

SAR TEST REPORT

No. I18Z60562-SEM01

For

TCL Communication Ltd.

LTE / UMTS / GSM mobile phone

Model Name: 5033A

With

Hardware Version: 05

Software Version: v7LT2

FCC ID: 2ACCJH089

Issued Date: 2018-4-25

R TESTING NVLAP LAB CODE 600118-0

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I18Z60562-SEM01	Rev.0	2018-4-25	Initial creation of test report

TABLE OF CONTENT

1 .	TEST LABORATORY	5
1.1	TESTING LOCATION	5
1.2	TESTING ENVIRONMENT	5
1.3	Project Data	5
1.4	SIGNATURE	5
2	STATEMENT OF COMPLIANCE	6
3 (CLIENT INFORMATION	8
3.1	Applicant Information	8
3.2	MANUFACTURER INFORMATION	8
4 I	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1	About EUT	9
4.2	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
4.3	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
5 -	TEST METHODOLOGY	10
5.1	APPLICABLE LIMIT REGULATIONS	10
5.2	Applicable Measurement Standards	
6	SPECIFIC ABSORPTION RATE (SAR)	11
6.1	INTRODUCTION	
6.2	SAR DEFINITION	
7	TISSUE SIMULATING LIQUIDS	
7.1	TARGETS FOR TISSUE SIMULATING LIQUID	
7.2	DIELECTRIC PERFORMANCE	12
8	SYSTEM VERIFICATION	19
8.1	System Setup	
8.2	System Verification	
9 I	MEASUREMENT PROCEDURES	21
9.1	TESTS TO BE PERFORMED	
9.2	GENERAL MEASUREMENT PROCEDURE	
9.3	WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4	SAR MEASUREMENT FOR LTE	
9.5	BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.6	Power Drift	
10	AREA SCAN BASED 1-G SAR	26
10.1		
10.2	2 FAST SAR ALGORITHMS	
11	CONDUCTED OUTPUT POWER©Copyright. All rights reser	

No. I18Z60562-SEM01 Page 4 of 193

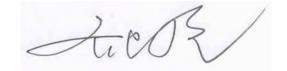
11.1	GSM MEASUREMENT RESULT	27
11.2	WCDMA MEASUREMENT RESULT	
11.3	LTE MEASUREMENT RESULT	29
11.4	WI-FI AND BT MEASUREMENT RESULT	40
12	SIMULTANEOUS TX SAR CONSIDERATIONS	42
12.1	INTRODUCTION	42
12.2	TRANSMIT ANTENNA SEPARATION DISTANCES	42
12.3	SAR MEASUREMENT POSITIONS	43
12.4	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	43
13	EVALUATION OF SIMULTANEOUS	44
14	SAR TEST RESULT	45
14.1	SAR RESULTS	45
14.2	FULL SAR	62
14.3	WLAN EVALUATION	63
15	SAR MEASUREMENT VARIABILITY	66
16	MEASUREMENT UNCERTAINTY	67
16.1	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	67
16.2	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	68
16.3	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	69
16.4	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	70
17	MAIN TEST INSTRUMENTS	72
ANNE	X A GRAPH RESULTS	73
ANNE	X B SYSTEM VERIFICATION RESULTS	105
ANNE	X C SAR MEASUREMENT SETUP	118
ANNE	X D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	124
ANNE	X E EQUIVALENT MEDIA RECIPES	127
ANNE	X F SYSTEM VALIDATION	128
ANNE	X G PROBE CALIBRATION CERTIFICATE	129
ANNE	X H DIPOLE CALIBRATION CERTIFICATE	140
ANNE	X I DAE CALIBRATION CERTIFICATE	188
ANNE	X J ACCREDITATION CERTIFICATE	193

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment


Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	April 11, 2018
Testing End Date:	April 16, 2018

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

的好好

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of SAR found during testing for TCL Communication Ltd. LTE / UMTS / GSM mobile phone 5033A is as follows:

Exposure Configuration	Technology Band	Equipment	
		1g (W/Kg)	Class
	GSM850	0.39	
	PCS1900	0.38	
	WCDMA1900-BII	0.23	
	WCDMA1700-BIV	0.46	
	WCDMA850-BV	0.39	
Head	LTE1900-FDD2	0.16	PCE
(Separation Distance 0mm)	LTE1700-FDD4	0.33	
	LTE850-FDD5	0.36	
	LTE2500-FDD7	0.20	
	LTE700-FDD12	0.22	
	LTE750-FDD13	0.34	
	WLAN 2.4 GHz	0.99	DTS
	GSM850	0.46	
	PCS1900	1.09	
	WCDMA1900-BII	1.19	
	WCDMA1700-BIV	1.18	
	WCDMA850-BV	0.44	
Hotspot	LTE1900-FDD2	1.19	PCE
(Separation Distance 10mm)	LTE1700-FDD4	1.16	
10(1)	LTE850-FDD5	0.41	
	LTE2500-FDD7	1.19	
	LTE700-FDD12	0.30	
	LTE750-FDD13	0.37	
	WLAN 2.4 GHz	0.16	DTS

Table	2.1.	Highest	Reported	SAR	(1a)
Table	4.1.	ingnesi	Neponeu	SAIL I	('9)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: 1.19 **W/kg (1g)**.

Table 2.2. The sum of reported OAN values for main antenna and with				
	Position	Main antenna	WiFi	Sum
Highest reported				
SAR value for	Right hand, Touch cheek	0.39	0.99	1.38
Head				
Highest reported				
SAR value for	Rear	1.18	0.16	1.34
Body				

Table 2.2: The sum of reported SAR values for main antenna and WiFi

Table 2.3: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum
Maximum reported SAR value for Head	Right hand, Touch cheek	0.39	0.21	0.60
Maximum reported SAR value for Body	Rear	1.18	0.10	1.28

[1] - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.38 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.	
	7/F, Block F4, TCL Communication Technology Building, TCL	
Address /Post:	International E City, Zhong Shan Yuan Road, Nanshan District,	
	Shenzhen, Guangdong, P.R. China 518052	
City:	Shanghai	
Postal Code: 201203		
Country:	China	
Contact Person: Gong Zhizhou		
E-mail:	zhizhou.gong@tcl.com	
Telephone:	e: 0086-755-36611722	
Fax:	/	

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.	
	7/F, Block F4, TCL Communication Technology Building, TCL	
Address /Post:	International E City, Zhong Shan Yuan Road, Nanshan District,	
	Shenzhen, Guangdong, P.R. China 518052	
City:	Shanghai	
Postal Code:	201203	
Country:	China	
Contact Person:	Gong Zhizhou	
E-mail:	zhizhou.gong@tcl.com	
Telephone:	0086-755-36611722	
Fax:	/	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	LTE / UMTS / GSM mobile phone				
Model name:	5033A				
Operating mode(s):	GSM 850/900/1800/1900 WCDMA850/900/1700/1900/2100				
	LTE B1/2/3/4/5/7/8/12/13/17/28, BT, WLAN				
	825 – 848.8 MHz (GSM 850)				
	1850.2 – 1910 MHz (GSM 1900)				
	826.4–846.6 MHz (WCDMA 850 Band V)				
	1712.4 – 1752.6 MHz (WCDMA 1700 Band IV)				
	1852.4–1907.6 MHz (WCDMA1900 Band II)				
Tected Tx Frequency:	1860 – 1900 MHz (LTE Band 2)				
Tested Tx Frequency:	1720 – 1745 MHz (LTE Band 4)				
	824.7 – 848.3 MHz (LTE Band 5)				
	2502.5 – 2567.5 MHz (LTE Band 7)				
	699.7 –715.3 MHz (LTE Band 12)				
	779.5 –784.5 MHz (LTE Band 13)				
	2412 – 2462 MHz (Wi-Fi 2.4G)				
GPRS/EGPRS Multislot Class:	12				
Test device Production information:	Production unit				
Device type:	Portable device				
Antenna type:	Integrated antenna				
Accessories/Body-worn configurations:	Headset				
Hotspot mode:	Support				
Product dimension	Long 137.6mm ;Wide 65.7mm ; Diagonal 152.48mm				

4.2 Internal Identification of EUT used during the test

EUTID	IMEI	HW Version	SW Version
1	356268090200117	05	v7LT2
2	356268090200042	05	v7LT2
3	356268090200034	05	v7LT2

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 to 2 and conducted power with the EUT3.

4.3 Internal Identification of AE used during the test

AE ID	Description	Model	SN	Manufactory
AE1	Battery	CAB1930000C7	/	Ningbo Veken Battery Co.,LTD

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

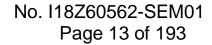
Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

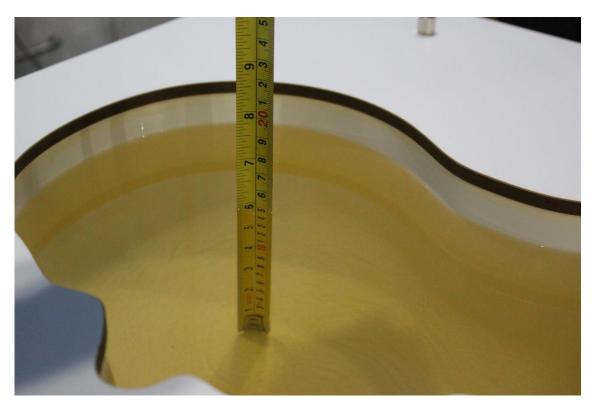
7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid


				-	
Frequency(MHz)	Liquid Type	Conductivity(o)	± 5% Range	Permittivity(ε)	± 5% Range
750	Head	0.89	0.85~0.93	41.94	39.8~44.0
750	Body	0.96	0.91~1.01	55.5	52.7~58.3
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1
1750	Body	1.49	1.42~1.56	53.4	50.7~56.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
2600	Head	1.96	1.86~2.06	39.01	37.06~40.96
2600	Body	2.16	2.05~2.27	52.5	49.9~55.1

7.2 Dielectric Performance


Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2018/4/11	750 MHz	Head	41.7	-0.57	0.898	0.90
2010/4/11		Body	55.35	-0.27	0.951	-0.94
2018/4/12	005 MU-	Head	41.6	0.24	0.901	0.11
2010/4/12	835 MHz	Body	56.1	1.63	0.988	1.86
2018/4/13	1750 MHz	Head	40.68	1.50	1.38	0.73
2010/4/13		Body	53.22	-0.34	1.514	1.61
2018/4/14	1900 MHz	Head	39.55	-1.13	1.39	-0.71
2010/4/14		Body	53.19	-0.21	1.536	1.05
2019/4/15		Head	39.05	-0.38	1.784	-0.89
2018/4/15	2450 MHz	Body	53.36	1.25	1.966	0.82
2019/4/16	2600 MHz	Head	39.57	1.44	1.966	0.31
2018/4/16		Body	51.61	-1.70	2.138	-1.02

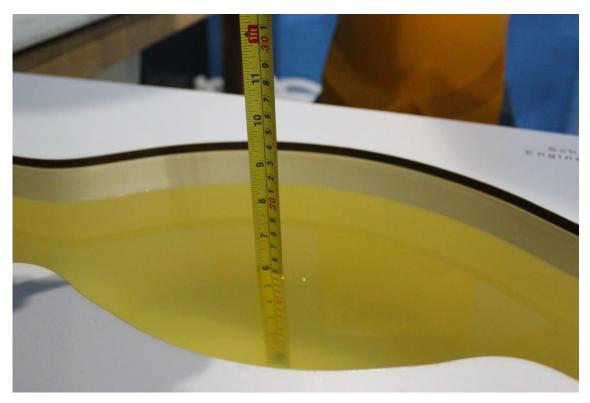
Note: The liquid temperature is 22.0 $^{\rm o}{\rm C}$



Picture 7-1 Liquid depth in the Head Phantom (750 MHz)

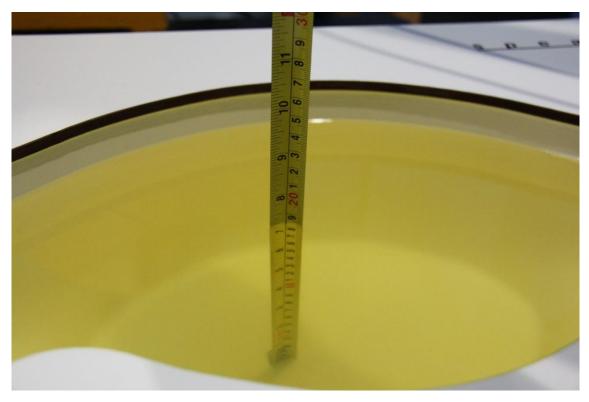
Picture 7-2 Liquid depth in the Flat Phantom (750 MHz)

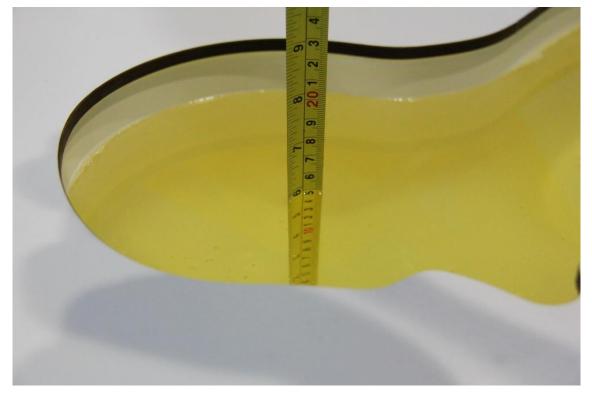
Picture 7-3 Liquid depth in the Head Phantom (835MHz)



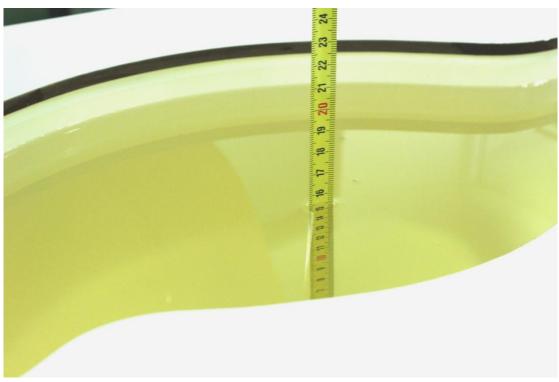
Picture 7-4 Liquid depth in the Flat Phantom (835MHz)

Picture 7-5 Liquid depth in the Head Phantom (1750 MHz)


Picture 7-6 Liquid depth in the Flat Phantom (1750MHz)



Picture 7-7 Liquid depth in the Head Phantom (1900 MHz)

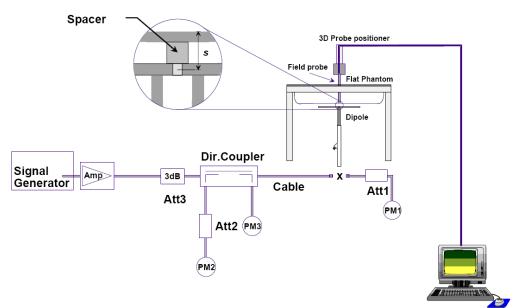


Picture 7-8 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-9 Liquid depth in the Head Phantom (2450MHz)

Picture 7-10 Liquid depth in the Flat Phantom (2450MHz)

Picture 7-11 Liquid depth in the Head Phantom (2600 MHz Head)


Picture 7-12 Liquid depth in the Flat Phantom (2600MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 0.1. System vernication of field										
Measurement Date		Target val	ue (W/kg)	Measure (W/	ed value /kg)	Deviation				
(yyyy-mm-	Frequency	10 g	1 g	10 g	1 g	10 g	1 g			
dd)		Average	Average	Average	Average	Average	Average			
2018/4/11	750 MHz	5.42	8.32	5.36	8.32	-1.11%	0.00%			
2018/4/12	835 MHz	6.06	9.37	6.08	9.48	0.33%	1.17%			
2018/4/13	1750 MHz	19.4	36.7	19.52	36.12	0.62%	-1.58%			
2018/4/14	1900 MHz	21.0	40.0	20.8	40.6	-0.95%	1.50%			
2018/4/15	2450 MHz	24.7	52.2	25.12	53.16	1.70%	1.84%			
2018/4/16	2600 MHz	25.8	57.9	25.96	58.8	0.62%	1.55%			

Table 8.1: System Verification of Head

Table 8.2: System Verification of Body

Measurement Date		Target val	ue (W/kg)	Measure (W/	ed value /kg)	Deviation		
(yyyy-mm- dd)	Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	
2018/4/11	750 MHz	5.68	8.66	5.64	8.84	-0.70%	2.08%	
2018/4/12	835 MHz	6.12	9.41	6.2	9.24	1.31%	-1.81%	
2018/4/13	1750 MHz	19.8	37.1	20.08	36.76	1.41%	-0.92%	
2018/4/14	1900 MHz	21.5	40.5	21.24	40.12	-1.21%	-0.94%	
2018/4/15	2450 MHz	23.8	50.4	23.44	49.88	-1.51%	-1.03%	
2018/4/16	2600 MHz	24.8	55.5	25.2	54.64	1.61%	-1.55%	

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

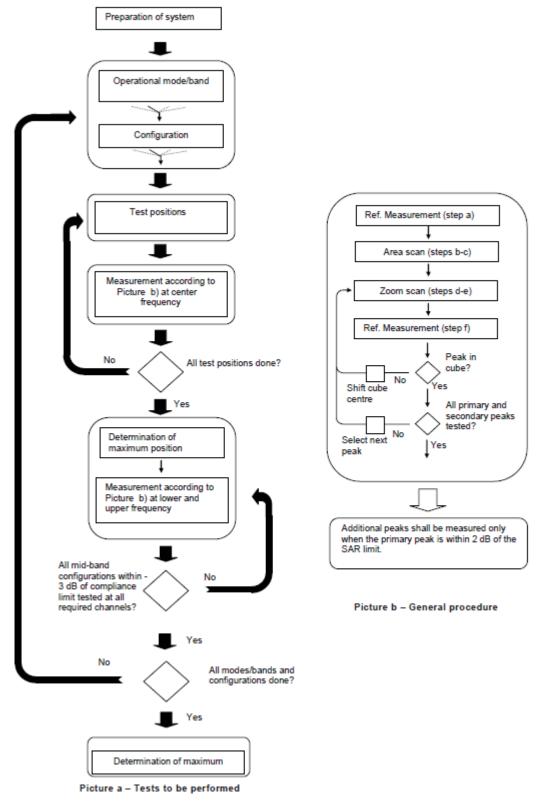
Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of

the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

		\leq 3 GHz	> 3 GHz		
	-	$5 \pm 1 \text{ mm}$	¼·δ·ln(2) ± 0.5 mm		
rom probe a ent location		30°±1°	20°±1°		
		$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
ial resolutio	m: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device we point on the test device.	, is smaller than the above, the $e \leq $ the corresponding x or y		
atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^{*}$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^{*}$		
uniform g	rid: ∆z _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$		
graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$		
grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume x, y, z			$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ 5 - 6 GHz: > 22 mm		
	e sensors) f om probe a ent location ial resolution atial resolution uniform g graded grid	$\frac{1}{2} = \frac{1}{2} \frac{\Delta x_{Area}}{\Delta x_{Zoom}} \frac{\Delta y_{Area}}{\Delta x_{Zoom}}$ $\frac{1}{2} = \frac{1}{2} \frac{\Delta x_{Zoom}}{\Delta x_{Zoom}} \Delta $	closest measurement point 5 ± 1 mm per sensors) to phantom surface $30^{\circ} \pm 1^{\circ}$ com probe axis to phantom surface $30^{\circ} \pm 1^{\circ}$ ial resolution: $\Delta x_{Area}, \Delta y_{Area}$ $\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ ial resolution: $\Delta x_{Area}, \Delta y_{Area}$ When the x or y dimension of the measurement plane orientation measurement resolution must be dimension of the test device. atial resolution: $\Delta x_{Zoom}, \Delta y_{Zoom}$ $\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}^*$ graded $\Delta z_{Zoom}(1)$: between 1^{st} grid $\Delta z_{Zoom}(n>1)$: between 1^{st} $\Delta z_{Zoom}(n>1)$: between 1^{st} $\leq 4 \text{ mm}$ $\Delta z_{Zoom}(n>1)$: between 1^{st} $\leq 1.5 \cdot \Delta z$		

