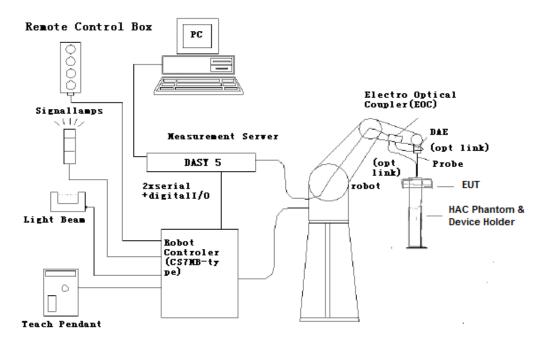


Fig. 1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

6.2. Probe Specification

E-Field Probe Description

Construction One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

PEEK enclosure material

Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%,

k=2)

Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz)

Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity ± 0.2 dB in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Application General near-field measurements up to 6 GHz

Field component measurements

Fast automatic scanning in phantoms

[ER3DV6]

6.3. Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field <±0.5 dB.

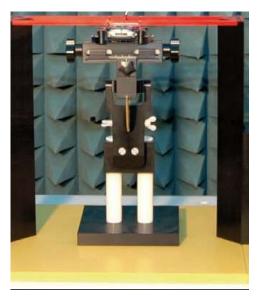


Fig. 2 HAC Phantom & Device Holder

5.4. Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160XL

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core2 Clock Speed: 1.86 GHz

Operating System: Windows XP

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

7. EUT Arrangement

7.1. WD RF Emission Measurements Reference and Plane

Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement.

- The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids.
- The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil).
- The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear
- The measurement plane is located parallel to the reference plane and 15 mm from it, out from the phone. The grid is located in the measurement plane.

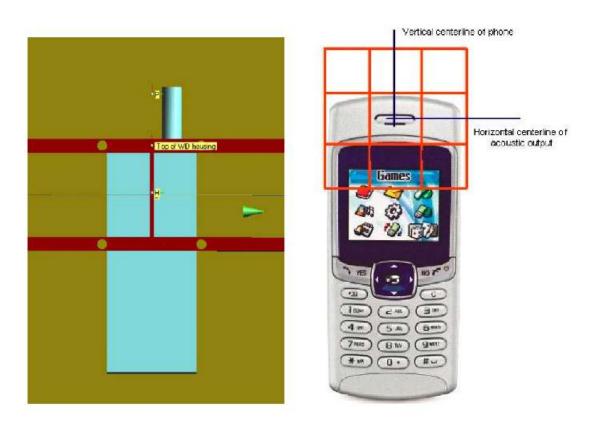


Fig. 3 WD reference and plane for RF emission measurements

8. System Validation

8.1. Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probes so that:

- The probes and their cables are parallel to the coaxial feed of the dipole antenna
- The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions
- The center point of the probe element(s) are 15 mm from the closest surface of the dipole elements.

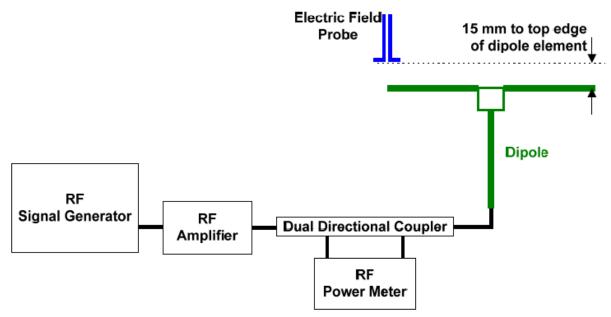


Fig. 4 Dipole Validation Setup

8.2. Validation Result

E-Field Scan							
Mode	Frequency	Input Power	Measured ¹	Target ²	Deviation ³	Limit⁴	
Wode	(MHz)	(mW)	Value(dBV/m)	Value(dBV/m)	(%)	(%)	
CW	835	100	40.55	40.72	-0.42	±25	
CW	1880	100	38.88	39.06	-0.46	±25	

Notes:

- 1. Please refer to the attachment for detailed measurement data and plot.
- 2. Target value is provided by SPEAD in the calibration certificate of specific dipoles.
- 3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value.
- 4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the dipole actually used in the measurements should be used, when available.

9. Evaluation of MIF

9.1. Introduction

The MIF (Modulation Interference Factor) is used to classify E-field emission to determine Hearing Aid Compatibility (HAC). It scales the power-averaged signal to the RF audio interference level and is characteristic to a modulation scheme. The HAC standard preferred "indirect" measurement method is based on average field measurement with separate scaling by the MIF. With an Audio Interference Analyzer (AIA) designed by SPEAG specifically for the MIF measurement, these values have been verified by practical measurements on an RF signal modulated with each of the waveforms. The resulting deviations from the simulated values are within the requirements of the HAC standard.

The AIA (Audio Interference Analyzer) is an USB powered electronic sensor to evaluate signals in the frequency range 698MHz - 6 GHz. It contains RMS detector and audio frequency circuits for sampling of the RF envelope.

