

Table 14.2-6: SAR Values (WCDMA 1900 MHz Band - Head)

			Ambier	nt Temp	erature: 22.9	9°C Liq	uid Tempei	rature: 22.5	ö°C		
Freq	quency		Test	F :	Conducted	Max. tune-	Measure	Reported	Measure	Reporte	Power
Ch.	MHz	Side	Test Position	Figur e No.	Power (dBm)	up Power (dBm)	a SAR(10g) (W/kg)	SAR(10g)(W/kg)	a SAR(1g) (W/kg)	a SAR(1g) (W/kg)	Drift (dB)
9262	1852.4	Right	Touch	Fig.6	22.98	23.5	0.105	0.12	0.176	0.20	0.04

Table 14.2-7: SAR Values (WCDMA 1900 MHz Band - Body)

		А	mbient Te	emperature	e: 22.9 °C	Liquid Ter	mperature:	22.5 ⁰C		
Fred	Frequency Test Figure Conduct Max. tune-up				Max tuna un	Measured	Reported	Measured	Reported	Power
	1		0	ed Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9400 1880 Rear Fig.7 23.03 23.5					23.5	0.32	0.36	0.54	0.60	0.01

Note: The distance between the EUT and the phantom bottom is 15mm

Table 14.2-8: SAR Values (WCDMA 1900 MHz Band - Body)

		A	mbient Te	emperature	e: 22.9 °C	Liquid Temperature: 22.5°C					
Frec	quency	Test	Figure	Conduct	Max. tune-up	Measured	Reported	Measured	Reported	Power	
		Position	No	ed Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz	Position No. (dBm) Power (dBr			(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
9538 1907.6 Bottom Fig.8 21.01 21.5						0.623	0.70	1.2	1.34	0.04	

Note: The distance between the EUT and the phantom bottom is 10mm

Table 14.2-9: SAR Values (WCDMA 1700 MHz Band - Head)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C													
Frec	quency		Test	Fierra	Conducte	Max.	Measured	Reported	Measure	Reported	Power			
Ch.	MHz	Side	Test Position	Figure No.	d Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	a SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)			
1412	1732.4	Left	Touch	Fig.9	22.82	24	0.12	0.16	0.185	0.24	0.18			

Table 14.2-10: SAR Values (WCDMA 1700 MHz Band - Body)

		А	mbient Ter	nperature	e: 22.9 °C	Liquid Temperature: 22.5°C					
Freq Ch.	quency MHz	Test Position	Figure No.	Conduc ted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)	
1412	1732.5	Rear	Fig.10	22.82	24	0.24	0.31	0.4	0.52	0.05	

Note: The distance between the EUT and the phantom bottom is 15mm

Table 14.2-11: SAR Values (WCDMA 1700 MHz Band - Body)

		А	mbient Ter	nperature	e: 22.9 °C	Liquid Temperature: 22.5°C					
Frec Ch.	quency MHz	Test Position	Figure No.	Conduc ted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)	
1513	1513 1752.6 Bottom Fig.11 20.55 22						0.47	0.623	0.87	-0.04	

Note: The distance between the EUT and the phantom bottom is 10mm

Table 14.2-12: SAR Values (WCDMA 850 MHz Band - Head)

			Ambient ⁻	Temperat	ure: 22.9 º	c Li	quid Temp	erature: 22	5°C		
Free	quency		Test	Figuro	Conduct	Max.	Measure	Reported	Measured	Reporte	Power
Ch.	MHz	Side	Positio n	Figure No.	ed Power	tune-up Power	u SAR(10g	SAR(10g) (W/kg)	SAR(1g) (W/kg)	a SAR(1g)	Drift (dB)
					(dBm)	(dBm)) (W/kg)	(W/Kg)	(W/Ng)	(W/kg)	(UD)
4233	846.6	Left	Touch	Fig.12	22.6	24	0.538	0.74	0.846	1.17	0.02

Table 14.2-13: SAR Values (WCDMA 850 MHz Band - Body)

			Ambient	Temperatur	re: 22.9 °C	Liquid Ter	mperature: 2	22.5°C		
Frequ	Frequency Test Figure Conducted Max. tune-up		Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1a)	Power Drift		
Ch.	MHz	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
4183	4183 836.6 Top Fig.13 22.69 24						0.19	0.284	0.38	0.03

Note: The distance between the EUT and the phantom bottom is 10mm.

Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C Condu Max. Measure Reporte Frequency Test Measured Reported Power Figure cted tune-up d d Side Positi SAR(10g) SAR(10g Mode Drift Power Power SAR(1g) No. SAR(1g) Ch. MHz on (W/kg))(W/kg) (dB) (dBm) (dBm) (W/kg) (W/kg) 18700 1860 1RB Mid Right Touch Fig.14 22.36 23 0.143 0.17 0.236 -0.03 0.27

Table 14.2-14: SAR Values (LTE Band2 - Head)

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-15: SAR Values (LTE Band2 - Body)

		A	mbient Te	mperatu	re: 22.9 °C	Liquid Temperature: 22.5°C					
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	1RB_Mid	Rear	Fig.15	22.31	23	0.405	0.47	0.7	0.82	-0.01

Note: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-16: SAR Values (LTE Band2 - Body)

		A	mbient Te	mperatu	ıre: 22.9 °C	Liquid Temperature: 22.5°C					
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	50RB_Mid	Bottom	Fig.16	19.18	20	0.437	0.53	0.839	1.01	0.15

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

		A	mbient	Temper	ature: 22	.9 °C	C Liquid Temperature: 22.5°C					
Frequ	lency			Test		Condu	Max.	Measured	Reported	Measure	Reporte	Powe
		Mode	Side	Positi	Figure	cted	tune-up	SAR(10g)	SAR(10g	d	d	r Drift
Ch.	MHz			on	No.	Power	Power	(W/kg))(W/kg)	SAR(1g)	SAR(1g)	(dB)
011.	101112			011		(dBm)	(dBm)	(Wing))(11/13)	(W/kg)	(W/kg)	(uD)
20450	829	1RB_Mid	Left	Touch	Fig.17	21.63	22.5	0.523	0.64	0.852	1.04	-0.12

Note: The LTE mode is QPSK_10MHz.

Table 14.2-18: SAR Values (LTE Band5 - Body)

			A	mbient Te	mperatu	re: 22.9 °C	Liqui	id Tempera	ture: 22.5°C	C		
	Frequency			Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
C	Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20	0450	829	1RB_Middle	Rear	Fig.18	21.63	22.5	0.275	0.34	0.356	0.43	-0.18

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-19: SAR Values (LTE Band12 - Head)

			Ambie	nt Temp	erature:	22.9 °C	Liquio	d Temperati	ure: 22.5°C			
Frequ	ency			Test		Conducte	Max. tune-	Measure	Reported	Measure	Reporte	Power
Ch.	MHz	Mode	Side	Positi on	Figur e No.	d Power (dBm)	up Power (dBm)	d SAR(10g) (W/kg)	SAR(10g) (W/kg)	d SAR(1g) (W/kg)	d SAR(1g) (W/kg)	Drift (dB)
23060	704	1RB_Mid	Left	Touch	Fig.19	23.01	24	0.56	0.70	0.821	1.03	0.00

Note: The LTE mode is QPSK_10MHz.

Table 14.2-20: SAR Values (LTE Band12 - Body)

			Ambient	Temperatu	re: 22.9 °C	C Liqui	d Temperat	ture: 22.5°C	2		
Frequ	Frequency		Test	Figure	Conduct ed	Max. tune-	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23060	704	1RB_Mid	Rear	Fig.20	23.01	24	0.297	0.37	0.387	0.49	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-21: SAR Values (LTE Band14 - Head)

		A	mbient	Temper	ature: 22	.9°C	Liquid	Temperatu	re: 22.5°C			
Frequ	lency		0.1	Test	Figure	Condu cted	Max. tune-up	Measured	Reported	Measure d	Reporte d	Power
Ch.	MHz	Mode	Side	Positi on	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23330	793	1RB_Mid	Right	Touch	Fig.21	23.03	24	0.172	0.22	0.226	0.28	0.18

Note: The LTE mode is QPSK_10MHz.

Table 14.2-22: SAR Values (LTE Band14 - Body)

		A	mbient Te	mperatu	ıre: 22.9 °C	Liqui	id Temperat	ture: 22.5°C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23330	793	1RB_Mid	Rear	Fig.22	23.03	24	0.237	0.30	0.442	0.55	0.18

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-23: SAR Values (LTE Band30 - Head)

			Ambien	t Tempe	erature: 2	22.9°C	Liquid	Temperatu	re: 22.5°C			
Frequ	uency	Mode	Side	Test Positi	Figure	Conduct ed	Max. tune-up	Measured SAR(10g)	Reported SAR(10g	Measure d	Reporte d	Power Drift
Ch.	MHz			on	No.	Power (dBm)	Power (dBm)	(W/kg))(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	(dB)
27710	2310	1RB_Mid	Left	Touch	Fig.23	23.33	24	0.124	0.14	0.208	0.24	0.02

Note: The LTE mode is QPSK_10MHz.