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	$oldsymbol{eta}_{c}$	eta_{d}	eta_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	eta_{c}	eta_{d}	eta_d	$eta_{_c}$ / $eta_{_d}$	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E- TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$eta_{ed1}{}_{:47/15}$ $eta_{ed2}{}_{:47/15}$	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

- QPSK with 50% RB allocation
 The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.5 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM850 #1											
		Measured Power (dBm)				Frame B	urst Power	(dBm)			
Config	Tune-up	CH251	CH190	CH128	Caculation	CH251	CH190	CH128			
Config	Tune-up	848.8 MHz	836.6 MHz	824.2 MHz		848.8 MHz	836.6 MHz	824.2 MHz			
GSM Speech	33.30	32.69	32.78	32.63							
GPRS 1 Txslot	33.30	32.63	32.72	32.58	-9.03	23.60	23.69	23.55			
GPRS 2 Txslots	30.50	30.33	30.38	30.14	-6.02	24.31	24.36	24.12			
GPRS 3 Txslots	28.50	28.12	28.18	27.82	-4.26	23.86	23.92	23.56			
GPRS 4 Txslots	27.50	26.79	26.91	26.50	-3.01	23.78	23.90	23.49			
EGPRS GMSK 1 Txslot	33.30	32.70	32.77	32.61	-9.03	23.67	23.74	23.58			
EGPRS GMSK 2 Txslots	30.50	30.39	30.43	30.18	-6.02	24.37	24.41	24.16			
EGPRS GMSK 3 Txslots	28.50	28.20	28.23	27.87	-4.26	23.94	23.97	23.61			
EGPRS GMSK 4 Txslots	27.50	26.87	26.97	26.55	-3.01	23.86	23.96	23.54			
EGPRS 8PSK 1 Txslot	27.00	26.01	25.99	26.12	-9.03	16.98	16.96	17.09			
EGPRS 8PSK 2 Txslots	25.50	24.90	24.97	25.01	-6.02	18.88	18.95	18.99			
EGPRS 8PSK 3 Txslots	24.00	22.85	22.88	22.96	-4.26	18.59	18.62	18.70			
EGPRS 8PSK 4 Txslots	22.50	21.79	21.79	21.86	-3.01	18.78	18.78	18.85			

Table 11-2 PCS1900 #1

	PCS1900 #1											
		Measured Power (dBm)				Frame B	urst Power	(dBm)				
Config	Tune-up	CH810	CH661	CH512	Caculation	CH810	CH661	CH512				
	<u> </u>	1909.8 MHz	1880 MHz	1850.2 MHz		1909.8 MHz	1880 MHz	1850.2 MHz				
GSM Speech	30.30	29.99	30.01	29.90								
GPRS 1 Txslot	30.30	29.99	30.02	29.90	-9.03	20.96	20.99	20.87				
GPRS 2 Txslots	28.00	27.36	27.73	27.59	-6.02	21.34	21.71	21.57				
GPRS 3 Txslots	26.00	25.21	25.53	25.57	-4.26	20.95	21.27	21.31				
GPRS 4 Txslots	25.00	24.16	24.47	24.55	-3.01	21.15	21.46	21.54				
EGPRS GMSK 1 Txslot	30.30	29.96	29.98	29.89	-9.03	20.93	20.95	20.86				
EGPRS GMSK 2 Txslots	28.00	27.36	27.70	27.57	-6.02	21.34	21.68	21.55				
EGPRS GMSK 3 Txslots	26.00	25.20	25.50	25.55	-4.26	20.94	21.24	21.29				
EGPRS GMSK 4 Txslots	25.00	24.15	24.45	24.53	-3.01	21.14	21.44	21.52				
EGPRS 8PSK 1 Txslot	26.00	25.75	25.85	25.88	-9.03	16.72	16.82	16.85				
EGPRS 8PSK 2 Txslots	25.00	24.79	24.97	24.96	-6.02	18.77	18.95	18.94				
EGPRS 8PSK 3 Txslots	23.00	22.89	22.99	22.84	-4.26	18.63	18.73	18.58				
EGPRS 8PSK 4 Txslots	22.00	21.71	21.93	21.81	-3.01	18.70	18.92	18.80				

NOTES:

Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for 850MHz and 1900MHz.

11.2 WCDMA Measurement result

Table 11-3 WCDMA1900-BII #1

	WCDMA1900-BII #1											
SN:			Measured Power (dBm)									
ltem		Tune un	CH9538	CH9400	CH9262							
nem		Tune-up	1907.6 MHz	1880 MHz	1852.4 MHz							
WCDMA	١	23.50	23.25	23.32	23.45							
	1.00	21.00	19.98	19.92	19.86							
	2.00	21.00	19.93	19.92	19.85							
HSUPA	3.00	22.00	20.95	20.89	20.85							
	4.00	20.50	19.48	19.43	19.39							
	5.00	22.00	20.84	20.81	20.79							
HSPA+	۱	22.50	21.54	21.57	21.56							
	1.00	23.00	22.10	22.09	22.13							
DC-HSDPA	2.00	23.00	22.11	22.13	22.14							
DC-HSDPA	3.00	23.00	21.60	21.65	21.61							
	4.00	23.00	21.59	21.63	21.62							

Table 11-4 WCDMA1700-BIV #1

	WCDMA1700-BIV #1											
SN:			Measured Power (dBm)									
ltem		Tune-up	CH1513	CH1412	CH1312							
item		rune-up	1752.6 MHz	1732.4 MHz	1712.4 MHz							
WCDMA	1	23.50	23.11	23.12	23.14							
	1.00	21.00	19.58	19.66	19.63							
	2.00	21.00	19.56	19.61	19.66							
HSUPA	3.00	22.00	20.55	20.59	20.62							
	4.00	20.50	19.14	19.14	19.15							
	5.00	22.00	20.45	20.51	20.55							
HSPA+	۱	22.50	21.40	21.36	21.24							
	1.00	23.00	21.90	21.89	21.86							
DC-HSDPA	2.00	23.00	21.91	21.90	21.83							
DC-HSDPA	3.00	23.00	21.40	21.38	21.32							
	4.00	23.00	21.42	21.37	21.30							

Table 11-5 WCDMA850-BV #1

WCDMA850-BV #1												
SN:			Meas	ured Power	(dBm)							
ltem		Tune-up	CH4233 846.6 MHz	CH4182 835.4 MHz	CH4132 826.4 MHz							
WCDMA	1	24.00	23.34	23.40	23.41							
	1.00	21.00	20.21	20.26	20.21							
	2.00	21.00	20.24	20.23	20.15							
HSUPA	3.00	22.00	21.22	21.25	21.19							
	4.00	20.50	19.75	19.81	19.74							
	5.00	22.00	21.13	21.18	21.14							
HSPA+	1	22.50	21.88	21.95	21.89							
	1.00	23.00	22.46	22.48	22.43							
DC-HSDPA	2.00	23.00	22.47	22.47	22.44							
DC-HSDPA	3.00	23.00	21.94	21.97	21.90							
	4.00	23.00	21.92	21.94	21.92							

11.3 LTE Measurement result

Table 11-6 LTE1900-FDD2 #1

		LTE	1900-FDD2 #				
SN						/er (dBm) & M	
BandWidth	RB No./Start	Channel	Tuno un		PSK	16Q	AM
Banuvviutn	RB NU./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR
		19193	23.5	22.83	0	21.69	1
	1H	18900	23.5	22.73	0	22.02	1
		18607	23.5	22.81	0	21.72	1
		19193	23.5	22.98	0	21.87	1
	1M	18900	23.5	22.89	0	22.21	1
		18607	23.5	22.94	0	21.86	1
	1L	19193 18900	23.5 23.5	22.69 22.63	0	21.70 22.02	<u>1</u> 1
		18607	23.5	22.62	0	21.70	1
		19193	23.5	22.65	0	21.70	1
1.4MHz	ЗH	18900	23.5	22.70	0	21.98	1
		18607	23.5	22.71	0	21.96	1
		19193	23.5	22.73	0	21.72	1
	ЗM	18900	23.5	22.77	0	21.98	1
		18607	23.5	22.80	0	22.00	1
	0	19193	23.5	22.65	0	21.67	1
	3L	18900 18607	23.5 23.5	22.72 22.72	0	21.94 21.91	<u>1</u> 1
		19193	23.5	21.82	1	20.87	2
	6	18900	23.5	21.79	1	20.67	2
		18607	23.5	21.81	1	20.94	2
		19185	23.5	22.84	0	21.65	1
	1H	18900	23.5	22.76	0	21.66	1
		18615	23.5	22.77	0	22.08	1
		19185	23.5	22.91	0	21.83	1
	1M	18900	23.5	22.76	0	21.78	1
		18615	23.5	22.81	0	22.28	1
	1L	19185	23.5	22.76	0	21.73	<u>1</u> 1
		18900 18615	23.5 23.5	22.74 22.75	0	21.67 22.13	1
		19185	23.5	21.89	1	20.78	2
3MHz	8H	18900	23.5	21.86	1	20.84	2
		18615	23.5	21.88	1	20.84	2
		19185	23.5	21.81	1	20.80	2
	8M	18900	23.5	21.79	1	20.85	2
		18615	23.5	21.76	1	20.88	2
		19185	23.5	21.83	1	20.76	2
	8L	18900	23.5	21.80	1	20.88	2
		18615 19185	23.5 23.5	21.79 21.75	1	20.85 20.70	2
	15	18900	23.5	21.73	1	20.77	2
		18615	23.5	21.74	1	20.77	2
		19175	23.5	22.64	0	21.68	1
	1H	18900	23.5	22.62	0	21.82	1
		18625	23.5	22.59	0	22.13	1
		19175	23.5	22.91	0	21.95	1
	1M	18900	23.5	22.87	0	22.06	1
		18625	23.5	22.88	0	22.39	1
	1L	19175 18900	23.5 23.5	22.64 22.61	0	21.70 21.82	<u>1</u> 1
		18625	23.5	22.61	0	21.02	1
		19175	23.5	21.67	1	20.71	2
5MHz	12H	18900	23.5	21.69	1	20.80	2
		18625	23.5	21.73	1	20.90	2
		19175	23.5	21.77	1	20.80	2
	12M	18900	23.5	21.79	1	20.86	2
		18625	23.5	21.80	1	20.91	2
		19175	23.5	21.70	1	20.75	2
	12L	18900	23.5	21.74	1	20.82	2
		18625	23.5	21.63	1	20.78	2
		19175	23.5	21.71	1	20.64	2
	25	18900	23.5	21.74	1	20.76	2

©Copyright. All rights reserved by CTTL.

No. I18Z60562-SEM01 Page 30 of 193

						1	
		19150	23.5	22.77	0	21.70	1
	1H	18900	23.5	22.69	0	21.60	1
		18650	23.5	22.74	0	22.04	1
		19150	23.5	22.97	0	21.80	1
	1M	18900	23.5	22.92	0	21.77	1
		18650	23.5	22.87	0	22.17	1
		19150	23.5	22.69	0	21.65	1
	1L	18900	23.5	22.67	0	21.62	1
	12						1
		18650	23.5	22.74	0	22.08	
101411-	0511	19150	23.5	21.74	1	20.82	2
10MHz	25H	18900	23.5	21.80	1	20.80	2
		18650	23.5	21.83	1	20.82	2
		19150	23.5	21.82	1	20.89	2
	25M	18900	23.5	21.79	1	20.76	2
		18650	23.5	21.76	1	20.80	2
		19150	23.5	21.76	1	20.85	2
	25L	18900	23.5	21.74	1	20.76	2
		18650	23.5	21.69	1	20.69	2
		19150	23.5	21.76	1	20.76	2
	50	18900	23.5	21.76	1	20.72	2
		18650	23.5	21.76	1	20.73	2
	_	19125	23.5	22.64	0	21.90	1
	1H	18900	23.5	22.57	0	21.50	1
		18675	23.5	22.63	0	21.96	1
		_			_		
		19125	23.5	22.78	0	22.09	1
	1M	18900	23.5	22.72	0	21.67	1
		18675	23.5	22.75	0	22.08	1
		19125	23.5	22.66	0	21.96	1
	1L	18900	23.5	22.59	0	21.58	1
		18675	23.5	22.67	0	22.03	1
		19125	23.5	21.84	1	20.75	2
15MHz	36H	18900	23.5	21.78	1	20.74	2
		18675	23.5	21.74	1	20.76	2
		19125	23.5	21.85	1	20.79	2
	36M	18900	23.5	21.78	1	20.75	2
		18675	23.5	21.79	1	20.78	2
		19125	23.5	21.83	1	20.76	2
	36L	18900	23.5	21.75	1	20.75	2
	JUL	18675	23.5	21.66	1	20.72	2
	75	19125	23.5	21.83	1	20.76	2
	75	18900	23.5	21.81	1	20.76	2
		18675	23.5	21.69	1	20.70	2
		19100	23.5	22.41	0	21.83	1
	1H	18900	23.5	22.36	0	21.80	1
		18700	23.5	22.38	0	21.95	1
		19100	23.5	22.92	0	22.21	1
	1M	18900	23.5	22.88	0	22.22	1
		18700	23.5	22.91	0	22.35	1
		19100	23.5	22.37	0	21.85	1
	1L	18900	23.5	22.38	0	21.85	1
		18700	23.5	22.42	0	22.00	1
		19100	23.5	21.66	1	20.67	2
20MHz	50H	18900	23.5	21.00	1	20.07	2
20101112	5011	18900	23.5	21.78	1	20.71	2
		19100	23.5	21.76	1	20.73	2
	50M	18900	23.5	21.75	1	20.72	2
		18700	23.5	21.74	1	20.73	2
		19100	23.5	21.75	1	20.71	2
	50L	18900	23.5	21.75	1	20.70	2
		18700	23.5	21.58	1	20.61	2
	19100	23.5	21.69	1	20.69	2	
		13100					
	100	18900	23.5	21.75	1	20.75	2

Table 11-7 LTE1700-FDD4 #1

		LTE	1700-FDD4 #						
SN						/er (dBm) & MF			
				QP	SK	16Q	AM		
BandWidth	RB No./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR		
		20393	23.5	22.57	0	21.65	1		
	1H	20175	23.5	22.65	0	21.75	1		
		19957	23.5	22.72	0	22.05	1		
		20393	23.5	22.71	0	21.75	1		
	1M	20175	23.5	22.83	0	21.91	1		
		19957	23.5	22.89	0	22.20	1		
		20393	23.5	22.56	0	21.62	1		
	1L	20175	23.5	22.68	0	21.74	1		
		19957	23.5	22.72	0	22.05	1		
		20393	23.5	22.65	0	21.85	1		
1.4MHz	ЗH	20175	23.5	22.65	0	21.76	1		
		19957	23.5	22.74	0	21.94	1		
		20393	23.5	22.70	0	21.90	1		
	3M	20175	23.5	22.70	0	21.79	1		
		19957	23.5	22.82	0	21.96	1		
		20393	23.5	22.61	0	21.84	1		
	3L	20000	23.5	22.65	0	21.75	1		
		19957	23.5	22.75	0	21.92	1		
		20393	23.5	21.76	1	20.87	2		
	6	20000	23.5	21.77	1	20.87	2		
	Ŭ	19957	23.5	21.81	1	20.72	2		
		10001	20.0	21.01		20.12	2		
		20385	23.5	22.62	0	21.60	1		
	1H	20385					-		
	111		23.5	22.65	0	21.58	1		
		19965	23.5	22.79	0	22.11	1		
		20385	23.5	22.78	0	21.82	1		
	1M	20175	23.5	22.80	0	21.76	1		
		19965	23.5	22.90	0	22.24	1		
		20385	23.5	22.67	0	21.68	1		
	1L	20175	23.5	22.65	0	21.63	1		
		19965	23.5	22.76	0	22.09	1		
0.411		20385	23.5	21.70	1	20.70	2		
3MHz	8H	20175	23.5	21.72	1	20.78	2		
		19965	23.5	21.79	1	20.82	2		
		20385	23.5	21.77	1	20.76	2		
	8M	20175	23.5	21.79	1	20.84	2		
		19965	23.5	21.85	1	20.84	2		
		20385	23.5	21.73	1	20.73	2		
	8L	20175	23.5	21.74	1	20.82	2		
		19965	23.5	21.82	1	20.85	2		
		20385	23.5	21.68	1	20.62	2		
	15	20175	23.5	21.71	1	20.70	2		
		19965	23.5	21.75	1	20.75	2		
		20375	23.5	22.59	0	21.68	1		
	1H	20175	23.5	22.63	0	21.77	1		
		19975	23.5	22.64	0	22.12	1		
		20375	23.5	22.86	0	21.95	1		
	1M	20175	23.5	22.94	0	22.03	1		
		19975	23.5	22.93	0	22.42	1		
		20375	23.5	22.58	0	21.65	1		
	1L	20175	23.5	22.66	0	21.75	1		
		19975	23.5	22.64	0	22.11	1		
		20375	23.5	21.62	1	20.68	2		
5MHz	12H	20175	23.5	21.66	1	20.70	2		
		19975	23.5	21.80	1	20.92	2		
		20375	23.5	21.73	1	20.79	2		
	12M	20175	23.5	21.73	1	20.82	2		
		19975	23.5	21.81	1	20.90	2		
		20375	23.5	21.72	1	20.77	2		
	12L	20175	23.5	21.68	1	20.74	2		
		19975	23.5	21.70	1	20.84	2		
		20375	23.5	21.65	1	20.59	2		
	I						2		
	25	20175	23.5	21.68	1	20.65	~		