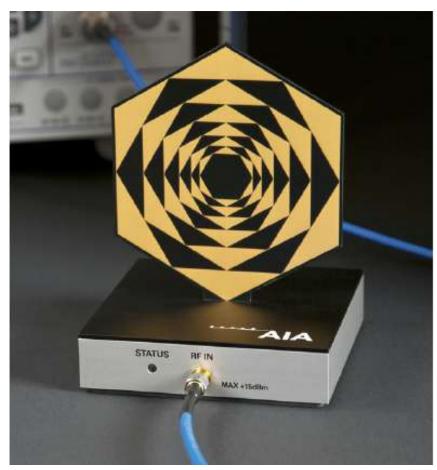


Fig. 5 AIA Front View

9.2. MIF measurement with the AIA

The MIF is measured with the AIA as follows:

- 1. Connect the AIA via USB to the DASY5 PC and verify the configuration settings.
- 2. Couple the RF signal to be evaluated to an AIA via cable or antenna.
- 3. Generate a MIF measurement job for the unknown signal and select the measurement port and timing settings.
- 4. Document the results via the post processor in a report.

9.3. Test equipment for the MIF measurement

No.	Name	Туре	Serial Number	Manufacturer
01	Signal Generator	E4438C	MY49071430	Agilent
02	AIA	SE UMS 170 CB	1029	SPEAG
03	BTS	CMW500	166370	R&S

9.4. Test signal validation

The signal generator (E4438C) is used to generate a 1GHz signal with different modulation in the below table based on the ANSI C63.19-2011. The measured MIF with AIA are compared with the target values given in ANSI C63.19-2011 table D.3, D.4 and D5.

Pulse modulation	Target MIF	Measured MIF	Deviation
0.5ms pulse, 1000Hz repetition rate	-0.9 dB	-0.9 dB	0 dB
1ms pulse, 100Hz repetition rate	+3.9 dB	+3.7 dB	0.2 dB
0.1ms pulse, 100Hz repetition rate	+10.1 dB	+10.0 dB	0.1 dB
10ms pulse, 10Hz repetition rate	+1.6 dB	+1.7 dB	0.1 dB
Sine-wave modulation	Target MIF	Measured MIF	Deviation
1 kHz, 80% AM	-1.2 dB	-1.3 dB	0.1 dB
1 kHz, 10% AM	-9.1 dB	-9.0 dB	0.1 dB
1 kHz, 1% AM	-19.1 dB	-18.9 dB	0.2 dB
100 Hz, 10% AM	-16.1 dB	-16.0 dB	0.1 dB
10 kHz, 10% AM	-21.5 dB	-21.6 dB	0.1 dB
Transmission protocol	Target MIF	Measured MIF	Deviation
GSM; full-rate version 2; speech codec/handset low	+3.5 dB	+3.47 dB	0.03 dB
WCDMA; speech; speech codec low; AMR 12.2 kb/s	-20.0 dB	-19.8 dB	0.2 dB
CDMA; speech; SO3; RC3; full frame rate; 8kEVRC	-19.0 dB	-19.1 dB	0.1 dB
CDMA; speech; SO3; RC1; 1/8 th frame rate; 8kEVRC	+3.3 dB	+3.44 dB	0.14 dB

9.5. DUT MIF results

Based on the KDB285076D01v05, the handset can also use the MIF values predetermined by the test equipment manufacturer. MIF values applied in this test report were provided by the HAC equipment provider of SPEAG, and the worst values for all air interface are listed below to be determine the Low-power Exemption.

Typical MIF levels in ANSI C63.19-2011					
Transmission protocol	Modulation interference factor				
GSM-FDD (TDMA, GMSK)	+3.63 dB				
EDGE-FDD (TDMA, 8PSK, TN 0-1)	+1.23dB				
EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	-0.52dB				
EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	-1.82dB				
UMTS-FDD(WCDMA, AMR)	-25.43dB				
UMTS-FDD (HSPA)	-20.75dB				
LTE-FDD (SC-FDMA, 1RB, 20MHz, QPSK)	-15.63 dB				
LTE-FDD (SC-FDMA, 1RB, 20MHz, 16QAM)	-9.76 dB				
IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	-5.90 dB				
IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	-5.17 dB				
IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	-3.37 dB				
IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	-2.02 dB				
IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	-0.36dB				
IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	-15.80 dB				

10. Evaluation for low-power exemption

10.1. Product testing threshold

There are two methods for exempting an RF air interface technology from testing. The first method requires evaluation of the MIF for the worst-case operating mode. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is \leq 17 dBm for any of its operating modes. The second method does not require determination of the MIF. The RF emissions testing exemption shall be applied to an RF air interface technology in a device whose peak antenna input power, averaged over intervals \leq 50 μ s20, is \leq 23 dBm. An RF air interface technology that is exempted from testing by either method shall be rated as M4. The first method is used to be exempt from testing for the RF air interface technology in this report.

10.2. Conducted power

Band	Average power (dBm)	MIF (dB)	Sum (dBm)	C63.19 Tested
GSM 850 - Voice	33.3	3.63	36.93	Yes
GSM 850 - EDGE	30.5	1.23	31.73	Yes*
GSM 1900 - Voice	29.5	3.63	33.13	Yes
GSM 1900 - EDGE	27.8	1.23	29.03	Yes*
WCDMA 850 - RMC	24	-25.43	-1.43	No
WCDMA 850 - HSPA	23	-20.75	2.25	No
WCDMA 1700 - RMC	24	-25.43	-1.43	No
WCDMA 1700 - HSPA	23	-20.75	2.25	No
WCDMA 1900 - RMC	24	-25.43	-1.43	No
WCDMA 1900 - HSPA	23	-20.75	2.25	No
LTE Band 2 QPSK	23.3	-15.63	7.67	No
LTE Band 5 QPSK	23.3	-15.63	7.67	No
LTE Band 12 QPSK	23.3	-15.63	7.67	No
LTE Band 13 QPSK	23.3	-15.63	7.67	No
LTE Band 66 QPSK	23.3	-15.63	7.67	No
LTE Band 2 16QAM	22.3	-9.76	12.54	No
LTE Band 5 16QAM	22.3	-9.76	12.54	No
LTE Band 12 16QAM	22.3	-9.76	12.54	No
LTE Band 13 16QAM	22.3	-9.76	12.54	No
LTE Band 66 16QAM	22.3	-9.76	12.54	No
WiFi-2.4G	16.8	-5.90	10.9	No

^{*}Note: For GSM bands, EDGE modes were not evaluated as Voice modes were found to the worst-case modes for the GSM air interface.