Table 14.2-24: SAR Values (LTE Band30 - Body)

		A	mbient Te	mperatu	ıre: 22.9 °C	Liqui	id Tempera	ture: 22.5°C	2		
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
27710	2310	1RB_ Mid	Rear	Fig.24	23.33	24	0.324	0.38	0.576	0.67	0.05

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-25: SAR Values (LTE Band30 - Body)

		A	mbient Te	mperatu	ıre: 22.9 ⁰C	Liqui	id Tempera	ture: 22.5°C	2		
Frequ	iency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
27710	2310	1RB_ Mid	Bottom	Fig.25	19.37	20	0.09	0.10	0.197	0.23	0.13

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-26: SAR Values (LTE Band66 - Head)

			Ambient	Tempera	ture: 22.9)°C L	iquid Ten	nperature	: 22.5°C			
Frequ Ch.	ency MHz	Mode	Side	Test Positio n	Figure No.	Conducte d Power (dBm)	tune-up Power (dBm)	Measur ed SAR(10 g) (W/kg)	Reported SAR(10g)(W/kg)	Measur ed SAR(1g) (W/kg)	Reporte d SAR(1g) (W/kg)	Powe r Drift (dB)
132072	1720	1RB_Mid	Right	Touch	Fig.26	23.2	24	0.239	0.29	0.381	0.46	-0.02

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-27: SAR Values (LTE Band66 - Body)

		A	mbient Te	mperatu	ıre: 22.9 °C	Liqui	id Temperat	ture: 22.5°C	2		
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
132072	1720	1RB_Mid	Front	Fig.27	23.2	24	0.393	0.47	0.662	0.80	-0.02

Note: The distance between the EUT and the phantom bottom is 15mm. The LTE mode is QPSK_20MHz.

Table 14.2-28: SAR Values (LTE Band66 - Body)

		A	mbient Te	mperatu	ıre: 22.9 °C	Liqui	id Tempera	ture: 22.5°C	2		
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
132072	1720	1RB_Mid	Bottom	Fig.28	19.25	20	0.279	0.33	0.519	0.62	0.09

Note: The distance between the EUT and the phantom bottom is 10mm. The LTE mode is QPSK_20MHz.

14.3 WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial</u> test position procedure.

Head Evaluation

			Amb	ient Tem	perature: 2	2.9°C L	iquid Temp	erature: 22	.5°C		
Frequ	ency		Test	Figure	Conducte	Max. tune-	Measured	Reported	Measured	Reported	Power
	MHz Ch.	Side	Position	No.	d Power	up Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.		Position	INO.	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Left	Touch	/	16.41	16.6	0.158	0.17	0.11	0.11	-0.07
2437	6	Left	Tilt	/	16.41	16.6	0.188	0.20	0.118	0.12	0.02
2437	6	Right	Touch	/	16.41	16.6	0.504	0.53	0.3	0.31	0.08
2437	6	Right	Tilt	/	16.41	16.6	0.223	0.23	0.131	0.14	0.16

Table 14.3-1: SAR Values (WLAN - Head)– 802.11b (Fast SAR)

As shown above table, the <u>initial test position</u> for head is "Right Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head)– 802.11b (Full SAR)

r												
			Amb	ient Tem	perature: 2	2.9°C L	iquid Temp	erature: 22	.5°С			
Freque	ency		Test	Figure	Conducte	Max. tune-	Measured	Reported	Measured	Reported	Power	
		Side		Ũ	d Power	up Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Ch.		Position	No.	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)	
2437 6 Right Touch Fig.29 16.41 16.6 0.51 0.53 0.308 0.32 0.08												
2437 6 Right Tilt / 16.41 16.6 0.228 0.24 0.135 0.14 0.16												
Note1	: Whei	n the <u>rep</u> o	orted SAF	R of the <u>i</u>	<u>nitial test po</u>	osition is > 0.4	4 W/kg, SAF	R is repeate	ed for the 80)2.11 trans	mission	
mode	config	uration te	ested in th	e <u>initial</u>	test positior	<u>n</u> using subse	quent highe	est estimate	d 1-g SAR	conditions		
determ	nined I	by area s	cans, on	the high	est maximu	m output pow	/er channel,	until the <u>re</u>	ported SAF	R is \leq 0.8	W/kg.	
Note2	Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the											
reporte	reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next											
highes	st mea	sured ou	tput powe	r chann	el until the <u>r</u>	eported SAR	is \leqslant 1.2 V	V/kg or all r	equired cha	annels are t	tested.	

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b (Scaled Reported SAR)

		emperature: 22.5	^o C									
Freque	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported					
MHz	MHz Ch.		Position	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)					
2437	6	Right	Touch	100%	100%	0.53	0.53					

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body)– 802.11b (Fast SAR)

		A	mbient T	emperature	22.9 °C	Liquid Terr	perature: 2	22.5°C		
Freque	Frequency Test		Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	Position No.		No	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	AHz Ch. Position No.		(dBm)		(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)	
2437	6	Front	/	16.41	16.6	0.18	0.19	0.094	0.10	0.15
2437	6	Rear	/	16.41	16.6	0.221	0.23	0.098	0.10	-0.02
2437	6	Right	/	16.41	16.6	0.041	0.04	0.022	0.02	0.19
2437	6	Тор	/	16.41	16.6	0.18	0.19	0.089	0.09	0.09

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body)- 802.11b (Full SAR)

		A	mbient T	emperature:	22.9 °C	Liquid Tem	perature: 2	22.5°C		
Freque	Frequency Test Figure Conducted Max. tun					Measured	Reported	Measured	Reported	Power
	, ,	Positio	U	Power			SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	n	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	2437 6 Rear Fig.30 16.41 16.6						0.24	0.11	0.11	-0.02

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)

		Ambient Ten	nperature: 22.9	P°C Liqui	d Temperature: 22	2.5°C			
Frequency Test Actual duty maximum Reported SAR Scaled reported SAR									
MHz	Ch.	Position	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)			
2437	6	Rear	100%	100%	0.24	0.24			

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

~			* RBW 3	3 MHz					
	Att	40 dB	VBW 1	LO MHz					
	Ref	20.00 dBm	n *SWT 1	.0.5ms					
		and a state of the	and the state of the		a gana an ann a fhanna	(Alexandra)	and produced	an an hair bar an hair	a liku suna suda di sara
1AP									
Clrw									
		. dhaca					1. 1	. de	a dr
	l. h				t htt 1. It h	dh hi i.	n, I. I. Almit Id		
	1.2	c Brytherenen						·····	<u></u>
			(.). (4)) (() (4) (() (4) (11111	
	ŀβ¢	dBm	╎╴╎╢╢╎╎╎╎	┟╢╴╵┦╹┼┼╴	┉╷╢╶╴╢┤	╢╫╢	╵╢╢┤╢		
					'				
SGL	-40	dBm I							
	-50	dBm							1
				1					
	-60	dBm							
	-70	dBm							
	CF	2.437 Gł		1.05	ms/				

Picture 14.1 Duty factor plot

14.4 SAR results for BT

	Table 14.4-1. SAN Values (D1 - Heau)												
			Ambi	ent Tempe	erature: 22.9	°C	Liquid Tempe	rature: 22.5	5°C				
Freq	uency		Test	Figuro	Conducted	Max.	Measured	Reported	Measured	Reported	Powe		
Ch.	MHz	Side	Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	r Drift (dB)		
78	2480	Left	Touch	1	10.19	10.7	0.021	0.02	0.037	0.04	0.18		
78	2480	Left	Tilt	/	10.19	10.7	0.023	0.03	0.044	0.05	-0.15		
78	2480	Right	Touch	/	10.19	10.7	0.06	0.07	0.119	0.13	-0.11		
78	2480	Right	Touch	/	10.19	10.7	0.026	0.03	0.053	0.06	-0.09		

Table 14.4-1: SAR Values (BT - Head)

Table 14.4-2: SAR Values (BT - Body)

			Ambie	nt Temp	perature: 22.	.9°C Liq	uid Tempera	ture: 22.5°	2		Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C														
Frec	quency	Mode	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift														
Ch.	MHz	Mode	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)														
78	2480	GFSK	Front	/	10.19	10.7	0.014	0.02	0.027	0.03	-0.03														
78	2480	GFSK	Rear	/	10.19	10.7	0.016	0.02	0.033	0.04	-0.1														
78	2480	GFSK	Right	/	10.19	10.7	0.003	0.00	0.006	0.01	0.07														
78	2480	GFSK	Тор	/	10.19	10.7	0.014	0.02	0.027	0.03	0.09														

Note: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Fre Ch	MHz	Mode	Test Position	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
810	1909.8	GPRS(2)	Bottom	10	0.981	0.962	1.02	/

Table 15.1: SAR Measurement Variability for Body GSM1900 (1g)

Table 15.2: SAR Measurement Variability for Head WCDMA850 (1g)

Frequ	uency				Original	First		Second
Ch.	MHz	Mode	Test Position	Test Spacing		Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
4132	826.4	RMC	Left touch	10	0.846	0.823	1.03	/

