Report No.: HR/2018/9003201 Page: 1 of 44

Appendix B

GSM850&1900

Report No.: HR/2018/9003201 Page: 2 of 44

CONTENT

1.	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
	1.1. Test Result	3
2.	Peak-to-Average Ratio	4
	2.1. Test Result	4
	2.2. Part II - Test Plots	4
3.	Modulation Characteristics	9
	3.1. For GSM	9
	3.1.1. Test BAND = GSM 850	9
	3.1.1.1. Test Mode = GSM/TM1	9
	3.1.1.1.1. Test Channel = MCH	9
	3.1.1.2. Test Mode = GSM/TM2	9
	3.1.1.2.1. Test Channel = MCH	9
	3.1.2. Test BAND = GSM 1900	10
	3.1.2.1. Test Mode = GSM/TM1	10
	3.1.2.1.1. Test Channel = MCH	10
	3.1.2.2. Test Mode = GSM/TM2	10
	3.1.2.2.1. Test Channel = MCH	10
4.	26dB Bandwidth and Occupied Bandwidth	11
ч.		
ч.	4.1. Test Result	11
ч.		
	4.1. Test Result	11
	4.1. Test Result4.2. Test Plots	. <i>. 11</i> 16
	 4.1. Test Result	11 16 16
5.	 4.1. Test Result	11 16 16 19
5.	 4.1. Test Result	11 16 16 19 19
5.	 4.1. Test Result	11 16 16 19 19 40
5.	 4.1. Test Result	11 16 16 19 19 40 40
5.	 4.1. Test Result	11 16 19 19 40 40 40
5.	 4.1. Test Result	11 16 19 19 40 40 40
5.	 4.1. Test Result	11 16 19 19 40 40 40 40
5.	 4.1. Test Result	11 16 16 19 19 40 40 40 40 41
5.	 4.1. Test Result	11 16 16 19 19 40 40 40 40 41
5.	4.1. Test Result	11 16 16 19 19 40 40 40 40 41 41
5.	4.1. Test Result	11 16 16 19 19 40 40 40 41 41 41
5. 6. 7.	4.1. Test Result	11 16 19 19 40 40 40 41 41 41 41 42

Report No.: HR/2018/9003201 Page: 3 of 44

1. Effective (Isotropic) Radiated Power Output Data

1.1.Test Result

BAND	Channel	PCL	Power(dBm)	ERP(dBm)	Limit(dBm)	Verdict
GSM850	128	5	32.50	28.45	38.45	PASS
GSM850	190	5	32.55	28.50	38.45	PASS
GSM850	251	5	32.52	28.47	38.45	PASS
EGPRS850	128	8	26.88	22.83	38.45	PASS
EGPRS850	190	8	26.95	22.90	38.45	PASS
EGPRS850	251	8	26.92	22.87	38.45	PASS

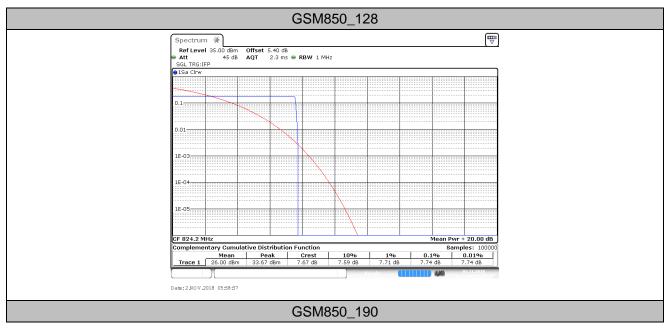
BAND	Channel	PCL	Power(dBm)	EIRP(dBm)	Limit(dBm)	Verdict
GSM1900	512	0	29.51	27.71	33.00	PASS
GSM1900	661	0	29.44	27.64	33.00	PASS
GSM1900	810	0	29.20	27.40	33.00	PASS
EGPRS1900	512	2	25.84	24.04	33.00	PASS
EGPRS1900	661	2	26.04	24.24	33.00	PASS
EGPRS1900	810	2	26.18	24.38	33.00	PASS

Remark:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

ERP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBd]

EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

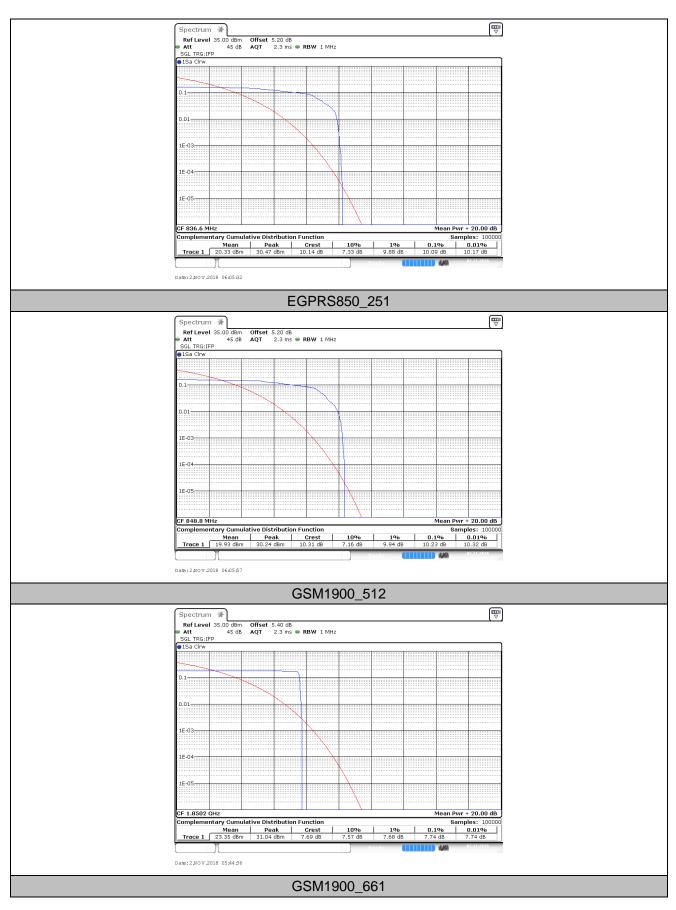

Report No.: HR/2018/9003201 Page: 4 of 44

2. Peak-to-Average Ratio

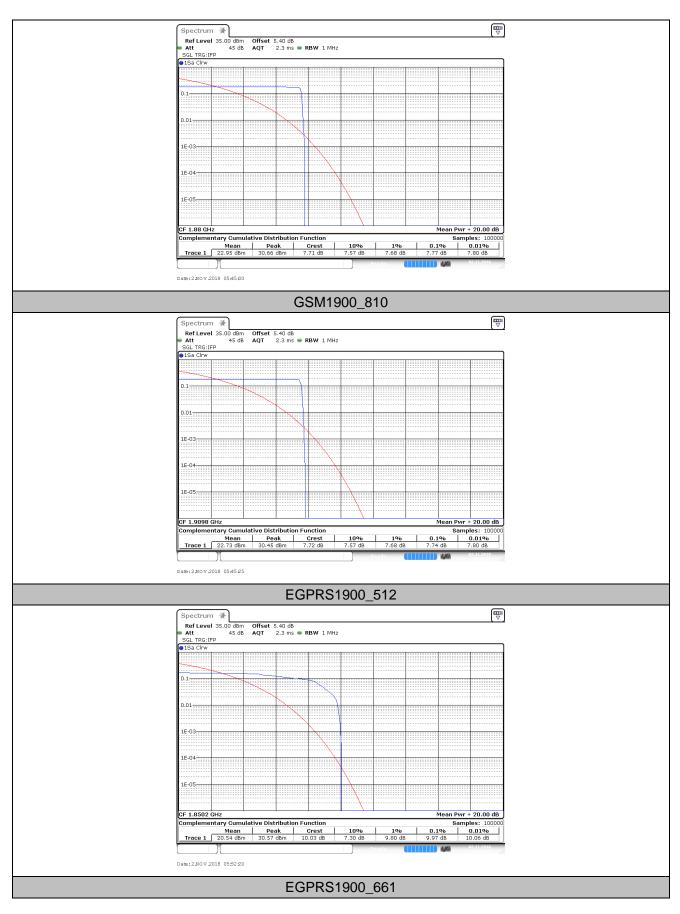
2.1.Test Result

BAND	Channel	Peak-to-Average Ratio(dB)	Limit(dB)	Verdict
GSM850	128	7.74	13	PASS
GSM850	190	7.74	13	PASS
GSM850	251	7.74	13	PASS
EGPRS850	128	10.55	13	PASS
EGPRS850	190	10.09	13	PASS
EGPRS850	251	10.23	13	PASS
GSM1900	512	7.74	13	PASS
GSM1900	661	7.77	13	PASS
GSM1900	810	7.74	13	PASS
EGPRS1900	512	9.97	13	PASS
EGPRS1900	661	10.41	13	PASS
EGPRS1900	810	9.94	13	PASS

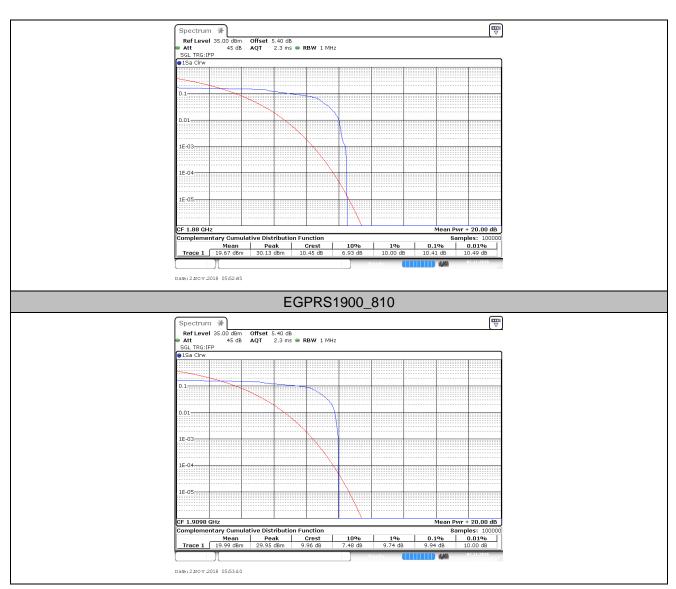
2.2. Part II - Test Plots



Report No.: HR/2018/9003201 Page: 5 of 44

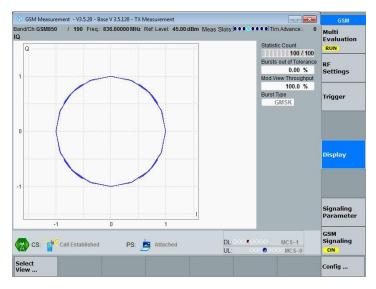


Report No.: HR/2018/9003201 Page: 6 of 44



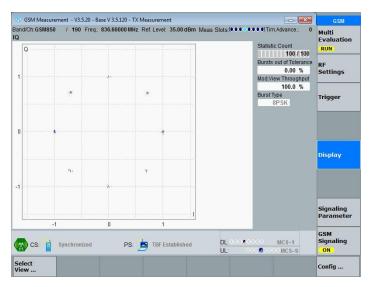
Report No.: HR/2018/9003201 Page: 7 of 44