10.3. Conclusion

According to the above table, the sums of average power and MIF for WCDMA, LTE FDD and WiFi are less than 17dBm. So it is measured for GSM bands. The WCDMA, LTE FDD and WiFi

11. RF Test Procedures

The evaluation was performed with the following procedure:

- 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2) Position the WD in its intended test position. The gauge block can simplify this positioning.
- 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
- 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- 5) Record the reading.
- 6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- 7) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified.
- 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7)
- 9) Evaluate the MIF and add to the maximum steady-state rms field-strength reading to obtain the RF audio interference level..
- Compare this RF audio interference level with the categories and record the resulting WD category rating.

12. Measurement Results (E-Field)

Frequ	iency	Measured	Measured Power Drift (dB)			
MHz	Channel	Value(dBV/m)		Value(dBV/m)		Category
GSM 850						
848.8	251	33.75	0.02	M4		
836.6	190	35.36	0.01	M4		
824.2	128	35.95	0.00	M4 (see Fig B.1)		
	GSM 1900					
1909.8	810	22.42	0.06	M4		
1880.0	661	23.89	0.07	M4		
1850.2	512	26.28	-0.19	M4 (see Fig B.2)		

13. ANSIC 63.19-2011 Limits

WD RF audio interference level categories in logarithmic units

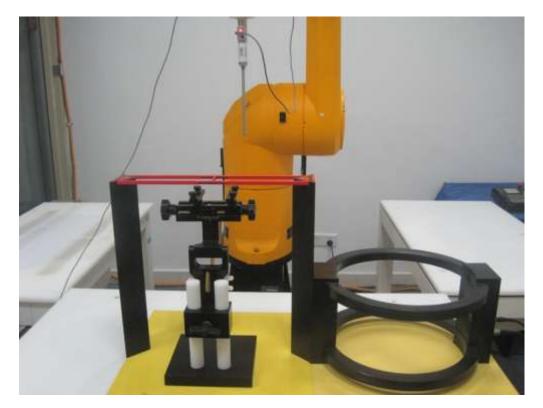
Emission categories	< 960 MHz E	-field emissions
Category M1	50 to 55	dB (V/m)
Category M2	45 to 50	dB (V/m)
Category M3	40 to 45	dB (V/m)
Category M4	< 40	dB (V/m)
Emission categories	> 960 MHz E-	field emissions
Category M1	40 to 45	dB (V/m)
Category M2	35 to 40	dB (V/m)
Category M3	30 to 35	dB (V/m)
Category M4	< 30	dB (V/m)

14. Measurement Uncertainty

			Uncert				Standard	Degree	
No.	Error course	Type	ainty	Prob.	le .	Ci	Uncertainty	of	0011800
INO.	Error source	Type	Value	Dist.	k	Е	$(\%) u_i^{'}(\%)$	freedom	source
			(%)				E	V _{eff} or v _i	
1	System repeatability	Α	0.24	N	1	1	0.24	9	Measurement
Meas	surement System								
2	Probe Calibration	В	10.1	N	1	1	10.1	∞	Manufacturer
3	Axial Isotropy	В	0.5	R	$\sqrt{3}$	1	0.5	∞	Cal report
4	Sensor Displacement	В	16.5	R	$\sqrt{3}$	1	9.5	∞	Manufacturer
5	Boundary Effects	В	2.4	R	$\sqrt{3}$	1	1.4	∞	Manufacturer
6	Linearity	В	0.6	R	$\sqrt{3}$	1	0.35	∞	Cal report
7	Scaling to Peak Envolope Power	В	2.0	R	$\sqrt{3}$	1	1.2	8	Standard
8	System Detection Limit	В	1.0	R	$\sqrt{3}$	1	0.6	8	Manufacturer
9	Readout Electronics	В	0.3	N	1	1	0.3	8	Manufacturer
10	Response Time	В	0.8	R	$\sqrt{3}$	1	0.5	∞	Manufacturer
11	Integration Time	В	2.6	R	$\sqrt{3}$	1	1.5	∞	Manufacturer
12	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	∞	Measurement
13	RF Reflections	В	12.0	R	$\sqrt{3}$	1	6.9	∞	Measurement
14	Probe Positioner	Α	1.2	R	$\sqrt{3}$	1	0.7	8	Manufacturer
15	Probe Positioning	Α	4.7	R	$\sqrt{3}$	1	2.7	8	Manufacturer
16	Extra. And Interpolation	В	1.0	R	$\sqrt{3}$	1	0.6	∞	Manufacturer
Test	Sample Related								
17	Device Positioning Vertical	В	4.7	R	$\sqrt{3}$	1	2.7	∞	Manufacturer
18	Device Positioning Lateral	В	1.0	R	$\sqrt{3}$	1	0.6	∞	Manufacturer
19	Device Holder and Phantom	В	2.4	R	$\sqrt{3}$	1	1.4	∞	Manufacturer
20	Power Drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞	Measurement
Phar	ntom and Setup related								
21	Phantom Thickness	В	2.4	R	$\sqrt{3}$	1	1.4	∞	Manufacturer
PMF	related								
22	Monitor amplitude	В	3.5	R	$\sqrt{3}$	1	2.02	∞	Manufacturer
23	Setup repeatability	Α	2.3	N	1	1	2.3	9	Manufacturer
24	Sensor amplitude	В	12	R	$\sqrt{3}$	1	6.93	∞	Manufacturer
	Combined standard uncertaint	y(%)					18.3		
	Expanded uncertainty (confidence interval of 95 %)	u_e	$=2u_c$	N	k=	=2	36.6		