Table 15.3: SAR Measurement Variability for Body WCDMA1900 (1g)

	Freq	uency				Original	First		Second
с	h.	MHz	Mode	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
95	538	1907.6	RMC	Bottom	10	1.2	1.12	1.07	/

Frequ	ency				Original	First		Second
Ch.	MHz	Mode 50RB_Mid	Test Spacing Position (mm)		SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
18900	1880	50RB_Mid	Bottom	10	0.839	0.818	1.03	/

Table 15.4: SAR Measurement Variability for Body LTE Band2 (1g)

Table 15.5: SAR Measurement Variability for Head LTE Band5 (1g)

Frequ	Frequency				Original	First		Second
Ch.	MHz	Mode	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
20450	829	1RB_Mid	Left touch	10	0.852	0.831	1.03	/

Table 15.6: SAR Measurement Variability for Head LTE Band12 (1g)

Frequ	ency				Original	First		Second
Ch.	MHz	Mode	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
23060	704	1RB_Mid	Left touch	10	0.821	0.811	1.01	/

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	1					
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	~
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521

(Combined standard uncertainty	<i>u</i> _c =	$\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257			
-	nded uncertainty fidence interval of)	l	$u_e = 2u_c$					19.1	18.9				
16.2	Measurement Un	certai	nty for Nor	mal SAR To	ests ((3~6G	Hz)			. <u> </u>			
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree			
			value	Distribution		1g	10g	Unc.	Unc.	of			
								(1g)	(10g)	freedom			
Meas	Measurement system												
1	Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞			
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞			
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞			
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞			
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞			
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞			
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞			
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞			
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	œ			
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞			
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8			
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ			
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8			
			Test	sample related	I								
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71			
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5			
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞			
			Phan	tom and set-u	p								
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞			
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ			
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43			
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ			

21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
-	anded uncertainty fidence interval of b)	1	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
110.	Life Description	Type	value	Distribution	DIV.	1g	10g	Unc.	Unc.	of
			value	Distribution		Ig	iug	(1g)	(10g)	freedom
Mea	surement system							(18)	(10g)	needom
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	B	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	~
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			Test	sample related	1					
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8

CAICT No.I20Z60778-SEM05

								1	1	1
20	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521
C	Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
-	nded uncertainty idence interval of)	1	$u_e = 2u_c$					20.8	20.6	
16.4	Measurement Un	certai	nty for Fas	t SAR Test	s (3~l	6GHz)			
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
	_		value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	œ
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	œ
			Test	sample related	1					
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		1	1	1	1	1	1	1	1	·

©Copyright. All rights reserved by CTTL.

Page 85 of 224

CAICT No.I20Z60778-SEM05

			Phan	tom and set-u	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
(con	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	N5239A	MY46110673	January 24, 2020	One year	
02	Power meter	NRP2	106277	September 4, 2010		
03	Power sensor	NRP8S	104291	September 4, 2019	One year	
04	Signal Generator	E4438C	MY49070393	January 4, 2020	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 17, 2020	One year	
07	BTS	CMW500	159890	January 3, 2020	One year	
08	E-field Probe	SPEAG EX3DV4	3617	January 30, 2020	One year	
09	DAE	SPEAG DAE4	777	January 8, 2020	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July 18,2019	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 18,2019	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 16,2019	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 17,2019	One year	
14	Dipole Validation Kit	SPEAG D2450V2	853	July 17,2019	One year	
15	Dipole Validation Kit	SPEAG D2300V2	1018	July 17, 2019	One year	

END OF REPORT BODY

ANNEX A Graph Results

GSM850_CH251 Right Cheek

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: head 835 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.897$ mho/m; $\epsilon r = 41.43$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.257 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.727 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.278 W/kg SAR(1 g) = 0.202 W/kg; SAR(10 g) = 0.152 W/kg Maximum value of SAR (measured) = 0.246 W/kg

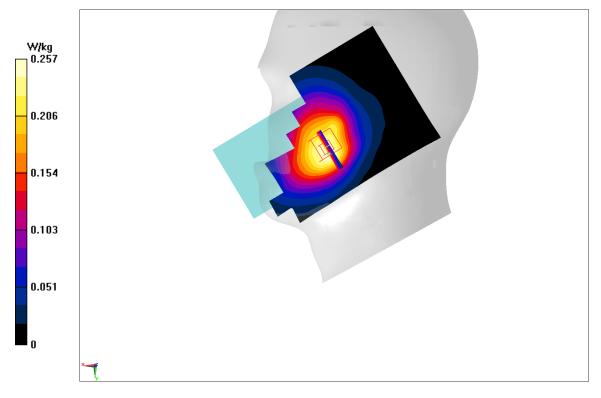


Fig A.1

GSM850_CH190 Rear 10mm

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: head 835 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.883$ mho/m; $\epsilon r = 41.62$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: GSM850 836.6 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.947 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.24 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.2 W/kg SAR(1 g) = 0.604 W/kg; SAR(10 g) = 0.329 W/kg Maximum value of SAR (measured) = 0.957 W/kg

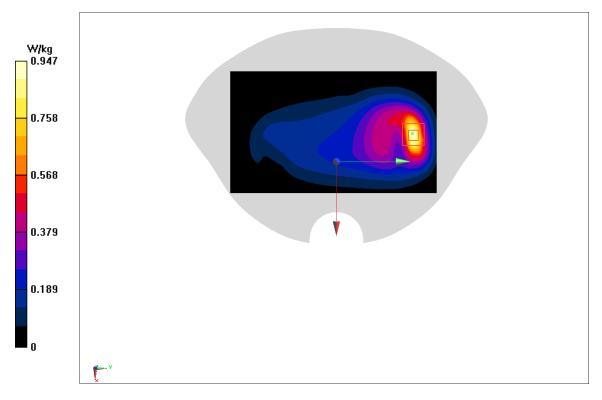


Fig A.2

PCS1900_CH661 Left Cheek

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.363$ mho/m; $\epsilon r = 39.35$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: PCS1900 1880 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0987 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 1.516 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.108 W/kg SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.041 W/kg Maximum value of SAR (measured) = 0.0921 W/kg

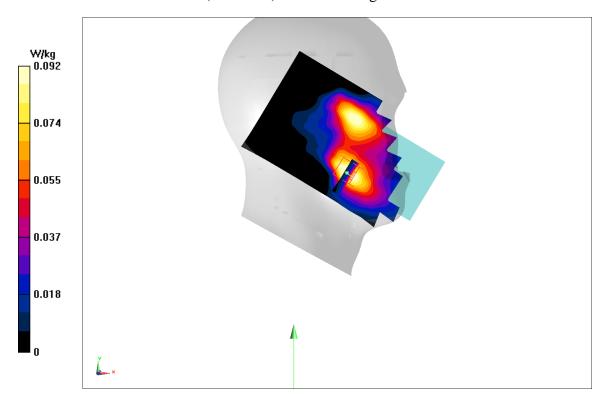


Fig A.3

PCS1900_CH810 Rear 15mm

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.23$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: PCS1900 1909.8 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.77 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 8.524 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.933 W/kg SAR(1 g) = 0.557 W/kg; SAR(10 g) = 0.318 W/kg Maximum value of SAR (measured) = 0.776 W/kg

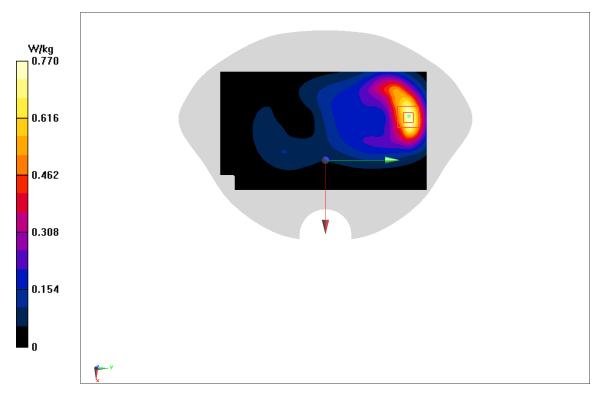


Fig A.4

PCS1900_CH810 Bottom 10mm

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.23$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: PCS1900 1909.8 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.49 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.727 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.278 W/kg SAR(1 g) = 0.981 W/kg; SAR(10 g) = 0.511 W/kg Maximum value of SAR (measured) = 0.246 W/kg

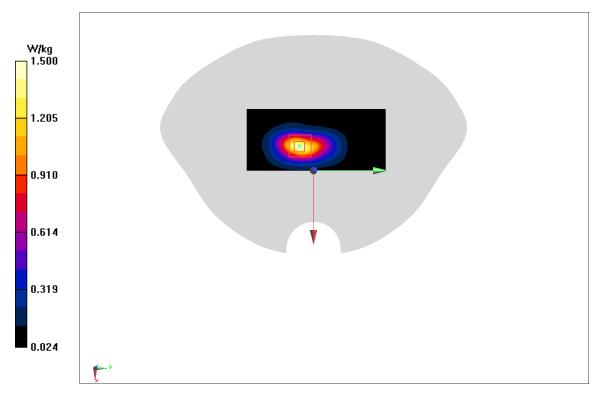


Fig A.5

WCDMA1900-BII_CH9262 Right Cheek

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1852.4 MHz; $\sigma = 1.336$ mho/m; $\epsilon r = 39.39$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.281 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.949 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.288 W/kg SAR(1 g) = 0.176 W/kg; SAR(10 g) = 0.105 W/kg Maximum value of SAR (measured) = 0.248 W/kg