No. I18Z60562-SEM01 Page 32 of 193

	1	1		1		1	
		20350	23.5	22.59	0	21.60	1
	1H	20175	23.5	22.58	0	21.59	1
		20000	23.5	22.79	0	22.06	1
		20350	23.5	22.72	0	21.76	1
	1M	20330	23.5	22.72	0	21.70	1
		20000	23.5	22.98	0	22.18	1
		20350	23.5	22.56	0	21.60	1
	1L	20330	23.5	22.62	0	21.56	1
	12						1
		20000	23.5	22.70	0	22.02	
10141	0511	20350	23.5	21.62	1	20.70	2
10MHz	25H	20175	23.5	21.77	1	20.65	2
		20000	23.5	21.84	1	20.78	2
		20350	23.5	21.73	1	20.79	2
	25M	20175	23.5	21.74	1	20.75	2
		20000	23.5	21.77	1	20.80	2
		20350	23.5	21.67	1	20.71	2
	25L	20175	23.5	21.74	1	20.73	2
		20000	23.5	21.77	1	20.79	2
		20350	23.5	21.68	1	20.65	2
	50	20175	23.5	21.70	1	20.67	2
		20000	23.5	21.83	1	20.82	2
		20325	23.5	22.57	0	21.91	1
	1H	20175	23.5	22.54	0	21.49	1
		20025	23.5	22.67	0	21.97	1
		20325	23.5	22.70	0	22.11	1
	1M	20325	23.5	22.68	0	21.66	1
	1 IVI	20025	23.5	22.08	0	21.00	1
	1L	20325	23.5	22.60	0	21.99	1
		20175	23.5	22.59	0	21.54	1
		20025	23.5	22.69	0	21.99	1
		20325	23.5	21.75	1	20.66	2
15MHz	36H	20175	23.5	21.76	1	20.71	2
		20025	23.5	21.82	1	20.85	2
	36M	20325	23.5	21.74	1	20.69	2
		20175	23.5	21.79	1	20.70	2
		20025	23.5	21.82	1	20.84	2
		20325	23.5	21.70	1	20.67	2
	36L	20175	23.5	21.78	1	20.72	2
		20025	23.5	21.81	1	20.81	2
		20325	23.5	21.73	1	20.64	2
	75	20175	23.5	21.75	1	20.70	2
		20025	23.5	21.79	1	20.78	2
	1	1				1	_
	+	20300	23.5	22.41	0	21.83	1
	1H	20300	23.5	22.38	0	21.82	1
		20050	23.5	22.30	0	21.93	1
						+	
	114	20300	23.5	22.83	0	22.26	1
	1M	20175	23.5	22.79	0	22.19	1
		20050	23.5	22.91	0	22.42	1
		20300	23.5	22.35	0	21.84	1
	1L	20175	23.5	22.43	0	21.87	1
		20050	23.5	22.48	0	21.98	1
		20300	23.5	21.71	1	20.67	2
20MHz	50H	20175	23.5	21.68	1	20.63	2
		20050	23.5	21.75	1	20.71	2
	50M	20300	23.5	21.71	1	20.73	2
		20175	23.5	21.73	1	20.64	2
	50M	20175				20.70	2
	50M	20175	23.5	21.77	1	20.78	
	50M		23.5 23.5	21.77 21.72	1	20.78	2
	50M 50L	20050				-	
		20050 20300 20175	23.5 23.5	21.72 21.78	1	20.68 20.75	2
		20050 20300 20175 20050	23.5 23.5 23.5	21.72 21.78 21.72	1 1 1	20.68 20.75 20.70	2 2 2
		20050 20300 20175	23.5 23.5	21.72 21.78	1 1	20.68 20.75	2 2

No. I18Z60562-SEM01 Page 33 of 193

Table 11-8 LTE850-FDD5 #1

		LTE	850-FDD5 #	1			
			-			er (dBm) & M	
			_		SK	16G	AM
BandWidth	RB No./Start	Channel	Tune-up	Measured	MPR	Measured	MPR
		20642	24	Power	0	Power	1
	1H	20643 20525	24	23.19 23.20	0	22.10 22.16	1
		20525	24	23.20	0	22.10	1
		20407	24	23.19	0	22.42	1
	1M	20045	24	23.33	0	22.24	1
		20323	24	23.37	0	22.55	1
		20407	24	23.13	0	22.08	1
	1L	20525	24	23.24	0	22.16	1
		20407	24	23.24	0	22.44	1
		20643	24	23.18	0	22.31	1
1.4MHz	3H	20525	24	23.19	0	22.19	1
		20407	24	23.19	0	22.31	1
		20643	24	23.22	0	22.36	1
	3M	20525	24	23.22	0	22.21	1
		20407	24	23.25	0	22.32	1
		20643	24	23.19	0	22.35	1
	3L	20525	24	23.17	0	22.19	1
		20407	24	23.20	0	22.33	1
		20643	24	22.32	1	21.38	2
	6	20525	24	22.28	1	21.34	2
		20407	24	22.26	1	21.11	2
		20635	24	23.26	0	22.11	1
	1H	20525	24	23.24	0	22.01	1
		20415	24	23.30	0	22.51	1
	1M	20635	24	23.36	0	22.24	1
		20525	24	23.36	0	22.16	1
		20415	24	23.42	0	22.62	1
		20635	24	23.25	0	22.22	1
	1L	20525	24	23.19	0	22.04	1
		20415	24	23.30	0	22.46	1
		20635	24	22.27	1	21.29	2
3MHz	8H	20525	24	22.24	1	21.27	2
		20415	24	22.26	1	21.28	2
		20635	24	22.30	1	21.32	2
	8M	20525	24	22.29	1	21.34	2
		20415	24	22.28	1	21.32	2
		20635	24	22.25	1	21.24	2
	8L	20525	24 24	22.23	1	21.28	2
		20415		22.25		21.29	
	15	20635 20525	24 24	22.22 22.18	1	21.17 21.22	2
	13	20525	24	22.18	1	21.22	2
	+	20110	27	22.10		21.27	2
	+	20625	24	23.22	0	22.15	1
	1H	20525	24	23.22	0	22.13	1
		20325	24	23.23	0	22.61	1
		20425	24	23.42	0	22.40	1
	1M	20525	24	23.42	0	22.46	1
		20425	24	23.41	0	22.78	1
		20625	24	23.21	0	22.17	1
	1L	20525	24	23.22	0	22.23	1
		20425	24	23.18	0	22.56	1
		20625	24	22.23	1	21.27	2
5MHz	12H	20525	24	22.12	1	21.21	2
		20425	24	22.20	1	21.35	2
		20625	24	22.24	1	21.30	2
	12M	20525	24	22.18	1	21.29	2
		20425	24	22.24	1	21.38	2
		20625	24	22.20	1	21.25	2
	12L	20525	24	22.18	1	21.24	2
		20425	24	22.13	1	21.31	2
		20625	24	22.22	1	21.17	2
	25	20525	24	22.17	1	21.21	2
	1	20425	24	22.22	1	21.26	2

No. I18Z60562-SEM01 Page 34 of 193

		20600	24	23.24	0	22.14	1
	1H	20525	24	23.28	0	22.07	1
		20450	24	23.30	0	22.51	1
		20600	24	23.32	0	22.25	1
	1M	20525	24	23.35	0	22.14	1
		20450	24	23.43	0	22.62	1
		20600	24	23.21	0	22.14	1
	1L	20525	24	23.20	0	21.99	1
		20450	24	23.25	0	22.42	1
	25H	20600	24	22.28	1	21.39	2
10MHz		20525	24	22.27	1	21.23	2
		20450	24	22.26	1	21.29	2
		20600	24	22.29	1	21.36	2
	25M	20525	24	22.21	1	21.24	2
		20450	24	22.26	1	21.27	2
		20600	24	22.30	1	21.40	2
	25L	20525	24	22.29	1	21.29	2
		20450	24	22.23	1	21.22	2
		20600	24	22.28	1	21.33	2
	50	20525	24	22.25	1	21.22	2
		20450	24	22.23	1	21.23	2

No. I18Z60562-SEM01 Page 35 of 193

Table 11-9 LTE2500-FDD7 #1

		LTE	2500-FDD7 #				
				Me	asured Pow	er (dBm) & M	PR
				QP	SK	16Q	AM
BandWidth	RB No./Start	Channel	Tune-up	Measured	MPR	Measured	MPR
				Power		Power	
		21425	22.2	21.42	0	20.49	1
	1H	21100	22.2	21.49	0	20.56	1
		20775	22.2	21.65	0	21.09	1
	1M	21425	22.2	21.62 21.74	0	20.70 20.80	<u>1</u> 1
	1171	21100 20775	22.2	21.74	0	20.80	1
		21425	22.2	21.39	0	20.42	1
	1L	21120	22.2	21.53	0	20.60	1
		20775	22.2	21.67	0	21.12	1
		21425	22.2	20.48	1	19.53	2
5MHz	12H	21100	22.2	20.49	1	19.59	2
		20775	22.2	20.79	1	19.92	2
		21425	22.2	20.47	1	19.45	2
	12M	21100	22.2	20.53	1	19.59	2
		20775	22.2	20.77	1	19.87	2
		21425	22.2	20.42	1	19.48	2
	12L	21100	22.2	20.47	1	19.52	2
		20775	22.2	20.67	1	19.78	2
		21425	22.2	20.45	1	19.35	2
	25	21100	22.2	20.51	1	19.49	2
		20775	22.2	20.75	1	19.79	2
		01400	20.0	01.40	0	20.40	4
	1H	21400	22.2	21.42	0	20.46	1
	IH	21100	22.2	21.44	0	20.37	1
		20800		21.72	0	21.01	1
	1M	21400 21100	22.2	21.50 21.62	0	20.53 20.57	<u>1</u> 1
	1171	20800	22.2	21.02	0	20.57	1
		21400	22.2	21.39	0	20.44	1
	1L	21100	22.2	21.47	0	20.42	1
		20800	22.2	21.75	0	21.04	1
		21400	22.2	20.50	1	19.60	2
10MHz	25H	21100	22.2	20.68	1	19.55	2
		20800	22.2	20.79	1	19.76	2
	25M	21400	22.2	20.46	1	19.54	2
		21100	22.2	20.55	1	19.57	2
		20800	22.2	20.72	1	19.75	2
		21400	22.2	20.42	1	19.54	2
	25L	21100	22.2	20.53	1	19.51	2
		20800	22.2	20.62	1	19.64	2
		21400	22.2	20.53	1	19.51	2
	50	21100	22.2	20.59	1	19.54	2
		20800	22.2	20.77	1	19.77	2
		21375	22.2	21.35	0	20.75	1
	1H	21375	22.2	21.35	0	20.75	1
	(¹¹	20825	22.2	21.33	0	20.27	1
		21375	22.2	21.01	0	20.85	1
	1M	21373	22.2	21.44	0	20.43	1
		20825	22.2	21.75	0	21.01	1
		21375	22.2	21.38	0	20.79	1
	1L	21100	22.2	21.46	0	20.34	1
		20825	22.2	21.71	0	21.01	1
		21375	22.2	20.44	1	19.45	2
15MHz	36H	21100	22.2	20.54	1	19.50	2
		20825	22.2	20.71	1	19.72	2
		21375	22.2	20.48	1	19.43	2
	36M	21100	22.2	20.52	1	19.44	2
-		20825	22.2	20.72	1	19.73	2
	36L	21375	22.2	20.45	1	19.43	2
		04400	22.2	20.54	1	19.50	2
	36L	21100					-
	36L	20825	22.2	20.62	1	19.67	2
	36L 75				1 1 1		2 2 2

No. I18Z60562-SEM01 Page 36 of 193

	1						
		21350	22.2	21.15	0	20.63	1
	1H	21100	22.2	21.15	0	20.56	1
		20850	22.2	21.35	0	20.84	1
		21350	22.2	21.89	0	20.99	1
	1M	21100	22.2	21.85	0	20.98	1
		20850	22.2	21.99	0	21.12	1
		21350	22.2	21.14	0	20.65	1
	1L	21100	22.2	21.29	0	20.69	1
		20850	22.2	21.48	0	20.96	1
	50H	21350	22.2	20.39	1	19.41	2
20MHz		21100	22.2	20.54	1	19.50	2
		20850	22.2	20.57	1	19.55	2
		21350	22.2	20.44	1	19.44	2
	50M	21100	22.2	20.53	1	19.48	2
		20850	22.2	20.62	1	19.61	2
		21350	22.2	20.45	1	19.47	2
	50L	21100	22.2	20.50	1	19.44	2
		20850	22.2	20.44	1	19.47	2
		21350	22.2	20.42	1	19.42	2
	100	21100	22.2	20.53	1	19.53	2
		20850	22.2	20.51	1	19.54	2

Table 11-10 LTE700-FDD12 #1

		LTE	700-FDD12 #	<i>‡</i> 1				
				Measured Power (dBm) & MPR				
				QP	SK	16QAM		
BandWidth	RB No./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR	
		23173	24	23.32	0	22.01	1	
	1H	23095	24	23.22	0	22.15	1	
		23017	24	23.28	0	22.41	1	
		23173	24	23.09	0	22.06	1	
	1M	23095	24	23.35	0	22.31	1	
		23017	24	23.12	0	22.58	1	
		23173	24	23.15	0	22.01	1	
	1L	23095	24	23.25	0	22.16	1	
		23017	24	23.34	0	22.44	1	
		23173	24	23.13	0	22.21	1	
1.4MHz	ЗH	23095	24	23.27	0	22.11	1	
		23017	24	23.19	0	22.36	1	
		23173	24	23.23	0	22.28	1	
	3M	23095	24	23.23	0	22.15	1	
		23017	24	23.26	0	22.36	1	
		23173	24	23.22	0	22.23	1	
	3L	23095	24	23.19	0	22.14	1	
		23017	24	23.20	0	22.26	1	
		23173	24	22.31	1	21.33	2	
	6	23095	24	22.25	1	21.33	2	
		23017	24	22.30	1	21.00	2	
					-		_	
		23165	24	23.29	0	22.35	1	
	1H	23095	24	23.12	0	22.02	1	
		23035	24	23.29	0	21.94	1	
		23025	24	23.40	0	22.50	1	
	1M	23095	24	23.40	0	22.30	1	
		23095	24	23.22	0	22.22	1	
		23025	24	23.13	0	22.34	1	
	1L	23105	24	23.22	0	22.34	1	
	12	23095	24	23.19	0	22.00	1	
		23025	24	23.27	1	22.00	2	
3MHz	8H	23165	24	22.19	1	21.12	2	
SIVILIZ	оп	23095	24	22.13	1	21.11	2	
		23025	24	22.20	1	21.10	2	
	014	23165	24	l	1	-	2	
	8M	23095		22.18 22.22	1	21.17		
			24			21.27	2	
		23165	24	22.20	1	21.16	2	
	8L	23095	24	22.17	1	21.14	2	
		23025	24	22.17	1	21.21	2	
	15	23165	24	22.12	1	21.08	2	
	15	23095	24 24	22.12	<u>1</u> 1	21.02	2	
		23025	24	22.14	1	21.09	2	
		00455		22.40	0	00.05	4	
		23155	24	23.16	0	22.05	1	
	1H	23095	24	23.14	0	22.14	1	
		23035	24	23.12	0	22.50	1	
		23155	24	23.29	0	22.24	1	
	1M	23095	24	23.38	0	22.37	1	
		23035	24	23.35	0	22.72	1	
		23155	24	23.09	0	22.06	1	
	1L	23095	24	23.17	0	22.14	1	
		23035	24	23.11	0	22.47	1	
		23155	24	22.04	1	21.04	2	
5MHz	12H	23095	24	22.12	1	21.15	2	
		23035	24	22.14	1	21.22	2	
		23155	24	22.15	1	21.11	2	
	12M	23095	24	22.14	1	21.19	2	
		23035	24	22.18	1	21.25	2	
		23155	24	22.10	1	21.06	2	
	12L	23095	24	22.13	1	21.13	2	
		23035	24	22.05	1	21.17	2	
		23155	24	22.08	1	20.97	2	
	25	23095	24	22.15	1	21.10	2	
		23035	24	22.08	1	21.10	2	

No. I18Z60562-SEM01 Page 38 of 193

				1			
		23130	24	23.20	0	22.00	
	1H	23095	24	23.16	0	21.97	
		23060	24	23.19	0	22.41	
		23130	24	23.25	0	22.19	
	1M	23095	24	23.24	0	22.10	
		23060	24	23.28	0	22.50	
		23130	24	23.08	0	22.03	
	1L	23095	24	23.10	0	21.89	
		23060	24	23.21	0	22.40	
		23130	24	22.11	1	21.17	:
10MHz	25H	23095	24	22.25	1	21.17	1
		23060	24	22.15	1	21.15	1
		23130	24	22.17	1	21.21	:
	25M	23095	24	22.20	1	21.14	1
		23060	24	22.16	1	21.18	1
		23130	24	22.17	1	21.22	:
	25L	23095	24	22.20	1	21.18	:
		23060	24	22.10	1	21.10	1
		23130	24	22.13	1	21.14	
	50	23095	24	22.19	1	21.13	:
		23060	24	22.16	1	21.10	

Table 11-11 LTE750-FDD13 #1

		LTE	750-FDD13 #	ŧ1			
				Ме	asured Pow	er (dBm) & MF	۶R
				QP	SK	16Q	AM
BandWidth	RB No./Start	Channel	Tune-up	Measured Power	MPR	Measured Power	MPR
		23255	24	23.03	0	22.07	1
	1H	23230	24	22.98	0	22.12	1
		23205	24	23.06	0	22.47	1
		23255	24	23.24	0	22.29	1
	1M	23230	24	23.26	0	22.35	1
		23205	24	23.29	0	22.67	1
		23255	24	23.00	0	22.09	1
	1L	23230	24	22.98	0	22.08	1
		23205	24	23.02	0	22.43	1
		23255	24	22.11	1	21.15	2
5MHz	12H	23230	24	22.12	1	21.14	2
		23205	24	22.10	1	21.18	2
	12M	23255	24	22.15	1	21.18	2
		23230	24	22.14	1	21.23	2
		23205	24	22.19	1	21.24	2
		23255	24	22.10	1	21.11	2
	12L	23230	24	22.11	1	21.16	2
		23205	24	22.11	1	21.18	2
		23255	24	22.10	1	21.02	2
	25	23230	24	22.12	1	21.10	2
		23205	24	22.09	1	21.13	2
	1H	23230	24	23.20	0	22.39	1
	1M	23230	24	23.37	0	22.49	1
	1L	23230	24	23.14	0	22.33	1
10MHz	25H	23230	24	22.18	1	21.16	2
	25M	23230	24	22.19	1	21.19	2
	25L	23230	24	22.15	1	21.15	2
	50	23230	24	22.20	1	21.17	2

11.4 Wi-Fi and BT Measurement result

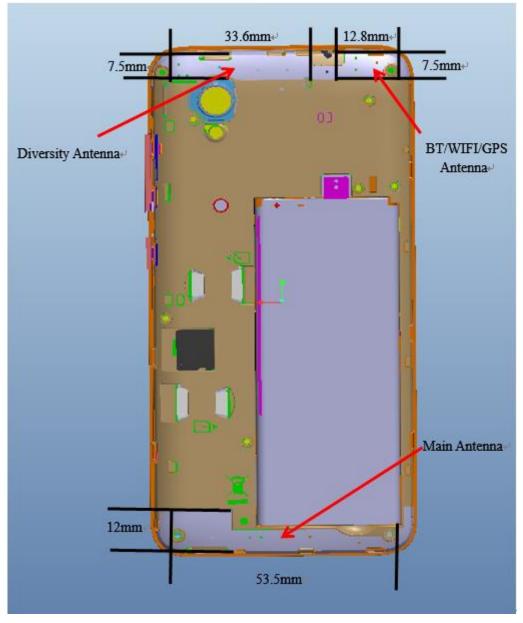
Table 11-12 Bluetooth Power

Bluetooth Power										
Mode	Channel	Frequence	Tune-up	Measured						
	78	2480 MHz	7	6.35						
GFSK	39	2441 MHz	7	5.88						
	0	2402 MHz	7	5.51						
	78	2480 MHz	6.5	5.23						
EDR2M-4_DQPSK	39	2441 MHz	6.5	4.79						
	0	2402 MHz	6.5	4.53						
	78	2480 MHz	6	5.3						
EDR3M-8DPSK	39	2441 MHz	6	4.84						
	0	2402 MHz	6	4.55						

Table 11-13 WLAN2450 #1

Mode	Channel	Frequence	Data Rate	Tune-up	Measured
	11	2462 MHz		16.50	15.50
	6	2437 MHz	1Mbps	16.50	15.69
	1	2412 MHz		16.50	15.37
	11	2462 MHz		/	/
	6	2437 MHz	2Mbps	16.50	15.55
000 116	1	2412 MHz	-	/	/
802.11b	11	2462 MHz		16.50	15.59
	6	2437 MHz	5.5Mbps	16.50	15.88
	1	2412 MHz		16.50	15.42
	11	2462 MHz		/	/
	6	2437 MHz	11Mbps	16.50	15.80
	1	2412 MHz		/	/
	11	2462 MHz		15.50	13.59
	6	2437 MHz	6Mbps	15.50	15.44
	1	2412 MHz		15.50	13.57
	11	2462 MHz		/	/
	6	2437 MHz	9Mbps	15.50	15.41
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	12Mbps	15.50	15.31
	1	2412 MHz		/	/
	11	2462 MHz		15.50	13.51
	6	2437 MHz	18Mbps	15.50	15.46
000.44 m	1	2412 MHz		15.50	13.56
802.11g	11	2462 MHz		/	/
	6	2437 MHz	24Mbps	15.50	15.19
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	36Mbps	15.50	15.09
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	48Mbps	15.50	15.02
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	54Mbps	15.50	14.97
	1	2412 MHz		/	/

	44	0400 1411		45.00	40.40
	11	2462 MHz	14000	15.00	13.12
	6	2437 MHz	MCS0	15.00	14.68
	1	2412 MHz		15.00	13.43
	11	2462 MHz		/	/
	6	2437 MHz	MCS1	15.00	14.57
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	MCS2	15.00	14.46
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	MCS3	15.00	14.35
802.11n	1	2412 MHz		/	/
20M	11	2462 MHz		/	/
	6	2437 MHz	MCS4	15.00	13.73
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	MCS5	14.00	13.11
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	MCS6	14.00	13.93
	1	2412 MHz		/	/
	11	2462 MHz		/	/
	6	2437 MHz	MCS7	, 14.00	13.96
	1	2412 MHz		/	/
	9	2452 MHz		13.00	, 11.18
	6	2432 MHz	MCS0	13.00	12.41
	3	2422 MHz		13.00	11.61
	9	2452 MHz		/	/
	6	2432 MHz	MCS1	13.00	12.08
	3	2437 MI12 2422 MHz	MOOT	/	/
	9	2422 MHz		/	/
	6	2432 MI IZ 2437 MHz	MCS2	13.00	11.96
	3		10032	13.00	11.90
	9	2422 MHz		/	/
		2452 MHz	MCS2	/	/
802.11n	<u>6</u> 3	2437 MHz	MCS3	13.00	11.80
		2422 MHz		/	/
40M	9	2452 MHz		/	/
	6	2437 MHz	MCS4	13.00	11.61
	3	2422 MHz		/	/
	9	2452 MHz	MOOF	/	/
	6	2437 MHz	MCS5	12.00	11.67
	3	2422 MHz		/	/
	9	2452 MHz	MCS6	/	/
	6	2437 MHz		12.00	11.20
	3	2422 MHz		/	/
	9	2452 MHz		/	/
	6	2437 MHz	MCS7	12.00	11.09
	3	2422 MHz		/	/



12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions									
Mode Front Rear Left edge Right edge Top edge Bottom edge									
Main antenna	Main antenna Yes Yes Yes Yes No Yes								
WLAN Yes Yes Yes No Yes No									

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

			SAR test	RF outpu	ut power		
Band/Mode	F(GHz)	Position	exclusion threshold (mW)	dBm	mW	SAR test exclusion	
Pluotooth	2.441	Head	9.6	7	5.01	Yes	
Bluetooth		Body	9.6	7	5.01	Yes	
2.4GHz WLAN 802.11 b	0.45	Head	9.58	16.5	44.67	No	
	2.45	Body	9.58	16.5	44.67	No	

Table 12.1: Standalone SAR test exclusion considerations

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported				
SAR value for	Right hand, Touch cheek	0.39	0.99	1.38
Head				
Highest reported				
SAR value for	Rear	1.18	0.16	1.34
Body				

Table 13.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum
Maximum reported	Right hand, Touch cheek	0.39	0.21	0.60
SAR value for Head				
Maximum reported	Rear	1.18	0.10	1.28
SAR value for Body	Real	1.10	0.10	1.20

[1] - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3:	Estimated SAR for Blue	tooth
-------------	------------------------	-------

Mode/Band	F (GHz)	Position	Distance	Upper limit	of power *	Estimated _{1g}
WOUE/Banu			(mm)	dBm	mW	(W/kg)
Bluetooth	2.441	Head	5	7	5.01	0.21
Bluetooth	2.441	Body	10	7	5.01	0.10

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10 mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900	1:4
WCDMA<E	1:1

14.1 SAR results

Table 14-1 GSM850 #1 Head

	GSM850 #1 Head										
Ambient Te	emperature:		22.5	;		Liquid Ter	22.3				
	Device	SAR		ured SAR [orted SAR [V				
Mode	orientation	measurement	CH251	CH190	CH128	CH251	CH190	CH128			
	onomation	mousurement	848.8 MHz	836.6 MHz	824.2 MHz			824.2 MHz			
	Tune-up		33.30	33.30	33.30		Scaling factor	*			
	Slot Averag	e Power [dBm]	32.69	32.78	32.63	1.15	1.13	1.17			
	Left Cheek	1g SAR	0.34	0.305	0.31	0.39	0.34	0.36			
		10g SAR	0.254	0.248	0.228	0.29	0.28	0.27			
		Deviation	0.03	-0.03	0.05	0.03	-0.03	0.05			
	Left Tilt	1g SAR		0.211			0.24				
GSM		10g SAR		0.158			0.18				
GOM		Deviation		0.06			0.06				
		1g SAR		0.255			0.29				
	Right Cheek	10g SAR		0.191			0.22				
		Deviation		-0.06			-0.06				
		1g SAR		0.118			0.13				
	Right Tilt	10g SAR		0.089			0.10				
		Deviation		-0.02			-0.02				

Table 14-2 GSM850 #1 Body

	GSM850 #1 Body									
Ambient Te	emperature:	22.5					mperature:	22.3		
	Device	SAR		sured SAR [Rep	orted SAR [V	V/kg]		
Mode	orientation	measurement	CH251	CH190	CH128	CH251	CH190	CH128		
				836.6 MHz						
		ne-up	30.50	30.50	30.50		Scaling factor			
	Slot Averag	e Power [dBm]	30.33	30.38	30.14	1.04	1.03	1.09		
		1g SAR		0.296			0.30			
	Front	10g SAR		0.305			0.31			
		Deviation		0.05			0.05			
		1g SAR	0.442	0.452	0.417	0.46	0.46	0.45		
	Rear	10g SAR	0.329	0.343	0.301	0.34	0.35	0.33		
00000		Deviation	0.06	-0.11	0.07	0.06	-0.11	0.07		
GPRS 2 Txslots	Left edge	1g SAR		0.298			0.31			
TXSIOLS		10g SAR		0.285			0.29			
		Deviation		-0.12			-0.12			
		1g SAR		0.172			0.18			
	Right edge	10g SAR		0.166			0.17			
		Deviation		0.02			0.02			
		1g SAR		0.109			0.11			
	Bottom edge	10g SAR		0.089			0.09			
		Deviation		0.06			0.06			
	Tu	Tune-up		30.50	30.50		Scaling facto	*		
EGPRS	Slot Averag	e Power [dBm]	30.39	30.43	30.18	1.03	1.02	1.08		
GMSK 2		1g SAR		0.434			0.44			
Txslots	Rear	10g SAR		0.328			0.33			
		Deviation		0.08			0.08			

Table 14-3 PCS1900 #1 Head

	PCS1900 #1 Head										
Ambient Te	emperature:		22.5	5		Liquid Ter	nperature:	22.3			
	Device	SAR		sured SAR [orted SAR [V				
Mode	orientation	measurement	CH810	CH661	CH512	CH810	CH661	CH512			
			1909.8	1880 MHz	1850.2	1909.8	1880 MHz	1850.2			
	Tune-up		30.30	30.30	30.30		Scaling factor				
	Slot Averag	e Power [dBm]	29.99	30.01	29.90	1.07	1.07	1.10			
		1g SAR		0.224			0.24				
	Left Cheek	10g SAR		0.134			0.14				
		Deviation		0.03			0.03				
		1g SAR		0.147			0.16				
GSM	Left Tilt	10g SAR		0.092			0.10				
GSIM		Deviation		-0.04			-0.04				
		1g SAR	0.208	0.244	0.344	0.22	0.26	0.38			
	Right Cheek	10g SAR	0.12	0.144	0.213	0.13	0.15	0.23			
		Deviation	-0.06	0.07	0.19	-0.06	0.07	0.19			
		1g SAR		0.172			0.18				
	Right Tilt	10g SAR		0.098			0.10				
		Deviation		0.03			0.03				

Table 14-4 PCS1900 #1 Body

	PCS1900 #1 Body									
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3		
	Device	SAR		sured SAR [orted SAR [V			
Mode	orientation	measurement	CH810	CH661	CH512	CH810	CH661	CH512		
		ne-up	1909.8 28.00	1880 MHz 28.00	1850.2 28.00	1909.8	1880 MHz Scaling factor	1850.2		
		e Power [dBm]	28.00	28.00	28.00	1.16		1.10		
	SIOL AVELAY		21.50	0.714	21.55	1.10	0.76	1.10		
	Front	1g SAR		0.714			0.76			
	FION	10g SAR								
		Deviation	0.077	0.03	0.007	0.70	0.03	1.00		
		1g SAR	0.677	0.848	0.987	0.78	0.90	1.09		
	Rear	10g SAR	0.278	0.484	0.539	0.32	0.52	0.59		
GPRS 2		Deviation	0.08	0.04	0.05	0.08	0.04	0.05		
Txslots	Left edge	1g SAR		0.205			0.22			
17101010		10g SAR		0.089			0.09			
		Deviation		0.07			0.07			
		1g SAR		0.164			0.17			
	Right edge	10g SAR		0.073			0.08			
		Deviation		-0.03			-0.03			
		1g SAR	0.783	0.846	0.933	0.91	0.90	1.03		
	Bottom edge	10g SAR	0.384	0.436	0.482	0.44	0.46	0.53		
		Deviation	0.08	0.06	0.02	0.08	0.06	0.02		
	Tu	ne-up	28.00	28.00	28.00	ę	Scaling factor	.*		
EGPRS	Slot Averag	e Power [dBm]	27.36	27.70	27.57	1.16	1.07	1.10		
GMSK 2		1g SAR			0.987			1.09		
Txslots	Rear	10g SAR			0.768			0.85		
		Deviation			0.050			0.05		

Table 14-5 WCDMA1900-BII #1Head

	WCDMA1900-BII #1Head										
Ambient Te	emperature:	22.5				Liquid Temperature:		22.3			
	Device	SAR	Measured SAR [W/kg]			Reported SAR [W/kg]					
Mode	orientation	measurement	CH9538	CH9400	CH9262	CH9538	CH9400	CH9262			
			1907.6 MHz	1880 MHz	1852.4 MHz			1852.4 MHz			
	Tune-up		23.50	23.50	23.50		Scaling factor	*			
	Slot Average	e Power [dBm]	23.25	23.32	23.45	1.06	1.04	1.01			
		1g SAR	0.169	0.199	0.225	0.18	0.21	0.23			
	Left Cheek	10g SAR	0.108	0.127	0.144	0.11	0.13	0.15			
		Deviation	-0.03	0.08	0.07	-0.03	0.08	0.07			
	Left Tilt	1g SAR		0.09			0.09				
RMC		10g SAR		0.054			0.06				
TUNC		Deviation		-0.07			-0.07				
		1g SAR		0.137			0.14				
	Right Cheek	10g SAR		0.094			0.10				
		Deviation		0.02			0.02				
		1g SAR		0.1			0.10				
	Right Tilt	10g SAR		0.064			0.07				
		Deviation		0.05			0.05				

No. I18Z60562-SEM01 Page 48 of 193

Table 14-6 WCDMA1900-BII #1Body

	WCDMA1900-Bll #1Body										
Ambient Te	emperature:	22.5				Liquid Ter	nperature:	22.3			
	Device	SAR		sured SAR [V		Reported SAR [W/kg]					
Mode	orientation	measurement	CH9538	CH9400	CH9262	CH9538	CH9400	CH9262			
			1907.6 MHz			1907.6 MHz		1852.4 MHz			
		ne-up	23.50	23.50	23.50		Scaling factor				
	Slot Average	e Power [dBm]	23.25	23.32	23.45	1.06	1.04	1.01			
		1g SAR		0.626			0.65				
	Front	10g SAR		0.391			0.41				
		Deviation		0.04			0.04				
	Rear	1g SAR	0.908	1.03	1.04	0.96	1.07	1.05			
		10g SAR	0.482	0.744	0.777	0.51	0.78	0.79			
		Deviation	-0.04	-0.04	0.07	-0.04	-0.04	0.07			
RMC		1g SAR		0.207			0.22				
	Left edge	10g SAR		0.106			0.11				
		Deviation		0.06			0.06				
		1g SAR		0.137			0.14				
	Right edge	10g SAR		0.083			0.09				
		Deviation		0.03			0.03				
		1g SAR	1.03	1.11	1.18	1.09	1.16	1.19			
	Bottom edge	10g SAR	0.72	0.762	0.623	0.76	0.79	0.63			
		Deviation	-0.02	0.11	0.07	-0.02	0.11	0.07			

Table 14-7 WCDMA1700-BIV #1Head

	WCDMA1700-BIV #1Head										
Ambient Te	emperature:	22.5				Liquid Temperature:		22.3			
	Device	SAR	Measured SAR [W/kg]			Reported SAR [W/kg]					
Mode	orientation	measurement	CH1513	CH1412	CH1312	CH1513	CH1412	CH1312			
		measurement						1712.4 MHz			
	Tune-up		23.50	23.5	23.50		Scaling factor	*			
	Slot Average	e Power [dBm]	23.11	23.12	23.14	1.09	1.09	1.09			
	Left Cheek	1g SAR	0.373	0.424	0.41	0.41	0.46	0.45			
		10g SAR	0.233	0.264	0.227	0.25	0.29	0.25			
		Deviation	0.03	0.05	0.06	0.03	0.05	0.06			
	Left Tilt	1g SAR		0.102			0.11				
RMC		10g SAR		0.071			0.08				
TUNC		Deviation		-0.03			-0.03				
		1g SAR		0.242			0.26				
	Right Cheek	10g SAR		0.136			0.15				
		Deviation		0.07			0.07				
		1g SAR		0.122			0.13				
	Right Tilt	10g SAR		0.083			0.09				
		Deviation		0.05			0.05				

No. I18Z60562-SEM01 Page 49 of 193

Table 14-8 WCDMA1700-BIV #1Body

	WCDMA1700-BIV #1Body										
Ambient Te	emperature:	22.5					Liquid Temperature:				
	Device	SAR		sured SAR [V		Reported SAR [W/kg]					
Mode	orientation	measurement	CH1513	CH1412	CH1312	CH1513	CH1412	CH1312			
		ie-up		<u>1732.4 MHz</u> 23.5	1712.4 MHz		1732.4 MHz Scaling factor				
		e Power [dBm]	23.50 23.11	23.5	23.50 23.14	1.09		1.09			
	Slot Average										
		1g SAR	0.81	0.741	0.687	0.89	0.81	0.75			
	Front	10g SAR	0.522	0.652	0.61	0.57	0.71	0.66			
		Deviation	0.02	0.06	0.03	0.02	0.06	0.03			
	Rear	1g SAR	1.023	1.08	0.845	1.12	1.18	0.92			
		10g SAR	0.613	0.614	0.664	0.67	0.67	0.72			
		Deviation	0.07	-0.03	0.01	0.07	-0.03	0.01			
RMC		1g SAR		0.146			0.16				
	Left edge	10g SAR		0.092			0.10				
		Deviation		0.07			0.07				
		1g SAR		0.303			0.33				
	Right edge	10g SAR		0.186			0.20				
		Deviation		0.02			0.02				
		1g SAR	0.782	0.75	0.679	0.86	0.82	0.74			
	Bottom edge	10g SAR	0.612	0.424	0.402	0.67	0.46	0.44			
		Deviation	0.09	0.05	0.01	0.09	0.05	0.01			

Table 14-9 WCDMA850-BV #1Head

	WCDMA850-BV #1Head										
Ambient Te	emperature:	22.5				Liquid Ter	nperature:	22.3			
	Device	SAR	Measured SAR [W/kg]				Reported SAR [W/kg]				
Mode	orientation		CH4233	CH4182	CH4132	CH4233	CH4182	CH4132			
		measurement	846.6 MHz	835.4 MHz	826.4 MHz						
	Tune-up		24.00	24.00	24.00		Scaling factor	*			
	Slot Average	e Power [dBm]	23.34	23.40	23.41	1.16	1.15	1.15			
		1g SAR	0.313	0.344	0.343	0.36	0.39	0.39			
	Left Cheek	10g SAR	0.276	0.259	0.257	0.32	0.30	0.29			
		Deviation	-0.02	-0.08	0.06	-0.02	-0.08	0.06			
	Left Tilt	1g SAR		0.248			0.28				
RMC		10g SAR		0.189			0.22				
T(MC		Deviation		0.03			0.03				
		1g SAR		0.339			0.39				
	Right Cheek	10g SAR		0.251			0.29				
		Deviation		0.07			0.07				
		1g SAR		0.177			0.20				
	Right Tilt	10g SAR		0.134			0.15				
		Deviation		0.04			0.04				

No. I18Z60562-SEM01 Page 50 of 193

Table 14-10 WCDMA850-BV #1Body

	WCDMA850-BV #1Body										
Ambient Te	emperature:	22.5					Liquid Temperature:				
	Device	SAR		sured SAR [V		Reported SAR [W/kg]					
Mode	orientation	measurement	CH4233	CH4182	CH4132	CH4233	CH4182	CH4132			
-			846.6 MHz					826.4 MHz			
		ne-up	24.00	24.00	24.00		Scaling factor				
	Slot Average	e Power [dBm]	23.34	23.40	23.41	1.16	1.15	1.15			
		1g SAR		0.311			0.36				
	Front	10g SAR		0.244			0.28				
		Deviation		0.06			0.06				
	Rear	1g SAR	0.377	0.364	0.356	0.44	0.42	0.41			
		10g SAR	0.288	0.285	0.276	0.34	0.33	0.32			
		Deviation	0.06	-0.05	0.08	0.06	-0.05	0.08			
RMC		1g SAR		0.338			0.39				
	Left edge	10g SAR		0.233			0.27				
		Deviation		-0.03			-0.03				
		1g SAR		0.203			0.23				
	Right edge	10g SAR		0.145			0.17				
		Deviation		0.12			0.12				
		1g SAR		0.125			0.14				
	Bottom edge	10g SAR		0.076			0.09				
		Deviation		-0.08			-0.08				

Table 14-11 LTE1900-FDD2 #1 Head

			LTE190	00-FDD2 #1 H	ead			
Ambient Te	emperature:	22.5					mperature:	22.3
	Device	SAR	Meas	sured SAR [N/kg]	Rep	orted SAR [\	N/kg]
Mode	orientation	measurement	19100	18900	18700	19100	18900	18700
	onentation	measurement	м	М	М	м	М	м
		ine-up	23.50	23.50	23.50		Scaling factor	
	Measured	Power [dBm]	22.92	22.88	22.91	1.14	1.15	1.15
		1g SAR	0.137			0.16		
	Left Cheek	10g SAR	0.086			0.10		
		Deviation	0.06			0.06		
	Left Tilt	1g SAR	0.057			0.07		
20MHz		10g SAR	0.038			0.04		
QPSK1RB		Deviation	0.08			0.08		
	Right Cheek	1g SAR	0.096			0.11		
		10g SAR	0.062			0.07		
		Deviation	-0.07			-0.07		
	Right Tilt	1g SAR	0.078			0.09		
		10g SAR	0.048			0.05		
		Deviation	0.01			0.01		
			Measured SAR [W/kg]			Rep	orted SAR [\	N/kg]
TRUE	Device orientation	SAR measurement	19100	18900	18700	19100	18900	18700
		mousurement	м	Н	м	м	Н	М
	Τι	ine-up	22.50	22.50	22.50		Scaling factor	r*
	Measured	Power [dBm]	21.76	21.78	21.74	1.19	1.18	1.19
		1g SAR		0.112			0.13	
	Left Cheek	10g SAR		0.07			0.08	
		Deviation		0.05			0.05	
20141-		1g SAR		0.05			0.06	
20MHz	Left Tilt	10g SAR		0.031			0.04	
QPSK50%		Deviation		-0.03			-0.03	
RB		1g SAR		0.114			0.13	
	Right Cheek	10g SAR		0.07			0.08	
		Deviation		-0.12			-0.12	
		1g SAR		0.053			0.06	
	Right Tilt	10g SAR		0.033			0.04	
		Deviation		0.03			0.03	

			LTE19	00-FDD2 #1 B	ody				
Ambient Te	emperature:	22.5				Liquid Temperature:			
	D .	040	Measured SAR [W/kg]			Rep	Reported SAR [W/kg]		
Mode	Device orientation	SAR measurement	19100	18900	18700	19100	18900	18700	
	onentation	measurement	М	М	М	М	М	М	
	Tune-up		23.50	23.50	23.50	۷,	Scaling factor	*	
	Measured Power [dBm]		22.92	22.88	22.91	1.14	1.15	1.15	
		1g SAR	0.695			0.79			
	Front	10g SAR	0.314			0.36			
		Deviation	0.03			0.03			
		1g SAR	0.907	0.941	0.99	1.04	1.08	1.13	
	Rear	10g SAR	0.491	0.491	0.771	0.56	0.57	0.88	
20MHz		Deviation	0.03	0.07	-0.04	0.03	0.07	-0.04	
QPSK1RB		1g SAR	0.212			0.24			
	Left edge	10g SAR	0.123			0.14			
-		Deviation	0.03			0.03			
		1g SAR	0.164			0.19			
	Right edge	10g SAR	0.097			0.11			
		Deviation	0.07	0.000	4.04	0.07		4.40	
	Detter a des	1g SAR	0.976	0.986	1.04	1.12	1.14	1.19	
	Bottom edge	10g SAR	0.48	0.497	0.548	0.55	0.57	0.63	
		Deviation	-0.08	0.07 sured SAR [0.12	-0.08	0.07 orted SAR [V	0.12	
Mode	Device	SAR	19100	18900	18700	19100	18900	18700	
Mode	orientation	measurement				10100	10000	10700	
	Т	ine-up	M 22.50	H 22.50	M 22.50	9	Scaling factor		
		Measured Power [dBm]		21.78	21.74	1.19	1.18	1.19	
	modourou	1g SAR	21.76	0.498			0.59		
	Front	10g SAR		0.317			0.37		
	TION	Deviation		0.06			0.06		
		1g SAR	0.705	0.713	0.7	0.84	0.84	0.83	
	Rear	10g SAR	0.337	0.384	0.31	0.40	0.45	0.37	
20MHz		Deviation	0.06	0.04	0.11	0.06	0.04	0.11	
QPSK50%		1g SAR		0.187			0.22		
RB	Left edge	10g SAR		0.109			0.13		
		Deviation		0.02			0.02		
		1g SAR		0.172			0.20		
	Right edge	10g SAR		0.089			0.11		
		Deviation 1g SAR	0.766	-0.03 0.843	0.866	0.91	-0.03 1.00	1.03	
	Bottom edge	10g SAR	0.382	0.843	0.866	0.91	0.50	0.52	
	Bollomedge	Deviation	-0.07	0.09	-0.01	-0.07	0.09	-0.01	
		2 57144011		sured SAR			orted SAR [V		
Mode	Device	SAR							
mode	orientation	measurement	19100	18900	18700	19100	18900	18700	
	Τι	ine-up	22.50	22.50	22.50	Ś	Scaling factor	.*	
20MHz		Power [dBm]	21.69	21.75	21.67	1.20	1.19	1.21	
QPSK100%		1g SAR			0.661			0.80	
		-			0.347			0.42	
RB	Bottom edge	TUg SAR			0.547				
RB	Bottom edge	10g SAR Deviation			0.06			0.06	
RB 20MHz	Bottom edge	Deviation							
		Deviation 1g SAR			0.06 0.653			0.06 0.75	
20MHz		Deviation			0.06			0.06	

			LTE17	00-FDD4 #1 He	ead			
Ambient Te	emperature:	22.5				Liquid Temperature: 2		
	Davias	SAR	Meas	ured SAR [V	V/kg]	Rep	orted SAR [V	//kg]
Mode	Device orientation		20300	20175	20050	20300	20175	20050
	onentation	measurement	М	М	М	м	М	м
	Tune-up		23.50	23.50	23.50		Scaling factor	
	Measured	Power [dBm]	22.83	22.79	22.91	1.17	1.18	1.15
		1g SAR			0.292			0.33
	Left Cheek	10g SAR			0.194			0.22
QPSK1RB		Deviation			0.05			0.05
		1g SAR			0.061			0.07
	Left Tilt	10g SAR			0.058			0.07
		Deviation			-0.05			-0.05
		1g SAR			0.165			0.19
	Right Cheek	10g SAR			0.151			0.17
		Deviation			0.05			0.05
		1g SAR			0.073			0.08
	Right Tilt	10g SAR			0.067			0.08
		Deviation			0.06			0.06
			Meas	ured SAR [V	V/kg]	Rep	orted SAR [V	//kg]
TRUE	Device	SAR	20300	20175	20050	20300	20175	20050
	orientation	measurement	L	L	м	L	-	м
	Tu	ine-up	22.50	22.50	22.50	Scaling factor*		•
		Power [dBm]	21.72	21.78	21.77	1.20	1.18	1.18
		1g SAR		0.179			0.21	
	Left Cheek	10g SAR		0.152			0.18	
		Deviation		0.02			0.02	
		1g SAR		0.052			0.06	
20MHz	Left Tilt	10g SAR		0.05			0.06	
QPSK50%		Deviation		0.08			0.08	
RB		1g SAR		0.135			0.16	
	Right Cheek	10g SAR		0.122	•••••		0.14	
	-	Deviation		0.02			0.02	
		1g SAR		0.053			0.06	
	Right Tilt	10g SAR		0.048			0.06	
	-	Deviation		-0.07			-0.07	

Table 14-13 LTE1700-FDD4 #1 Head

Table 14-14 LTE1700-FDD4 #1 Body

			LTE17	00-FDD4 #1 B	ody			
Ambient Te	emperature:	22.5				Liquid Ter	nperature:	22.3
			Meas	sured SAR [N/kg]	Rep	orted SAR [V	V/kg]
Mode	Device	SAR	20300	20175	20050	20300	20175	20050
	orientation	measurement	м	м	М	м	м	М
	Tune-up		23.50	23.50	23.50	ę	Scaling factor	*
	Measured Power [dBm]		22.83	22.79	22.91	1.17	1.18	1.15
		1g SAR			0.66			0.76
	Front	10g SAR			0.568			0.65
		Deviation			0.04			0.04
		1g SAR	0.993	0.963	0.867	1.16	1.13	0.99
Ri	Rear	10g SAR	0.569	0.547	0.485	0.66	0.64	0.56
		Deviation	-0.02	0.04	0.05	-0.02	0.04	0.05
		1g SAR			0.119			0.14
	Left edge	10g SAR			0.074			0.08
		Deviation			0.07			0.07
		1g SAR			0.272			0.31
	Right edge	10g SAR			0.16			0.18
		Deviation			-0.07			-0.07
	Bottom edge	1g SAR			0.673			0.77
		10g SAR			0.358			0.41
		Deviation			0.04			0.04
	Davisa	SAR	Meas	sured SAR	N/kg]	Reported SAR [W/kg]		
Mode	Device orientation	measurement	20300	20175	20050	20300	20175	20050
			L	L	M			
	т.		00.50	22 50	22 50		Cooling footo	<i>.</i> *.
		Ine-up	22.50	22.50	22.50		Scaling factor	
		Power [dBm]	22.50 21.72	21.78	22.50 21.77	9 1.20	1.18	* 1.18
	Measured	Power [dBm] 1g SAR		21.78 0.457			1.18 0.54	
		Power [dBm] 1g SAR 10g SAR		21.78 0.457 0.289			1.18 0.54 0.34	
	Measured	Power [dBm] 1g SAR 10g SAR Deviation		21.78 0.457 0.289 -0.06			1.18 0.54 0.34 -0.06	
	Measured Front	Power [dBm] 1g SAR 10g SAR		21.78 0.457 0.289			1.18 0.54 0.34	
20MHz	Measured	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR		21.78 0.457 0.289 -0.06 0.655			1.18 0.54 0.34 -0.06 0.77	
20MHz QPSK50%	Measured Front	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR		21.78 0.457 0.289 -0.06 0.655 0.533			1.18 0.54 0.34 -0.06 0.77 0.63	
	Measured Front	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03	
QPSK50%	Measured Front Rear	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12	
QPSK50%	Measured Front Rear	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR Deviation 1g SAR 10g SAR 10g SAR Deviation 1g SAR Deviation 1g SAR		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07	
QPSK50%	Measured Front Rear	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR Deviation		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07	
QPSK50%	Measured Front Rear Left edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR Deviation		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07 0.26	
QPSK50%	Measured Front Rear Left edge Right edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.26 0.15 0.08 0.62	
QPSK50%	Measured Front Rear Left edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR 10g SAR		21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279			1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.26 0.15 0.08 0.62 0.33	
QPSK50%	Measured Front Rear Left edge Right edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR	21.72	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06	21.77		1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.26 0.15 0.08 0.62 0.33 0.06	
QPSK50%	Measured Front Rear Left edge Right edge Bottom edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR 10g SAR 10g SAR 10g SAR 10g SAR 10g SAR 10g SAR	21.72	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279	21.77		1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.26 0.15 0.08 0.62 0.33	
QPSK50%	Measured Front Rear Left edge Right edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR 10g SAR	21.72	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06	21.77		1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.26 0.15 0.08 0.62 0.33 0.06	
QPSK50% RB	Measured Front Rear Left edge Right edge Bottom edge Oevice orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation	21.72	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06 sured SAR [21.77	1.20	1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07 0.26 0.15 0.08 0.62 0.33 0.06 orted SAR [V	1.18
QPSK50% RB	Measured Front Rear Left edge Right edge Bottom edge Oevice orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR	21.72	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06 sured SAR [N 20175	21.77	1.20	1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07 0.26 0.15 0.08 0.62 0.33 0.06 orted SAR [V 20175	1.18
QPSK50% RB Mode	Measured Front Rear Left edge Right edge Bottom edge Oevice orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR	21.72 	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06 sured SAR [20175 22.50	21.77 	1.20	1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07 0.26 0.15 0.08 0.62 0.33 0.06 orted SAR [V 20175 Scaling factor	1.18
QPSK50% RB Mode 20MHz	Measured Front Rear Left edge Right edge Bottom edge Oevice orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR measurement Ine-up Power [dBm] 1g SAR	21.72 21.72 21.72 2030 22.50 21.69	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06 sured SAR [20175 22.50	21.77 	1.20	1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07 0.26 0.15 0.08 0.62 0.33 0.06 orted SAR [V 20175 Scaling factor	1.18
QPSK50% RB Mode 20MHz QPSK100%	Measured Front Rear Left edge Right edge Bottom edge Oevice orientation Tu Measured	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10	21.72 21.72 20300 22.50 21.69 0.832	21.78 0.457 0.289 -0.06 0.655 0.533 -0.03 0.103 0.063 0.07 0.222 0.131 0.08 0.526 0.279 0.06 sured SAR [20175 22.50	21.77 	1.20	1.18 0.54 0.34 -0.06 0.77 0.63 -0.03 0.12 0.07 0.07 0.26 0.15 0.08 0.62 0.33 0.06 orted SAR [V 20175 Scaling factor	1.18

			LTE85	0-FDD5 #1 He	ad			
Ambient Te	emperature:	22.5				Liquid Ter	22.3	
	Device	SAR	Meas	sured SAR [V	V/kg]	Reported SAR [W/kg]		
Mode	orientation		20600	20525	20450	20600	20525	20450
	onentation	measurement	м	М	М	м	М	М
	Tune-up		24.00	24.00	24.00		Scaling factor	
	Measured	Power [dBm]	23.32	23.35	23.43	1.17	1.16	1.14
		1g SAR			0.315			0.36
	Left Cheek	10g SAR			0.236			0.27
		Deviation			0.17			0.17
		1g SAR			0.235			0.27
10MHz	Left Tilt	10g SAR			0.165			0.19
QPSK1RB		Deviation			0.03			0.03
		1g SAR			0.257			0.29
	Right Cheek	10g SAR			0.194			0.22
		Deviation			-0.06			-0.06
		1g SAR			0.159			0.18
	Right Tilt	10g SAR			0.121			0.14
		Deviation			-0.11			-0.11
			Meas	sured SAR [W	V/kg]	Reported SAR [W/kg]		
TRUE	Device	SAR	20600	20525	20450	20600	20525	20450
	orientation	measurement	L	L	н	L	L	Н
	Ти	ne-up	23.00	23.00	23.00	_	Caling factor	
		Power [dBm]	22.30	22.29	22.26	1.17	1.18	1.19
		1g SAR	0.257			0.30		
	Left Cheek	10g SAR	0.191			0.22		
		Deviation	-0.05			-0.05		
		1g SAR	0.19			0.22		
10MHz	Left Tilt	10g SAR	0.143			0.17		
QPSK50%		Deviation	0.03			0.03		
RB		1g SAR	0.182			0.21		
	Right Cheek	10g SAR	0.156			0.18		
	-	Deviation	-0.14		*****	-0.14		
		1g SAR	0.116			0.14		
	Right Tilt	10g SAR	0.088			0.10		
	_	Deviation	0.08			0.08		

Table 14-15 LTE850-FDD5 #1 Head

Table 14-16 LTE850-FDD5 #1 Body

			LTE85	50-FDD5 #1 Bo	ody				
Ambient Te	emperature:	22.5				Liquid Temperature: 22.3			
	D .	0.4.5	Meas	sured SAR [N/kg]	Rep	orted SAR [M	//kg]	
Mode	Device	SAR	20600	20525	20450	20600	20525	20450	
	orientation	measurement	м	м	м	м	м	М	
	Tu	ine-up	24.00	24.00	24.00	ę	Scaling factor	*	
	Measured	Power [dBm]	23.32	23.35	23.43	1.17	1.16	1.14	
		1g SAR			0.318			0.36	
	Front	10g SAR			0.259			0.30	
		Deviation			0.03			0.03	
		1g SAR			0.359			0.41	
	Rear	10g SAR			0.274			0.31	
10141-		Deviation			0.02			0.02	
10MHz		1g SAR			0.332			0.38	
QPSK1RB	Left edge	10g SAR			0.235			0.27	
	_	Deviation			-0.05			-0.05	
	Right edge	1g SAR			0.2			0.23	
		10g SAR			0.141			0.16	
		Deviation			0.06			0.06	
		1g SAR			0.12			0.14	
	Bottom edge	10g SAR			0.071			0.08	
		Deviation			0.08			0.08	
			Meas	sured SAR	N/kg]	Reported SAR [W/kg]			
Mode	Device	SAR	20600	20525	20450	20600	20525	20450	
	orientation	measurement	L	L	Н				
	Tu	ine-up	23.00	23.00	23.00	ę	Scaling factor	*	
	Measured	Power [dBm]	22.30	22.29	22.26	1.17	1.18	1.19	
		1g SAR	0.247			0.29			
	Front	10g SAR	0.188			0.22			
		Deviation	0.08			0.08			
		1g SAR	0.295			0.35			
	Rear	10g SAR	0.223			0.26			
10MHz		Deviation	-0.03			-0.03			
QPSK50%		1g SAR	0.263			0.31			
RB	Left edge	10g SAR	0.184			0.22			
		Deviation	0.07			0.07			
		1g SAR	0.159			0.19			
	Right edge	10g SAR	0.111			0.13			
		Deviation	0.09			0.09			
	_	1g SAR	0.101			0.12			
	Bottom edge	10g SAR	0.059			0.07			
		Deviation	0.06						

			LTE250	00-FDD7 #1 He	ead			
Ambient Te	emperature:	22.5				Liquid Temperature: 22.3		
	Device		Measured SAR [W/kg]			Reported SAR [W/kg]		
Mode	Device	SAR	21350	21100	20850	21350	21100	20850
	orientation	measurement	М	м	м	М	м	М
		Tune-up		22.20	22.20		Scaling factor	
	Measured	Power [dBm]	21.89	21.85	21.99	1.07	1.08	1.05
		1g SAR			0.103			0.11
20MHz QPSK1RB	Left Cheek	10g SAR			0.059			0.06
		Deviation			0.03			0.03
		1g SAR			0.042			0.04
	Left Tilt	10g SAR			0.022			0.02
		Deviation			-0.05			-0.05
		1g SAR			0.187			0.20
	Right Cheek	10g SAR			0.094			0.10
		Deviation			0.2			0.20
		1g SAR			0.04			0.04
	Right Tilt	10g SAR			0.022			0.02
		Deviation			-0.05			-0.05
			Measured SAR [W/kg]		Rep	V/kg]		
TRUE	Device	SAR	21350	21100	20850	21350	21100	20850
	orientation	measurement	L	Н	м	L	н	м
	Tu	ne-up	21.20	21.20	21.20	_	Scaling factor	
		Power [dBm]	20.45	20.54	20.62	1.19	1.16	1.14
		1g SAR			0.077			0.09
	Left Cheek	10g SAR			0.044			0.05
		Deviation			-0.06			-0.06
		1g SAR			0.023			0.03
20MHz	Left Tilt	10g SAR			0.012			0.01
QPSK50%		Deviation			-0.09			-0.09
RB		1g SAR			0.153			0.17
	Right Cheek	10g SAR			0.081			0.09
		Deviation			0.01	1		0.01
		1g SAR			0.015			0.02
	Right Tilt	10g SAR			0.072			0.08
		Deviation			-0.12			-0.12

Table 14-17 LTE2500-FDD7 #1 Head

			LTE25	00-FDD7 #1 Bo	ody				
Ambient Te	emperature:	22.5			,	Liquid Ter	mperature:	22.3	
			Meas	sured SAR [W	V/kg]	Reported SAR [W/kg]			
Mode	Device	SAR	21350	21100	20850	21350	21100	20850	
	orientation	measurement	M	M	M	M	M	M	
	Ти	ine-up	22.20	22.20	22.20		Scaling factor		
	Measured Power [dBm]		21.89	21.85	21.99	1.07	1.08	1.05	
	measured	1g SAR	21.00	21.00	0.552		1.00	0.58	
	Front	10g SAR			0.352			0.38	
	. Tont	Deviation			0.09			0.27	
		1g SAR			0.753			0.79	
	Rear	10g SAR			0.341			0.36	
	, total	Deviation			0.06			0.06	
20MHz		1g SAR			0.201			0.00	
QPSK1RB	Left edge	10g SAR			0.105			0.21	
	Lon ougo	Deviation			0.09			0.09	
Ri		1g SAR			0.054			0.06	
	Right edge	10g SAR			0.032			0.03	
	g ougo	Deviation			0.07			0.00	
	Bottom edge	1g SAR	1.11	1	1.06	1.19	1.08	1.11	
E		10g SAR	0.52	0.476	0.513	0.56	0.52	0.54	
		Deviation	-0.05	0.06	0.04	-0.05	0.02	0.04	
	Deviation			sured SAR [V			orted SAR M		
Mode	Device	SAR	21350	21100	20850	21350	21100	20850	
widde	orientation	measurement	21350 L	H	M	21350	21100	20000	
	Tu	ine-up	21.20				Scaling factor	*	
		ine-up Power [dBm]	21.20 20.45	21.20	21.20		Scaling factor		
		Power [dBm]	21.20 20.45			9 1.19	Scaling factor 1.16	* 1.14 0.48	
				21.20	21.20 20.62		-	1.14	
	Measured	Power [dBm] 1g SAR		21.20	21.20 20.62 0.424		-	1.14 0.48	
	Measured	Power [dBm] 1g SAR 10g SAR		21.20	21.20 20.62 0.424 0.2		-	1.14 0.48 0.23	
	Measured	Power [dBm] 1g SAR 10g SAR Deviation		21.20	21.20 20.62 0.424 0.2 -0.05		-	1.14 0.48 0.23 -0.05	
20MHz	Measured Front	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR		21.20	21.20 20.62 0.424 0.2 -0.05 0.648		-	1.14 0.48 0.23 -0.05 0.74	
20MHz QPSK50%	Measured Front	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR		21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299		-	1.14 0.48 0.23 -0.05 0.74 0.34	
	Measured Front	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation		21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06		-	1.14 0.48 0.23 -0.05 0.74 0.34 0.06	
QPSK50%	Measured Front Rear	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR Deviation		21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02		-	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02	
QPSK50%	Measured Front Rear	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR Deviation 1g SAR		21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044		-	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05	
QPSK50%	Measured Front Rear	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR		21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025		-	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03	
QPSK50%	Measured Front Rear Left edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR Deviation	20.45	21.20 20.54	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03	1.19	1.16	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03	
QPSK50%	Measured Front Rear Left edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR Deviation 1g SAR		21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74		1.16	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03	
QPSK50%	Measured Front Rear Left edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR Deviation	20.45	21.20 20.54	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03	1.19	1.16	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03	
QPSK50%	Measured Front Rear Left edge Right edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR Deviation 1g SAR	20.45	21.20 20.54	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07	1.19 1.07 0.49 0.14	1.05 0.48 0.05	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.05 0.03 0.03 0.03 0.03 0.04 0.05	
QPSK50% RB	Measured Front Rear Left edge Right edge Bottom edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR Deviation 1g SAR Deviation	20.45	21.20 20.54	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07	1.19 1.07 0.49 0.14	1.16	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.05 0.03 0.03 0.03 0.03 0.04 0.05	
QPSK50%	Measured Front Rear Left edge Right edge	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR 10g SAR 10g SAR 10g SAR	20.45	21.20 20.54	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07	1.19 1.07 0.49 0.14	1.05 0.48 0.05	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.05 0.03 0.03 0.03 0.03 0.04 0.05	
QPSK50% RB	Measured Front Rear Left edge Right edge Bottom edge Device orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR Deviation 1g SAR Deviation 1g SAR Deviation SAR	20.45	21.20 20.54 20.54 20.54 20.54 20.54 21100	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07 V/kg] 20850	1.19 1.07 0.49 0.14 Rep 21350	1.16	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03 0.03 0.03 0.84 0.41 0.07 //kg] 20850	
QPSK50% RB	Measured Front Rear Left edge Right edge Bottom edge Oevice orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR measurement me-up	20.45	21.20 20.54	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07 V/kg]	1.19 1.07 0.49 0.14 Rep 21350	1.16 1.05 0.48 0.05 orted SAR [V 21100	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03 0.03 0.03 0.03 0.84 0.41 0.07 √/kg] 20850	
QPSK50% RB Mode 20MHz	Measured Front Rear Left edge Right edge Bottom edge orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g	20.45	21.20 20.54 20.54 0.899 0.411 0.05 5ured SAR [V 21100 21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07 V/kg] 20850 21.20	1.19 1.19 1.07 0.49 0.14 Rep 21350 5 1.20	1.16 1.05 0.48 0.05 orted SAR [V 21100 Scaling factor	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03 0.03 0.03 0.84 0.41 0.07 //kg] 20850	
QPSK50% RB Mode	Measured Front Rear Left edge Right edge Bottom edge orientation Tu Measured	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR 10g SAR Deviation 1g SAR measurement me-up Power [dBm] 1g SAR	20.45	21.20 20.54 20.54 0.899 0.411 0.05 5ured SAR [V 21100 21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07 V/kg] 20850 21.20	1.19 1.19 1.07 0.49 0.14 Rep 21350 6 1.20 0.76	1.16 1.05 0.48 0.05 orted SAR [V 21100 Scaling factor	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03 0.03 0.03 0.03 0.84 0.41 0.07 √/kg] 20850	
QPSK50% RB Mode 20MHz QPSK100%	Measured Front Rear Left edge Right edge Bottom edge orientation	Power [dBm] 1g SAR 10g SAR Deviation 1g SAR 10g	20.45	21.20 20.54 20.54 0.899 0.411 0.05 5ured SAR [V 21100 21.20	21.20 20.62 0.424 0.2 -0.05 0.648 0.299 0.06 0.161 0.081 0.02 0.044 0.025 0.03 0.74 0.36 0.07 V/kg] 20850 21.20	1.19 1.19 1.07 0.49 0.14 Rep 21350 5 1.20	1.16 1.05 0.48 0.05 orted SAR [V 21100 Scaling factor	1.14 0.48 0.23 -0.05 0.74 0.34 0.06 0.18 0.09 0.02 0.05 0.03 0.03 0.03 0.03 0.84 0.41 0.07 √/kg] 20850	

			LTE70	D-FDD12 #1 H	ead			
Ambient Te	emperature:	22.5				Liquid Temperature: 22.3		
	Device	SAR	Meas	sured SAR []	V/kg]	Reported SAR [W/kg]		
Mode			23130	23095	23060	23130	23095	23060
	orientation	measurement	М	М	М	м	м	м
	Tune-up		24.00	24.00	24.00		Scaling factor	
	Measured	Power [dBm]	23.25	23.24	23.28	1.19	1.19	1.18
		1g SAR			0.126			0.15
10MHz Left QPSK1RB	Left Cheek	10g SAR			0.145			0.17
		Deviation			0.07			0.07
		1g SAR			0.07			0.08
	Left Tilt	10g SAR			0.082			0.10
		Deviation			-0.02			-0.02
		1g SAR			0.186			0.22
	Right Cheek	10g SAR			0.145			0.17
		Deviation			-0.05			-0.05
		1g SAR			0.055			0.06
	Right Tilt	10g SAR			0.088			0.10
		Deviation			0.06			0.06
			Measured SAR [W/kg]		V/kg]	Rep	V/kg]	
TRUE	Device	SAR	23130	23095	23060	23130	23095	23060
	orientation	measurement	М	Н	М	м	Н	м
	Tu	ne-up	23.00	23.00	23.00		Scaling factor	*
	Measured	Power [dBm]	22.17	22.25	22.16	1.21	1.19	1.21
		1g SAR		0.077			0.09	
	Left Cheek	10g SAR		0.088			0.10	
		Deviation		0.04			0.04	
		1g SAR		0.047			0.06	
10MHz	Left Tilt	10g SAR		0.079			0.09	
QPSK50%		Deviation		-0.02			-0.02	
RB		1g SAR		0.072			0.09	
	Right Cheek	10g SAR		0.083			0.10	
		Deviation		0.06			0.06	
		1g SAR		0.056			0.07	
	Right Tilt	10g SAR		0.089			0.11	
	_	Deviation		0.03			0.03	

Table 14-19 LTE700-FDD12 #1 Head

Table	14-20 LTE700-FDD12 #1 Body	

			LTE70	0-FDD12 #1 B	ody				
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3	
	D .		Meas	sured SAR [N/kg]	Rep	orted SAR [V	V/kg]	
Mode	Device orientation		23130	23095	23060	23130	23095	23060	
		measurement	м	м	м	м	м	м	
	Tune-up		24.00	24.00	24.00	5	Scaling factor	*	
	Measured	Power [dBm]	23.25	23.24	23.28	1.19	1.19	1.18	
		1g SAR			0.202			0.24	
	Front	10g SAR			0.155			0.18	
		Deviation			0.04			0.04	
		1g SAR			0.257			0.30	
	Rear	10g SAR			0.196			0.23	
10MHz QPSK1RB		Deviation			-0.13			-0.13	
		1g SAR			0.145			0.17	
	Left edge	10g SAR			0.105			0.12	
		Deviation			0.09			0.09	
	Right edge	1g SAR			0.122			0.14	
		10g SAR			0.087			0.10	
		Deviation			0.03			0.03	
		1g SAR			0.072			0.09	
	Bottom edge	10g SAR			0.043			0.05	
		Deviation			0.03			0.03	
			Measured SAR [W/kg]			Reported SAR [W/kg]			
Mode	Device orientation	SAR measurement	23130	23095	23060	23130	23095	23060	
		measurement	м	Н	м				
	Tu	ine-up	23.00	23.00	23.00	5	Scaling factor	*	
	Measured	Power [dBm]	22.17	22.25	22.16	1.21	1.19	1.21	
		1g SAR		0.167			0.20		
	Front	10g SAR		0.128			0.15		
		Deviation		0.03			0.03		
		1g SAR		0.203			0.24		
	Rear	10g SAR		0.155			0.18		
10MHz		Deviation		0.05			0.05		
QPSK50%		1g SAR		0.127			0.15		
RB	Left edge	10g SAR		0.092			0.11		
		Deviation		0.07			0.07		
		1g SAR		0.091			0.11		
	Right edge	10g SAR		0.088			0.10		
		Deviation		0.05			0.05		
		1g SAR		0.075			0.09		
	Bottom edge	10g SAR		0.033			0.04		
		Deviation		-0.05			-0.05		

Ambient Te	mperature					
	imperature.	22.5		22.3		
	Device	SAR	Measured SAR [W/kg]	Reported SAR [W/kg]		
Mode	orientation		23230	23230		
	onentation	measurement	Measured SAR [W/kg] Reported SAR [M/kg] 23230 23230 M M 24.00 Scaling facto dBm] 23.37 1.16 AR 0.294 0.34 SAR 0.223 0.26 ation 0.19 0.19 AR 0.201 0.23 SAR 0.151 0.17 ation 0.02 0.02 AR 0.215 0.25 SAR 0.215 0.25 ation 0.11 0.11 AR 0.227 0.26 SAR 0.175 0.20 ation 0.01 0.01 AR 0.227 0.26 SAR 0.175 0.20 ation 0.01 0.01 AR 0.2230 23230 BAR 23.00 Scaling facto AR 0.235 0.28 SAR 0.178 0.21 AR 0.235	М		
		ine-up		Scaling factor*		
	Measured	Power [dBm]				
		1g SAR				
	Left Cheek	10g SAR				
		Deviation				
		1g SAR				
10MHz	Left Tilt	10g SAR				
QPSK1RB		Deviation	0.02	0.02		
		1g SAR	0.283	0.33		
	Right Cheek	10g SAR	0.215	0.25		
		Deviation	0.11	0.11		
		1g SAR	0.227	0.26		
	Right Tilt	10g SAR	0.175	0.20		
		Deviation	0.01	0.01		
			Measured SAR [W/kg]	Reported SAR [W/kg]		
TRUE	Device	SAR	23230	23230		
	orientation	measurement	м	м		
	Tu	ine-up				
		Power [dBm]				
		1g SAR	0.235	0.28		
	Left Cheek	10g SAR	0.178	0.21		
		Deviation	0.13	0.13		
		1g SAR	0.178	0.21		
	Left Tilt	10g SAR	0.12	0.14		
-		Deviation	0.08	0.08		
RB		1g SAR	0.223	0.27		
	Right Cheek	10g SAR	0.189	0.23		
	-	Deviation	0.13	0.13		
		1g SAR	0.175	0.21		
	Right Tilt	10g SAR	135	162.84		
	÷	Deviation	0.09	0.09		
10MHz QPSK50% RB		Deviation 1g SAR 10g SAR Deviation	0.13 0.178 0.12	0.13 0.21 0.14		

Table 14-21 LTE750-FDD13 #1 Head

			750-FDD13 #1 Body	,		
Ambient Te	emperature:	22.5		22.3		
			Measured SAR [W/kg]	Reported SAR [W/kg]		
Mode	Device	SAR	23230	23230		
	orientation	measurement	м	м		
	Τι	ine-up	24.00	Scaling factor*		
		Power [dBm]	23.37	1.16		
		1g SAR	0.274	0.32		
	Front	10g SAR	0.22	0.25		
		Deviation	-0.07	-0.07		
		1g SAR	0.322	0.37		
	Rear	10g SAR	0.246	0.28		
		Deviation	0.09	0.09		
10MHz			0.288	0.33		
QPSK1RB	Left edge	_	0.222	0.26		
	_	Deviation	0.14	0.14		
		1g SAR	0.17	0.20		
	Right edge	-	0.129	0.15		
	0 0	Deviation	0.12	0.12		
		1g SAR	0.093	0.11		
	Bottom edge		0.078	0.09		
	5	10g SAR 0.222 0.2 Deviation 0.14 0.7 1g SAR 0.17 0.2 10g SAR 0.129 0.7 Deviation 0.129 0.7 Deviation 0.12 0.7 1g SAR 0.093 0.7 10g SAR 0.078 0.0 Deviation -0.02 -0. Measured SAR [W/kg] Reported SAR SAR 23230 232	-0.02			
			Measured SAR [W/kg]	Reported SAR [W/kg]		
Mode	Device	SAR	23230	23230		
	orientation	measurement	М			
	Т	ine-up	23.00	Scaling factor*		
		Power [dBm]	22.19	1.21		
	wicasurcu	1g SAR	0.229	0.28		
	Front	10g SAR	0.183	0.22		
	TION	Deviation	0.02	0.02		
		1g SAR	0.254	0.31		
	Rear	10g SAR	0.205	0.25		
10MHz		Deviation	0.07	0.07		
QPSK50%		1g SAR	0.241	0.29		
RB	Left edge	10g SAR	0.185	0.22		
	-	Deviation	0.04	0.04		
		1g SAR	0.142	0.17		
	Right edge	10g SAR	0.108	0.13		
		Deviation	-0.03	-0.03		
		1g SAR	0.075	0.09		
	Bottom edge	10g SAR	0.047	0.06		
		Deviation	-0.08	-0.08		

Table 14-22 LTE750-FDD13 #1 Body

No. I18Z60562-SEM01 Page 62 of 193

14.2 Full SAR

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	251	848.8 MHz	33.3	32.69	Left Cheek	0.254	0.34	0.29	0.39	0.03	<u>Fig A.1</u>
GSM850	190	836.6 MHz	30.5	30.38	Rear	0.343	0.452	0.35	0.46	-0.11	<u>Fig A.2</u>
PCS1900	512	1850.2 MHz	30.3	29.90	Right Cheek	0.213	0.344	0.23	0.38	0.19	<u>Fig A.3</u>
PCS1900	512	1850.2 MHz	28	27.59	Rear	0.539	0.987	0.59	1.09	0.05	<u>Fig A.4</u>
WCDMA1900-BII	9262	1852.4 MHz	23.5	23.45	Left Cheek	0.144	0.225	0.15	0.23	0.07	<u>Fig A.5</u>
WCDMA1900-BII	9262	1852.4 MHz	23.5	23.45	Bottom edge	0.623	1.18	0.63	1.19	0.07	<u>Fig A.6</u>
WCDMA1700-BIV	1412	1732.4 MHz	23.5	23.12	Left Cheek	0.264	0.424	0.29	0.46	0.05	<u>Fig A.7</u>
WCDMA1700-BIV	1412	1732.4 MHz	23.5	23.12	Rear	0.614	1.08	0.67	1.18	-0.03	<u>Fig A.8</u>
WCDMA850-BV	4182	835.4 MHz	24	23.40	Left Cheek	0.259	0.344	0.30	0.39	-0.08	<u>Fig A.9</u>
WCDMA850-BV	4233	846.6 MHz	24	23.34	Rear	0.288	0.377	0.34	0.44	0.06	<u>Fig A.10</u>
LTE1900-FDD2	19100	1900 MHz	23.5	22.92	Left Cheek	0.086	0.137	0.10	0.16	0.06	<u>Fig A.11</u>
LTE1900-FDD2	18700	1860 MHz	23.5	22.91	Bottom edge	0.548	1.04	0.63	1.19	0.12	Fig A.12
LTE1700-FDD4	20050	1720 MHz	23.5	22.91	Left Cheek	0.194	0.292	0.22	0.33	0.05	Fig A.13
LTE1700-FDD4	20300	1745 MHz	23.5	22.83	Rear	0.569	0.993	0.66	1.16	-0.02	<u>Fig A.14</u>
LTE850-FDD5	20450	829 MHz	24	23.43	Left Cheek	0.236	0.315	0.27	0.36	0.17	<u>Fig A.15</u>
LTE850-FDD5	20450	829 MHz	24	23.43	Rear	0.274	0.359	0.31	0.41	0.02	<u>Fig A.16</u>
LTE2500-FDD7	20850	2510 MHz	22.2	21.99	Right Cheek	0.094	0.187	0.10	0.20	0.2	Fig A.17
LTE2500-FDD7	21350	2560 MHz	22.2	21.89	Bottom edge	0.52	1.11	0.56	1.19	-0.05	Fig A. 18
LTE700-FDD12	23060	704 MHz	24	23.28	Right Cheek	0.145	0.186	0.17	0.22	-0.05	<u>Fig A.19</u>
LTE700-FDD12	23060	704 MHz	24	23.28	Rear	0.196	0.257	0.23	0.30	-0.13	<u>Fig A.20</u>
LTE750-FDD13	23230	782 MHz	24	23.37	Left Cheek	0.223	0.294	0.26	0.34	0.19	Fig A.21
LTE750-FDD13	23230	782 MHz	24	23.37	Rear	0.246	0.322	0.28	0.37	0.09	<u>Fig A.22</u>

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the initial test position procedure.

Note1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Note3: According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

WLAN2450 #1										
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3		
	Device	SAR	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]				
Rate	orientation	measurement	11	6	1	11	6	1		
	onentation	measurement	2462 MHz	2437 MHz	2412 MHz		0	•		
	Tur	ne up	16.5	16.5	16.5		Scaling factor	*		
	Slot Average	e Power [dBm]	15.50	15.69	15.37	1.26	1.21	1.30		
		1g Fast SAR		0.481			0.58			
	Left Cheek	10g SAR		0.278			0.33			
		Deviation		0.09			0.09			
		1g Fast SAR		0.353			0.43			
802.11b	Left Tilt	10g SAR		0.192			0.23			
1Mbps		Deviation		0.05			0.05			
		1g Fast SAR		0.745			0.90			
	Right Cheek	10g SAR		0.4			0.48			
		Deviation		0.01			0.01			
		1g Fast SAR		0.566			0.68			
	Right Tilt	10g SAR		0.263			0.32			
		Deviation		0.06			0.06			

Table 14-23 WLAN2450 #1 Head Fast SAR

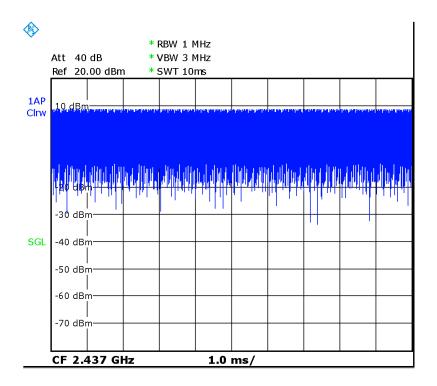
Table 14-24 WLAN2450 #1 Head Full SAR

	WLAN2450 #1 Head Full SAR										
Ambient Te	emperature:	22.5				Liquid Ter	nperature:	22.3			
	Device	SAR	Mea	sured SAR [V	V/kg]	Rep	orted SAR [W/kg]			
Rate	orientation	measurement	11	6	1	11	6	4			
	onentation	measurement	2462 MHz	2437 MHz	2412 MHz		6	1			
	Tu	ne up	16.5	16.5	16.5	Scaling factor*					
	Slot Average	e Power [dBm]	15.50	15.69	15.37	1.26	1.21	1.30			
	Ť	1g Full SAR	0.779	0.818		0.98	0.99				
802.11b	Right Cheek	10g SAR	0.384	0.412		0.48	0.50				
1Mbps		Deviation	0.04	0.01		0.04	0.01				
		1g Full SAR		0.589			0.71				
	Right Tilt	10g SAR		0.304			0.37				
		Deviation		0.01			0.01				

Table 14-25 WLAN2450 #1 Body Fast SAR

	WLAN2450 #1 Body Fast SAR										
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3			
	Device	SAR	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]					
Rate	orientation	measurement	11	6	1	11	6	1			
	onentation		2462 MHz	2437 MHz	2412 MHz		0	•			
	Tur	ne up	16.5	16.5	16.5		Scaling facto	*			
	Slot Average	e Power [dBm]	15.50	15.69	15.37	1.26	1.21	1.30			
	Front	1g Fast SAR		0.104			0.13				
		10g SAR		0.045			0.05				
		Deviation		0.05			0.05				
		1g Fast SAR		0.128			0.15				
802.11b	Rear	10g SAR		0.063			0.08				
1Mbps		Deviation		0.19			0.19				
		1g Fast SAR		0.058			0.07				
	Top edge	10g SAR		0.014			0.02				
		Deviation		0.02			0.02				
		1g Fast SAR		0.042			0.05				
	Right edge	10g SAR		0.009			0.01				
		Deviation		-0.01			-0.01				

Table 14-26 WLAN2450 #1 Body Full SAR


WLAN2450 #1 Body Full SAR										
Ambient Te	emperature:	22.5				Liquid Ter	nperature:	22.3		
	Device	CAD	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]				
Rate	Device orientation	SAR measurement	11	6	1	11	6	1		
			2462 MHz	2437 MHz	2412 MHz		0	'		
	Tu	ne up	16.5	16.5	16.5	:	Scaling factor	*		
902 115		ne up e Power [dBm]	16.5 15.50	16.5 15.69	16.5 15.37	1.26	Scaling factor 1.21	* 1.30		
802.11b		· ·								
802.11b 1Mbps		e Power [dBm]		15.69			1.21			

	According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine										
	compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below										
Frequency Test Position Actual duty maximum duty Reported Scaled reported Figure											
MHz	Ch.		factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)	rigure				
2437 6 Right Cheek 100.00% 100.00% 0.99 0.99 Fig.											

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine										
compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below										
Frequ	uency	Test Position	Actual duty	maximum duty	Reported	Scaled reported	Figure			
MHz	Ch.	lest Position	factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)	Figure			
2437	6	Rear	100.00%	100.00%	0.16	0.16	Fig.24			

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Picture 14.1 Duty factor plot

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	СН	Freq	Test Poisition	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
PCS1900	512	1850.2 MHz	Rear	0.987	0.979	1.01
WCDMA1900-BII	9262	1852.4 MHz	Bottom edge	1.18	1.16	1.02
WCDMA1700-BIV	1412	1732.4 MHz	Rear	1.08	1.06	1.02
LTE1900-FDD2	18700	1860 MHz	Bottom edge	1.04	1.02	1.02
LTE1700-FDD4	20300	1745 MHz	Rear	0.993	0.992	1.00
LTE2500-FDD7	21350	2560 MHz	Bottom edge	1.11	1.09	1.02
WLAN2450	6	2437 MHz	Right Cheek	0.818	0.809	1.01

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1		CCIta			6313	(3001	1112~.	,O112)		
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probepositioningwithrespecttophantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	1					
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521

No. I18Z60562-SEM01 Page 68 of 193

$\begin{array}{c ccnfidence interval of 95%} & & & & & & & & & & $	(<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
No. Error Description Type Uncertainty value Probably Distribution Dis. (Ci) up (Ci) up (Ci) up (Ci) up (Ci) up Std. Std. Degree of freedo m Measurement system Distribution 1 1 1 1 6.55 ∞ ∞ 2 Isotropy B 6.55 N 1 1 1 6.55 ∞ ∞ 3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 5 Detection limit B 4.7 R $\sqrt{3}$ 1 1 0.6 6.55 ∞ 6 Redout electronics B 0.0 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 7 Response time B 0.3 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 8 Integration time B 0.6 R $\sqrt{3}$	(conf	idence interval of	1	$u_e = 2u_c$					19.1	18.9	
Image: Constraint of the second se	16.2	Measurement U	ncerta	ainty for No	ormal SAR	Tests	s (3~6	GHz)			
Mean Image: Constraint of the system	No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
Mean Image: constraint system Main: constraint system m m m 1 Probe calibration B 6.55 N 1 1 1 6.55 6.55 ∞ 2 Isotropy B 4.7 R $\sqrt{3}$ 0.7 0.7 1.9 1.9 0.0 3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 2.12 1.0 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 2.7 2.7 ∞ 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 1 0.5 0.5 ∞ 7 Response time B 0.6 R $\sqrt{3}$ 1 1 1 0.5 0.5 ∞ 9 RF ambien				value	Distribution		1g	10g	Unc.	Unc.	of
Mesurement system I <thi< th=""> I <thi< th=""></thi<></thi<>									(1g)	(10g)	freedo
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Meas	surement system									
3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 7 Response time B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 8 Integration time B 2.6 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RF ambient conditions-reflection B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 11 Probe positioning mech. restrictions B 0.8 R	1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		В	4.7	R		0.7	0.7	1.9	1.9	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Boundary effect	В	2.0	R		1	1	1.2	1.2	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
8 Integration time B 2.6 R $\sqrt{3}$ 1 1 1.5 1.5 ∞ 9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RF ambient conditions-reflection B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 11 Probe positioned mech. restrictions B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 12 Probe positioning meth respect to phantom shell B 6.7 R $\sqrt{3}$ 1 1 2.3 2.3 ∞ 13 Post-processing B 4.0 R $\sqrt{3}$ 1 1 2.3 2.3 ∞ 14 Test sample positioning A 3.3 N 1 1 1 3.4 3.4 5 16 Drift of output power B 5.0 R $\sqrt{3}$ <td>6</td> <td>Readout electronics</td> <td>В</td> <td>0.3</td> <td>R</td> <td>$\sqrt{3}$</td> <td>1</td> <td>1</td> <td>0.3</td> <td>0.3</td> <td>∞</td>	6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RF ambient conditions-neflection B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 11 Probe positioned mech. restrictions B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 12 Probe positioning mech. restrictions B 0.7 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 12 With respect to phantom shell B 6.7 R $\sqrt{3}$ 1 1 3.9 3.9 ∞ 13 Post-processing B 4.0 R $\sqrt{3}$ 1 1 1 3.9 3.9 ∞ 14 Test sample positioning A 3.3 N 1 1 1 3.4 3.4 5 16 Drift of output power B 5.0 R	7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
$ \begin{array}{c c c c c c c } \hline 9 & 0 & R & \sqrt{3} & 1 & 1 & 0 & 0 & \infty \\ \hline 0 & RF & ambient conditions-reflection & B & 0 & R & \sqrt{3} & 1 & 1 & 0 & 0 & \infty \\ \hline 10 & RF & ambient conditions-reflection & B & 0.8 & R & \sqrt{3} & 1 & 1 & 0.5 & 0.5 & \infty \\ \hline 11 & Probe positioned mech restrictions & B & 0.8 & R & \sqrt{3} & 1 & 1 & 0.5 & 0.5 & \infty \\ \hline 12 & Probe positioning & B & A.0 & R & \sqrt{3} & 1 & 1 & 1 & 3.9 & 3.9 & \infty \\ \hline 13 & Post-processing & B & 4.0 & R & \sqrt{3} & 1 & 1 & 2.3 & 2.3 & \infty \\ \hline 13 & Post-processing & B & 4.0 & R & \sqrt{3} & 1 & 1 & 2.3 & 2.3 & \infty \\ \hline 14 & Test sample & A & 3.3 & N & 1 & 1 & 1 & 3.3 & 3.3 & 71 \\ \hline 15 & Device holder & A & 3.4 & N & 1 & 1 & 1 & 3.4 & 3.4 & 5 \\ \hline 16 & Drift of output power & B & 5.0 & R & \sqrt{3} & 1 & 1 & 2.9 & 2.9 & \infty \\ \hline 17 & Phantom uncertainty & B & 4.0 & R & \sqrt{3} & 1 & 1 & 2.3 & 2.3 & \infty \\ \hline 17 & Phantom uncertainty & B & 4.0 & R & \sqrt{3} & 1 & 1 & 2.3 & 2.3 & \infty \\ \hline 18 & Liquid conductivity & B & 5.0 & R & \sqrt{3} & 0.64 & 0.43 & 1.8 & 1.2 & \infty \\ \hline 19 & Liquid conductivity & A & 2.06 & N & 1 & 0.64 & 0.43 & 1.32 & 0.89 & 43 \\ \hline \end{array}$	8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9		В	0	R	$\sqrt{3}$	1	1	0	0	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		В	0	R	$\sqrt{3}$	1	1	0	0	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	1	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	~
Test sample related14Test sample positioningA3.3N1113.33.37115Device holder uncertaintyA3.4N1113.43.4516Drift of output powerB5.0R $\sqrt{3}$ 112.92.9 ∞ 17Phantom uncertaintyB4.0R $\sqrt{3}$ 112.32.3 ∞ 18Liquid conductivity (target)B5.0R $\sqrt{3}$ 0.640.431.81.2 ∞ 19Liquid conductivity (meas.)A2.06N10.640.431.320.8943	12	with respect to	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
14Test sample positioningA3.3N1113.33.37115Device holder uncertaintyA3.4N1113.43.4516Drift of output powerB5.0R $\sqrt{3}$ 112.92.9 ∞ Phantom uncertainty17Phantom uncertaintyB4.0R $\sqrt{3}$ 112.32.3 ∞ 18Liquid conductivity (target)B5.0R $\sqrt{3}$ 0.640.431.81.2 ∞ 19Liquid conductivity (meas.)A2.06N10.640.431.320.8943	13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Test	sample related	1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	-	А	3.3	N	1	1	1	3.3	3.3	71
Phantom and set-up17Phantom uncertaintyB4.0R $\sqrt{3}$ 112.32.3 ∞ 18Liquid conductivity (target)B5.0R $\sqrt{3}$ 0.640.431.81.2 ∞ 19Liquid conductivity (meas.)A2.06N10.640.431.320.8943	15		А	3.4	N	1	1	1	3.4	3.4	5
17 Phantom uncertainty B 4.0 R $\sqrt{3}$ 1 1 2.3 2.3 ∞ 18 Liquid conductivity (target) B 5.0 R $\sqrt{3}$ 0.64 0.43 1.8 1.2 ∞ 19 Liquid conductivity (meas.) A 2.06 N 1 0.64 0.43 1.32 0.89 43	16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
18 Liquid conductivity (target) B 5.0 R $\sqrt{3}$ 0.64 0.43 1.8 1.2 ∞ 19 Liquid conductivity (meas.) A 2.06 N 1 0.64 0.43 1.32 0.89 43				Phan	tom and set-u	р					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19 (meas.) A 2.06 N 1 0.64 0.43 1.32 0.89 43	18	1 2	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	~
20 Liquid permittivity B 5.0 R $\sqrt{3}$ 0.6 0.49 1.7 1.4 ∞	19		А	2.06	N	1	0.64	0.43	1.32	0.89	43
	20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞

©Copyright. All rights reserved by CTTL.

	(target)										
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521	
Combined standard uncertainty		$u_{c}^{'} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$						10.7	10.6	257	
(cont	Expanded uncertainty (confidence interval of		$u_e = 2u_c$					21.4	21.1		
	95 %) 16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)										
r					· · ·			-	0.1	D	
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedo m	
Mea	Measurement system										
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	~	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	~	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	~	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞	
Test sample related											
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8	
				tom and set-uj							
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	

©Copyright. All rights reserved by CTTL.

No. I18Z60562-SEM01 Page 70 of 193

Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	~
Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty	<i>u</i> _c =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
nded uncertainty idence interval of)				20.8	20.6				
Measurement Un	certa	nty for Fas	st SAR Test	s (3~	6GHz)		-	
Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g	Unc.	Unc.	of
							(1g)	(10g)	freedo
									m
surement system									
Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞
Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	~
Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ
Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	~
Test sample related									
Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
	(target)Liquidconductivity(meas.)Liquidpermittivity(target)Liquidpermittivity(meas.)Combined standarduncertaintycombined uncertaintyidenceintervalofofMeasurement VGarement systemFror DescriptionSurement systemProbe calibrationIsotropyBoundary effectLinearityDetection limitReadout electronicsResponse timeIntegration timeRFambientconditions-noiseRFambientconditions-reflectionProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityProbepositionityPost-processingFastSARzApproximation	ItagetBLiquid conductivity (meas.)ALiquid permittivity (target)BLiquid permittivity (meas.)ACombined standard uncertainty $u'_c =$ Inded uncertainty idence interval of (meas.) $u'_c =$ Inded uncertainty idence interval of (meas.)Image: Combined standard (meas.)Inded uncertainty idence interval of (meas.)TypeImage: Combined standard uncertaintyTypeInded uncertainty idence interval of (meas.)TypeImage: Combined standard uncertaintyTypeImage: Combined standard uncertaintyBIntegration bescriptionBBoundary effect Image: Combined standard (meas.)BBoundary effect Image: Combined standard (meas.)BResponse time Conditions-noiseBRF ambient conditions-reflectionBRF ambient conditions-reflectionBRF mech. RestrictionsBProbe positioned 	(target)B5.0Liquid conductivity (meas.)A2.06Liquid permittivity (target)B5.0Liquid permittivity (meas.)A1.6Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Inded uncertainty idence interval of) $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Measurement Urcertainty valueUncertainty valueBerror DescriptionType BUncertainty valueProbe calibrationB6.55IsotropyB4.7Boundary effectB2.0LinearityB4.7Detection limitB0.3Response timeB0.3Response timeB0.8Integration timeB2.6RF ambient conditions-noiseB0RF ambient conditions-noiseB0.8Probe positioned mech. RestrictionsB0.7Probe positioning with respect toB0.7Probe positioning with respect toB0.7Probe positioning with respect toB0.7Probe positioning with respect toB1.0Fast ApproximationB1.0Fast ApproximationB1.0	(target)B5.0RLiquid conductivity (meas.)A2.06NLiquid permittivity (target)B5.0RLiquid permittivity (meas.)A1.6NNombined standard uncertainty $u_c^2 = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Constraint of the standard of t	(target)B5.0R $\sqrt{3}$ Liquid conductivity (meas.)A2.06N1Liquid permittivity (target)B5.0R $\sqrt{3}$ Liquid permittivity (meas.)A1.6N1Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard uncertainty $u_c = 2u_c$ Image: Combined standard uncertainty $u_c = 2u_c$ Image: Combined standard uncertaintyImage: Combined standard uncertainty $u_c = 2u_c$ Image: Combined standard uncertaintyImage: Combin	(arget)B5.0R $\sqrt{3}$ 0.64Liquid conductivity (meas.)A2.06N10.64Liquid permittivity (target)B5.0R $\sqrt{3}$ 0.6Liquid permittivity (target)A1.6N10.6Liquid permittivity (meas.)A1.6N10.6Combined standard uncertainty idence interval of 0 $u_c^{-} = \sqrt{\sum_{i=1}^{2} c_i^2 u_i^2}$ Image: Combined standard uncertaintyImage: Combined standard Unce	(arget) B 5.0 R $\sqrt{3}$ 0.64 0.43 Liquid conductivity (meas.) A 2.06 N 1 0.64 0.43 Liquid permittivity (meas.) B 5.0 R $\sqrt{3}$ 0.6 0.49 Liquid permittivity (meas.) A 1.6 N 1 0.6 0.49 Sombined standard uncertainty idence interval of $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Construction of the second standard standard uncertainty idence interval of $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Construction of the second standard uncertainty idence interval of $u_c = 2u_c$ Image: Construction of the second standard uncertainty value Image: Construction of the second standard u	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

©Copyright. All rights reserved by CTTL.

No. I18Z60562-SEM01 Page 71 of 193

16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		1	$u_e = 2u_c$					27.0	26.8	

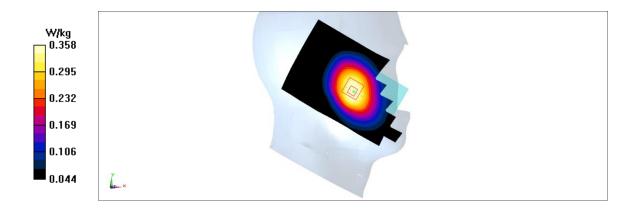
No. I18Z60562-SEM01 Page 72 of 193

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year	
02	Power meter	NRVD	102083	November 01,2017	One year	
03	Power sensor	NRV-Z5	100542		One year	
04	Signal Generator	E4438C	MY49070393	January 02,2018	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	CMW500	159889	December 20, 2017	One year	
07	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year	
08	DAE	SPEAG DAE4	1525	October 02, 2017	One year	
09	Dipole Validation Kit	SPEAG D750V3	1017	July 19,2017	One year	
10	Dipole Validation Kit	SPEAG D835V2	4d069	July 19,2017	One year	
11	Dipole Validation Kit	SPEAG D1750V2	1003	July 21,2017	One year	
12	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26,2017	One year	
13	Dipole Validation Kit	SPEAG D2450V2	853	July 21,2017	One year	
14	Dipole Validation Kit	SPEAG D2600V2	1012	July 21,2017	One year	

END OF REPORT BODY



ANNEX A Graph Results

GSM850_CH251 Left Cheek Date: 4/12/2018 Electronics: DAE4 Sn1525 Medium: head 835 MHz Medium parameters used: f = 848.8 MHz; σ = 0.897 mho/m; ϵ r = 41.43; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.375 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.032 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.437 W/kg SAR(1 g) = 0.34 W/kg; SAR(10 g) = 0.254 W/kg Maximum value of SAR (measured) = 0.358 W/kg

GSM850_CH190 Rear

Date: 4/12/2018Electronics: DAE4 Sn1525 Medium: body 835 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.976$ mho/m; $\epsilon r = 54.75$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 836.6 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.499 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.82 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.563 W/kg SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.343 W/kg Maximum value of SAR (measured) = 0.474 W/kg

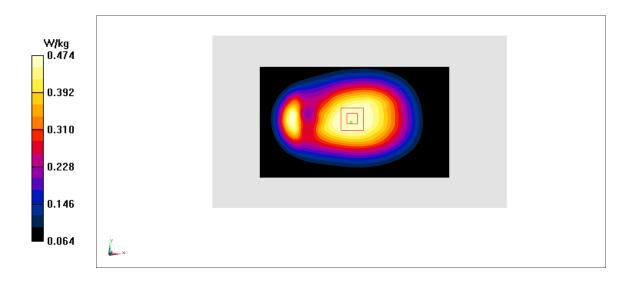


Fig A.2

PCS1900_CH512 Right Cheek

Date: 4/14/2018Electronics: DAE4 Sn1525 Medium: head 1900 MHz Medium parameters used: f = 1850.2 MHz; σ = 1.334 mho/m; ϵ r = 39.39; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.403 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.418 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.537 W/kg SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.213 W/kg Maximum value of SAR (measured) = 0.373 W/kg

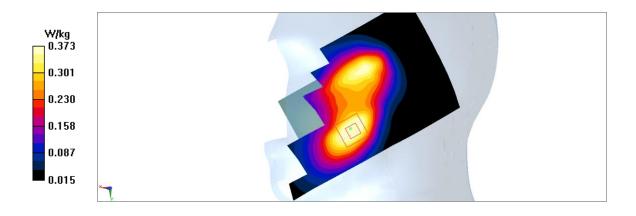
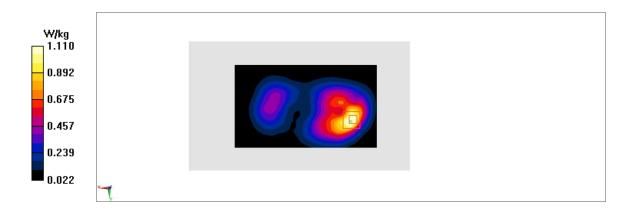


Fig A.3



PCS1900_CH512 Rear

Date: 4/14/2018 Electronics: DAE4 Sn1525 Medium: body 1900 MHz Medium parameters used: f = 1850.2 MHz; σ = 1.477 mho/m; ϵ r = 53.27; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.25 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.069 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.71 W/kg SAR(1 g) = 0.987 W/kg; SAR(10 g) = 0.539 W/kg Maximum value of SAR (measured) = 1.11 W/kg

WCDMA1900-BII_CH9262 Left Cheek

Date: 4/14/2018Electronics: DAE4 Sn1525 Medium: head 1900 MHz Medium parameters used: f = 1852.4 MHz; $\sigma = 1.336$ mho/m; $\epsilon r = 39.39$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.276 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 4.548 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.348 W/kg SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.144 W/kg Maximum value of SAR (measured) = 0.243 W/kg

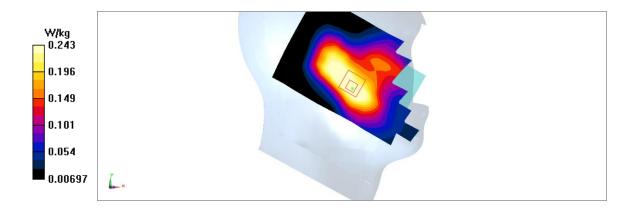
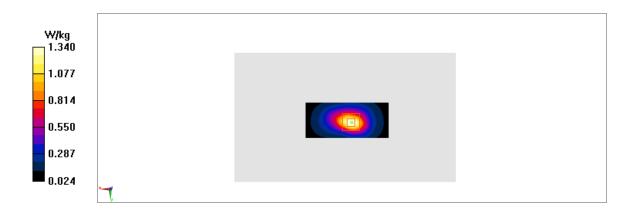


Fig A.5



WCDMA1900-BII_CH9262 Bottom edge

Date: 4/14/2018Electronics: DAE4 Sn1525 Medium: body 1900 MHz Medium parameters used: f = 1852.4 MHz; σ = 1.479 mho/m; ϵ r = 53.27; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 26.96 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 2.01 W/kg SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.623 W/kg Maximum value of SAR (measured) = 1.34 W/kg

WCDMA1700-BIV_CH1412 Left Cheek

Date: 4/13/2018Electronics: DAE4 Sn1525 Medium: head 1750 MHz Medium parameters used: f = 1732.4 MHz; $\sigma = 1.357$ mho/m; $\epsilon r = 39.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.501 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.728 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.649 W/kg SAR(1 g) = 0.424 W/kg; SAR(10 g) = 0.264 W/kg Maximum value of SAR (measured) = 0.465 W/kg

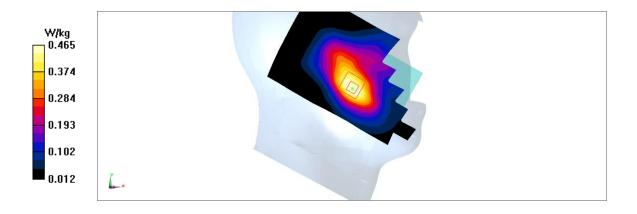
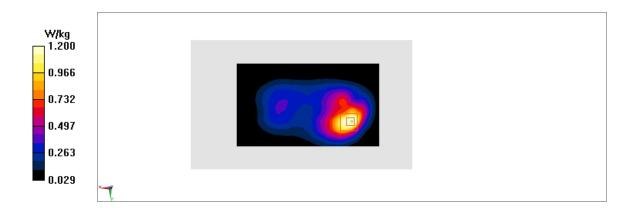


Fig A.7



WCDMA1700-BIV_CH1412 Rear

Date: 4/13/2018Electronics: DAE4 Sn1525 Medium: body 1750 MHz Medium parameters used: f = 1732.4 MHz; σ = 1.449 mho/m; ϵ r = 54.06; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.39 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 13.95 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.614 W/kg Maximum value of SAR (measured) = 1.2 W/kg

WCDMA850-BV_CH4182 Left Cheek

Date: 4/12/2018Electronics: DAE4 Sn1525 Medium: head 835 MHz Medium parameters used: f = 835.4 MHz; $\sigma = 0.884$ mho/m; $\epsilon r = 41.45$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 835.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.373 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.944 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.43 W/kg SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.259 W/kg Maximum value of SAR (measured) = 0.363 W/kg

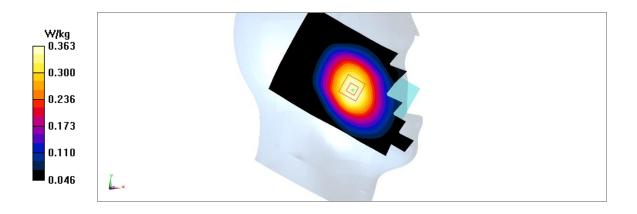


Fig A.9

WCDMA850-BV_CH4233 Rear

Date: 4/12/2018Electronics: DAE4 Sn1525 Medium: body 835 MHz Medium parameters used: f = 846.6 MHz; $\sigma = 0.985$ mho/m; $\epsilon r = 54.74$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.414 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.62 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.467 W/kg SAR(1 g) = 0.377 W/kg; SAR(10 g) = 0.288 W/kg Maximum value of SAR (measured) = 0.396 W/kg

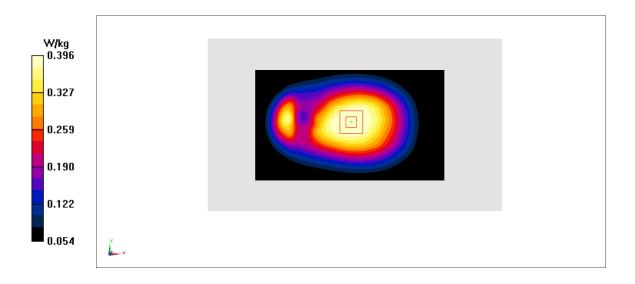


Fig A.10

LTE1900-FDD2_CH19100 Left Cheek

Date: 4/14/2018 Electronics: DAE4 Sn1525 Medium: head 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.382 mho/m; ϵ r = 39.33; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.164 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 4.572 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.215 W/kg SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.086 W/kg Maximum value of SAR (measured) = 0.148 W/kg

Fig A.11

LTE1900-FDD2_CH18700 Bottom edge

Date: 4/14/2018 Electronics: DAE4 Sn1525 Medium: body 1900 MHz Medium parameters used: f = 1860 MHz; σ = 1.487 mho/m; ϵ r = 53.26; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1860 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.31 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 25.08 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.77 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.548 W/kg Maximum value of SAR (measured) = 1.19 W/kg

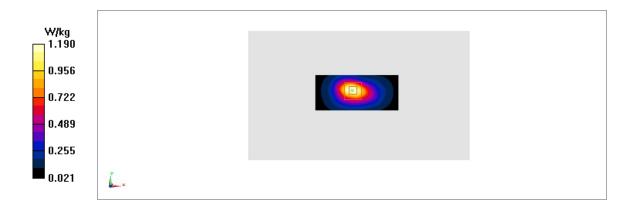


Fig A.12

LTE1700-FDD4_CH20050 Left Cheek

Date: 4/13/2018Electronics: DAE4 Sn1525 Medium: head 1750 MHz Medium parameters used: f = 1720 MHz; σ = 1.346 mho/m; ϵ r = 39.48; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD4 1720 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.332 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.144 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.416 W/kg SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.194 W/kg Maximum value of SAR (measured) = 0.314 W/kg

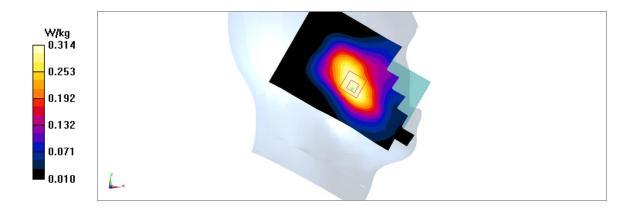


Fig A.13

LTE1700-FDD4_CH20300 Rear

Date: 4/13/2018Electronics: DAE4 Sn1525 Medium: body 1750 MHz Medium parameters used: f = 1745 MHz; σ = 1.461 mho/m; ϵ r = 54.05; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.69 W/kgSAR(1 g) = 0.993 W/kg; SAR(10 g) = 0.569 W/kg Maximum value of SAR (measured) = 1.1 W/kg

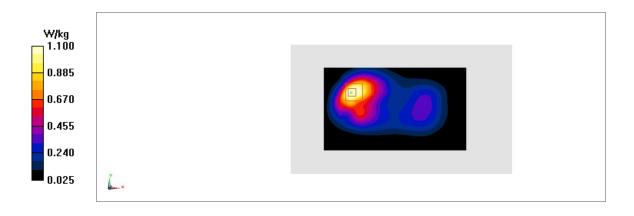


Fig A.14

LTE850-FDD5_CH20450 Left Cheek

Date: 4/12/2018Electronics: DAE4 Sn1525 Medium: head 835 MHz Medium parameters used: f = 829 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 41.46$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.348 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.359 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.397 W/kg SAR(1 g) = 0.315 W/kg; SAR(10 g) = 0.236 W/kg Maximum value of SAR (measured) = 0.33 W/kg

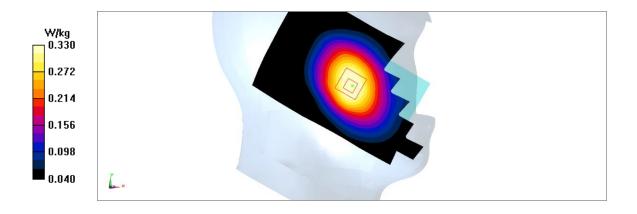


Fig A.15

LTE850-FDD5_CH20450 Rear

Date: 4/12/2018Electronics: DAE4 Sn1525 Medium: body 835 MHz Medium parameters used: f = 829 MHz; $\sigma = 0.968$ mho/m; $\epsilon r = 54.76$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.393 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.22 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.444 W/kg SAR(1 g) = 0.359 W/kg; SAR(10 g) = 0.274 W/kg Maximum value of SAR (measured) = 0.378 W/kg

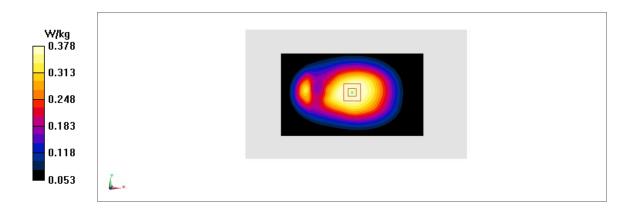


Fig A.16

LTE2500-FDD7_CH20850 Right Cheek

Date: 4/16/2018Electronics: DAE4 Sn1525 Medium: head 2600 MHz Medium parameters used: f = 2510 MHz; $\sigma = 1.87$ mho/m; $\epsilon r = 38.57$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE2500-FDD7 2510 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(7.76,7.76,7.76)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.241 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.374 V/m; Power Drift = 0.2 dB Peak SAR (extrapolated) = 0.373 W/kg SAR(1 g) = 0.187 W/kg; SAR(10 g) = 0.094 W/kg Maximum value of SAR (measured) = 0.21 W/kg

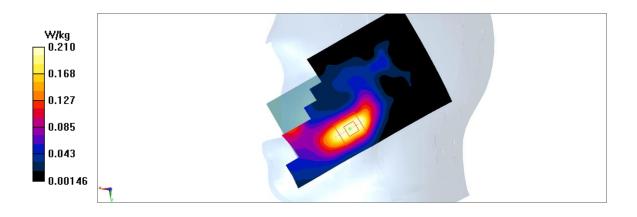
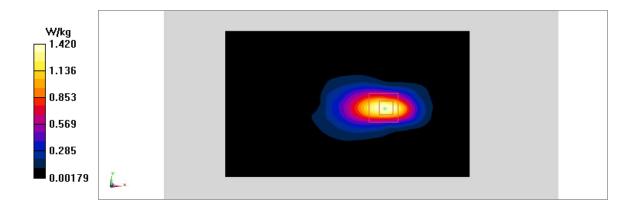


Fig A.17



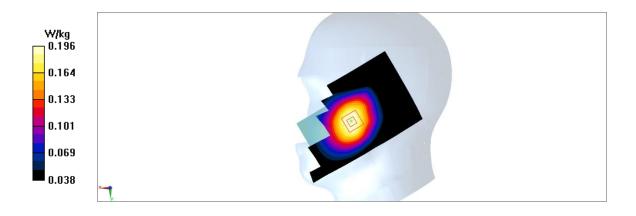
LTE2500-FDD7_CH21350 Bottom edge

Date: 4/16/2018Electronics: DAE4 Sn1525 Medium: body 2600 MHz Medium parameters used: f = 2560 MHz; $\sigma = 2.11$ mho/m; $\epsilon r = 52.98$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(7.84,7.84,7.84)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.86 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.17 W/kg SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.52 W/kg Maximum value of SAR (measured) = 1.42 W/kg

Fig A.18



LTE700-FDD12_CH23060 Right Cheek

Date: 4/11/2018Electronics: DAE4 Sn1525 Medium: head 750 MHz Medium parameters used: f = 704 MHz; $\sigma = 0.853$ mho/m; $\epsilon r = 42.13$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.201 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.531 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.224 W/kg SAR(1 g) = 0.186 W/kg; SAR(10 g) = 0.145 W/kg Maximum value of SAR (measured) = 0.196 W/kg

Fig A.19

LTE700-FDD12_CH23060 Rear

Date: 4/11/2018Electronics: DAE4 Sn1525 Medium: body 750 MHz Medium parameters used: f = 704 MHz; $\sigma = 0.917$ mho/m; $\epsilon r = 55.09$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.284 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.8 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.322 W/kg SAR(1 g) = 0.257 W/kg; SAR(10 g) = 0.196 W/kg Maximum value of SAR (measured) = 0.27 W/kg

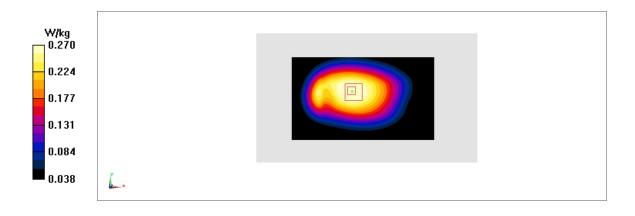


Fig A.20

LTE750-FDD13_CH23230 Left Cheek

Date: 4/11/2018Electronics: DAE4 Sn1525 Medium: head 750 MHz Medium parameters used: f = 782 MHz; $\sigma = 0.927$ mho/m; $\epsilon r = 42.03$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.322 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.893 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.371 W/kg SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.223 W/kg Maximum value of SAR (measured) = 0.308 W/kg

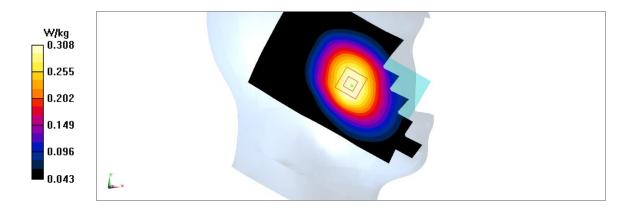


Fig A.21

LTE750-FDD13_CH23230 Rear

Date: 4/11/2018 Electronics: DAE4 Sn1525 Medium: body 750 MHz Medium parameters used: f = 782 MHz; $\sigma = 0.991$ mho/m; $\epsilon r = 54.99$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.351 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 18.61 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.401 W/kg SAR(1 g) = 0.322 W/kg; SAR(10 g) = 0.246 W/kg Maximum value of SAR (measured) = 0.337 W/kg

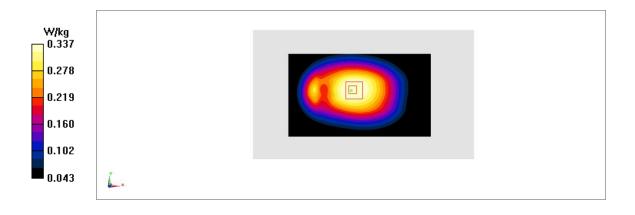


Fig A.22