Report No.: HR/2018/9003201 Page: 8 of 44



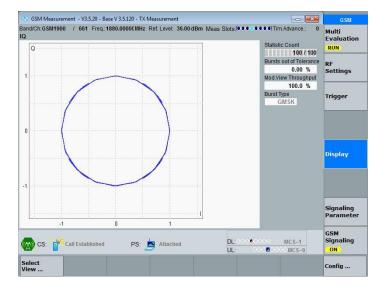
Report No.: HR/2018/9003201 Page: 9 of 44

3. Modulation Characteristics

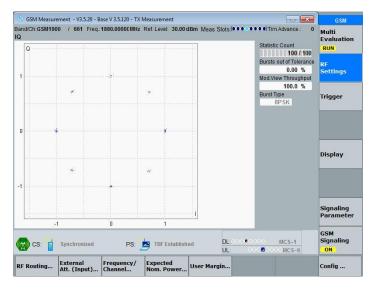

- 3.1.For GSM
- 3.1.1. Test BAND = GSM 850
- 3.1.1.1. Test Mode = GSM/TM1

3.1.1.1.1. Test Channel = MCH

3.1.1.2. Test Mode = GSM/TM2


3.1.1.2.1. Test Channel = MCH

Report No.: HR/2018/9003201 Page: 10 of 44

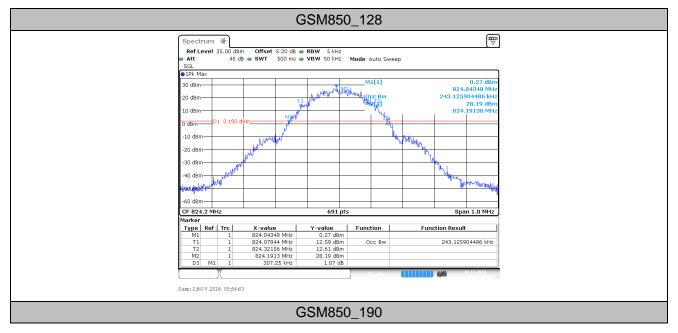

- 3.1.2. Test BAND = GSM 1900
- 3.1.2.1. Test Mode = GSM/TM1

3.1.2.1.1. Test Channel = MCH

3.1.2.2. Test Mode = GSM/TM2

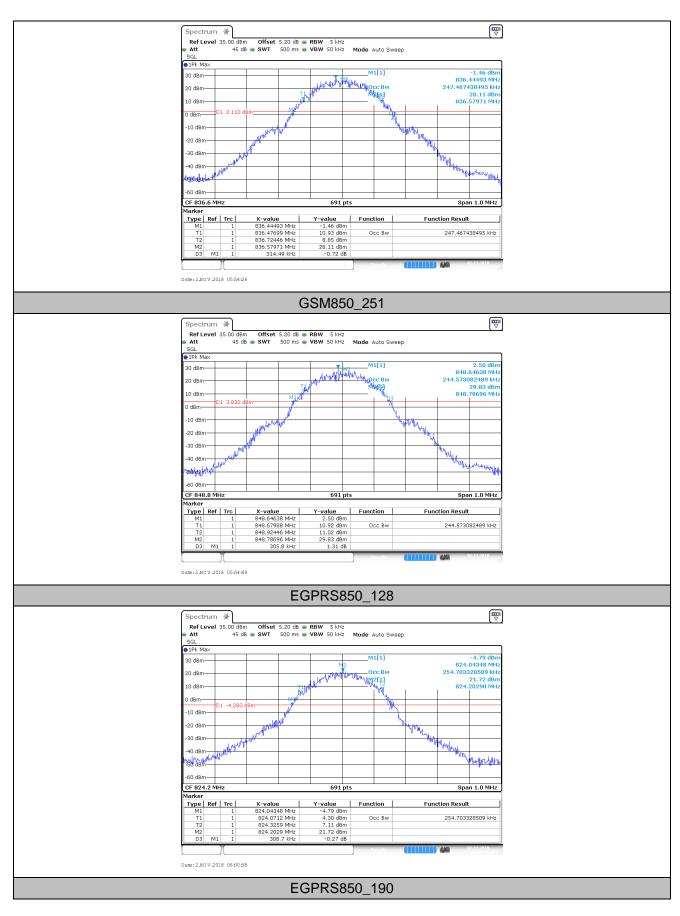
3.1.2.2.1. Test Channel = MCH

Report No.: HR/2018/9003201 Page: 11 of 44

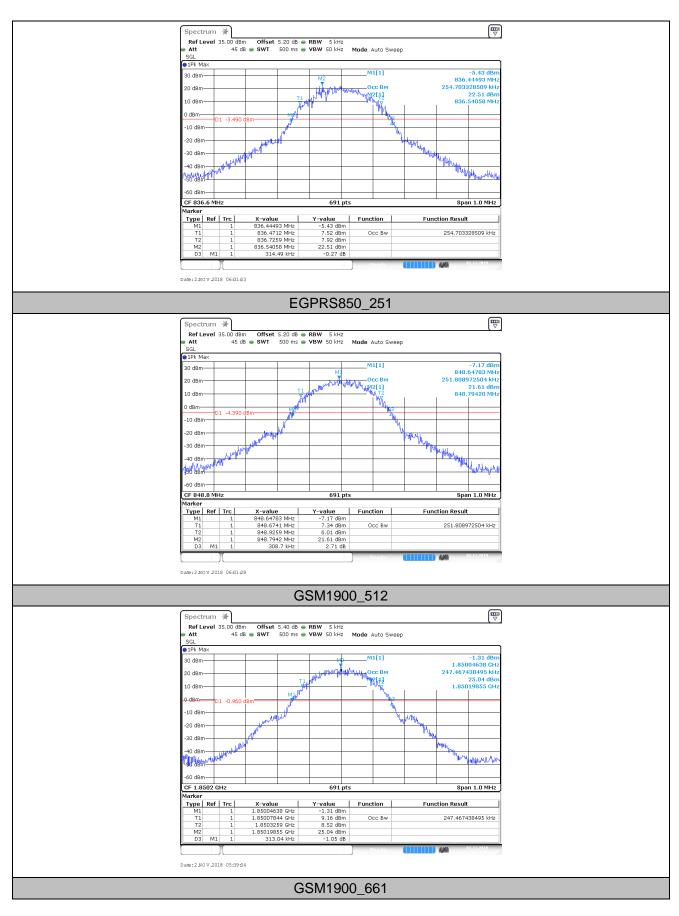

4. 26dB Bandwidth and Occupied Bandwidth

4.1.Test Result

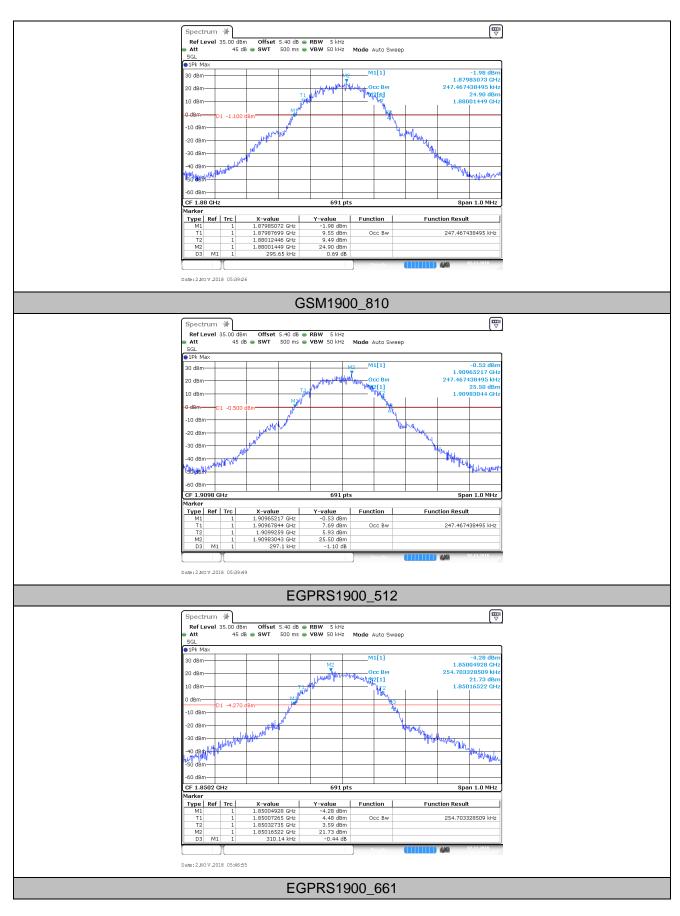
S(


BAND	Channel	Occupied Bandwidth (kHz)	26dB Bandwidth (kHz)	Limit(kHz)	Verdict
GSM850	128	243.13	307.25		PASS
GSM850	190	247.47	314.49		PASS
GSM850	251	244.57	305.80		PASS
EGPRS850	128	254.70	308.70		PASS
EGPRS850	190	254.70	314.49		PASS
EGPRS850	251	251.81	308.70		PASS
GSM1900	512	247.47	313.04		PASS
GSM1900	661	247.47	295.65		PASS
GSM1900	810	247.47	297.10		PASS
EGPRS1900	512	254.70	310.14		PASS
EGPRS1900	661	253.26	313.04		PASS
EGPRS1900	810	254.70	298.55		PASS