15. Main Test Instruments

Table 15-1: List of Main Instruments


No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Signal Generator	E8257D	MY47461211	2020-01-15	One year
02	Power meter	E4418B	MY50000366	2019-12-14	One year
03	Power sensor	E9304A	MY50000188	2019-12-14	One year
04	Amplifier	VTL5400	0404	/	
05	HAC Test Arch	N/A	1150	/	
06	DAE	DAE4	1527	2019-11-11	One year
07	E-Field Probe	ER3DV6	2424	2018-02-23	Three year
80	HAC Dipole	CD835V3	1165	2018-07-19	Three year
09	HAC Dipole	CD1880V3	1149	2018-07-19	Three year
10	BTS	CMU500	152499	2020-07-17	One year
11	Software	DASY5	52.8.8.1222	/	/

16. Conclusion

The HAC measurement indicates that the EUT complies with the HAC limits of the ANSIC63.19-2011. The total M-rating is **M4.**

ANNEX A: Test Layout

Picture A1: HAC RF System Layout

ANNEX B: RF Emission Test Plot

HAC RF E-Field GSM 850 Low

Date: 2020-9-17

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

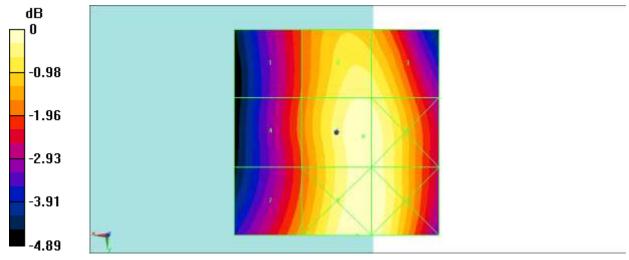
Probe: ER3DV6 - SN2424; ConvF (1, 1, 1)

GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 50.54 V/m; Power Drift = -0.00 dB


Applied MIF = 3.43 dB

RF audio interference level = 35.95 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
34.14 dBV/m	35.7 dBV/m	35.62 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
34.27 dBV/m	35.94 dBV/m	35.9 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
34.61 dBV/m	36.01 dBV/m	35.98 dBV/m

0 dB = 63.20 V/m = 36.01 dBV/m

Fig B.1 HAC RF E-Field GSM 850 Low

HAC RF E-Field GSM 1900 Low

Date: 2020-9-18

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2424; ConvF (1, 1, 1)

GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing Aid

Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 6.038 V/m; Power Drift = -0.19 dB

Applied MIF = 3.46 dB

RF audio interference level = 26.28 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
26.26 dBV/m	26.28 dBV/m	24.44 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
22.06 dBV/m	23.87 dBV/m	23.82 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
27.74 dBV/m	28.42 dBV/m	27.62 dBV/m

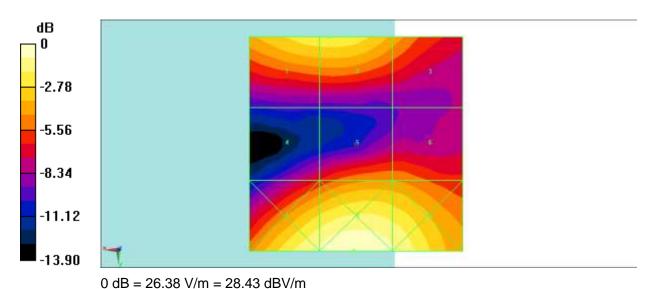


Fig B.2 HAC RF E-Field GSM 1900 Low

1D = 20.50 V/III = 20.45 dD V/III

ANNEX C: System Validation Result

835 MHz

Date: 2020-9-17

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: σ = 0 mho/m, ϵ r = 1; ρ = 1000 kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

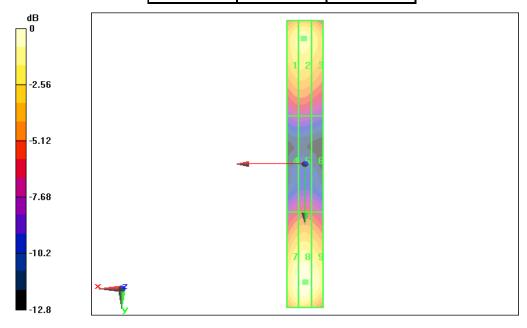
Probe: ER3DV6 - SN2424; ConvF (1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 129.9 V/m; Power Drift = -0.02 dB


