

Report No.: SZEM180300245201 Page: 1 of 58

Appendix B

E-UTRA Band 14

Report No.: SZEM180300245201 Page: 2 of 58

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	6
	2.1 For LTE	6
	2.1.1 Test Band = LTE band14	6
3	MODULATION CHARACTERISTICS	8
	3.1 FOR LTE	8
	3.1.1 Test Band = LTE band 14	8
4	BANDWIDTH	10
	4.1 For LTE	10
	4.1.1 Test Band = LTE band14	10
5	BAND EDGES COMPLIANCE	18
	5.1 FOR LTE	18
	5.1.1 Test Band = LTE band14	18
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	50
	6.1 FOR LTE	50
	6.1.1 Test Band = LTE band14	50
7	FIELD STRENGTH OF SPURIOUS RADIATION	54
	7.1 For LTE	54
	7.1.1 Test Band = LTE band14	54
8	FREQUENCY STABILITY	56
	8.1 FREQUENCY ERROR VS. VOLTAGE	56
	8.2 FREQUENCY ERROR VS. TEMPERATURE	57

Report No.: SZEM180300245201 Page: 3 of 58

1 Effective (Isotropic) Radiated Power Output Data

Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE BAND 14

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	22.84	18.19	38.45	PASS
				RB1#13	22.86	18.21	38.45	PASS
				RB1#24	22.75	18.1	38.45	PASS
			LCH	RB12#0	21.81	17.16	38.45	PASS
				RB12#6	21.98	17.33	38.45	PASS
				RB12#13	21.96	17.31	38.45	PASS
				RB25#0	21.95	17.3	38.45	PASS
	LTE/TM1	5M		RB1#0	22.73	18.08	38.45	PASS
				RB1#13	22.87	18.22	38.45	PASS
			МСН	RB1#24	22.85	18.2	38.45	PASS
BAND14				RB12#0	21.81	17.16	38.45	PASS
				RB12#6	21.88	17.23	38.45	PASS
				RB12#13	21.87	17.22	38.45	PASS
				RB25#0	21.95	17.3	38.45	PASS
				RB1#0	22.76	18.11	38.45	PASS
				RB1#13	22.98	18.33	38.45	PASS
				RB1#24	22.76	18.11	38.45	PASS
			НСН	RB12#0	21.93	17.28	38.45	PASS
				RB12#6	22.02	17.37	38.45	PASS
				RB12#13	21.81	17.16	38.45	PASS
				RB25#0	21.97	17.32	38.45	PASS

Report No.: SZEM180300245201 Page: 4 of 58

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	21.85	17.2	38.45	PASS
				RB1#13	22.13	17.48	38.45	PASS
				RB1#24	21.59	16.94	38.45	PASS
			LCH	RB12#0	20.98	16.33	38.45	PASS
				RB12#6	21	16.35	38.45	PASS
				RB12#13	20.98	16.33	38.45	PASS
				RB25#0	20.91	16.26	38.45	PASS
	LTE/TM2	5M		RB1#0	21.86	17.21	38.45	PASS
				RB1#13	21.96	17.31	38.45	PASS
			МСН	RB1#24	22.17	17.52	38.45	PASS
BAND14				RB12#0	20.91	16.26	38.45	PASS
				RB12#6	20.88	16.23	38.45	PASS
				RB12#13	20.94	16.29	38.45	PASS
				RB25#0	20.92	16.27	38.45	PASS
				RB1#0	22.11	17.46	38.45	PASS
				RB1#13	22.11	17.46	38.45	PASS
				RB1#24	21.78	17.13	38.45	PASS
			НСН	RB12#0	20.94	16.29	38.45	PASS
				RB12#6	21.03	16.38	38.45	PASS
				RB12#13	21.02	16.37	38.45	PASS
				RB25#0	20.87	16.22	38.45	PASS

Report No.: SZEM180300245201 Page: 5 of 58

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
		10M		RB1#0	22.9	18.25	38.45	PASS
				RB1#25	23.02	18.37	38.45	PASS
	LTE/TM1		МСН	RB1#49	22.91	18.26	38.45	PASS
BAND14				RB25#0	21.89	17.24	38.45	PASS
				RB25#13	21.98	17.33	38.45	PASS
				RB25#25	22.06	17.41	38.45	PASS
				RB50#0	21.99	17.34	38.45	PASS