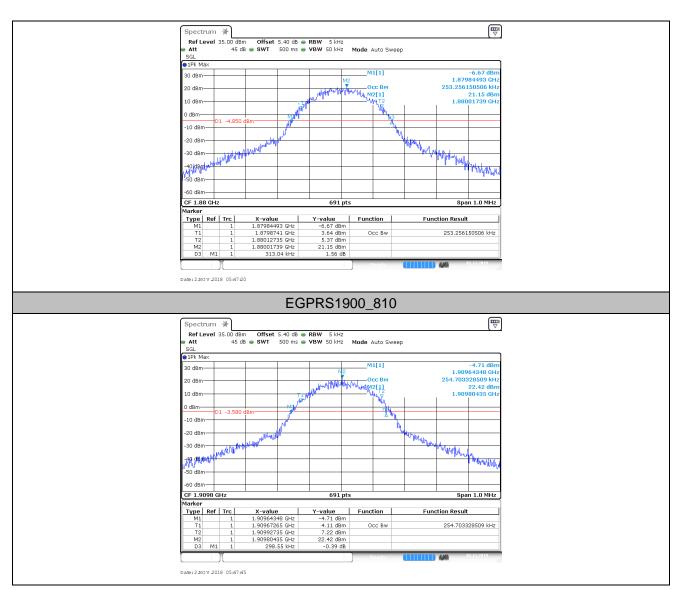
4.2.Test Plots



Report No.: HR/2018/9003201 Page: 12 of 44

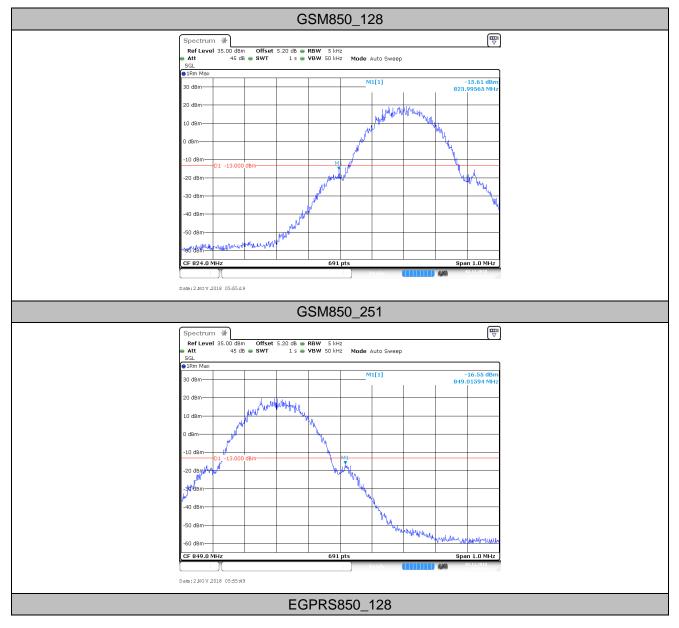


Report No.: HR/2018/9003201 Page: 13 of 44

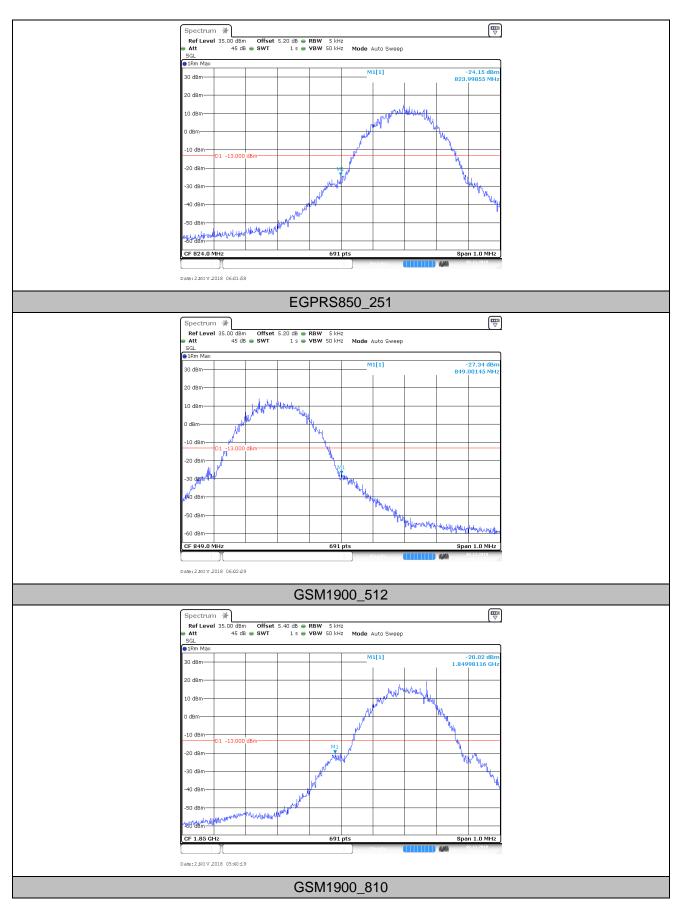


Report No.: HR/2018/9003201 Page: 14 of 44

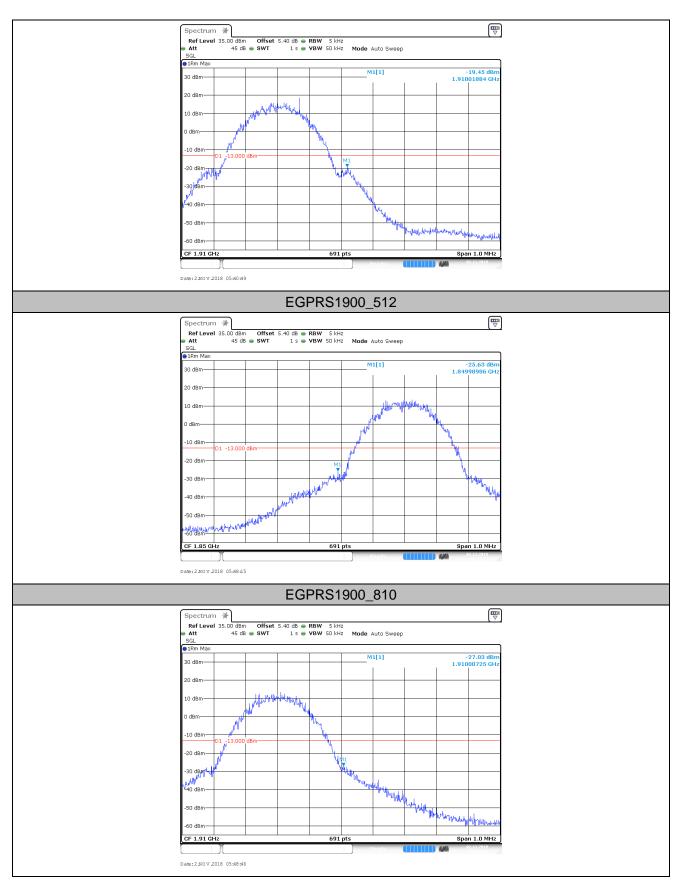
Report No.: HR/2018/9003201 Page: 15 of 44



Report No.: HR/2018/9003201 Page: 16 of 44

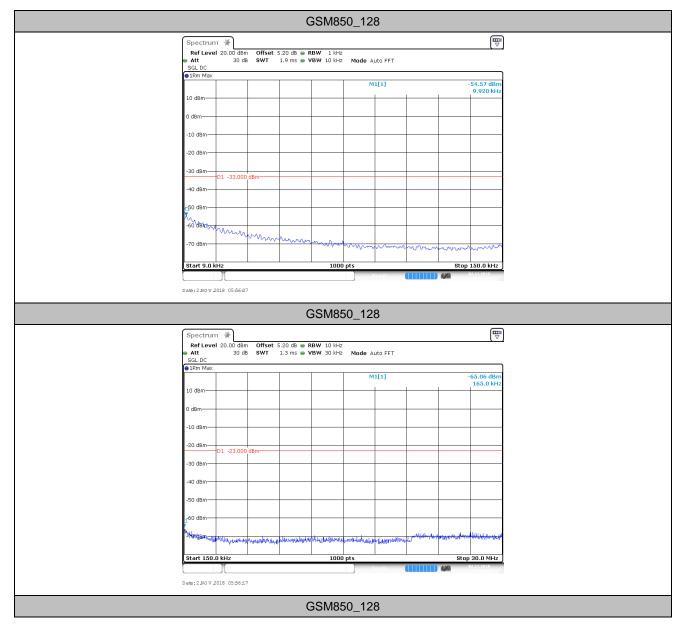

5. Band Edge Compliance

5.1.Test Plots



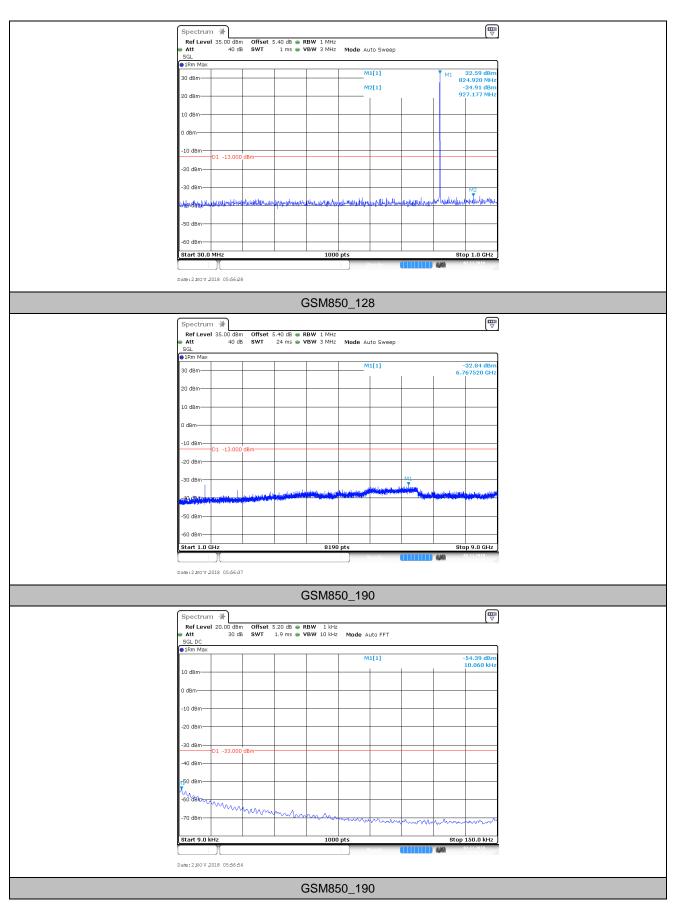
Report No.: HR/2018/9003201 Page: 17 of 44