Applied MIF = 0.00 dB

RF audio interference level = 40.55 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3	Grid 2 M3	Grid 3 M3
40.08 dBV/m	40.55 dBV/m	40.65 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.36 dBV/m	35.09 dBV/m	35.09 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.31 dBV/m	40.71 dBV/m	40.56 dBV/m

0 dB = 40.55 dBV/m

1880 MHz

Date: 2020-9-18

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1000 kg/m³ Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

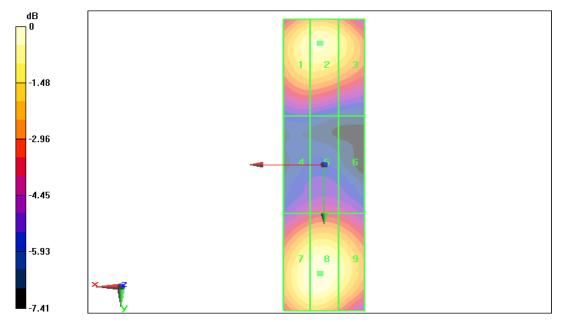
Probe: ER3DV6 - SN2424; ConvF (1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 149.4 V/m; Power Drift = 0.07 dB


Applied MIF = 0.00 dB

RF audio interference level = 38.88 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.57 dBV/m	38.88 dBV/m	38.74 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
35.97 dBV/m	35.98 dBV/m	36.11 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.61 dBV/m	38.83 dBV/m	38.72 dBV/m

0 dB = 38.88 dBV/m

ANNEX D: Probe Calibration Certificate

E_Probe ER3DV6

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Seess Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL-SZ (Auden)

Certificate No: ER3-2424_Feb18

Object	ER3DV6 - SN:2424
Calibration procedure(s)	QA CAL-02.v8, QA CAL-25.v6 Calibration procedure for E-field probes optimized for close near field evaluations in air
Celibration date:	February 23, 2018
This calibration certificate do The measurements and the i	coments the traceability to national atlandants, which realize the physical units of measurements (Bi) undertainties with confidence probability are given on the following pages and are part of the certificate

Primary Standards	ED.	Cal Date (Certificate No.) Scheduled Californi	
Power meter NRP	SN: 104778	64-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-291	SN 103244	04-Apr-17 (No. 217-02521)	Apr.18
Power pensor NRP-Z91	SN 103245	94-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02526)	Apr-18
Reference Probe ER3DVB	SN: 2328	18-Oct-17 (No. ER3-2328, Oct17)	Oct-18
DAE4	SN: 789	2-Aug-17 (No. DAE4-789_Aug17)	Aug-18
Secondary Standards	ID .	Check Date (in house)	Scheduled Chick
Power meter E44198	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check, Jun-18
Power sensor E4412A	SN: MY41498087	06-Apri-16 (in house check Juri-16)	In house check: Jun-18
Power sensor E4412A	5N 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 6648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In hoose check: Oct-18

	Name	Function Signature
aitrated by	Jeton Kasiyati	Laboratory Technician
pproved by	Karja Pokovic	Technical Manager
		Tusued: February 23, 201

Certificate No: ER3-2424_Feb18

Page 1 of 10

Calibration Laboratory of

Schmid & Partner Engineering AG lughausstrasse 43, 9864 Zurich, Switzerland

S

C

S

Service suisse d'étalonnage Servizio avizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Ewitz Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

A. B. C. D

NORMX,y.z. DOP

sensitivity in free space diade compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization e q rotation around probe axis Polarization 3

3 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., I) = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system. Connector Angle

Calibration is Performed According to the Following Standards:

IEEE Std 1309-2005, * IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz*, December 2005

b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

MORMx.y.z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).

NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency-Response Chart).

- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor modia.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx.y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Senzor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMs (no uncertainty required).

Certificate No: ER3-2424_Feb18

Page 2 of 10

ER30V6 - SN:2424

February 23, 2018

Probe ER3DV6

SN:2424

Calibrated:

Manufactured: November 12, 2007 February 23, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2424_Feb18

Page 3 of 10

ER3DV6 - SN:2424

February 23, 2018

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k≠2)
Norm (µV/(V/m) ²) DCP (mV) ⁸	1.46	1.51	1.82	±10.1 %
DCP (mV) th	100.0	98.3	100.6	210.130

Modulation Calibration Parameter

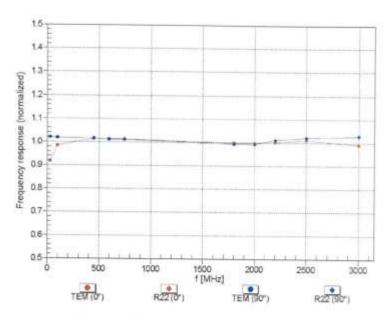
UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^h (k=2)
0	CW	X	0.0	0.0	1.0	0.00	189.6	±3.5 %
		Y	0.0	0.0	1.0		204.8	
		2,	0.0	0.0	1.0		200.6	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	21.68	99.9	28.7	9.39	106.2	±2.2 %
		Y	19.41	99.7	28.8		111.3	
	100	.Z	24.71	99.5	28.2		119.2	
10061- CAB Mbps) IEEE 802.11b WF+ 2.4 GHz (DSSS: 11	IEEE 802.11b W/Fi 2.4 GHz (DSSS, 11 Mbps)	Х	8.35	84.6	25.4	3.60	146.9	±1.9 %
		Y	4.81	74.8	21.7		112.9	
		2	6.43	78.8	22.9		111.9	
10077- CAB	(DSSS/OFDM, 54 Mbps)	X	13.28	77.7	29.3	11.00	139.0	±3.8 %
		Y	11.65	73,4	26.9		100.8	
		Z	11.41	72.1	25.6		99.2	
10172- CAD QPSK) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD (SC-FDMA, 1 R8, 20 MHz, QPSK)	X	9.48	80.8	29.7	9.21	125.2	±3.8 %
		Y	9.49	81.9	30.6		134.1	
		Z	10.82	83.6	30.5		136.8	
CAD 16-QA	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	9.87	81.2	29.9	9.48	125.1	12.5 %
		Y	10.11	83.1	31.3		134.2	
		Z	11.30	84.2	30.8		136.9	
10285- AAB CDMA2000, RC1, SO3, 1/8th Rate 25 f	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	х	16.69	99.5	40.3	12.49	96.6	12.5 %
		Y	15.42	99.3	41.1		100.6	
		Z	17.91	99.9	39.8		104.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2424_Feb18