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
	LTE/TM2	10M		RB1#0	21.96	17.31	38.45	PASS
				RB1#25	21.79	17.14	38.45	PASS
			МСН	RB1#49	22.31	17.66	38.45	PASS
BAND14				RB25#0	20.91	16.26	38.45	PASS
				RB25#13	20.96	16.31	38.45	PASS
				RB25#25	20.97	16.32	38.45	PASS
				RB50#0	20.92	16.27	38.45	PASS

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

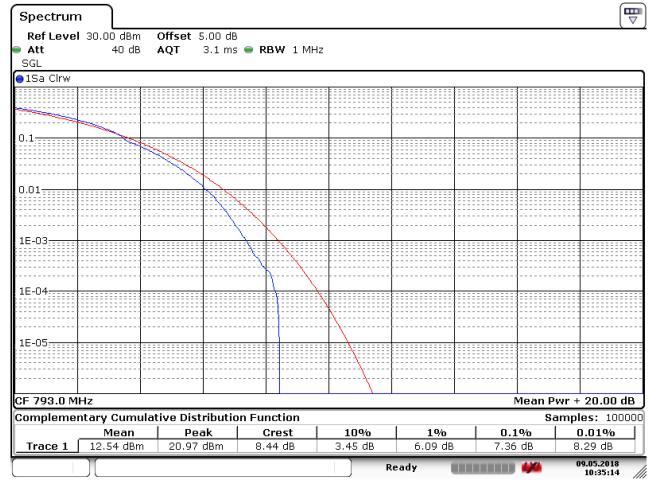
EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi] b: SGP=Signal Generator Level

Report No.: SZEM180300245201 Page: 6 of 58

2 Peak-to-Average Ratio

Part I - Test Results

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
Band 14	TM1/10M	MCH	7.36	13	PASS
Banu 14	TM2/10M	MCH	7.45	13	PASS

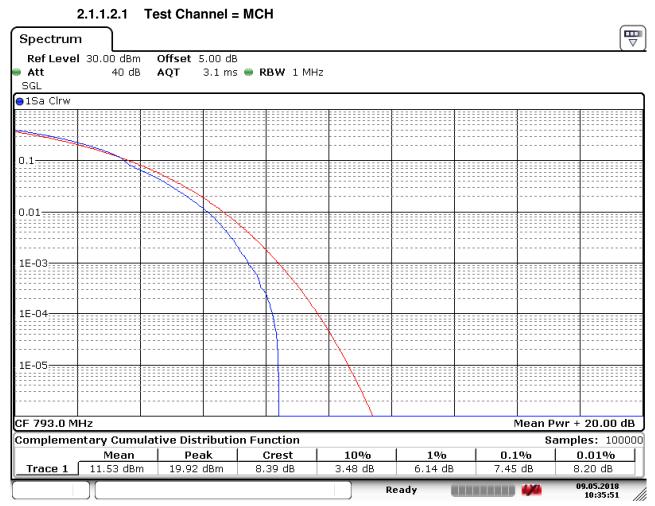

Part II - Test Plots

2.1 For LTE

2.1.1 Test Band = LTE band14

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=10MHz

2.1.1.1.1 Test Channel = MCH


Date: 9.MAY.2018 10:35:14

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM180300245201 Page: 7 of 58

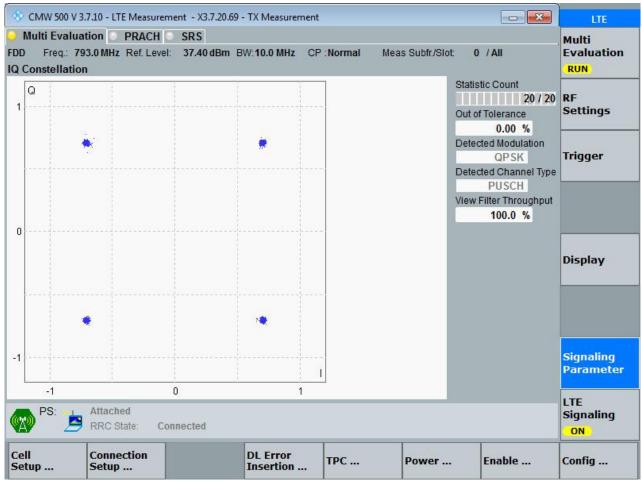
2.1.1.2 Test Mode = LTE/TM2.Bandwidth=10MHz