Report No.: HR/2018/9003201 Page: 18 of 44

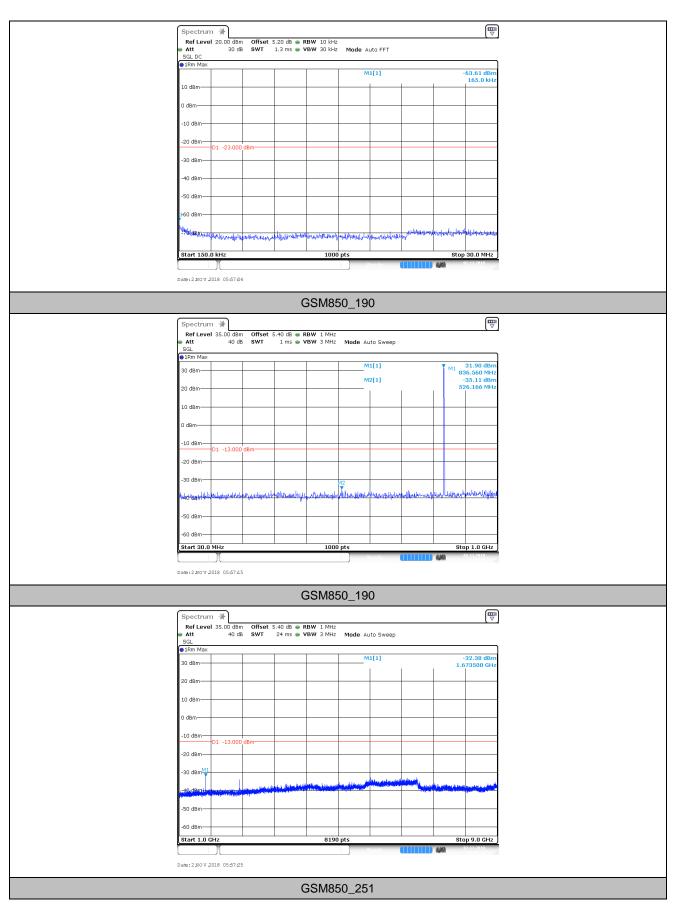

Report No.: HR/2018/9003201 Page: 19 of 44

6. Spurious Emission at Antenna Terminal

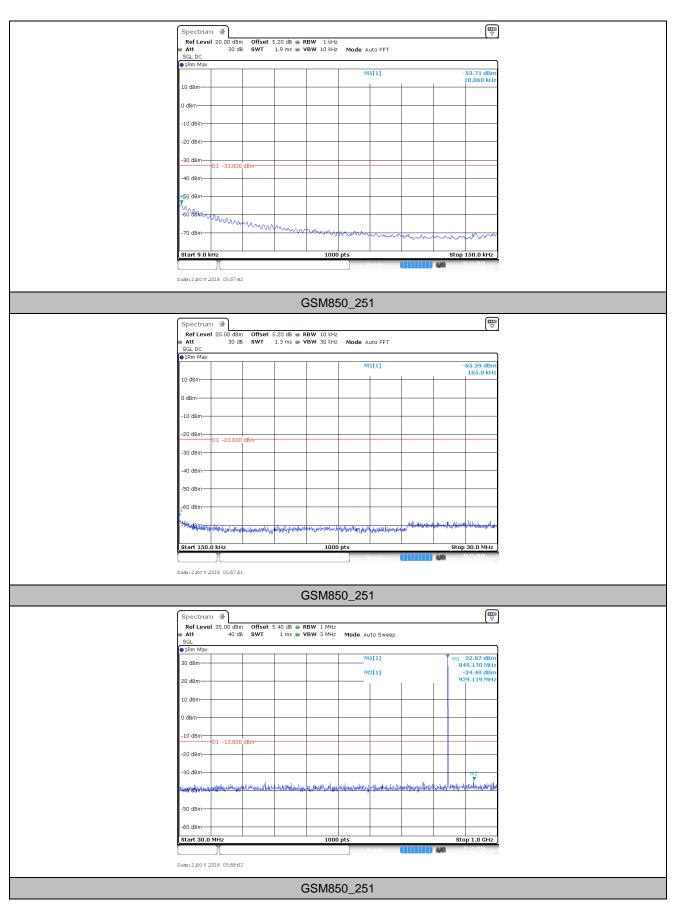
Remark1: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.


Remark2: only the worst case data displayed in this report.

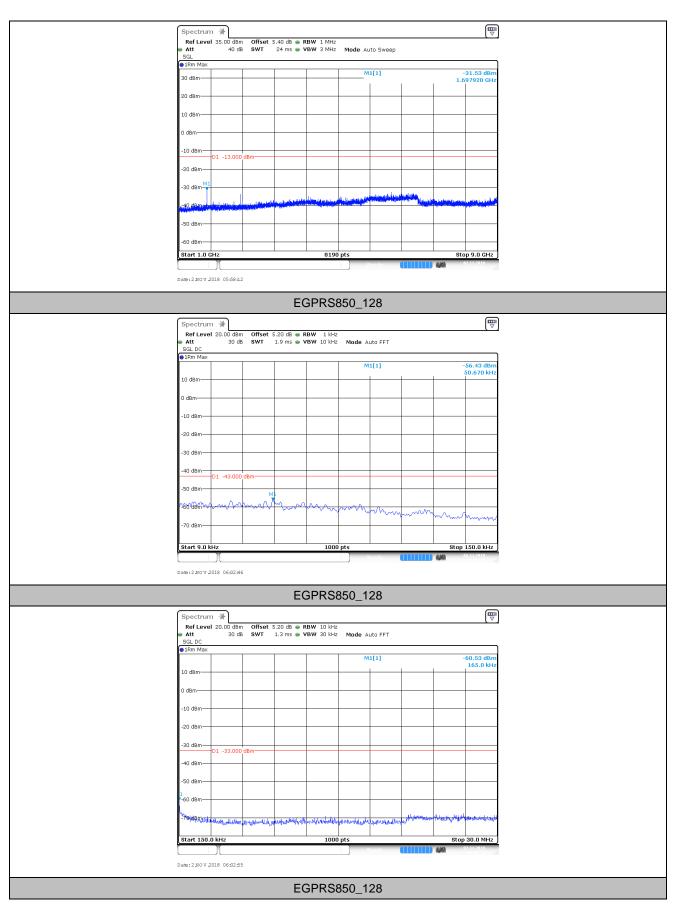
6.1. Test Plots



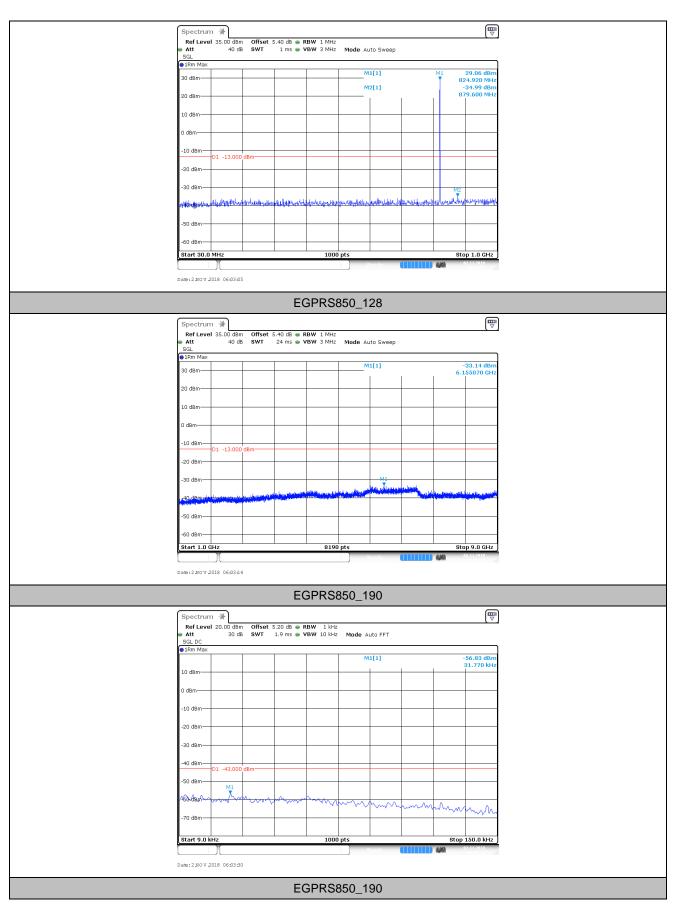
Report No.: HR/2018/9003201 Page: 20 of 44



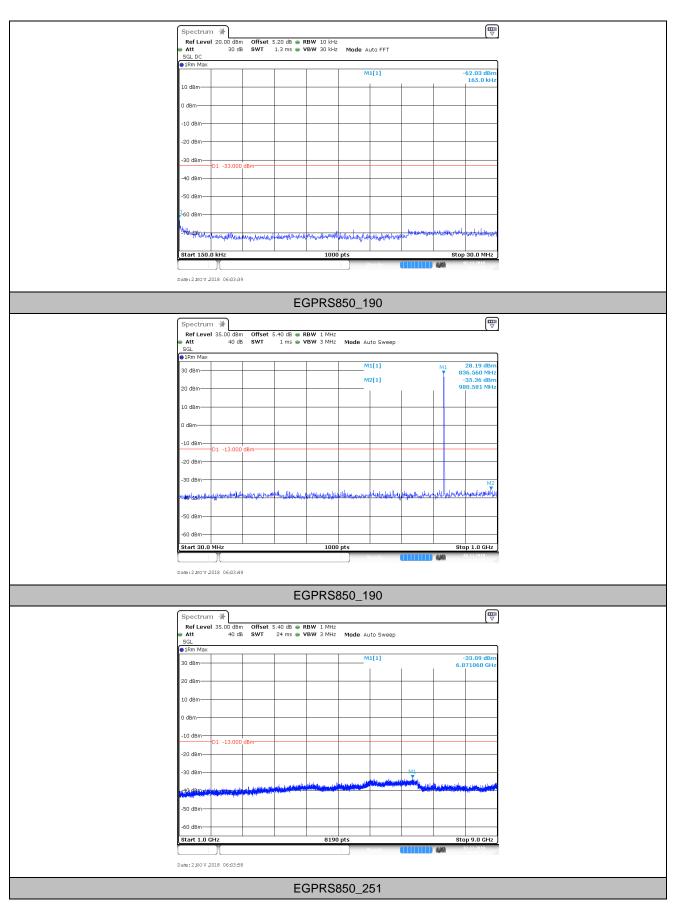
Report No.: HR/2018/9003201 Page: 21 of 44



