

TEST REPORT

No. I20N02478-WLAN

for

TCL Communication Ltd.

GSM/UMTS/LTE Mobile phone

Model Name: 5007S

with

Hardware Version: 03

Software Version: v2D23UZ31

FCC ID: 2ACCJH130

Issued Date: 2020-10-21

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

CONTENTS

1.	SU	MMARY OF TEST REPORT	3
1.	.1.	TEST ITEMS	3
1	.2.	TEST STANDARDS	3
1	.3.	TEST RESULT	3
1.	.4.	TESTING LOCATION	3
1.	.5.	PROJECT DATA	3
1.	.6.	SIGNATURE	3
2.	CL	IENT INFORMATION	4
2.	.1.	APPLICANT INFORMATION	4
2.	.2.	MANUFACTURER INFORMATION	4
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.	.1.	About EUT	5
3.	.2.	INTERNAL IDENTIFICATION OF EUT	5
3.	.3.	INTERNAL IDENTIFICATION OF AE	5
3.	.4.	GENERAL DESCRIPTION	6
3.	.5.	INTERPRETATION OF THE TEST ENVIRONMENT	6
4.	RE	FERENCE DOCUMENTS	7
4	.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4	.2.	REFERENCE DOCUMENTS FOR TESTING	7
5.	ТЕ	ST RESULTS	8
5.	.1.	TESTING ENVIRONMENT	8
5.	.2.	Test Results	8
5.	.3.	STATEMENTS	8
6.	ТЕ	ST EQUIPMENTS UTILIZED	9
7.	MF	CASUREMENT UNCERTAINTY 1	0
1.	. Ma	XIMUM OUTPUT POWER	0
AN	NEX	X A: DETAILED TEST RESULTS1	1
А	.0A	NTENNA REOUIREMENT	1
А	.1. N	Aeasurement Method	2
А	2. N	AXIMUM OUTPUT POWER	3
А		PEAK POWER SPECTRAL DENSITY	5
А	4. E	DTS 6-DB SIGNAL BANDWIDTH	2
А	5. E	AND EDGES COMPLIANCE	9
А	6. T	'RANSMITTER SPURIOUS EMISSION	4
А	7. A	AC POWER-LINE CONDUCTED EMISSION	1

1. Summary of Test Report

1.1. Test Items

Description	GSM/UMTS/LTE Mobile phone
Model Name	5007S
Applicant's name	TCL Communication Ltd.
Manufacturer's Name	TCL Communication Ltd.

1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013

1.3. Test Result

Pass

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date:	2020-09-07
Testing End Date:	2020-09-25

1.6. Signature

Lin Zechuang (Prepared this test report)

Tang Weisheng (Reviewed this test report)

Zhang Bojun (Approved this test report)

2. Client Information

2.1. Applicant Information

TCL Communication Ltd.
5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Park, Shatin, NT, Hong Kong
Hong Kong
/
China
0086-755-36611722
0086-755-36612000-81722

2.2. Manufacturer Information

Company Name:	TCL Communication Ltd.
Address /Dest	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Address / Post.	Park, Shatin, NT, Hong Kong
City:	Hong Kong
Postal Code:	/
Country:	China
Telephone:	0086-755-36611722
Fax:	0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	GSM/UMTS/LTE Mobile phone
Model name	5007S
FCC ID	2ACCJH130
With WLAN Function	Yes
Frequency Range	ISM 2400MHz~2483.5MHz
Type of Modulation	DSSS/CCK/OFDM
Number of Channels	11
Antenna	Integral Antenna
MAX Conducted Power	23.85dBm
Power Supply	3.85V

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
EUT1	015794000205360	03	v2D23UZ31	2020-09-07
EUT2	015794000205626	03	v2D23UZ31	2020-09-07

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description		
AE1	Battery	/	/
AE2	charger	/	/
AE3	USB cable	/	/

AE1

Model	TLp034G1
Manufacturer	BYD
Capacitance	3500 mAh
Nominal voltage	/
AE2	
Model	UC13US
Manufacturer	PUAN
Length of cable	/
AE3	
Model	CDA0000134C2
Manufacturer	SHENGHUA
Length of cable	/

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of GSM/UMTS/LTE Mobile phone with integrated antenna and inbuilt battery.