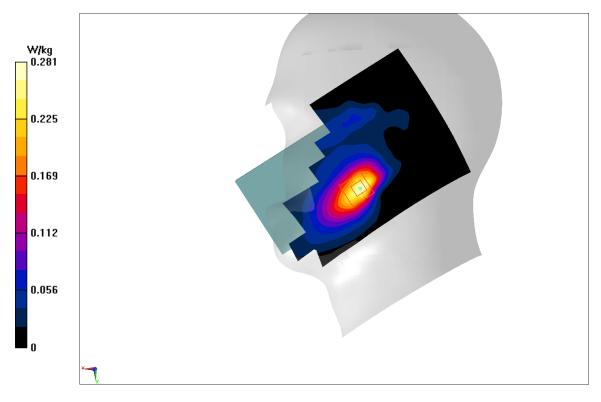


Fig A.6

WCDMA1900-BII_CH9400 Rear 15mm

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.363$ mho/m; $\epsilon r = 39.35$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.765 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.67 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.89 W/kg SAR(1 g) = 0.541 W/kg; SAR(10 g) = 0.319 W/kg Maximum value of SAR (measured) = 0.765 W/kg

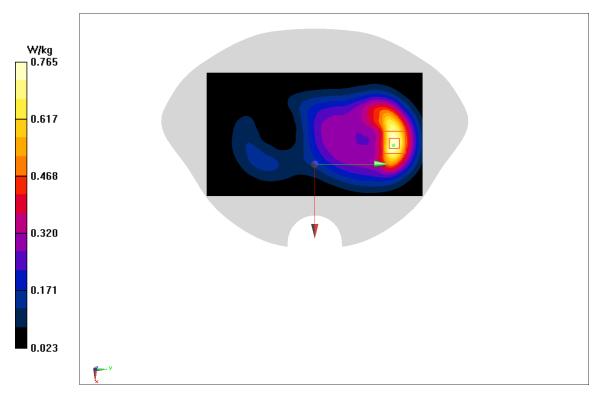


Fig A.7

WCDMA1900-BII_CH9538 Bottom 10mm

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1907.6 MHz; σ = 1.389 mho/m; ϵ r = 38.97; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA1900-BII 1907.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.80 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 35.89 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.20 W/kg SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.623 W/kg Maximum value of SAR (measured) = 1.82 W/kg

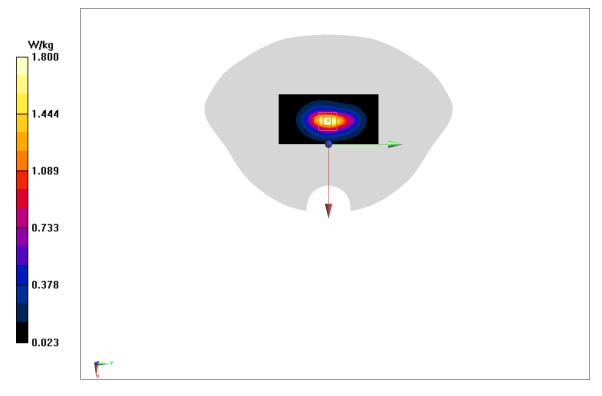


Fig A.8

WCDMA1700-BIV_CH1412 Left Cheek

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: head 1750 MHz Medium parameters used: f = 1732.4 MHz; $\sigma = 1.357$ mho/m; $\epsilon r = 39.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.255 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.935 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.287 W/kg SAR(1 g) = 0.185 W/kg; SAR(10 g) = 0.12 W/kg Maximum value of SAR (measured) = 0.248 W/kg

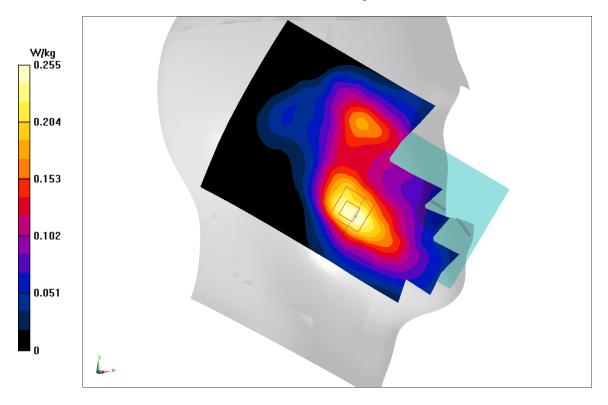


Fig A.9

WCDMA1700-BIV_CH1412 Rear 15mm

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: head 1750 MHz Medium parameters used: f = 1732.4 MHz; $\sigma = 1.357$ mho/m; $\epsilon r = 39.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.515 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.14 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.647 W/kg SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.238 W/kg Maximum value of SAR (measured) = 0.557 W/kg

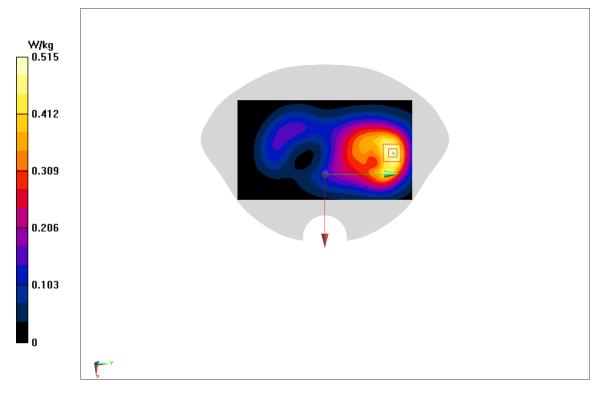


Fig A.10

WCDMA1700-BIV_CH1513 Bottom 10mm

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: head 1750 MHz Medium parameters used: f = 1752.6 MHz; $\sigma = 1.359$ mho/m; $\epsilon r = 39.39$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.893 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.50 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.623 W/kg; SAR(10 g) = 0.334 W/kg Maximum value of SAR (measured) = 0.938 W/kg

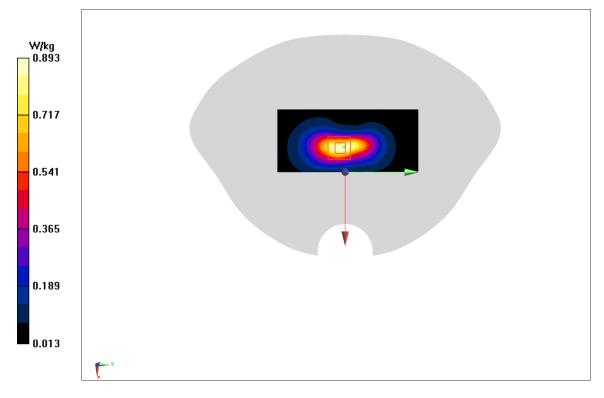


Fig A.11

WCDMA850-BV_CH4132 Left Cheek

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: head 835 MHz Medium parameters used: f = 826.4 MHz; $\sigma = 0.875$ mho/m; $\epsilon r = 41.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA850-BV 826.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.54 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.33 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.22 W/kg SAR(1 g) = 0.846 W/kg; SAR(10 g) = 0.538 W/kg Maximum value of SAR (measured) = 1.51 W/kg

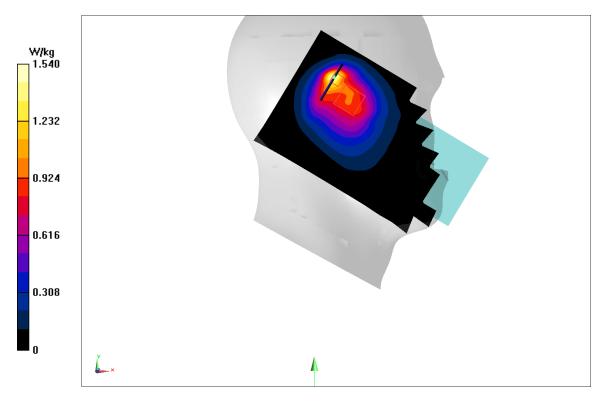


Fig A.12

WCDMA850-BV_CH4183 Top Edge 10mm

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: head 835 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.884$ mho/m; $\epsilon r = 41.35$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WCDMA850-BV 836.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.459 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.08 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.558 W/kg SAR(1 g) = 0.284 W/kg; SAR(10 g) = 0.163 W/kg Maximum value of SAR (measured) = 0.442 W/kg