Page 4 of 10

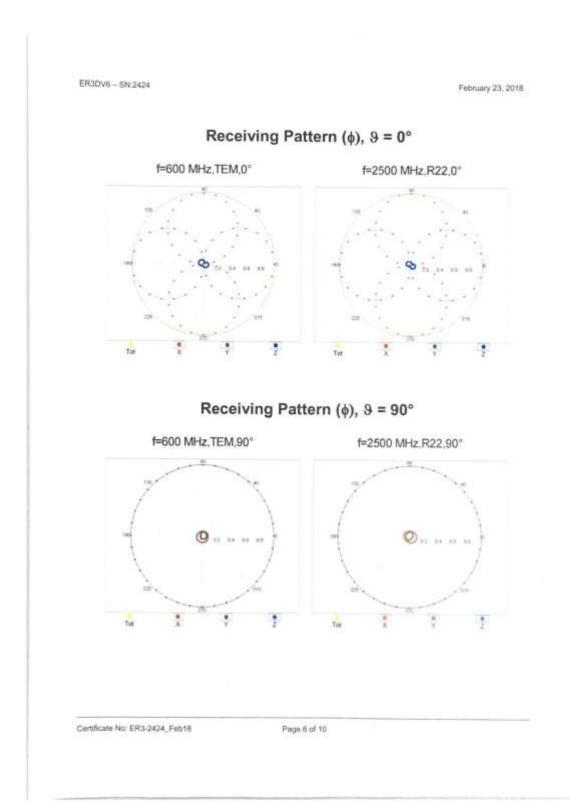
^{*} Numerical linearization parameter: uncertainty not required.


** Uncertainty is determined using the max, deviation from linear sequence applying rectangular distribution and is expressed for the square of the field value.

ER30V6 - SN:2424

February 23, 2016

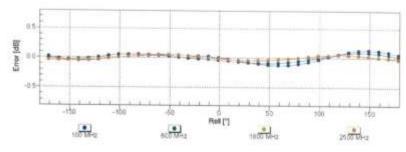
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



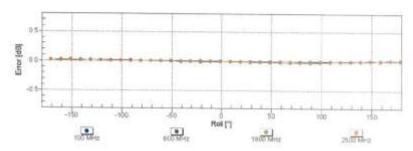
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ER3-2424_Feb18

Page 5 of 10



ER3DV6 - SN:2424


February 23, 2018

Receiving Pattern (4), 9 = 0°

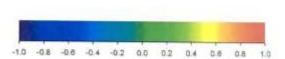
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (φ), 9 = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2424_Feb18

Page 7 of 10


ER3DV6 - SN:2424 February 23, 2018 Dynamic Range f(E-field) (TEM cell , f = 900 MHz) 101 Input Signal [uV] 10 102 101 101 E total [V/m] compensated E total [V/m] not compen Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ER3-2424_Feb18 Page 6 of 10

ER3DV6 - SN:2424

February 23, 2018

Deviation from Isotropy in Air Error (\$\phi\$, \$\theta\$), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2424_Feb18

Page 9 of 10

ER3DV6 - SN:2424

February 23, 2018

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (*)	-11.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	537 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: ER3-2424_Feb18

Page 10 of 10

ANNEX E: DAE Calibration Certificate

CTTL(South Branch)

Certificate No: Z19-60419 Client : CALIBRATION CERTIFICATE Object DAE4 - SN: 1527 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: November 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3) ond humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards D# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 24-Jun-19 (CTTL, No.J19X05126) Jun-20 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: November 13, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z19-60419

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62364633-2504 Elitp://www.chinattl.com

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60419

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl-g-chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1µV, full range = -1.00...+300 mV
Low Range: 1LSB = 6.1nV, full range = -1....+3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	403.887 ± 0.15% (k=2)	403.590 ± 0.15% (k=2)	403.811 ± 0.15% (k=2)
Low Range	3.96119 ± 0.7% (k=2)	3,99117 ± 0.7% (k=2)	3.97030 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	223°±1°
---	---------

Certificate No: Z19-60419

ANNEX F: Dipole Calibration Certificate

Dipole 835 MHz

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalihrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: CD835V3-1165_Jul18