Date: 9.MAY.2018 10:35:52

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM180300245201 Page: 8 of 58

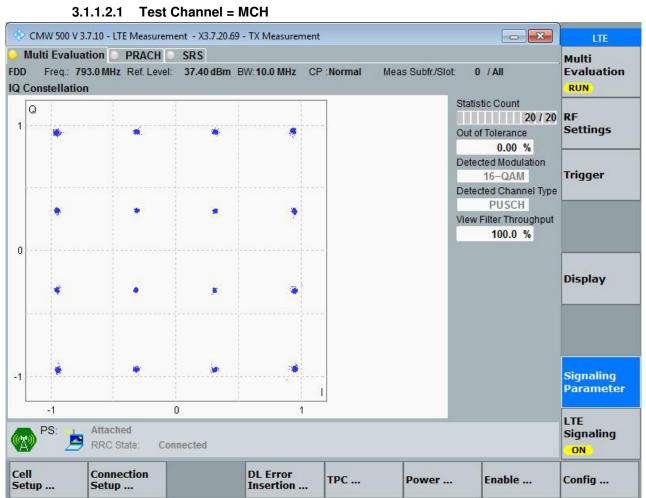
3 Modulation Characteristics


Part I - Test Plots

3.1 For LTE

3.1.1 Test Band = LTE band 14

3.1.1.1 Test Mode = LTE /TM1 10MHz


3.1.1.1.1 Test Channel = MCH

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180300245201 Page: 9 of 58

3.1.1.2 Test Mode = LTE /TM2 10MHz

Report No.: SZEM180300245201 Page: 10 of 58

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.47	4.82	PASS
	TM1/ 5MHz	MCH	4.47	4.81	PASS
		HCH	4.46	4.87	PASS
Band14		LCH	4.46	4.85	PASS
Dallu 14	TM2/ 5MHz	MCH	4.47	4.85	PASS
		HCH	4.46	4.82	PASS
	TM1/10MHz	HCH	8.93	9.42	PASS
	TM2/ 10MHz	HCH	8.91	9.39	PASS

4.1 For LTE

4.1.1 Test Band = LTE band14

4.1.1.1 Test Mode = LTE/TM1 5MHz

4.1.1.1.1 Test Channel = LCH

Spectrun	n							
	I 30.00 dBm			RBW 30 kHz				
e Att	40 dB	s 🔵 SWT	1 s 👄	VBW 300 kHz	Mode Auto S	weep		
<mark>⊜</mark> 1Rm Max	1	1	1					
					D1[1]			-1.03 dB
					0			81500 MHz
20 dBm——								34466 MHz 22.48 dBm
					witti			10200 MHz
10 dBm——							1	
		Т1				T2		
0 dBm	D1 2.740 dl	Bm ym	munnam	whentermore	where where the second	monten		
-10 dBm—								
-10 000								
		M1						
-20 dBm—		3.260 dBm-				<u>d</u> 1		
	02 -23	.200 ubm						
-30 dBm—								
In mary Mark Mark	monetherenerated	Marked Con						hung moneyour
-40 dBm								- www.would
-50 dBm—								
-50 0011								
-60 dBm—								
CF 790.5 f	 MHz			1001 p			Snan	10.0 MHz
				1001			•	9.05.2018
L					Measuring			06:29:37

Date: 9.MAY.2018 06:29:37

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180300245201 Page: 11 of 58

Spectrum	ı)								
	30.00 dBm		5.00 dB 👄						
Att	40 dB	🖷 SWT	1 s 👄	VBW 300 ki	Hz Mode	Auto Swe	ер		
⊖1Rm Max			1	1					
					D	1[1]			0.38 dB
					0	no Duu			81300 MHz 34466 MHz
20 dBm					Occ Bw M1[1]				23.50 dBm
									59200 MHz
10 dBm									
	D1 2.730 df	 а <u>тт</u>					T2		
0 dBm	DI 2.750 ul		mpmmmm	and the second second second	a game and a strate	warden and the	n n n n n n n n n n n n n n n n n n n		
-10 dBm—									
-20 dBm		nat							
-20 ubiii		H M1 1.270 dBm-					<u> </u>		
-30 dBm—							1		
1. Augusta Cal	www.	work and the second second					- Contraction	mmuna	manun
≌40 dBm									
-50 dBm									
-60 dBm									
oo abiii									
CF 793.0 M	lHz			1001	pts			Span	10.0 MHz
					Mea	suring		4/4	19.05.2018 06:30:36