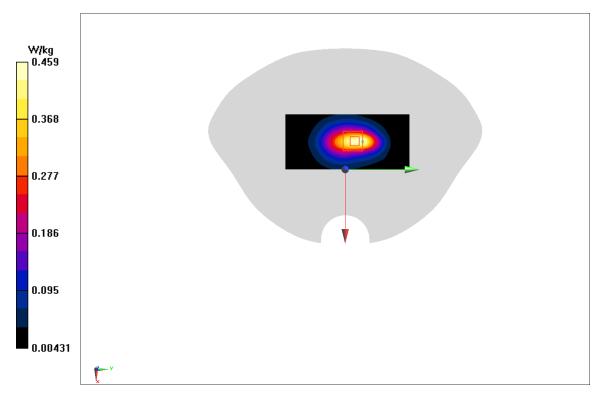


Fig A.13

LTE1900-FDD2_CH18700 Right Cheek

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1860 MHz; $\sigma = 1.344$ mho/m; $\epsilon r = 39.38$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE1900-FDD2 1860 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.339 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.888 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.375 W/kg SAR(1 g) = 0.236 W/kg; SAR(10 g) = 0.143 W/kg Maximum value of SAR (measured) = 0.323 W/kg

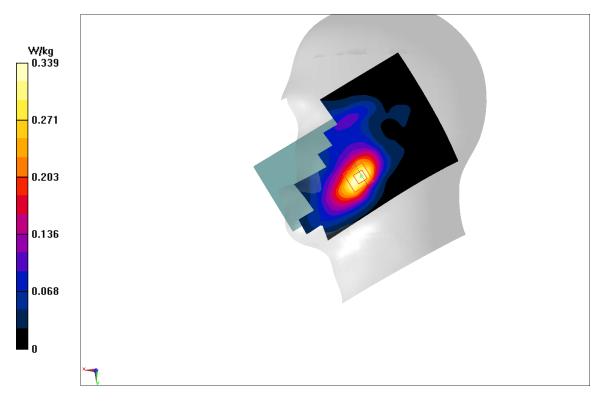


Fig A.14

LTE1900-FDD2_CH18900 Rear 15mm

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.37$ mho/m; $\epsilon r = 39.28$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.74 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.703 W/kg; SAR(10 g) = 0.406 W/kg Maximum value of SAR (measured) = 1.01 W/kg

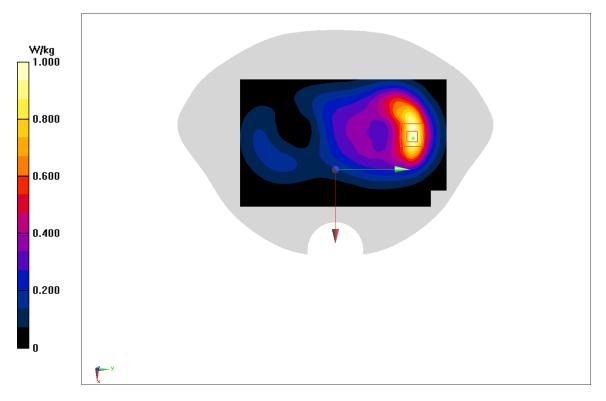


Fig A.15

LTE1900-FDD2_CH18900 Bottom 10mm

Date: 6/28/2020Electronics: DAE4 Sn777 Medium: head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.363$ mho/m; $\epsilon r = 39.35$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 19.11 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 0.839 W/kg; SAR(10 g) = 0.437 W/kg Maximum value of SAR (measured) = 1.29 W/kg

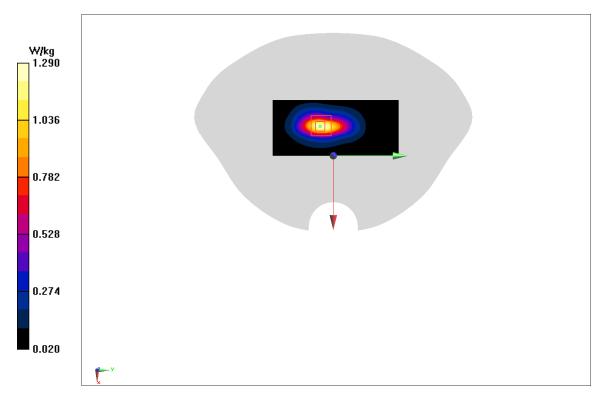
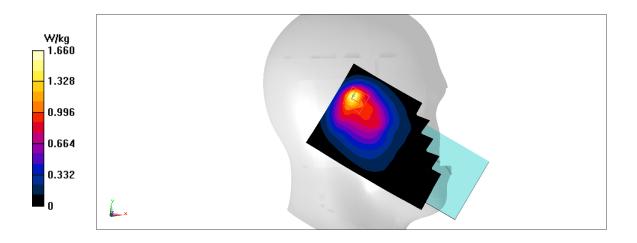


Fig A.16



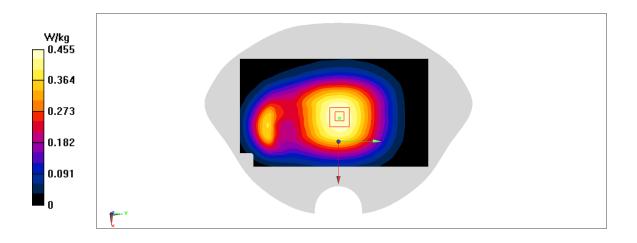
LTE850-FDD5_CH20450 Left Cheek

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: head 835 MHz Medium parameters used: f = 829 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 41.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.66 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 31.74 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.71 W/kg SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.523 W/kg Maximum value of SAR (measured) = 0.877 W/kg

Fig A.17

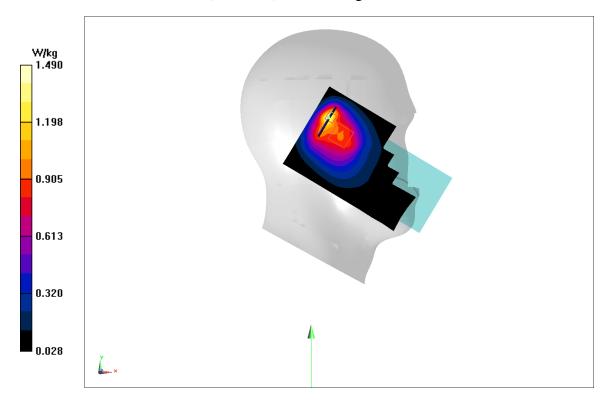


LTE850-FDD5_CH20450 Rear 10mm

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: head 835 MHz Medium parameters used: f = 829 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 41.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.455 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 23.06 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.44 W/kg SAR(1 g) = 0.356 W/kg; SAR(10 g) = 0.275 W/kg Maximum value of SAR (measured) = 0.372 W/kg



LTE700-FDD12_CH23060 Left Cheek

Date: 6/25/2020Electronics: DAE4 Sn777 Medium: head 750 MHz Medium parameters used: f = 704 MHz; $\sigma = 0.853$ mho/m; $\epsilon r = 42.13$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.49 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 25.02 V/m; Power Drift = 0 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 0.821 W/kg; SAR(10 g) = 0.56 W/kg Maximum value of SAR (measured) = 1.49 W/kg

Fig A.19

LTE700-FDD12_CH23060 Rear 10mm

Date: 6/25/2020Electronics: DAE4 Sn777 Medium: head 750 MHz Medium parameters used: f = 704 MHz; $\sigma = 0.853$ mho/m; $\epsilon r = 42.13$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.471 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.88 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.53 W/kg SAR(1 g) = 0.387 W/kg; SAR(10 g) = 0.297 W/kg Maximum value of SAR (measured) = 0.475 W/kg

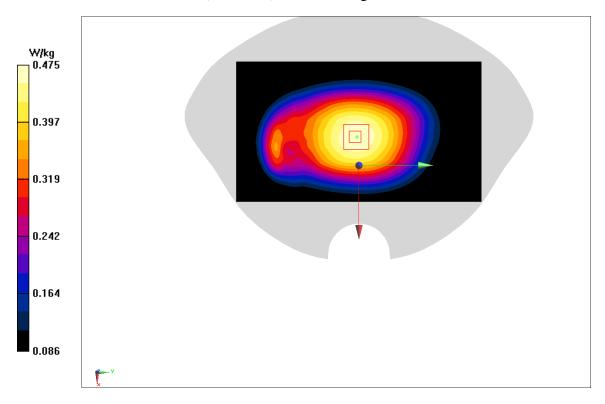


Fig A.20

LTE700-FDD14_CH23330 Right Cheek

Date: 6/25/2020Electronics: DAE4 Sn777 Medium: head 750 MHz Medium parameters used: f = 793 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 42.02$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE700-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.285 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.418 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.322 W/kg SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.172 W/kg Maximum value of SAR (measured) = 0.282 W/kg