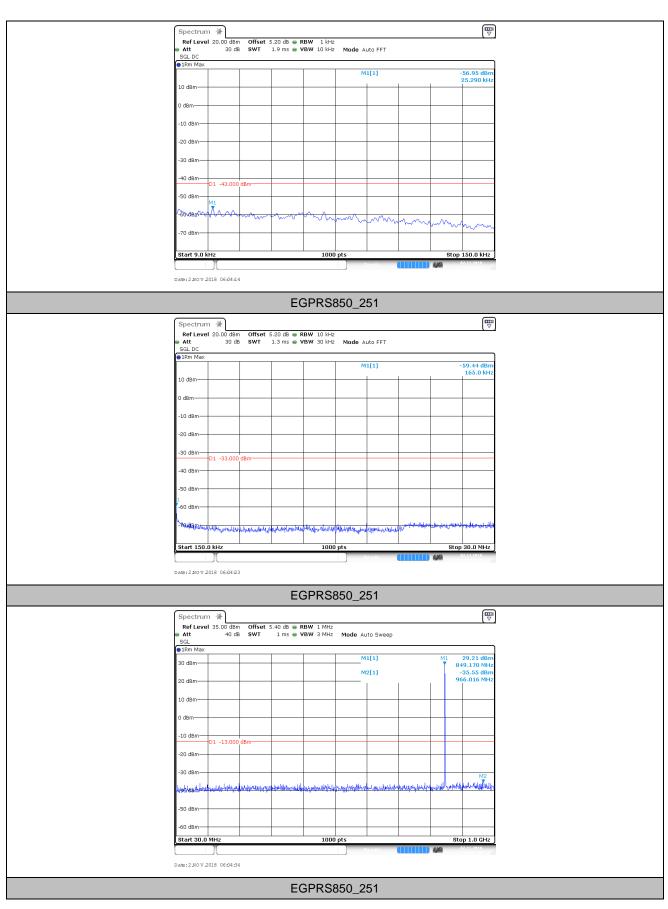
Report No.: HR/2018/9003201 Page: 22 of 44



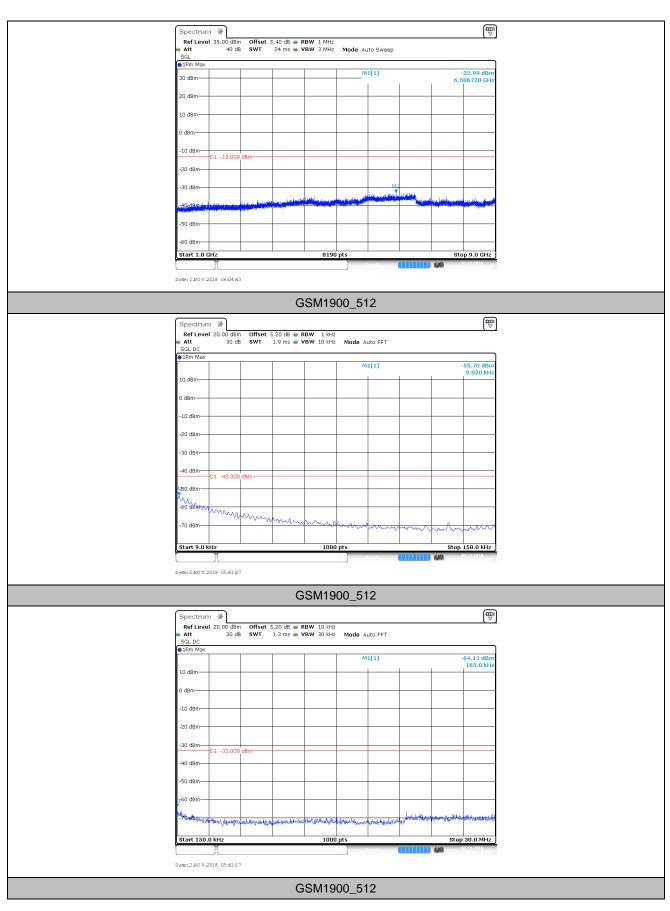
Report No.: HR/2018/9003201 Page: 23 of 44



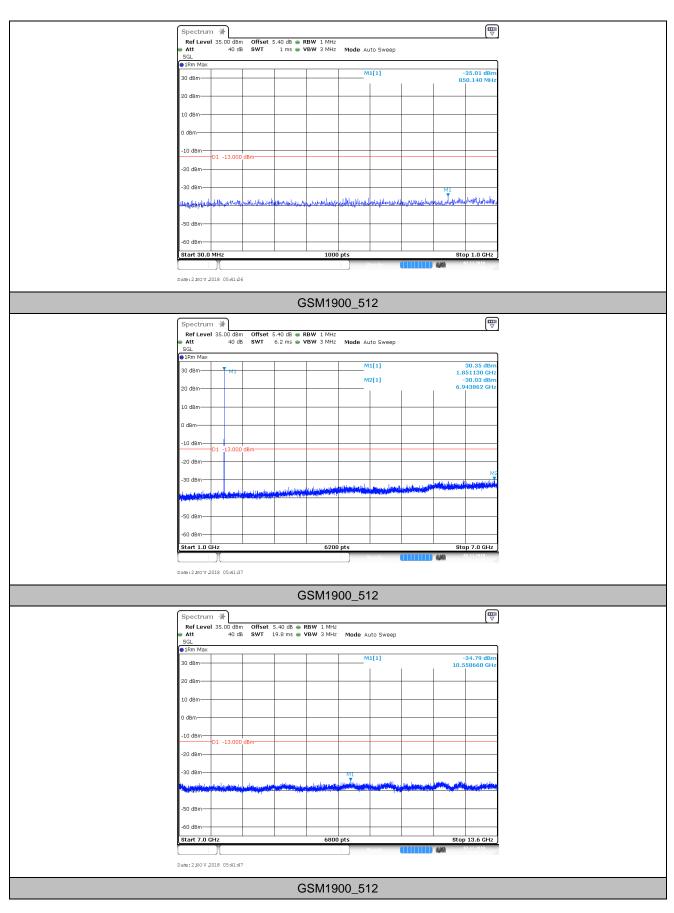
Report No.: HR/2018/9003201 Page: 24 of 44



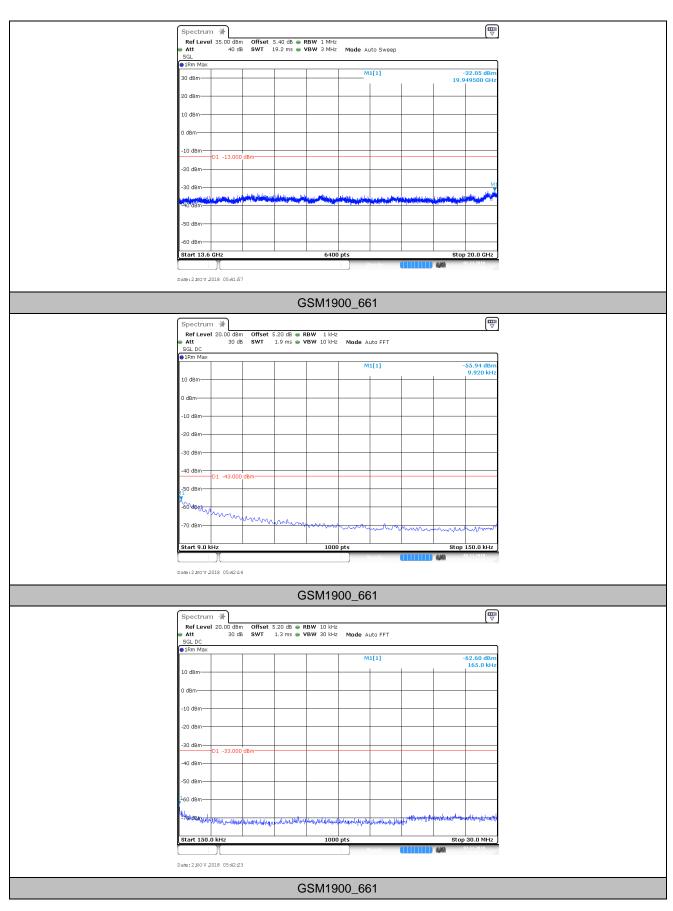
Report No.: HR/2018/9003201 Page: 25 of 44



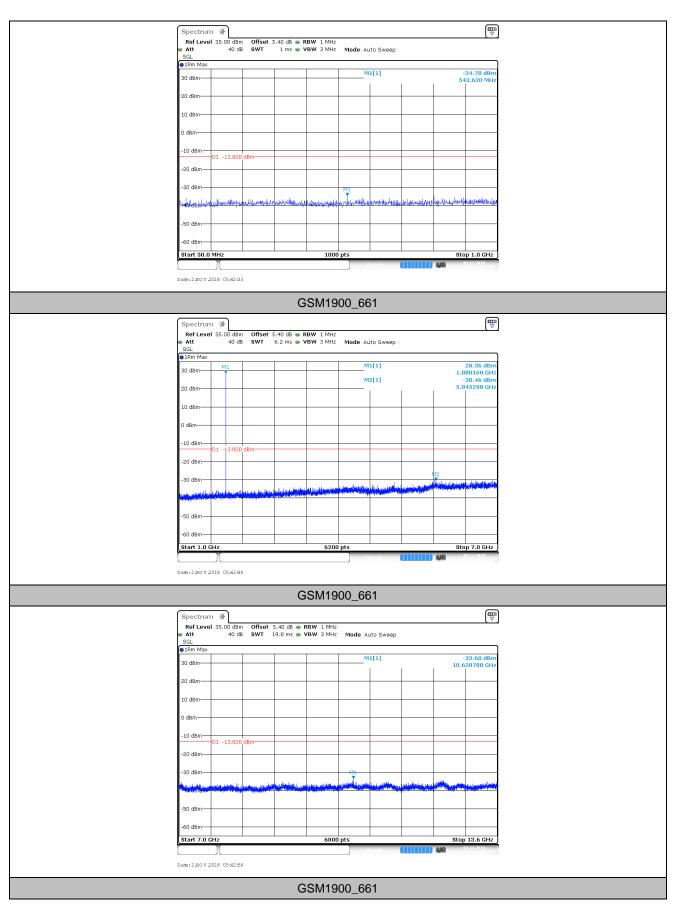
Report No.: HR/2018/9003201 Page: 26 of 44



