

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom	· . · · · · · · · · · · · · · · · · · ·	
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	2450 MHz ± 1 MHz		

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.26 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)
SAB averaged over 10 cm ³ (10 g) of Body TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.03 W/ka

Certificate No: D2450V2-853_Jul17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω + 5.0 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point $49.6 \Omega + 6.3 j\Omega$	
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 10, 2009

Page 4 of 8

No. I18Z61172-SEM01 Page 161 of 170

DASY5 Validation Report for Head TSL

Date: 20.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

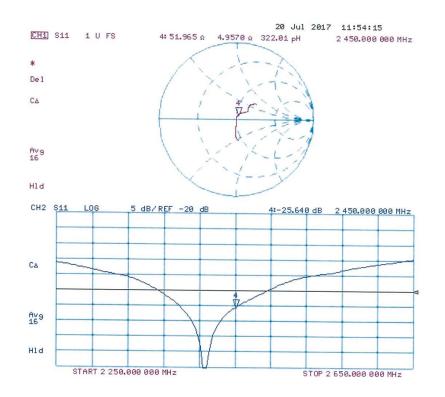
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.87 S/m; ε _r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.7 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 21.5 W/kg



0 dB = 21.5 W/kg = 13.32 dBW/kg

Certificate No: D2450V2-853_Jul17

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul17

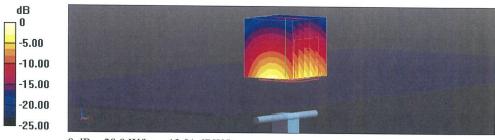
Page 6 of 8

No. I18Z61172-SEM01 Page 163 of 170

DASY5 Validation Report for Body TSL

Date: 21.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

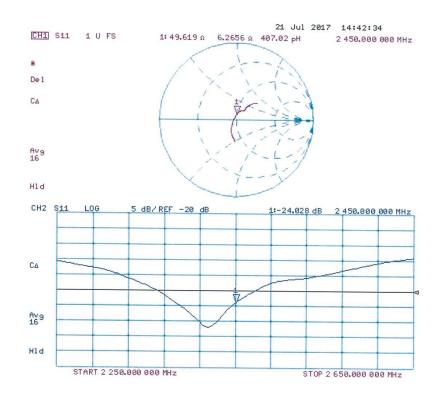

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ε_r = 52.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.5 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 20.0 W/kg



0 dB = 20.0 W/kg = 13.01 dBW/kg

Certificate No: D2450V2-853_Jul17

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul17

Page 8 of 8

ANNEX I DAE Calibration Certificate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	y of h, Switzerland	COMPACT AND A SCALE	 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatories	to the EA	ation No.: SCS 0108
Client CTTL-BJ (Aude		Certificat	te No: DAE4-1525_Oct17
CALIBRATION C	CERTIFICATE		
Object	DAE4 - SD 000 D	04 BM - SN: 1525	
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	lure for the data acquisition o	electronics (DAE)
Calibration date:	October 02, 2017		
		nal standards, which realize the physic bbability are given on the following page	
The measurements and the unce	ertainties with confidence pro		es and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence protected in the closed laboratory	bability are given on the following page	es and are part of the certificate. ± 3)°C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration)	bability are given on the following page facility: environment temperature (22 : Cal Date (Certificate No.)	es and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Dability are given on the following page facility: environment temperature (22 : Cal Date (Certificate No.) 31-Aug-17 (No:21092)	es and are part of the certificate. ± 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Aug-18
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cal Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 05-Jan-17 (in house check)	es and are part of the certificate. ± 3)°C and humidity < 70%. Scheduled Calibration Aug-18 Scheduled Check In house check: Jan-18
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Date (Certificate No.) 31-Aug-17 (No:21092) Check Date (in house) 05-Jan-17 (in house check) 05-Jan-17 (in house check) Function	es and are part of the certificate. ± 3)°C and humidity < 70%. <u>Scheduled Calibration</u> Aug-18 <u>Scheduled Check</u> In house check: Jan-18 In house check: Jan-18

Certificate No: DAE4-1525_Oct17

Page 1 of 5

No. I18Z61172-SEM01 Page 166 of 170

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current:* Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption:* Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1525_Oct17

Page 2 of 5

DC Voltage Measurement

voltage measur	ement			
A/D - Converter Reso	lution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,		-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.912 ± 0.02% (k=2)	405.954 ± 0.02% (k=2)	405.400 ± 0.02% (k=2)
Low Range	3.99166 ± 1.50% (k=2)	4.00980 ± 1.50% (k=2)	3.99550 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	53.5 ° ± 1 °

Certificate No: DAE4-1525_Oct17

.

Page 3 of 5

No. I18Z61172-SEM01 Page 168 of 170

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200030.95	-2.42	-0.00
Channel X	+ Input	20004.11	-0.05	-0.00
Channel X	- Input	-20003.75	2.02	-0.01
Channel Y	+ Input	200031.20	-2.23	-0.00
Channel Y	+ Input	20001.46	-2.74	-0.01
Channel Y	- Input	-20005.92	-0.05	0.00
Channel Z	+ Input	200032.03	-1.05	-0.00
Channel Z	+ Input	20001.94	-2.11	-0.01
Channel Z	- Input	-20006.15	-0.20	0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2000.66	0.19	0.01
Channel X + Input	200.40	-0.18	-0.09
Channel X - Input	-198.67	0.81	-0.40
Channel Y + Input	2000.90	0.48	0.02
Channel Y + Input	199.98	-0.58	-0.29
Channel Y - Input	-200.18	-0.62	0.31
Channel Z + Input	2000.68	0.32	0.02
Channel Z + Input	199.07	-1.45	-0.72
Channel Z - Input	-201.14	-1.52	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	18.32	16.76
	- 200	-15.73	-17.08
Channel Y	200	-20.47	-20.86
	- 200	20.66	20.31
Channel Z	200	13.43	13.46
A (7584)	- 200	-15.65	-15.97

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

_	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	0.08	-3.66
Channel Y	200	7.12	-	1.80
Channel Z	200	10.44	4.52	

Certificate No: DAE4-1525_Oct17

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15817	15005
Channel Y	16329	14457
Channel Z	15576	15478

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.63	-0.54	2.27	0.51
Channel Y	-2.07	-3.42	-1.02	0.49
Channel Z	-0.89	-2.38	0.83	0.54

6. Input Offset Current

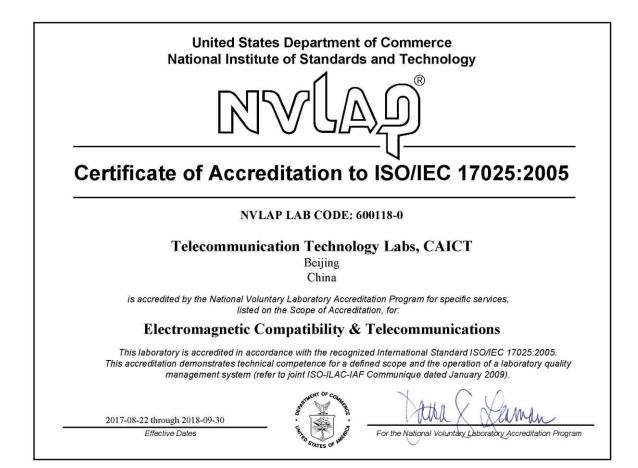
Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	


9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1525_Oct17

ANNEX J Accreditation Certificate