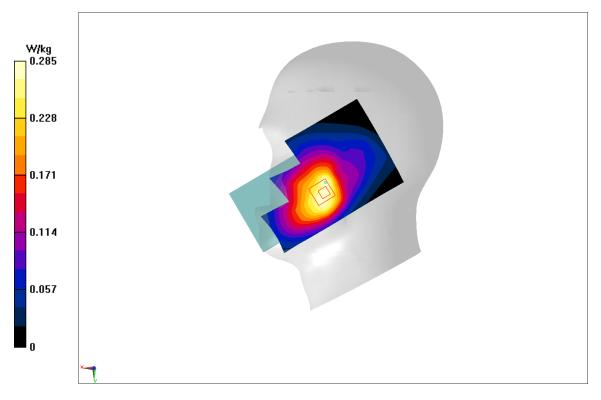


Fig A.21

LTE700-FDD14_CH23330 Rear 10mm

Date: 6/25/2020Electronics: DAE4 Sn777 Medium: head 750 MHz Medium parameters used: f = 793 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 42.02$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE700-FDD14 793 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.621 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 19.81 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.907 W/kg SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.237 W/kg Maximum value of SAR (measured) = 0.699 W/kg

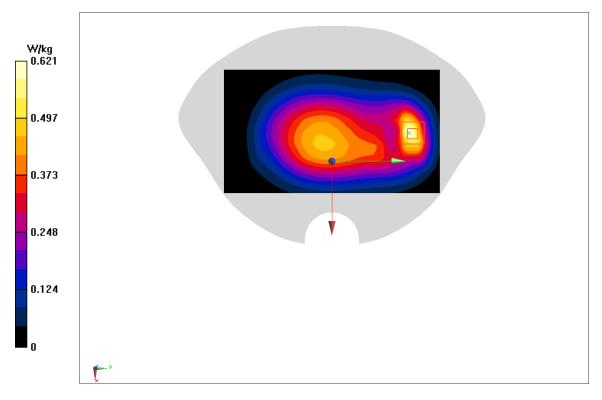


Fig A.22

LTE2300-FDD30_CH27710 Left Cheek

Date: 6/29/2020Electronics: DAE4 Sn777 Medium: head 2300 MHz Medium parameters used: f = 2310 MHz; $\sigma = 1.692$ mho/m; $\epsilon r = 39.51$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE2300-FDD30 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.95,7.95,7.95)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.323 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 3.501 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.341 W/kg SAR(1 g) = 0.208 W/kg; SAR(10 g) = 0.124 W/kg Maximum value of SAR (measured) = 0.286 W/kg

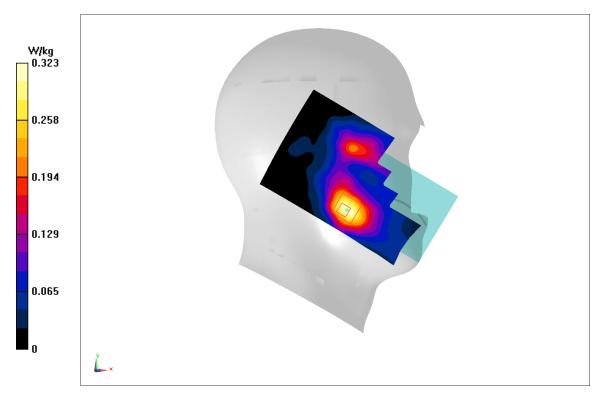


Fig A.23

LTE2300-FDD30_CH27710 Rear 15mm

Date: 6/29/2020Electronics: DAE4 Sn777 Medium: head 2300 MHz Medium parameters used: f = 2310 MHz; $\sigma = 1.692$ mho/m; $\epsilon r = 39.51$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE2300-FDD30 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.95,7.95,7.95)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.866 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 8.734 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.324 W/kg Maximum value of SAR (measured) = 0.849 W/kg

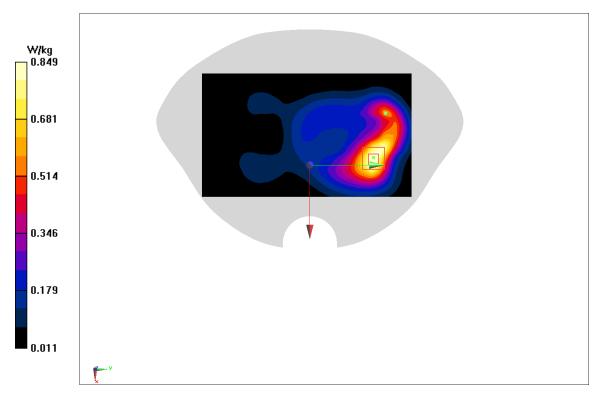
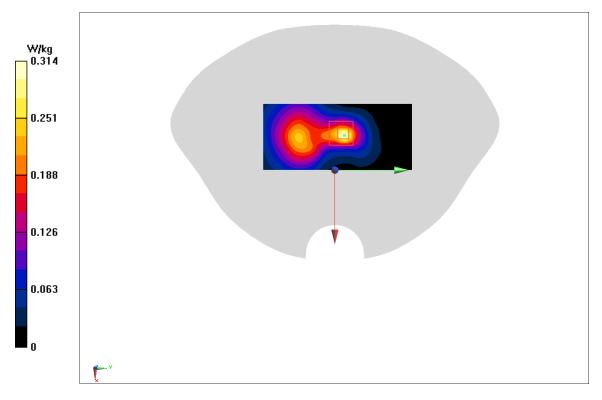


Fig A.24



LTE2300-FDD30_CH27710 Bottom 10mm

Date: 6/29/2020Electronics: DAE4 Sn777 Medium: head 2300 MHz Medium parameters used: f = 2310 MHz; $\sigma = 1.692$ mho/m; $\epsilon r = 39.51$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE2300-FDD30 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.95,7.95,7.95)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.314 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.857 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.409 W/kg SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.09 W/kg Maximum value of SAR (measured) = 0.321 W/kg

Fig A.25

LTE1700-FDD66_CH132072 Right Cheek

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: head 1750 MHz Medium parameters used: f = 1720 MHz; $\sigma = 1.406$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE1700-FDD66 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.519 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.313 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.585 W/kg SAR(1 g) = 0.381 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 0.506 W/kg

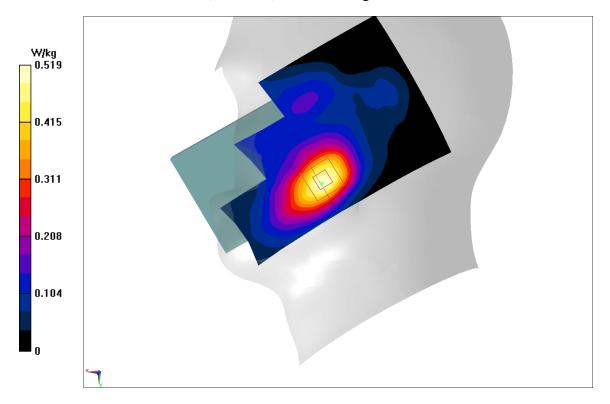
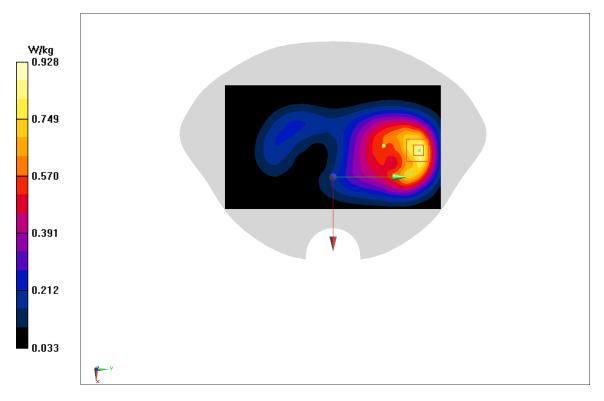


Fig A.26



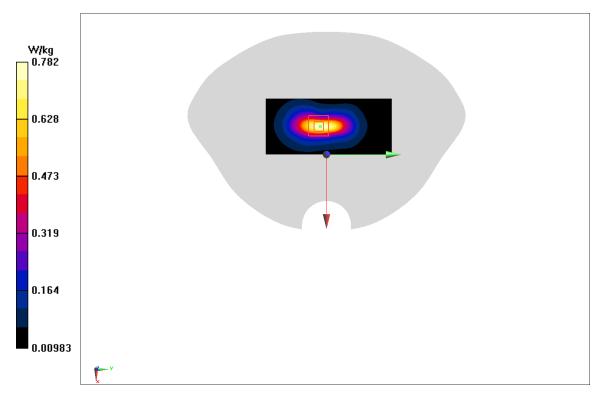
LTE1700-FDD66_CH132072 Front 15mm

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: head 1750 MHz Medium parameters used: f = 1720 MHz; $\sigma = 1.406$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE1700-FDD66 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.866 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.478 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.393 W/kg Maximum value of SAR (measured) = 0.928 W/kg