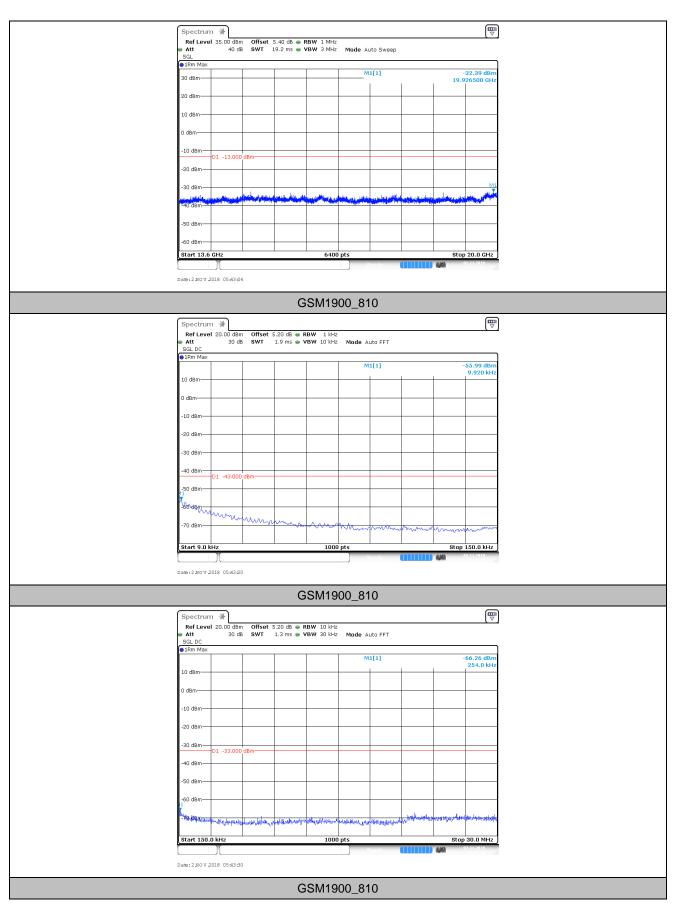
Report No.: HR/2018/9003201 Page: 27 of 44



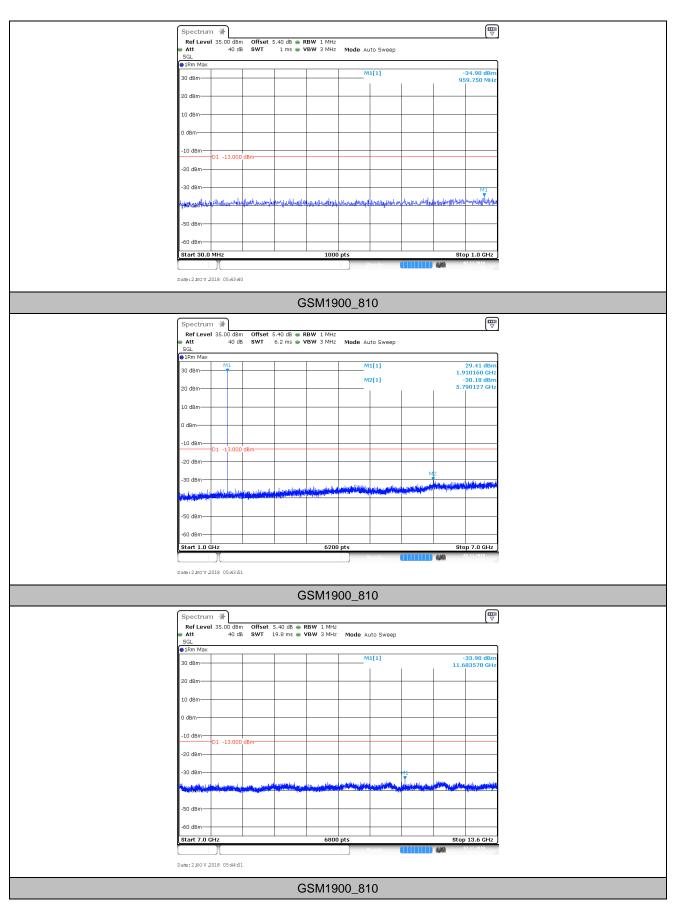
Report No.: HR/2018/9003201 Page: 28 of 44



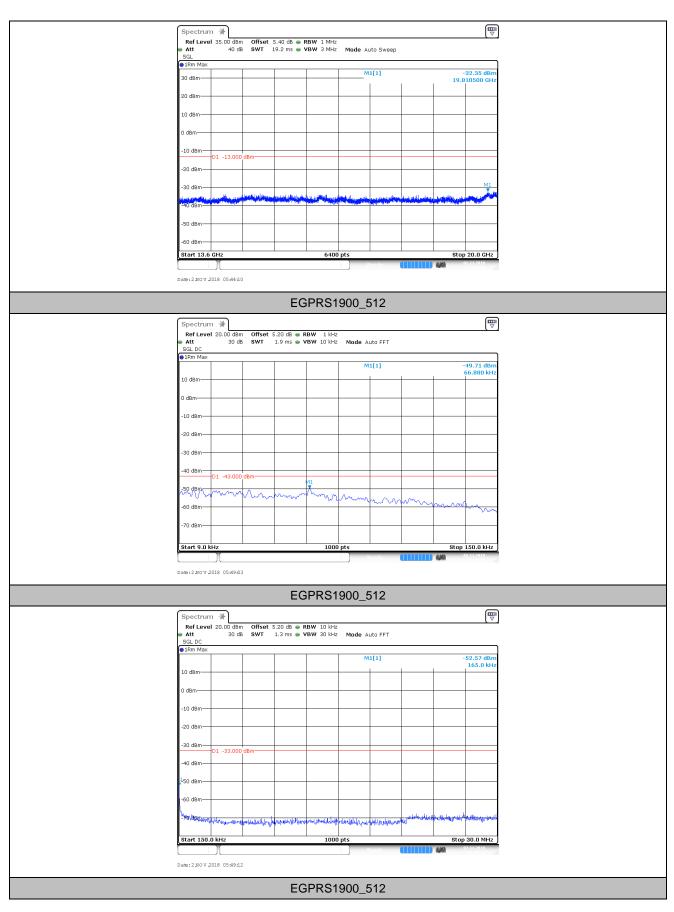
Report No.: HR/2018/9003201 Page: 29 of 44



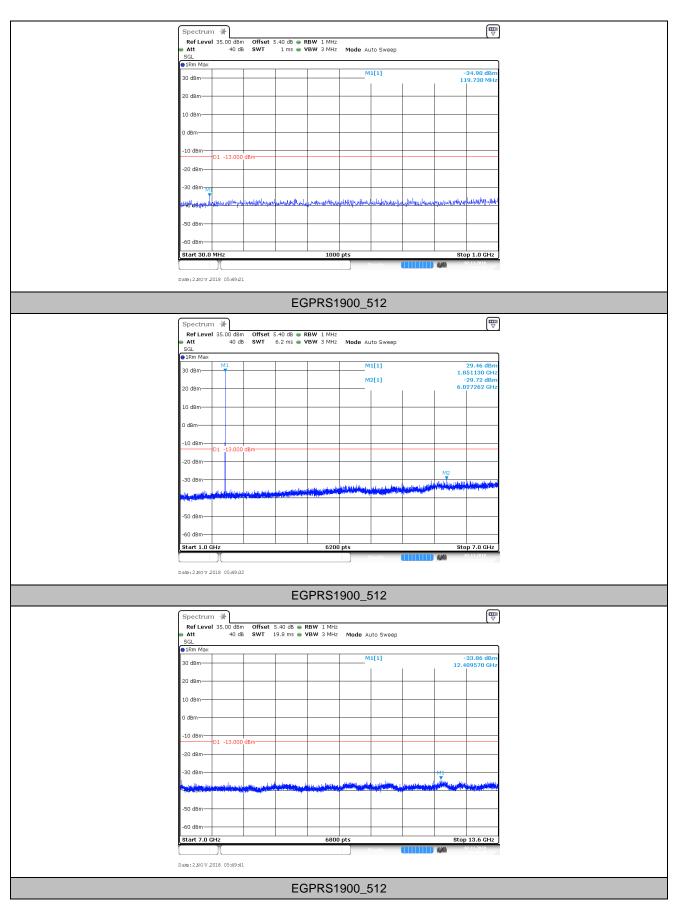
Report No.: HR/2018/9003201 Page: 30 of 44



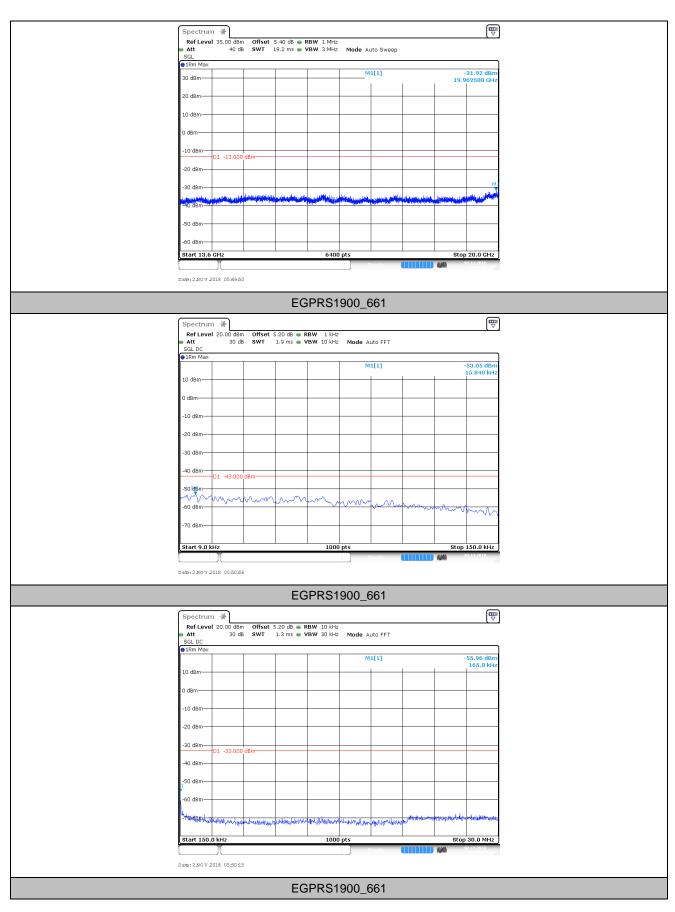
Report No.: HR/2018/9003201 Page: 31 of 44