Object	CD835V3 - SN: 1	165	
Calibration procedure(s)	QA CAL-20.v6 Calibration procedure for dipoles in air		
Calibration date:	July 19, 2018		
The measurements and the uncert	ainties with confidence pr	oral standards, which realize the physical unit obability are given on the following pages and y taclity: anvironment temperature (22 ± 3)°C	i are part of the certificate.
Calibration Equipment used (M&TI			
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Section Manager St. Co. Co.	100000000000000000000000000000000000000	면 계속하면 [1] (CHE NEW LONG HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD	20 20 20 20 20 20
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
	SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
ower sensor NRP-Z91			
Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19
ower sensor NRP-291 Seference 20 dB Attenuator Type-N mismesch combination Probe EF30V3	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02873) 04-Apr-18 (No. 217-02882) 04-Apr-18 (No. 217-02883)	Apr-19 Apr-19 Apr-19
Power sansor NRP-291 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18)	Apr-19 Apr-19 Apr-19 Mur-10
Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismetch combination Probe EF3DV3 Probe H3DV6 DAE4	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013_Mar18) 30-Dec-17 (No. H3-6065, Dec17)	Apr-19 Apr-19 Apr-19 Mur-10 Dec-18
Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards	SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec17) 17-Jan-18 (No. DAE4-781_Jan18)	Apr-19 Apr-19 Apr-19 Mur-19 Dec-18 Jan-19 Scheduled Check
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B	SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec17) 17-Jan-18 (No. DAE4-781_Jan18) Check Diste (In house)	Apr-19 Apr-19 Apr-19 Mar-10 Dec-18 Jan-19 Scheduled Check In house check: Oct-29
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismesch combination Probe EF30V3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. E17-02683) 05-Mar-18 (No. E73-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec-17) 17-Jan-18 (No. DAE-4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17)	Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismetch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781 ID # SN: G842420191 SN: US38485102	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. E17-02683) 05-Mar-18 (No. E53-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec17) 17-Jan-18 (No. DAE4-781_Jan18) Check Diste (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17)	Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Probe EF30V3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781 ID # SN: G842420191 SN: US36485102 SN: US37295597 SN: 832283/011	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. EF3-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec-17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jan-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E835BA	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781 ID # SN: G842420191 SN: US36485102 SN: US37295597 SN: 832283/011	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 05-Mar-18 (No. E73-4013, Mar18) 30-Dec-17 (No. H3-6065, Dec-17) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17) 27-Aug-12 (In house check Oct-17)	Apr-19 Apr-19 Apr-19 Mur-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismesch combination Probe EF3DV3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E835BA	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477	04-Apr-18 (No. 217-02873) 04-Apr-18 (No. 217-02882) 04-Apr-18 (No. 217-02883) 05-Mar-18 (No. EF3-4013, Mar18) 30-Dec-17 (No. EF3-4013, Mar18) 17-Jan-18 (No. DAE4-781_Jan18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17) 09-Oct-09 (In house check Oct-17) 27-Aug-12 (In house check Oct-17) 31-Mar-14 (In house check Oct-17)	Apr-19 Apr-19 Apr-19 Mar-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20
Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismesch combination Probe EF30V3 Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 6065 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. E17-02683) 05-Mar-18 (No. E17-02683) 30-Dec-17 (No. E3-4013, Mar18) 30-Dec-17 (No. E3-4013, Mar18) Check Date (In house) 09-Oct-09 (In house check Oct-17) 05-Jan-10 (In house check Oct-17) 09-Oct-09 (In house check Oct-17) 27-Aug-12 (In house check Oct-17) 31-Mar-14 (In house check Oct-17)	Apr-19 Apr-19 Apr-19 Mar-10 Dec-18 Jarr-19 Scheduled Check In house check: Oct-20

Certificate No: CD835V3-1165_Jul18

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications
 Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes, in coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1165_Jul18 Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ni pago 1-	
DASY5	V52.10.1
HAC Test Arch	
15 mm	
dx, dy = 5 mm	
835 MHz ± 1 MHz	
< 0.05 dB	
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	HAC Test Arch 15 mm dx, dy = 5 mm 835 MHz ± 1 MHz

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	108.7 V/m = 40.72 dBV/m
Maximum measured above low end	100 mW input power	108.6 V/m = 40.72 dBV/m
Averaged maximum above arm	100 mW input power	108.7 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

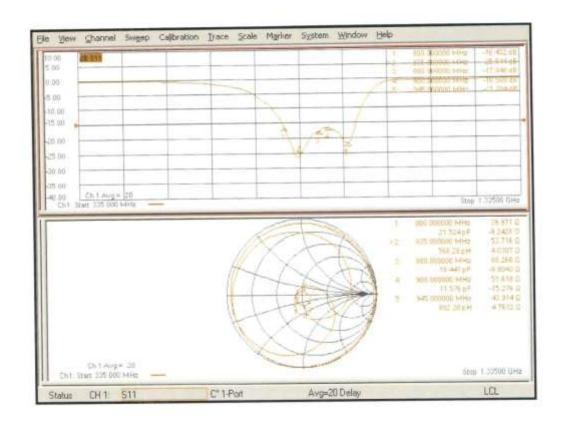
Antenna Parameters

Frequency	Return Loss	Impedance
BOO MHz	16.4 dB	40.0 Ω - 9.2 jΩ
835 MHz	25.5 dB	$53.7 \Omega + 4.0 j\Omega$
880 MHz	17.8 dB	60.3 Ω - 9.8 jΩ
900 MHz	16.5 dB	51.6 Ω - 15.3 jΩ
945 MHz	21.7 dB	43.9 Ω + 4.8 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1165_Jul18 Page 3 of 5