Fig A.27



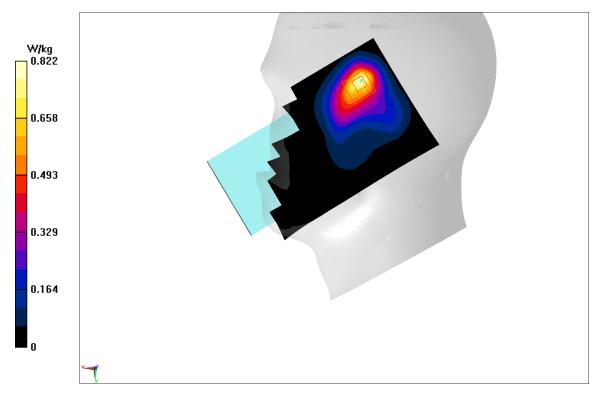
LTE1700-FDD66_CH132072 Bottom 10mm

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: head 1750 MHz Medium parameters used: f = 1720 MHz; $\sigma = 1.406$ mho/m; $\epsilon r = 40.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: LTE1700-FDD66 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.782 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.66 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.943 W/kg SAR(1 g) = 0.519 W/kg; SAR(10 g) = 0.279 W/kg Maximum value of SAR (measured) = 0.793 W/kg

Fig A.28



WLAN2450_CH6 Right Cheek

Date: 6/30/2020Electronics: DAE4 Sn777 Medium: head 2450 MHz Medium parameters used: f = 2437 MHz; $\sigma = 1.788$ mho/m; $\epsilon r = 38.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.822 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.996 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1 W/kg SAR(1 g) = 0.51 W/kg; SAR(10 g) = 0.308 W/kg Maximum value of SAR (measured) = 0.799 W/kg

Fig A.29

WLAN2450_CH6 Rear 10mm

Date: 6/30/2020Electronics: DAE4 Sn777 Medium: head 2450 MHz Medium parameters used: f = 2437 MHz; $\sigma = 1.788$ mho/m; $\epsilon r = 38.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.365 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.075 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.473 W/kg SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.11 W/kg Maximum value of SAR (measured) = 0.369 W/kg

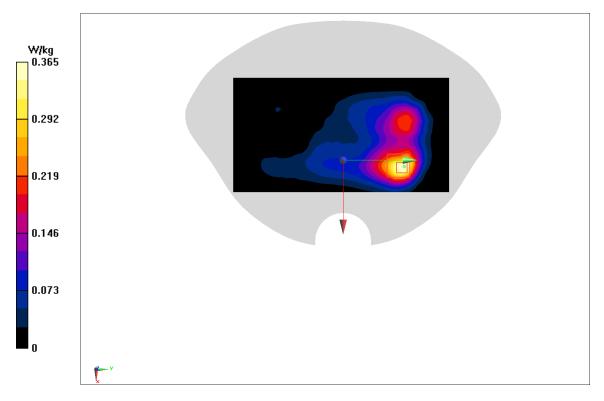
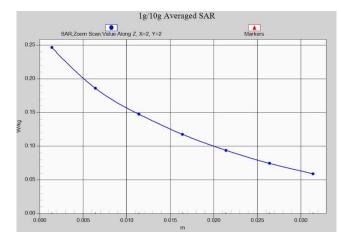
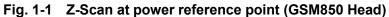
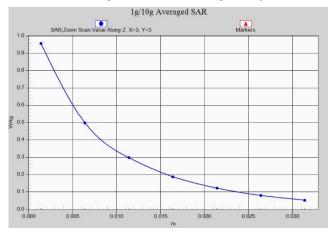




Fig A.30



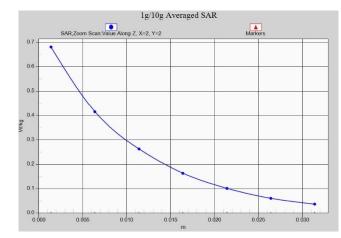


Fig. 1-3 Z-Scan at power reference point (PCS1900 head)

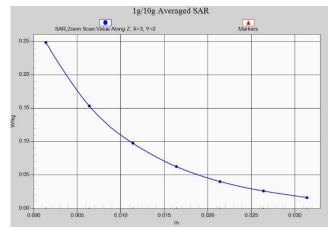


Fig. 1-5 Z-Scan at power reference point (WCDMA1900 Head)

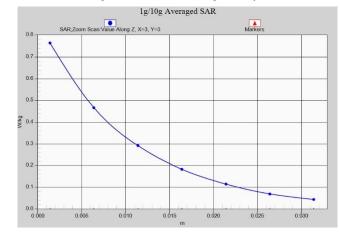


Fig. 1-6 Z-Scan at power reference point (WCDMA1900 Body)

Fig. 1-8 Z-Scan at power reference point (WCDMA1700 Body)

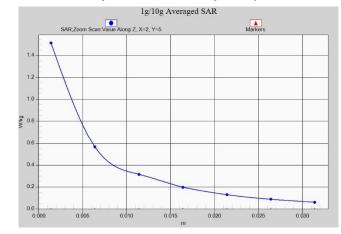


Fig. 1-9 Z-Scan at power reference point (WCDMA850 Head)

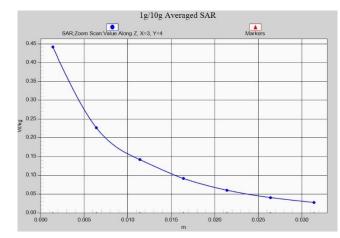


Fig. 1-11 Z-Scan at power reference point (LTE Band 2 Head)

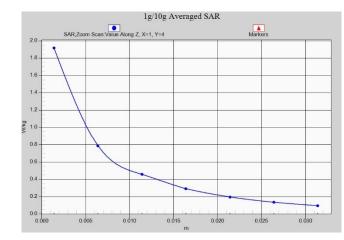



Fig. 1-12 Z-Scan at power reference point (LTE Band2 Body)

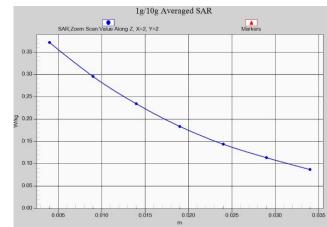


Fig. 1-14 Z-Scan at power reference point (LTE Band 5 Body)

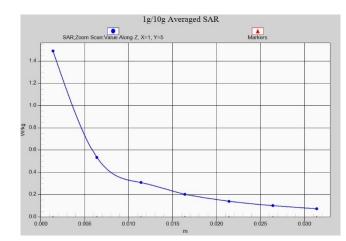
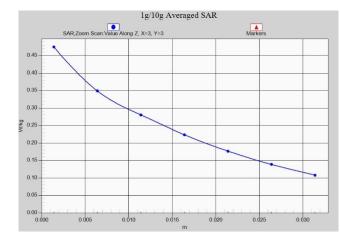



Fig. 1-15 Z-Scan at power reference point (LTE Band 12 Head)

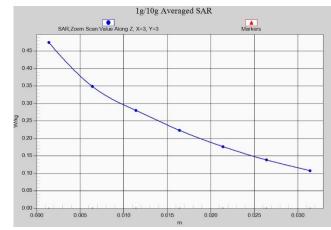


Fig. 1-17 Z-Scan at power reference point (LTE Band14 Head)

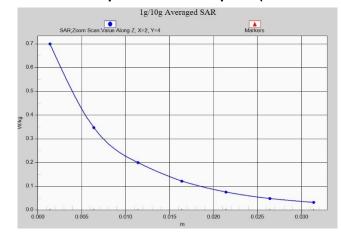


Fig. 1-18 Z-Scan at power reference point (LTE Band14 Body)

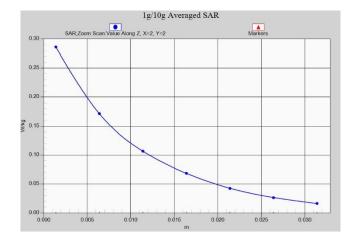


Fig. 1-20 Z-Scan at power reference point (LTE Band30 Body)

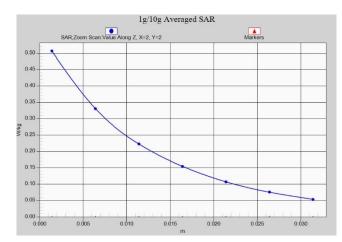
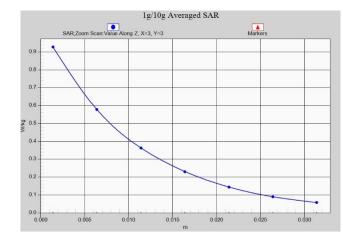



Fig. 1-21 Z-Scan at power reference point (LTE Band66 Head)

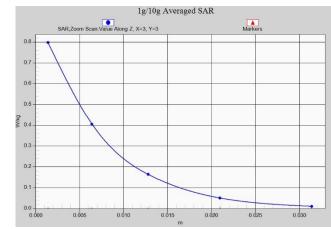


Fig. 1-23 Z-Scan at power reference point (2450 MHz Head)

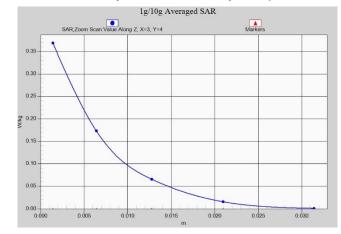
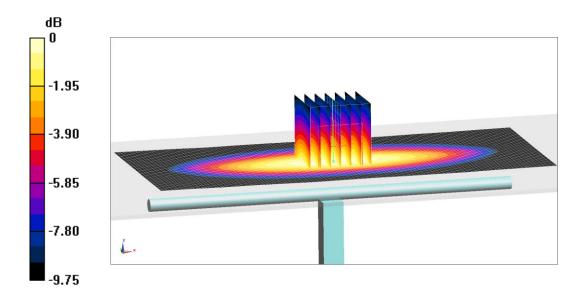