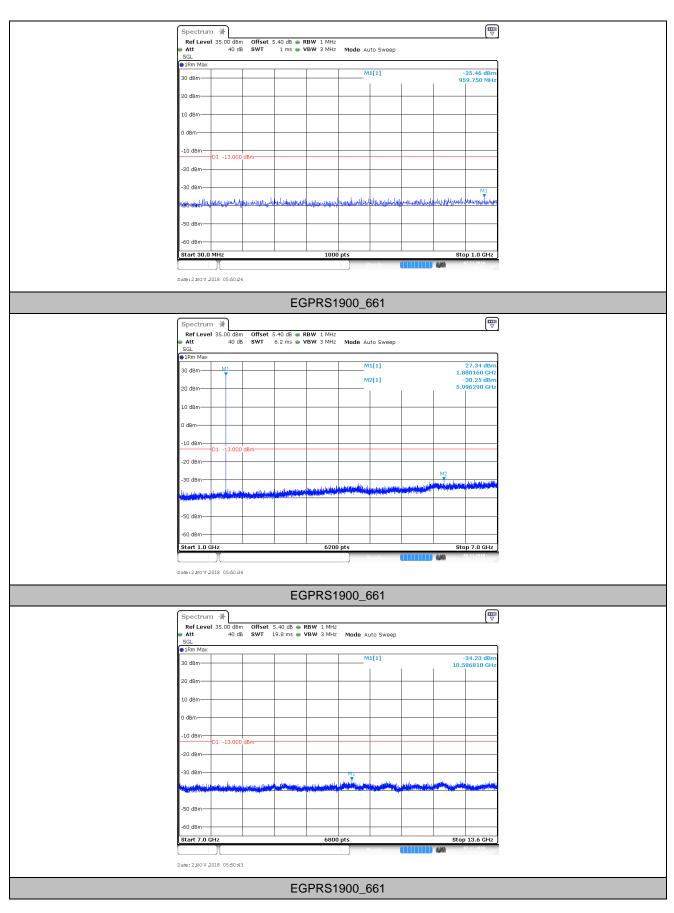
Report No.: HR/2018/9003201 Page: 32 of 44



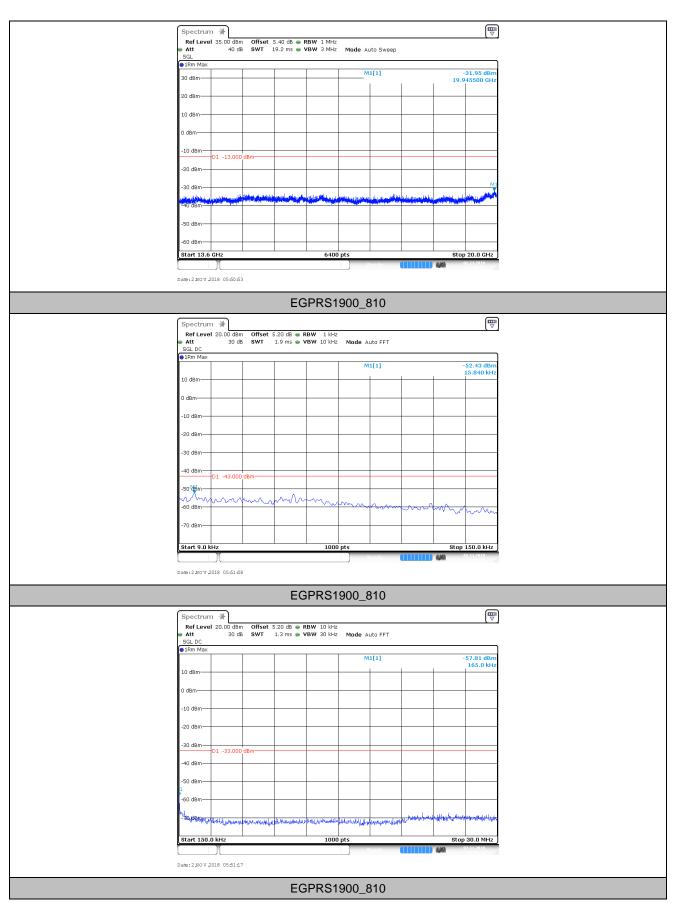
Report No.: HR/2018/9003201 Page: 33 of 44



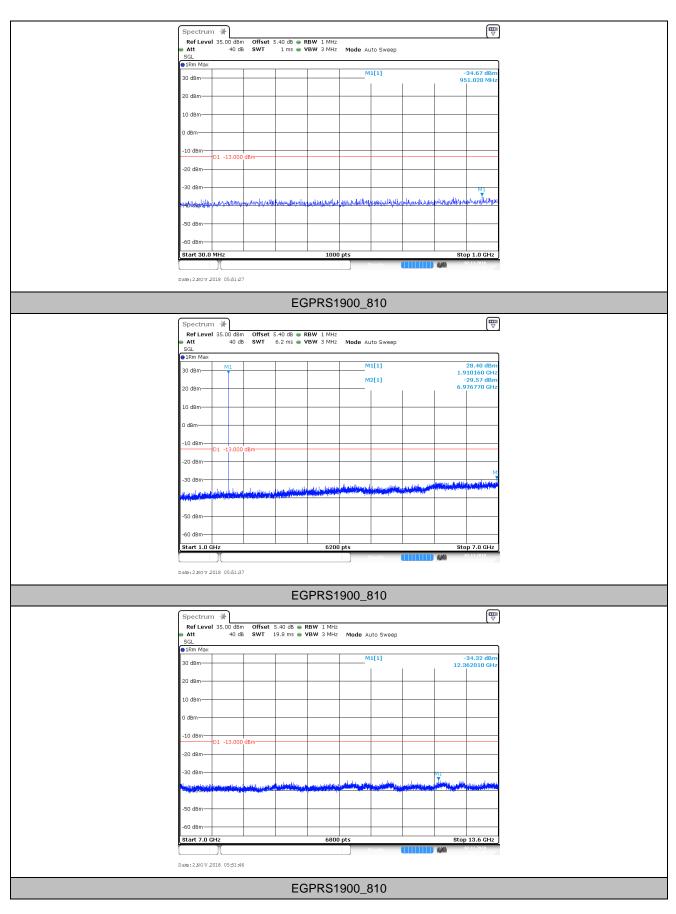
Report No.: HR/2018/9003201 Page: 34 of 44



Report No.: HR/2018/9003201 Page: 35 of 44



Report No.: HR/2018/9003201 Page: 36 of 44



Report No.: HR/2018/9003201 Page: 37 of 44

Report No.: HR/2018/9003201 Page: 38 of 44

Report No.: HR/2018/9003201 Page: 39 of 44

Ref Level 35.00 dsm Offset 5.40 ds RBW 1 MHz Att 40 ds SWT 19.2 ms VBW 3 MHz Mode Auto Sweep SGL IPM Max	Spectrum 💥)					
30 dBm	👄 Att			Mode Auto Swee	р		
30 dBm 15.197500 GHz 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -50 dBm 10 dBm -50 dBm 10 dBm -50 dBm 10 dBm -50 dBm 10 dBm	1Rm Max					1	
10 dBm Image: state of the state of t	30 dBm			M1[1]			
0 dBm- -10 dBm- -20 dBm- -20 dBm- -50 dBm-	20 dBm				_		
-10 dBm 01 -13.000 dBm 02 -20 dBm 01 -30 dBm 04	10 dBm						
D1 -13.000 dBm Image: Constraint of the second of the sec	0 dBm						
-20 dBm M1 Image: Constraint of the second	-10 dBm	13.000 dBm					
-50 dBm					_		
-50 dBm		T					
-60 dBm-	≤40 dBm		hi tahun daga kang dalam kang dala National second				
	-50 dBm						
Start 13.6 GHz 6400 pts Stop 20.0 GHz	-60 dBm				_		
	Start 13.6 GHz		6400	pts		Stop 20.0 GHz	
Ready 02.11.2018				Ready		02.11.2018	

Report No.: HR/2018/9003201 Page: 40 of 44

7. Field Strength of Spurious Radiation

7.1. Test Band = GSM 1900

SG

7.1.1. Test Channel = LCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Margin (dB)	Polarization
62.446500	-74.85	-13.00	61.85	Vertical
115.020500	-73.99	-13.00	60.99	Vertical
1648.275000	-41.97	-13.00	28.97	Vertical
2472.225000	-37.69	-13.00	24.69	Vertical
3296.800000	-50.57	-13.00	37.57	Vertical
4121.050000	-53.25	-13.00	40.25	Vertical
60.458000	-69.83	-13.00	56.83	Horizontal
104.253500	-74.11	-13.00	61.11	Horizontal
1648.125000	-45.54	-13.00	32.54	Horizontal
2472.525000	-39.62	-13.00	26.62	Horizontal
3297.150000	-51.13	-13.00	38.13	Horizontal
3982.800000	-56.13	-13.00	43.13	Horizontal

7.1.2. Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Margin (dB)	Polarization
65.938500	-75.90	-13.00	62.90	Vertical
112.013500	-74.20	-13.00	61.20	Vertical
1672.950000	-42.14	-13.00	29.14	Vertical
2510.100000	-38.10	-13.00	25.10	Vertical
3345.800000	-54.06	-13.00	41.06	Vertical
6042.900000	-53.66	-13.00	40.66	Vertical
65.017000	-74.11	-13.00	61.11	Horizontal
112.595500	-70.89	-13.00	57.89	Horizontal
1672.875000	-39.81	-13.00	26.81	Horizontal
2509.650000	-39.12	-13.00	26.12	Horizontal
3346.500000	-52.55	-13.00	39.55	Horizontal
6579.100000	-54.31	-13.00	41.31	Horizontal

7.1.3. Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Margin (dB)	Polarization
64.968500	-74.44	-13.00	61.44	Vertical
113.371500	-71.73	-13.00	58.73	Vertical
1697.850000	-43.67	-13.00	30.67	Vertical
2546.775000	-42.19	-13.00	29.19	Vertical
3394.800000	-49.22	-13.00	36.22	Vertical
5967.650000	-54.59	-13.00	41.59	Vertical
61.234000	-68.88	-13.00	55.88	Horizontal
192.475000	-71.37	-13.00	58.37	Horizontal
1697.100000	-45.68	-13.00	32.68	Horizontal
3394.800000	-48.63	-13.00	35.63	Horizontal
5942.100000	-52.87	-13.00	39.87	Horizontal
8607.000000	-53.48	-13.00	40.48	Horizontal

Report No.: HR/2018/9003201 Page: 41 of 44

7.2. Test Band = GSM 850

7.2.1. Test Channel = LCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Margin (dB)	Polarization
62.446500	-74.85	-13.00	61.85	Vertical
115.020500	-73.99	-13.00	60.99	Vertical
1648.275000	-41.97	-13.00	28.97	Vertical
2472.225000	-37.69	-13.00	24.69	Vertical
3296.800000	-50.57	-13.00	37.57	Vertical
4121.050000	-53.25	-13.00	40.25	Vertical
60.458000	-69.83	-13.00	56.83	Horizontal
104.253500	-74.11	-13.00	61.11	Horizontal
1648.125000	-45.54	-13.00	32.54	Horizontal
2472.525000	-39.62	-13.00	26.62	Horizontal
3297.150000	-51.13	-13.00	38.13	Horizontal
3982.800000	-56.13	-13.00	43.13	Horizontal

7.2.2. Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Margin (dB)	Polarization
65.938500	-75.90	-13.00	62.90	Vertical
112.013500	-74.20	-13.00	61.20	Vertical
1672.950000	-42.14	-13.00	29.14	Vertical
2510.100000	-38.10	-13.00	25.10	Vertical
3345.800000	-54.06	-13.00	41.06	Vertical
6042.900000	-53.66	-13.00	40.66	Vertical
65.017000	-74.11	-13.00	61.11	Horizontal
112.595500	-70.89	-13.00	57.89	Horizontal
1672.875000	-39.81	-13.00	26.81	Horizontal
2509.650000	-39.12	-13.00	26.12	Horizontal
3346.500000	-52.55	-13.00	39.55	Horizontal
6579.100000	-54.31	-13.00	41.31	Horizontal

7.2.3. Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Margin (dB)	Polarization
64.968500	-74.44	-13.00	61.44	Vertical
113.371500	-71.73	-13.00	58.73	Vertical
1697.850000	-43.67	-13.00	30.67	Vertical
2546.775000	-42.19	-13.00	29.19	Vertical
3394.800000	-49.22	-13.00	36.22	Vertical
5967.650000	-54.59	-13.00	41.59	Vertical
61.234000	-68.88	-13.00	55.88	Horizontal
192.475000	-71.37	-13.00	58.37	Horizontal
1697.100000	-45.68	-13.00	32.68	Horizontal
3394.800000	-48.63	-13.00	35.63	Horizontal
5942.100000	-52.87	-13.00	39.87	Horizontal
8607.000000	-53.48	-13.00	40.48	Horizontal

Remark:

- 1) The disturbance above 12.75GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the worst case data had been displayed.
- 2) We have tested all modulation and all Bandwidth, but only the worst case data presented in this report.

Report No.: HR/2018/9003201 Page: 42 of 44

8. Frequency Stability

S

8.1. Frequency Error Vs Voltage

Voltage							
BAND	Channel	Voltage (Vdc)	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
GSM850	128	VL	TN	8.94	0.010851	±2.5	PASS
GSM850	128	VN	TN	14.75	0.017902	±2.5	PASS
GSM850	128	VH	TN	10.78	0.013084	±2.5	PASS
GSM850	190	VL	TN	8.65	0.010343	±2.5	PASS
GSM850	190	VN	TN	8.81	0.010536	±2.5	PASS
GSM850	190	VH	TN	9.49	0.011346	±2.5	PASS
GSM850	251	VL	TN	9.72	0.011449	±2.5	PASS
GSM850	251	VN	TN	8.23	0.009699	±2.5	PASS
GSM850	251	VH	TN	10.62	0.012514	±2.5	PASS
EGPRS850	128	VL	TN	1.97	0.002390	±2.5	PASS
EGPRS850	128	VN	TN	-2.07	-0.002507	±2.5	PASS
EGPRS850	128	VH	TN	-5.39	-0.006542	±2.5	PASS
EGPRS850	190	VL	TN	-4.10	-0.004901	±2.5	PASS
EGPRS850	190	VN	TN	-1.36	-0.001621	±2.5	PASS
EGPRS850	190	VH	TN	5.91	0.007062	±2.5	PASS
EGPRS850	251	VL	TN	1.68	0.001978	±2.5	PASS
EGPRS850	251	VN	TN	3.49	0.004108	±2.5	PASS
EGPRS850	251	VH	TN	10.17	0.011982	±2.5	PASS
EGPRS1900	512	VL	TN	8.23	0.004450	±2.5	PASS
EGPRS1900	512	VN	TN	11.78	0.006369	±2.5	PASS
EGPRS1900	512	VH	TN	13.14	0.007102	±2.5	PASS
EGPRS1900	661	VL	TN	15.66	0.008329	±2.5	PASS
EGPRS1900	661	VN	TN	7.88	0.004190	±2.5	PASS
EGPRS1900	661	VH	TN	1.45	0.000773	±2.5	PASS
EGPRS1900	810	VL	TN	6.20	0.003246	±2.5	PASS
EGPRS1900	810	VN	TN	13.33	0.006982	±2.5	PASS
EGPRS1900	810	VH	TN	17.11	0.008960	±2.5	PASS

8.2. Frequency Error Vs Temperature

Temperature								
BAND	Channel	Voltage (Vdc)	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict	
GSM850	128	VN	-30	5.75	0.006973	±2.5	PASS	
GSM850	128	VN	-20	7.75	0.009401	±2.5	PASS	
GSM850	128	VN	-10	4.36	0.005288	±2.5	PASS	
GSM850	128	VN	0	12.69	0.015395	±2.5	PASS	
GSM850	128	VN	10	18.89	0.022916	±2.5	PASS	
GSM850	128	VN	20	20.60	0.024992	±2.5	PASS	
GSM850	128	VN	30	19.66	0.023856	±2.5	PASS	
GSM850	128	VN	40	18.44	0.022367	±2.5	PASS	
GSM850	128	VN	50	18.60	0.022563	±2.5	PASS	
GSM850	190	VN	-30	8.68	0.010381	±2.5	PASS	
GSM850	190	VN	-20	6.13	0.007332	±2.5	PASS	

SG:

Report No.: HR/2018/9003201 Page: 43 of 44

GSM850	190	VN	-10	11.59	0.013854	±2.5	PASS
GSM850	190	VN	0	9.62	0.011500	±2.5	PASS
GSM850	190	VN	10	9.59	0.011462	±2.5	PASS
GSM850	190	VN	20	9.62	0.011500	±2.5	PASS
GSM850	190	VN	30	8.46	0.010111	±2.5	PASS
GSM850	190	VN	40	7.94	0.009494	±2.5	PASS
GSM850	190	VN	50	10.46	0.012504	±2.5	PASS
GSM850	251	VN	-30	9.56	0.011259	±2.5	PASS
GSM850	251	VN	-20	9.91	0.011677	±2.5	PASS
GSM850	251	VN	-10	9.49	0.011183	±2.5	PASS
GSM850	251	VN	0	7.49	0.008825	±2.5	PASS
GSM850	251	VN	10	8.39	0.009890	±2.5	PASS
GSM850	251	VN	20	8.07	0.009509	±2.5	PASS
GSM850	251	VN	30	8.85	0.010422	±2.5	PASS
GSM850	251	VN	40	10.20	0.012020	±2.5	PASS
GSM850	251	VN	50	7.43	0.008749	±2.5	PASS
EGPRS850	128	VN	-30	0.58	0.000705	±2.5	PASS
EGPRS850	128	VN	-20	2.39	0.002899	±2.5	PASS
EGPRS850	128	VN	-10	0.77	0.000940	±2.5	PASS
EGPRS850	128	VN	0	0.42	0.000509	±2.5	PASS
EGPRS850	128	VN	10	-0.16	-0.000196	±2.5	PASS
EGPRS850	128	VN	20	4.88	0.005915	±2.5	PASS
EGPRS850	128	VN	30	6.46	0.007834	±2.5	PASS
EGPRS850	128	VN	40	1.39	0.001684	±2.5	PASS
EGPRS850	128	VN	50	3.39	0.004113	±2.5	PASS
EGPRS850	190	VN	-30	3.36	0.004014	±2.5	PASS
EGPRS850	190	VN	-20	7.68	0.009185	±2.5	PASS
EGPRS850	190	VN	-10	4.62	0.005519	±2.5	PASS
EGPRS850	190	VN	0	3.58	0.004284	±2.5	PASS
EGPRS850	190	VN	10	2.84	0.003396	±2.5	PASS
EGPRS850	190	VN	20	4.58	0.005480	±2.5	PASS
EGPRS850	190	VN	30	7.72	0.009223	±2.5	PASS
EGPRS850	190	VN	40	8.36	0.009995	±2.5	PASS
EGPRS850	190	VN	50	5.04	0.006020	±2.5	PASS
EGPRS850	251	VN	-30	3.45	0.004070	±2.5	PASS
EGPRS850	251	VN	-20	5.97	0.007037	±2.5	PASS
EGPRS850	251	VN	-10	5.75	0.006771	±2.5	PASS
EGPRS850	251	VN	0	1.84	0.002168	±2.5	PASS
EGPRS850	251	VN	10	6.33	0.007455	±2.5	PASS
EGPRS850	251	VN	20	0.13	0.000152	±2.5	PASS
EGPRS850	251	VN	30	9.46	0.011145	±2.5	PASS
EGPRS850	251	VN	40	11.40	0.013427	±2.5	PASS
EGPRS850	251	VN	50	11.66	0.013731	±2.5	PASS
EGPRS1900	512	VN	-30	11.24	0.006073	±2.5	PASS
EGPRS1900	512	VN	-20	11.88	0.006422	±2.5	PASS
EGPRS1900	512	VN	-10	5.65	0.003054	±2.5	PASS
EGPRS1900	512	VN	0	12.40	0.006701	±2.5	PASS
EGPRS1900	512	VN	10	18.40	0.009946	±2.5	PASS
EGPRS1900	512	VN	20	10.14	0.005479	±2.5	PASS
EGPRS1900	512	VN	30	8.85	0.004781	±2.5	PASS
			-				

SG

Report No.: HR/2018/9003201 Page: 44 of 44

EGPRS1900	512	VN	50	3.13	0.001693	±2.5	PASS
EGPRS1900	661	VN	-30	16.11	0.008569	±2.5	PASS
EGPRS1900	661	VN	-20	5.07	0.002696	±2.5	PASS
EGPRS1900	661	VN	-10	9.75	0.005186	±2.5	PASS
EGPRS1900	661	VN	0	8.72	0.004637	±2.5	PASS
EGPRS1900	661	VN	10	11.78	0.006268	±2.5	PASS
EGPRS1900	661	VN	20	13.66	0.007264	±2.5	PASS
EGPRS1900	661	VN	30	11.27	0.005993	±2.5	PASS
EGPRS1900	661	VN	40	16.30	0.008673	±2.5	PASS
EGPRS1900	661	VN	50	13.79	0.007333	±2.5	PASS
EGPRS1900	810	VN	-30	13.88	0.007269	±2.5	PASS
EGPRS1900	810	VN	-20	16.98	0.008892	±2.5	PASS
EGPRS1900	810	VN	-10	11.40	0.005968	±2.5	PASS
EGPRS1900	810	VN	0	15.05	0.007878	±2.5	PASS
EGPRS1900	810	VN	10	17.08	0.008943	±2.5	PASS
EGPRS1900	810	VN	20	10.01	0.005241	±2.5	PASS
EGPRS1900	810	VN	30	17.40	0.009112	±2.5	PASS
EGPRS1900	810	VN	40	17.82	0.009332	±2.5	PASS
EGPRS1900	810	VN	50	16.82	0.008808	±2.5	PASS

The End