Impedance Measurement Plot

DASY5 E-field Result

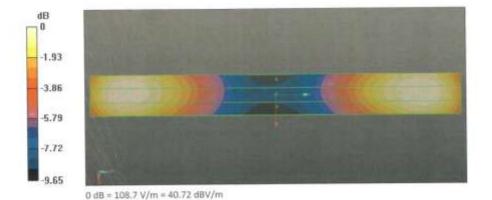
Date: 19.07.2018

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1165

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ε_c = 1; ρ = 0 kg/m² Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration:


- Probe: EF3DV3 5N4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASYS2 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):

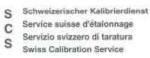
Interpolated grid: dx=0.5000 mm, dy=0.5000 mm
Device Reference Point: 0, 0, -6.3 mm
Reference Value = 130.9 V/m; Power Drift = 0.02 dB
Applied MIF = 0.00 dB
RF audio interference level = 40.73 dBV/m
Emission category: M3

MIF scaled E-field

	Grid 2 M3 40.72 dBV/m	Grid 3 M3 40.67 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.61 dBV/m	35.96 dBV/m	35.94 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.41 dBV/m	40.73 dBV/m	40.67 dBV/m

Certificate No: CD835V3-1165_Jul18

Page 5 of 5



Dipole 1880 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Multilateral Agreement for the recognition of calibration certification.

Client CTTL (Auden)

n) Certificate No: CD1880V3-1149_Jul18

Object	CD1880V3 - SN: 1149		
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	July 19, 2018		
This calibration certificate documen	its the traceability to nation	onal standards, which realize the physical unit	ts of measurements (SI).
The measurements and the uncertainty	ainties with confidence p	robability are given on the following pages an	d are part of the certificate.
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE		SERVED STREET,	1920/08/V-1-2020/03/05
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
FIGDE EFOUYO	CNI- DROE	30-Dec-17 (No. H3-6065_Dec17)	Dec-18
Probe H3DV6	SN: 6065		
	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
Probe H3DV6 DAE4	E-2, 1, 100, E-2, 1	17-Jan-18 (No. DAE4-781_Jan18) Check Date (in house)	Jan-19 Scheduled Check
Probe H3DV6 DAE4 Secondary Standards	SN: 781		Scheduled Check
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 44198	SN: 781	Check Date (in house)	Scheduled Check In house check: Oct-20
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	SN: 781 ID # SN: GB42420191 SN: US38485102	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37296597	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	SN: 781 ID # SN: GB42420191 SN: US38485102	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 9482A RF penerator R&S SMT-06	SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 9482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 9482A RF penerator R&S SMT-06	SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF penerator R&S SMT-06 Network Analyzer Agilent E8368A Calibrated by:	SN: 781 ID II SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name Leff Klysner	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) Function Laboratory Technician	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18
Probe H3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 9482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name	Check Date (in house) 09-Oct-09 (in house check Oct-17) 06-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 31-Mar-14 (in house check Oct-17) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18

Certificate No: CD1880V3-1149_Jul18

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications
 Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASYS Surface. Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1149_Jul18 Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx. dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	89.8 V/m = 39.06 dBV/m
Maximum measured above low end	100 mW input power	89.3 V/m = 39.02 dBV/m
Averaged maximum above arm	100 mW input power	89.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

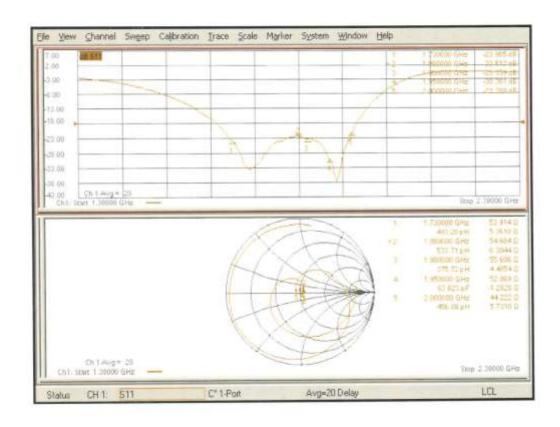
Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	23,9 dB	53.9 Ω + 5.4 μΩ
1880 MHz	22.5 dB	54.7 12 + 6.3 112
1900 MHz	23,4 dB	$55.6 \Omega + 4.5 J\Omega$
1950 MHz	30.3 dB	52.9 Ω - 1.3 jΩ
2000 MHz	21.3 dB	44.2 Ω + 5.7 Ω

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1149 Jul18 Page 3 of 5

Impedance Measurement Plot

DASY5 E-field Result

Date: 19.07,2018

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1149

Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 0 kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

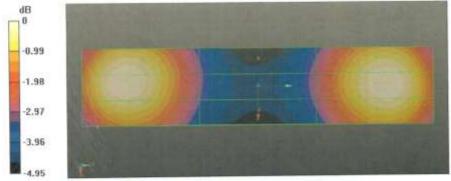
- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm. dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 160.1 V/m; Power Drift = -0.04 dB


Applied MIF = 0.00 dB

RF audio interference level = 39.06 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.67 dBV/m	39.06 dBV/m	39.01 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36 dBV/m	36.15 dBV/m	36.1 dBV/m
200000000000000000000000000000000000000	Grid 8 M2 39.02 dBV/m	Grid 9 M2 38.91 dBV/m

0 dB = 89.78 V/m = 39.06 dBV/m

Certificate No: CD1880V3-1149_Jul18

ANNEX G: Accreditation Certificate

END OF REPORT