Fig. 1-24 Z-Scan at power reference point (2450 MHz Body)


ANNEX B System Verification Results

750 MHz

Date: 6/25/2020Electronics: DAE4 Sn777 Medium: Head 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.897$ mho/m; $\varepsilon_r = 42.07$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.25 V/m; Power Drift = -0.1 Fast SAR: SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (interpolated) = 2.78 W/kg

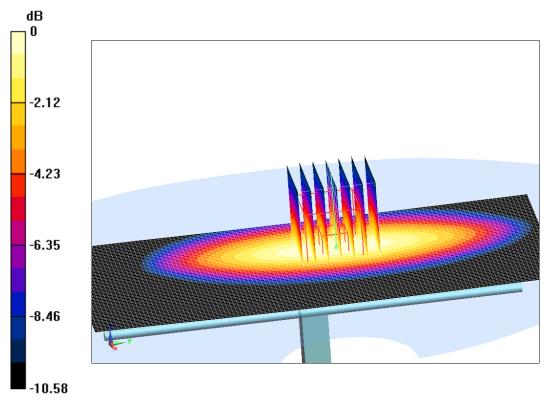
System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =59.25 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.25 W/kg SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.89 W/kg

0 dB = 2.89 W/kg = 4.61 dB W/kg

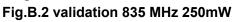
Fig.B.1 validation 750 MHz 250mW

Date: 6/26/2020Electronics: DAE4 Sn777 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.884$ mho/m; $\varepsilon_r = 41.45$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(9.66,9.66,9.66)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 63.79 V/m; Power Drift = -0.05Fast SAR: SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (interpolated) = 3.12 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =63.79 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.56 W/kg

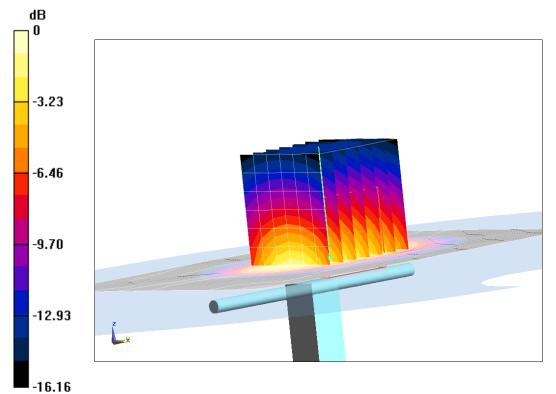
Maximum value of SAR (measured) = 3.17 W/kg

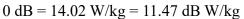
 $^{0 \}text{ dB} = 3.17 \text{ W/kg} = 5.01 \text{ dB W/kg}$

Date: 6/27/2020Electronics: DAE4 Sn777 Medium: Head 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.374$ mho/m; $\epsilon_r = 39.44$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 105.19 V/m; Power Drift = -0.04Fast SAR: SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.78 W/kgMaximum value of SAR (interpolated) = 14.17 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value =105.19 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 16.47 W/kg

SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.81 W/kg

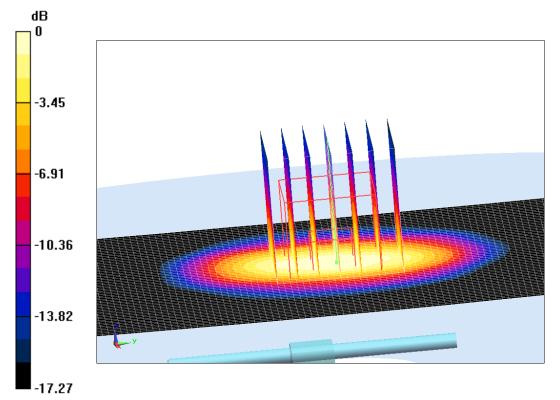
Maximum value of SAR (measured) = 14.02 W/kg

Fig.B.3 validation 1750 MHz 250mW

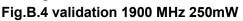
Date: 6/28/2020Electronics: DAE4 Sn777 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.382$ mho/m; $\epsilon_r = 39.33$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(8.14,8.14,8.14)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 110.16 V/m; Power Drift = 0.06 **Fast SAR: SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.19 W/kg** Maximum value of SAR (interpolated) = 15.44 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =110.16 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 17.45 W/kg

SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.29 W/kg

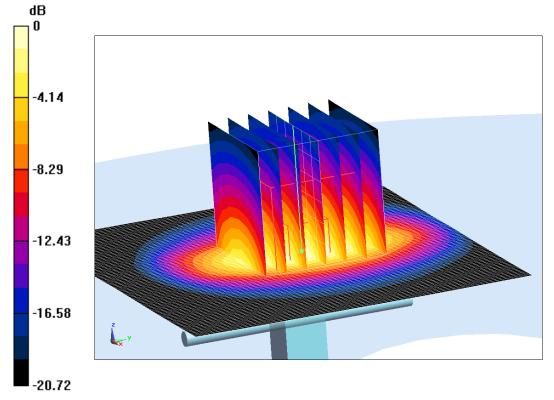
Maximum value of SAR (measured) = 14.62 W/kg

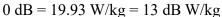
 $^{0 \}text{ dB} = 14.62 \text{ W/kg} = 11.65 \text{ dB W/kg}$

Date: 6/29/2020Electronics: DAE4 Sn777 Medium: Head 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.682$ mho/m; $\epsilon_r = 39.52$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2300 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.95,7.95,7.95)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 115.42 V/m; Power Drift = -0.05Fast SAR: SAR(1 g) = 12.21 W/kg; SAR(10 g) = 5.99 W/kgMaximum value of SAR (interpolated) = 20.36 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value =115.42 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 23.56 W/kg

SAR(1 g) = 12.25 W/kg; SAR(10 g) = 5.97 W/kg

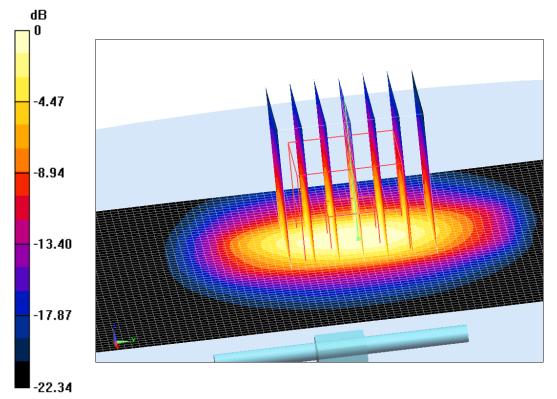
Maximum value of SAR (measured) = 19.93 W/kg

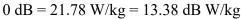
Fig.B.5 validation 2300 MHz 250mW

Date: 6/30/2020Electronics: DAE4 Sn777 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 38.58$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.65,7.65,7.65)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 115.41 V/m; Power Drift = 0.02Fast SAR: SAR(1 g) = 12.68 W/kg; SAR(10 g) = 6.01 W/kg Maximum value of SAR (interpolated) = 21.63 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value =115.41 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 25.21 W/kg

SAR(1 g) = 12.64 W/kg; SAR(10 g) = 6.09 W/kg

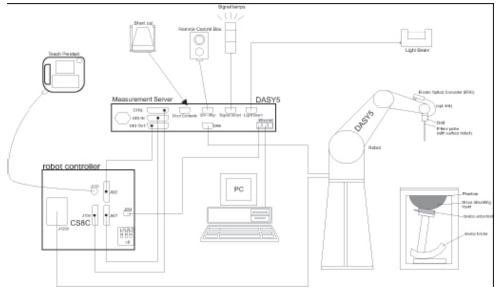
Maximum value of SAR (measured) = 21.78 W/kg

Fig.B.6 validation 2450 MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2020/6/25	750	Head	2.1	2.13	-1.41
2020/6/26	835	Head	2.43	2.44	-0.41
2020/6/27	1750	Head	9.21	9.03	1.99
2020/6/28	1900	Head	9.98	9.95	0.30
2020/6/29	2300	Head	12.21	12.25	-0.33
2020/6/30	2450	Head	12.68	12.64	0.32

Table B.1 Comparison between area scan and zoom scan for system verification



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4			
Frequency	10MHz — 6.0GHz(EX3DV4)			
Range:	10MHz — 4GHz(ES3DV3)			
Calibration:	In head and body simulating tissue at			
	Frequencies from 835 up to 5800MHz			
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4			
± 0.2 dB(30 MHz to 4 GHz) for ES3DV3				
DynamicRange: 10 mW/kg — 100W/kg				
Probe Length:	330 mm			
Probe Tip				
Length:	20 mm			
Body Diameter: 12 mm				
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)			
Tip-Center:	1 mm (2.0mm for ES3DV3)			
Application:SAR Dosimetry Testing				
	Compliance tests of mobile phones			
	Dosimetry in strong gradient fields			

/

Picture C.2Near-field Probe

Picture C.3E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE