

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.3 V/m = 38.72 dBV/m
Maximum measured above low end	100 mW input power	85.4 V/m = 38.63 dBV/m
Averaged maximum above arm	100 mW input power	85.8 V/m ± 12.8 % (k=2)

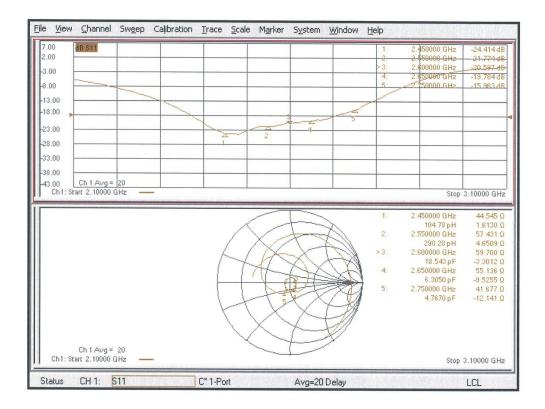
Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	24.4 dB	44.5 Ω + 1.6 jΩ
2550 MHz	21.8 dB	57.4 Ω + 4.7 jΩ
2600 MHz	20.6 dB	59.7 Ω - 3.3 jΩ
2650 MHz	19.8 dB	55.1 Ω - 9.5 jΩ
2750 MHz	16.0 dB	41.7 Ω - 12.1 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

Page 4 of 5

DASY5 E-field Result

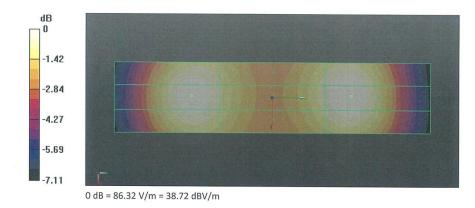
Date: 22.08.2018

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1017

Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 65.15 V/m; Power Drift = 0.00 dB Applied MIF = 0.00 dB

RF audio interference level = 38.72 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.38 dBV/m	38.62 dBV/m	38.53 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
37.9 dBV/m	38.12 dBV/m	38.07 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.5 dBV/m	38.72 dBV/m	38.63 dBV/m

Certificate No: CD2600V3-1017_Aug18

Page 5 of 5

The photos of HAC test are presented in the additional document:

Appendix to test report No.I19Z60710-SEM02/03

The photos of HAC test