It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2019
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
	American National Standard of Procedures for Compliance	2012
ANSI C03.10	Testing of Unlicensed Wireless Devices	2013
	Federal Communications Commission Office of	
	Engineering and Technology Laboratory Division	
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON	
KDB 558074 D01	DIGITAL TRANSMISSION SYSTEM, FREQUENCY	2019
	HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID	
	SYSTEM DEVICES OPERATING UNDER SECTION	
	15.247 OF THE FCC RULES	

5. Test Results

5.1. <u>Testing Environment</u>

Normal Temperature:15~35°CRelative Humidity:20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	Occupied 6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р
6	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
7	AC Powerline Conducted Emission	15.107, 15.207	Р

Please refer to **ANNEX A** for detail.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

6. Test Equipments Utilized

Conducted test system

No	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.			Number	Manufacturer	Due date	Period
1	Vector Signal	FSV40	100903	Rohde & Schwarz	2021-01-15	1 year
	Analyzer					
2	Power Sensor	U2021XA	MY55430013	Agilent	2021-01-15	1 year
3	Test Receiver	ESCI	100701	Rohde & Schwarz	2021-08-09	1 year
4	LISN	ENV216	102067	Rohde & Schwarz	2021-07-16	1 year

Radiated test system

	Equipmont	Model	Serial	Mapufacturor	Calibration	Calibration
NO.	Equipment	Model	Number	Manufacturer	Due date	Period
1	Loop Antenna	HLA6120	35779	TESEQ	2022-04-25	3 years
2	BiLog Antenna	3142E	00224831	ETS-Lindgren	2021-05-17	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years
4	Test Receiver	ESR7	101676	Rohde & Schwarz	2020-11-27	1 year
Б	Spectrum		101102	Dobdo & Sobwarz	2021 01 14	1 year
Э	Analyser	F3V40	101192	Runue & Schwarz	2021-01-14	
6	Chamber	FACT3-2.0	1285	ETS-Lindgren	2021-07-19	2 years
7	Horn Antenna	QSH-SL-18-	17010	Q-par	2022 01 06	2
		26-S-20	17013		2023-01-00	5 years

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic Chamber

Fully anechoic Chamber by ETS-Lindgren.

7. Measurement Uncertainty

Test Name	Uncertainty (<i>k</i> =1.96)		
1. Maximum Output Power	0.387	7dB	
2. Peak Power Spectral Density	0.705	ōdB	
3. DTS 6-dB Signal Bandwidth	60.80)Hz	
4. Band Edges Compliance	0.62	dB	
	30MHz ≤ f ≤ 2GHz	1.22dB	
	2GHz ≤ f ≤3.6GHz	1.22dB	
E Transmitter Spurious Emission Conducted	3.6GHz ≤ f ≤8GHz	1.22dB	
5 Transmitter Spunous Emission - Conducted	8GHz ≤ f ≤12.75GHz	1.51dB	
	12.75GHz ≤ f ≤26GHz	1.51dB	
	26GHz ≤ f ≤40GHz	1.59dB	
	9kHz-30MHz	/	
E Tronomitter Sourious Emission Dedicted	30MHz ≤ f ≤ 1GHz	5.40dB	
5. Transmiller Spurious Emission - Radialed	1GHz ≤ f ≤18GHz	4.32dB	
	18GHz ≤ f ≤40GHz	5.26dB	
6. AC Power line Conducted Emission	3.08dB (k=2)		

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement						
	An intentional radiator shall be designed to ensure that no antenna other than that						
	furnished by the responsible party shall be used with the device. The use of a						
	permanently attached antenna or of an antenna that uses a unique coupling to the						
	intentional radiator shall be considered sufficient to comply with the provisions of						
	this section. The manufacturer may design the unit so that a broken antenna can						
	be replaced by the user, but the use of a standard antenna jack or electrical						
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices						
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,						
	§15.219, or §15.221. Further, this requirement does not apply to intentional						
	radiators that must be professionally installed, such as perimeter protection						
	systems and some field disturbance sensors, or to other intentional radiators						
	which, in accordance with §15.31(d), must be measured at the installation site.						
	However, the installer shall be responsible for ensuring that the proper antenna is						
	employed so that the limits in this part are not exceeded.						

Conclusion: The Directional gains of antenna used for transmitting is 0dBi. The RF transmitter uses an integrate antenna without connector.

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows. Set the EUT to the required work mode. Set the EUT to the required channel. Set the Vector Signal Analyzer and start measurement. Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1 MHz.
- b) Set the VBW = 3 MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)	
FCC CRF Part 15.247(b)	< 30	

EUT ID: EUT2

A.2.1. Peak Output Power-conducted

Measurement Results:

802.11b/g mode

	Doto Poto		Test Result (dBm)			
Mode		2412MHz	2437MHz	2462 MHz		
	(mpps)	(Ch1)	(Ch6)	(Ch11)		
	1	20.17	/	/		
000 11h	2	20.60	/	/		
002.110	5.5	21.86	/	/		
	11	23.37	23.10	23.37		
	6	22.75	/	/		
	9	22.97	/	/		
	12	22.70	/	/		
002 11 a	18	22.68	/	/		
002.11g	24	23.21	/	/		
	36	23.17	/	/		
	48	23.66	23.45	23.85		
	54	23.64	/	1		

The data rate 11Mbps and 48Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)			
Mode		2412MHz	2437MHz	2462 MHz	
	(Index)	(Ch1)	(Ch6)	(Ch11)	
	MCS0	21.75	/	/	
	MCS1	21.63	/	/	
	MCS2	21.62	/	/	
802.11n	MCS3	22.05	/	/	
(20MHz)	MCS4	22.13	/	/	
	MCS5	22.49	/	/	
	MCS6	22.46	/	/	
	MCS7	22.59	22.37	22.69	

The data rate MCS7 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

	Data Pata	Test Result (dBm)			
Mode	Uala Kale	2422MHz	2437MHz	2452 MHz	
	(index)	(Ch3)	(Ch6)	(Ch9)	
	MCS0	18.23	/	/	
	MCS1	18.07	/	/	
	MCS2	18.03	/	/	
802.11n	MCS3	18.48	/	/	
(40MHz)	MCS4	18.31	/	/	
	MCS5	18.90	/	/	
	MCS6	18.98	18.91	19.15	
	MCS7	18.92	/	/	

The data rate MCS6 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

a) Set analyzer center frequency to DTS channel center frequency.

- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit	
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz	

Measurement Results:

802.11b/g mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
	1	Fig.1.	-7.32	Р
802.11b	6	Fig.2.	-8.50	Р
	11	Fig.3.	-8.80	Р
	1	Fig.4.	-12.54	Р
802.11g	6	Fig.5.	-13.19	Р
	11	Fig.6.	-12.15	Р

802.11n-HT20 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
902 11 -	1	Fig.7.	-12.72	Р
802.1111 (HT20)	6	Fig.8.	-14.05	Р
([[20]	11	Fig.9.	-13.33	Р

802.11n-HT40 mode

Mode	Channel	Power Spectral Density (dBm/3 kHz)		Conclusion
802.11n (HT40)	3	Fig.10.	-19.12	Р
	6	Fig.11.	-21.63	Р
	9	Fig.12.	-19.18	Р

Conclusion: Pass

Test graphs as below:

Fig.2. Power Spectral Density (802.11b, Ch 6)

Fig.3. Power Spectral Density (802.11b, Ch 11)

Fig.4. Power Spectral Density (802.11g, Ch 1)

Fig.5. Power Spectral Density (802.11g, Ch 6)

Fig.6. Power Spectral Density (802.11g, Ch 11)

Fig.7. Power Spectral Density (802.11n-HT20, Ch 1)

Fig.8. Power Spectral Density (802.11n-HT20, Ch 6)

Fig.9. Power Spectral Density (802.11n-HT20, Ch 11)

Fig.10. Power Spectral Density (802.11n-HT40, Ch 3)

Fig.11. Power Spectral Density (802.11n-HT40, Ch 6)

Fig.12. Power Spectral Density (802.11n-HT40, Ch 9)

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
802.11b	1	Fig.13.	8.50	Р
	6	Fig.14.	8.05	Р
	11	Fig.15.	7.55	Р
802.11g	1	Fig.16.	16.05	Р
	6	Fig.17.	16.30	Р
	11	Fig.18.	15.40	Р

802.11n-HT20 mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
802.11n (HT20)	1	Fig.19.	17.30	Р
	6	Fig.20.	17.60	Р
	11	Fig.21.	15.80	Р

802.11n-HT40 mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
802.11n (HT40)	3	Fig.22.	35.68	Р
	6	Fig.23.	36.48	Р
	9	Fig.24.	27.76	Р

Conclusion: Pass

Test graphs as below:

Fig.14. Occupied 6dB Bandwidth (802.11b, Ch 6)

Fig.15. Occupied 6dB Bandwidth (802.11b, Ch 11)

Fig.16. Occupied 6dB Bandwidth (802.11g, Ch 1)

Fig.17. Occupied 6dB Bandwidth (802.11g, Ch 6)

Fig.18. Occupied 6dB Bandwidth (802.11g, Ch 11)

Fig.19. Occupied 6dB Bandwidth (802.11n-20MHz, Ch 1)

Fig.20. Occupied 6dB Bandwidth (802.11n-HT20, Ch 6)

Fig.21. Occupied 6dB Bandwidth (802.11n-HT20, Ch 11)

Fig.22. Occupied 6dB Bandwidth (802.11n-40MHz, Ch 3)

Fig.23. Occupied 6dB Bandwidth (802.11n-HT40, Ch 6)

Fig.24. Occupied 6dB Bandwidth (802.11n-HT40, Ch 9)

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

- a) Set Span = 100MHz
- b) Sweep Time: coupled
- c) Set the RBW= 100 kHz
- c) Set the VBW= 300 kHz
- d) Detector: Peak
- e) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: EUT2

Measurement Result:

802.11b/g mode

Mode	Channel	Test Results	Conclusion
802.11b	1	Fig.25.	Р
	11	Fig.26.	Р
802.11g	1	Fig.27.	Р
	11	Fig.28.	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.29.	Р
(HT20)	11	Fig.30.	Р

802.11n-HT40 mode

Mode	Channel	Test Results	Conclusion
802.11n	3	Fig.31.	Р
(HT40)	9	Fig.32.	Р

Conclusion: Pass Test graphs as below:

Fig.26. Band Edges (802.11b, Ch 11)

Fig.28. Band Edges (802.11g, Ch 11)

Fig.30. Band Edges (802.11n-HT20, Ch 11)

Fig.31. Band Edges (802.11n-HT40, Ch 3)

Fig.32. Band Edges (802.11n-HT40, Ch 9)

A.6. Transmitter Spurious Emission

A.6.1 Transmitter Spurious Emission – Conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.11

Establish a reference level by using the following procedure:

a) Set instrument center frequency to DTS channel center frequency

- b) Set the span to \geq 1.5 times the DTS bandwidth
- c) Set the RBW= 100 kHz
- d) Set the VBW= 300 kHz
- e) Detector = Peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize

i) Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW = 300 kHz.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Measurement Limit:

Standard	Limit
ECC 47 CEP Port 15 247 (d)	20dB below peak output power in 100 kHz
FCC 47 CFR Pail 15.247 (u)	bandwidth

EUT ID: EUT2

Measurement Results:

802.11b mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.33.	Р
		30 MHz ~ 1 GHz	Fig.34.	Р
		1 GHz ~ 2.5 GHz	Fig.35.	Р
	1	2.5 GHz ~ 7.5 GHz	Fig.36.	Р
	1	7.5 GHz ~ 10 GHz	Fig.37.	Р
		10 GHz ~ 15 GHz	Fig.38.	Р
		15 GHz ~ 20 GHz	Fig.39.	Р
		20 GHz ~ 26 GHz	Fig.40.	Р
		2.437 GHz	Fig.41.	Р
		30 MHz ~ 1 GHz	Fig.42.	Р
		1 GHz ~ 2.5 GHz	Fig.43.	Р
902 11h	6	2.5 GHz ~ 7.5 GHz	Fig.44.	Р
002.110	0	7.5 GHz ~ 10 GHz	Fig.45.	Р
		10 GHz ~ 15 GHz	Fig.46.	Р
		15 GHz ~ 20 GHz	Fig.47.	Р
		20 GHz ~ 26 GHz	Fig.48.	Р
		2.462 GHz	Fig.49.	Р
		30 MHz ~ 1 GHz	Fig.50.	Р
		1 GHz ~ 2.5 GHz	Fig.51.	Р
	11	2.5 GHz ~ 7.5 GHz	Fig.52.	Р
		7.5 GHz ~ 10 GHz	Fig.53.	Р
		10 GHz ~ 15 GHz	Fig.54.	Р
		15 GHz ~ 20 GHz	Fig.55.	Р
		20 GHz ~ 26 GHz	Fig.56.	Р

802.11g mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.57.	Р
		30 MHz ~ 1 GHz	Fig.58.	Р
		1 GHz ~ 2.5 GHz	Fig.59.	Р
	1	2.5 GHz ~ 7.5 GHz	Fig.60.	Р
	1	7.5 GHz ~ 10 GHz	Fig.61.	Р
		10 GHz ~ 15 GHz	Fig.62.	Р
		15 GHz ~ 20 GHz	Fig.63.	Р
		20 GHz ~ 26 GHz	Fig.64.	Р
		2.437 GHz	Fig.65.	Р
	6	30 MHz ~ 1 GHz	Fig.66.	Р
		1 GHz ~ 2.5 GHz	Fig.67.	Р
902 11 a		2.5 GHz ~ 7.5 GHz	Fig.68.	Р
802.11g		7.5 GHz ~ 10 GHz	Fig.69.	Р
		10 GHz ~ 15 GHz	Fig.70.	Р
		15 GHz ~ 20 GHz	Fig.71.	Р
		20 GHz ~ 26 GHz	Fig.72.	Р
		2.462 GHz	Fig.73.	Р
		30 MHz ~ 1 GHz	Fig.74.	Р
		1 GHz ~ 2.5 GHz	Fig.75.	Р
	11	2.5 GHz ~ 7.5 GHz	Fig.76.	Р
		7.5 GHz ~ 10 GHz	Fig.77.	Р
		10 GHz ~ 15 GHz	Fig.78.	Р
		15 GHz ~ 20 GHz	Fig.79.	Р
		20 GHz ~ 26 GHz	Fig.80.	Р

802.11n-HT20 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n (HT20)	1	2.412 GHz	Fig.81.	Р
		30 MHz ~ 1 GHz	Fig.82.	Р
		1 GHz ~ 2.5 GHz	Fig.83.	Р
		2.5 GHz ~ 7.5 GHz	Fig.84.	Р
		7.5 GHz ~ 10 GHz	Fig.85.	Р
		10 GHz ~ 15 GHz	Fig.86.	Р
		15 GHz ~ 20 GHz	Fig.87.	Р
		20 GHz ~ 26 GHz	Fig.88.	Р
	6	2.437 GHz	Fig.89.	Р
		30 MHz ~ 1 GHz	Fig.90.	Р
		1 GHz ~ 2.5 GHz	Fig.91.	Р
		2.5 GHz ~ 7.5 GHz	Fig.92.	Р
		7.5 GHz ~ 10 GHz	Fig.93.	Р
		10 GHz ~ 15 GHz	Fig.94.	Р
		15 GHz ~ 20 GHz	Fig.95.	Р
		20 GHz ~ 26 GHz	Fig.96.	Р
	11	2.462 GHz	Fig.97.	Р
		30 MHz ~ 1 GHz	Fig.98.	Р
		1 GHz ~ 2.5 GHz	Fig.99.	Р
		2.5 GHz ~ 7.5 GHz	Fig.100.	Р
		7.5 GHz ~ 10 GHz	Fig.101.	Р
		10 GHz ~ 15 GHz	Fig.102.	Р
		15 GHz ~ 20 GHz	Fig.103.	Р
		20 GHz ~ 26 GHz	Fig.104.	P

802.11n-HT40 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n (HT40)	3	2.422 GHz	Fig.105.	Р
		30 MHz ~ 1 GHz	Fig.106.	Р
		1 GHz ~ 2.5 GHz	Fig.107.	Р
		2.5 GHz ~ 7.5 GHz	Fig.108.	Р
		7.5 GHz ~ 10 GHz	Fig.109.	Р
		10 GHz ~ 15 GHz	Fig.110.	Р
		15 GHz ~ 20 GHz	Fig.111.	Р
		20 GHz ~ 26 GHz	Fig.112.	Р
	6	2.437 GHz	Fig.113.	Р
		30 MHz ~ 1 GHz	Fig.114.	Р
		1 GHz ~ 2.5 GHz	Fig.115.	Р
		2.5 GHz ~ 7.5 GHz	Fig.116.	Р
		7.5 GHz ~ 10 GHz	Fig.117.	Р
		10 GHz ~ 15 GHz	Fig.118.	Р
		15 GHz ~ 20 GHz	Fig.119.	Р
		20 GHz ~ 26 GHz	Fig.120.	Р
	9	2.452 GHz	Fig.121.	Р
		30 MHz ~ 1 GHz	Fig.122.	Р
		1 GHz ~ 2.5 GHz	Fig.123.	Р
		2.5 GHz ~ 7.5 GHz	Fig.124.	Р
		7.5 GHz ~ 10 GHz	Fig.125.	Р
		10 GHz ~ 15 GHz	Fig.126.	Р
		15 GHz ~ 20 GHz	Fig.127.	Р
		20 GHz ~ 26 GHz	Fig.128.	Р

Conclusion: Pass Test graphs as below:

Fig.33. Transmitter Spurious Emission - Conducted (802.11b, Ch1, Center Frequency)

Fig.34. Transmitter Spurious Emission - Conducted (802.11b, Ch1, 30 MHz-1 GHz)