4.1.1.1.2 Test Channel = MCH

Date: 9.MAY.2018 06:30:36

Report No.: SZEM180300245201 Page: 12 of 58

Spectrum	ιÌ								
	30.00 dBm		5.00 dB 👄						<u> </u>
Att 1Rm Max	40 dB	SWT 😑 SWT	1 s 👄	VBW 300 ki	Hz Mode	e Auto Swe	ер		
					ſ	01[1]		4	-0.13 dB 87100 MHz
20 dBm						Dec Bw 41[1]		4.4555	44456 MHz 23.64 dBm
10 dBm		т1				1	Т2	793.	07200 MHz
0 dBm	D1 2.580 dl		aluna Mar	mmmmm	nath ha had had had had had had had had had	www.www.			
-10 dBm									
-20 dBm	D2 -23	.420 dBm-							
-30 dBm		and the second s						mynuharmed	hudbannon
-40 dBm	and the stand of the								
-50 dBm									
-60 dBm									
CF 795.5 M	1Hz			1001	pts			 Span	10.0 MHz
)[asuring		-)9.05.2018 06:34:00

4.1.1.1.3 Test Channel = HCH

Date: 9.MAY.2018 06:34:00

4.1.1.2 Test Mode = LTE/TM2 5MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180300245201 Page: 13 of 58

4.1.1.2.1 Test Channel = LCH ∀ Spectrum Ref Level 30.00 dBm Offset 5.00 dB 👄 RBW 30 kHz 40 dB 🔵 SWT 1 s 👄 **VBW** 300 kHz Att Mode Auto Sweep ●1Rm Max D1[1] 0.53 dB 4.84500 MHz 20 dBm-Occ Bw 4.455544456 MHz -25.01 dBm M1[1] 788.07200 MHz 10 dBm-Τ1 т 2 D1 1.460 dBm Ψ. 0 dBm--10 dBm -20 dBm-Μ2 Ġ1 D2 -24.540 dEm -30 dBm--40 dBm--50 dBm--60 dBm-CF 790.5 MHz 1001 pts Span 10.0 MHz 09.05.2018 Measuring... 06:28:41

Date: 9.MAY.2018 06:28:42

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM180300245201 Page: 14 of 58

Spectrum	ιÌ								
	I 30.00 dBm		5.00 dB 😑						
Att	40 dB	🛛 😑 SWT	1 s 👄	VBW 300 kH	lz Mode	Auto Swe	ер		
⊖1Rm Max									
						1[1]			0.71 dB 85300 MHz
20 dBm——						CC BW 11[1]		-	34466 MHz 25.08 dBm 57200 MHz
10 dBm									
0 dBm	D1 1.610 dE	T1 Bm <u></u>	مەتلەتلەرمىي، 191 ³ ىرە 1940م	alderstelle di solge ^{derst} aarle d	www	and the second	T2		
-10 dBm									
-20 dBm		MI							
-30 dBm	D2 -24	390 dBm							
,7\$Q\dBm→dd	WH-NAMANM	and the second s					<u> </u>	when the work	Myun mense
-50 dBm									
-60 dBm									
CF 793.0 N	1117			1001	nte				10.0 MHz
) (1001				-	10.0 Minz)9.05.2018
L I					Mea	asuring		4/4	06:31:37 //

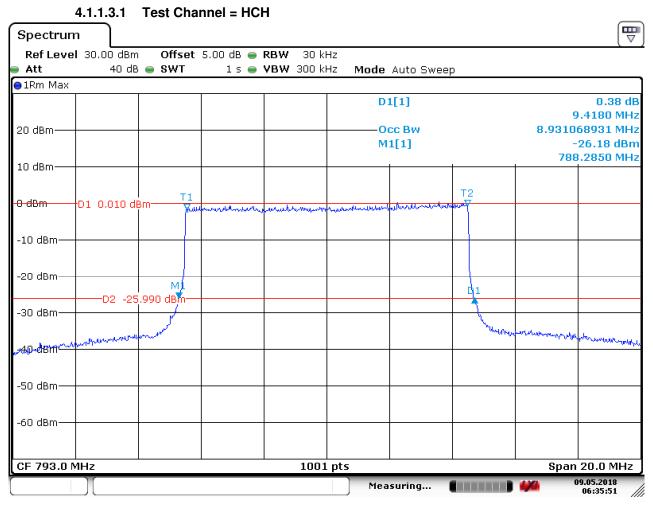
4.1.1.2.2 Test Channel = MCH

Date: 9.MAY.2018 06:31:37

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180300245201 Page: 15 of 58

Spectrum									
Ref Level Att	30.00 dBm 40 dB	Offset	5.00 dB 👄 I 1 s 👄 Y	RBW 30 kH VBW 300 kH		Auto Swee	эр		
∣o1Rm Max									
20 dBm					0	L[1] CC BW 1[1]		4.4555	-0.28 dB 82300 MHz 44456 MHz 24.51 dBm 10000 MHz
10 dBm							+	793.	
0 dBm	D1 1.610 dE	T1 3m <u> </u>	and the second	amasanahas	mand	at the work the	T2		
-10 dBm									
-20 dBm	D2 -24	.390 dBm-					Q1		
-30 dBm									
	Month South and	w.						Harris and and the second	umunnu
-50 dBm									
-60 dBm									
CF 795.5 M	Hz			1001	pts	l		Span	10.0 MHz
][]				Mea	suring		444	19.05.2018 06:33:02


4.1.1.2.3 Test Channel = HCH

Date: 9.MAY.2018 06:33:02

Report No.: SZEM180300245201 Page: 16 of 58

4.1.1.3 Test Mode = LTE/TM1 10MHz

Date: 9.MAY.2018 06:35:52

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms

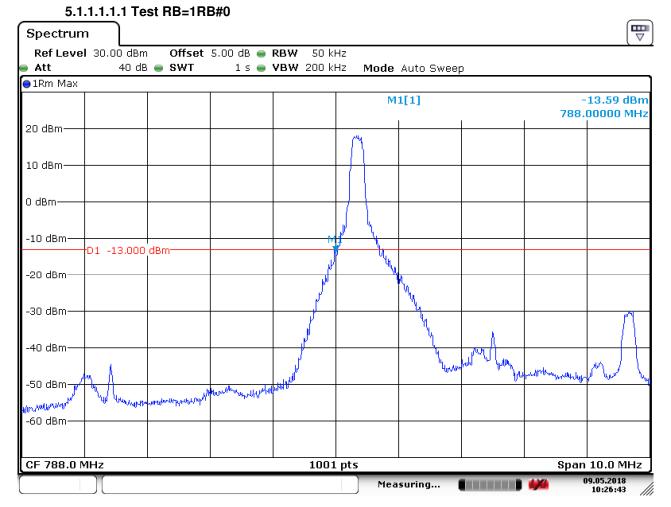
Report No.: SZEM180300245201 Page: 17 of 58

	4.1.1.4.1	Test Char	nnel = HCH					
Spectru	ım							
Ref Lev	el 30.00 dBr	m Offset	5.00 dB 😑 RI	BW 30 kHz				`
e Att		B 👄 SWT	1 s 👄 VI	BW 300 kHz	Mode Auto Sw	/еер		
⊖1Rm Ma>	× .							
					D1[1]			0.39 dB
20 dBm—					——Occ Bw).3780 MHz 88911 MHz
20 UBIII—					OLU BW M1[1]			27.54 dBm
								.3250 MHz
10 dBm—								
						T0		
0 dBm	D1 -1.210	dBm		las, constants of the solution	un and the second	T2		
		1 1		and the set of the set				
-10 dBm—								
-20 dBm—								
		мĹ						
-30 dBm—	D2 -2	7.210 dBm				1		
30 abiii						-		
40 40	shat	Amurova				house	moundermonth	UNDER 1
-40 dBm-	and a second sub-second second se							and the second
-50 dBm—								
-60 dBm—								
CF 793.0	 MU2			 1001 pt				20.0 MHz
UCF 793.0				1001 bi)			20.0 MIHZ
					Measuring			06:36:42 //

4.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 9.MAY.2018 06:36:42

Report No.: SZEM180400289801 Page: 18 of 58


5 Band Edges Compliance

5.1 For LTE

5.1.1 Test Band = LTE band14

5.1.1.1 Test Mode = LTE/TM1 5MHz

5.1.1.1.1 Test Channel = LCH

Date: 9.MAY.2018 10:26:43

Report No.: SZEM180400289801 Page: 19 of 58

Spectrur	n]								
	el 15.00 dBn		5.00 dB 👄						
Att	30 di	B 👄 SWT	1 s 👄	VBW 20	(Hz Mode	: Auto Swee	p		
●1Rm Max						1[1]			73.63 dBm
10 dBm—						1[1] 	I		02300 MHz
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm—									
-40 dBm—	-D1 -35.000) dBm							
-50 dBm—									
-60 dBm—									
-70 dBm—			- M1						
Wallahara -80 dBm	windustfilipations	home and the second second	withinfoundation	approximation	al Maderala physical	number	uhan mandan kalu	when which provides the second	alaryperiologypedrawypage
Start 769	.0 MHz			1001	. pts				775.0 MHz
	Л				Mea	suring		4/4	08.06.2018 03:48:57

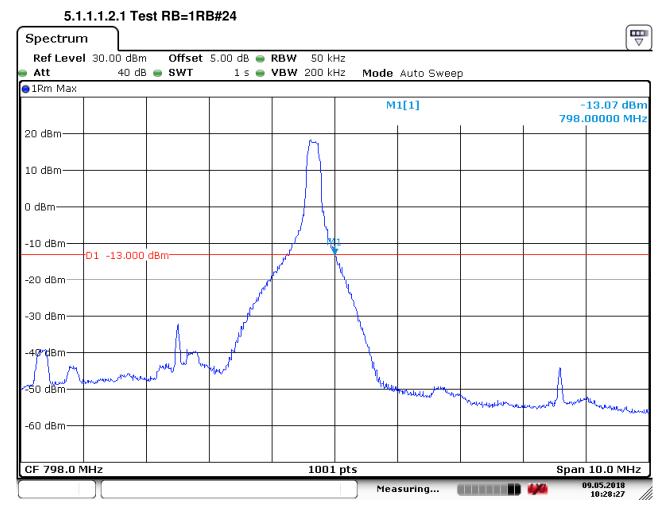
Date: 8.JUN.2018 03:48:57

Report No.: SZEM180400289801 Page: 20 of 58

Spectrum		5(110=20)								
Ref Level	30.00 dBm	Offset	5.00 dB 👄	RBW 50 kł	Ηz					
🖷 Att	40 dB	🕒 SWT	1 s 👄	VBW 200 kł	Ηz	Mode	Auto Swee	р		
⊖1Rm Max										
						М	1[1]			25.46 dBm 00000 MHz
20 dBm										
10 dBm										
0 dBm						ppmanulu	hereforenseen deformed	www.waypentru	heren was a second of the seco	hannalling
-10 dBm										
-20 dBm	D1 -13.000	dBm								
20 d8m				M	- N					Ч
-30 dBm -40 dBm ju/tu/	he washer healt fill that	upharter and the state	ynamennadad felle	www.rwahawahalaa						
-40 dBm /wm4										
-50 dBm										
-60 dBm										
CF 788.0 M	IH7			1001	nt	<u> </u>			Snan	10.0 MHz
[01 700.0 M)(1001	pr)			-	9.05.2018
						mea	suring			10:25:01

5.1.1.1.1.2 Test RB=25RB

Date: 9.MAY.2018 10:25:01


Report No.: SZEM180400289801 Page: 21 of 58

Spectrun	n]								
	l 15.00 dBm		5.00 dB 😑						
e Att	30 dE	s 😑 SWT	1 s 👄	VBW 20	(Hz Mode	e Auto Swee	p		
⊖1Rm Max	1	1	1	1	1				
10 dBm					М	1[1]			73.39 dBm
								//3.:	24680 MHz
0 dBm								ļ	
-10 dBm—									
-20 dBm—									
-30 dBm									
-30 UBIII									
-40 dBm—	D1 -35.000	abm							
-40 06111									
-50 dBm									
-60 dBm—									
-70 dBm—						r	41		
where hall we forge	Allthoursenment	and the shot apple	montellite	your Mart Maria Maria	handowender	-monor of the second	vlantitudayapayoran	underpharphartent	Mithumudlunuhliphis
-80 dBm—									
Start 769.	0 MHz	I		1001	pts	I	l	Stop 7	775.0 MHz
) Mea	suring		444 0	08.06.2018 03:48:36

Date: 8.JUN.2018 03:48:37

Report No.: SZEM180400289801 Page: 22 of 58

5.1.1.1.2 Test Channel = HCH

Date: 9.MAY.2018 10:28:27

Report No.: SZEM180400289801 Page: 23 of 58

Spectrun	n								
	l 15.00 dBm			RBW 6.25 k					
e Att	30 dE	S 🔵 SWT	1 s 🛑	VBW 20 k	:Hz Mode	Auto Swee	p		
⊖1Rm Max	1	1	1	1					
10 dBm					М	1[1]			56.93 dBm
						I	I	/99.0	00300 MHz I
0 dBm								+	
-10 dBm—									
-20 dBm									
-30 dBm									
30 dbiii	D1 05 000								
10 -10	D1 -35.000	abm							
-40 dBm—									
-50 dBm									
1 (
Hidpuld Brothing	March								
. AND MAR	" Uu	and conserve							
-70 dBm—	10	a pasa tanka anak	M. John Margarette and	diller who have	Hanna I takal Dalara a				
				a in the close of	hlankandhrana	herman har an	appropriate and a second s	Hoad will be the fait for the series	hapen the had a start of the second start of t
-80 dBm								Hadderlintholyedgettybleybe	0
Start 799.	0 MHz			1001	pts			Stop 8	805.0 MHz
) Mea	suring		440 0)8.06.2018 03:51:26

Date: 8.JUN.2018 03:51:27

Report No.: SZEM180400289801 Page: 24 of 58

Spectrum									Ē
	30.00 dBm		5.00 dB 👄						
Att	40 dB	SWT	1 s 👄	VBW 200 ki	Hz Mode	Auto Sweej	2		
⊖1Rm Max			1						
					M	1[1]			25.62 dBm 00000 MHz
20 dBm									
10 dBm									
0 dBm	Herphillethyl	ry, and the standy	veromentation and	n varen will solv					
-10 dBm									
	D1 -13.000	dBm							
-20 dBm				Y					
				N	1				
					K				
-30 dBm					and the way	Manzlethonopers	Mandhawayunton	ant Willing the grand	s. butu
-40 dBm									Market where
-50 dBm									
-60 dBm									
CF 798.0 M	Hz	L	I	1001	pts	I	I	Span	10.0 MHz
(][]				Mea	suring		4/4 0	9.05.2018 10:28:59

5.1.1.1.2.2 Test RB=25RB

Date: 9.MAY.2018 10:29:00

Report No.: SZEM180400289801 Page: 25 of 58

Spectrun	ιÌ								
	l 15.00 dBm		: 5.00 dB 😑						
Att 1Rm Max	30 dE	B 👄 SWT	1 s 👄	VBW 20	KHZ Mode	e Auto Swee	эр		
					м	1[1]			36.67 dBm
10 dBm							I		06290 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
M1 Madulapation	D1 -35.000 ախտխտիկանոր	dBm Mar hubbar A	March My Foliophy and Al						
	<r td="" ·="" •="" ••<=""><td>, doverlatifine a</td><td></td><td>Marsh Mark Aring</td><td>MW-WHAT</td><td></td><td></td><td></td><td></td></r>	, doverlatifine a		Marsh Mark Aring	MW-WHAT				
-50 dBm——						the formation of the	n han half have all	and the sequences	ululu lubel y hymryydd
-60 dBm									
-70 dBm									
-80 dBm									
Start 799.	D MHz			1001	L pts	I		Stop 8	305.0 MHz
					Mea	suring		444)8.06.2018 03:52:42

Date: 8.JUN.2018 03:52:42

Report No.: SZEM180400289801 Page: 26 of 58

5.1.1.2.1.1 Test RB=1RB#0 ₽ Spectrum 🔆 Ref Level 30.00 dBm Offset 5.00 dB 👄 RBW 50 kHz 1 s 🔵 **VBW** 200 kHz Att 40 dB 💿 SWT Mode Auto Sweep ●1Rm Max M1[1] -13.27 dBm 788.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm -30 dBm[.] -40 dBm мY WWTHERe have -50 dBm-Mon my my my my Norselal Articles mail worth Withour West -60 dBm-1001 pts CF 788.0 MHz Span 10.0 MHz 09.05.2018 10:27:09 1.70 Measuring...

5.1.1.2 Test Mode = LTE/TM2 5MHz 5.1.1.2.1 Test Channel = LCH

Date: 9.MAY.2018 10:27:09

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-en-Document.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400289801 Page: 27 of 58

Spectrum	ιÌ								
	1 15.00 dBm		_	RBW 6.25					
Att 1Rm Max	30 dE	B 😑 SWT	1 s 👄	VBW 20	KHZ MOđe	Auto Swee	p		
10 dBm					M	1[1]	1		-73.40 dBm 90310 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm	D1 -35.000	dBm							
-50 dBm									
-60 dBm									
-70 dBm			M1			. 1			
(աստատություն) -80 dBm	Yndthindtaldprach	while was	withthouseholig	e-hobold walk behold have been a stand water a stand walk was a stand water a stand water a stand water a stand	grand frankenseer	Hidesmolena have been a	white for the second	upper and a second	undulturnunaan
Start 769.	0 MHz			1001	 nts			Ston 7	 775.0 MHz
)[1001		suring			08.06.2018 03:49:20

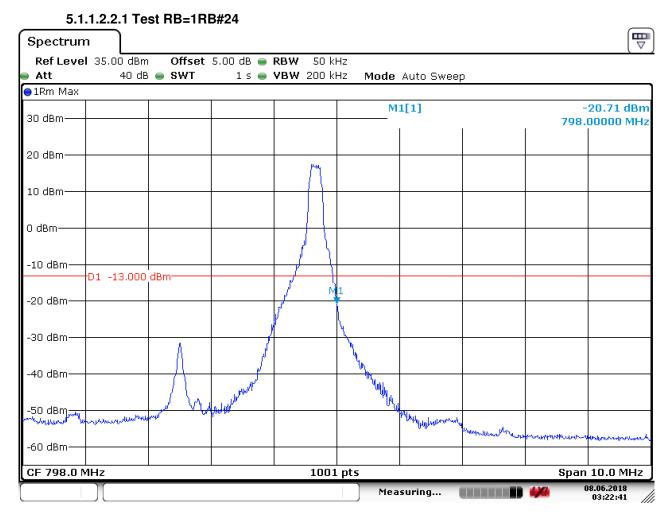
Date: 8.JUN.2018 03:49:21

Report No.: SZEM180400289801 Page: 28 of 58

Spectrum		50110-20								
	30.00 dBm		5.00 dB 👄							
Att	40 dB	SWT	1 s 👄	VBW 200 ki	Hz	Mode	Auto Swe	ер		
⊖1Rm Max										
						M	1[1]			24.77 dBm 00000 MHz
20 dBm										
10 dBm										
0 dBm					-	~~~~~		·····	m	h
-10 dBm										
-20 dBm	D1 -13.000	dBm		M	ł					
-30 dBm										
-40 dBm	mon		munn							
And Marken and										
-50 dBm										
-60 dBm										
CF 788.0 M	<u>Цэ</u>			1001	nte	-				10.0 MHz
	Υ Υ			1001	. pe	<u>۱</u>				10.0 Minz 09.05.2018
	Л					Mea	suring			10:23:40 //

5.1.1.2.1.2 Test RB=25RB

Date: 9.MAY.2018 10:23:40


Report No.: SZEM180400289801 Page: 29 of 58

Spectrun	n)								
	l 15.00 dBm			RBW 6.25					
Att 1Rm Max	30 dE	SWT 🖷	1 s 👄	VBW 20	(Hz Mode	Auto Swee	ip		
10 dBm					M	1[1]			74.16 dBm 59140 MHz
0 dBm									
-10 dBm—									
-20 dBm									
-30 dBm									
-40 dBm	D1 -35.000	dBm							-
-50 dBm									
-60 dBm									
-70 dBm		MI							
/ <mark>ավելիս/որվիչ</mark> եր -80 dBm	dwnfarfillailyarae	matricelliteration	uhalenen laasen yn hon	htterneten ander her stander he	uthopulynanthula	handlookaryya	furdikirimentur	ulpor approved the public of t	have been and the second second
Start 769.	 0 MHz			1001	l pts			Stop 7	 775.0 MHz
)[suring			08.06.2018 03:49:39

Date: 8.JUN.2018 03:49:39

Report No.: SZEM180400289801 Page: 30 of 58

5.1.1.2.2 Test Channel = HCH

Date: 8.JUN.2018 03:22:42

Report No.: SZEM180400289801 Page: 31 of 58

Spectrum										
	l 15.00 dBm		_	RBW 6.25 k						
🔵 Att	30 dB	🖷 SWT	1 s 👄	VBW 20 k	:Hz Mode	Auto Swee	p			
⊖1Rm Max										
10 dBm					M	1[1]			57.64 dBm	
						I	I	/99.0	81220 MHz	
0 dBm										
-10 dBm										
-20 dBm—										
-30 dBm										
-30 0611										
	D1 -35.000	dBm								
-40 dBm——										
-50 dBm										
	M1									
<mark>⊮շն</mark> Ω dBm—	hay patel prog.									
"" " " " " " " " " " " " " " " " " " "	ે પ્રા									
-70 dBm	Mry	makelyphiliting	alalia da concerci							
			memonwale() As	anar hurry hard	Under Wilder	handwitten halpelat	Hornhandura	Henrymmerigen	and the local distance	
-80 dBm								עירוא אסט טי	a a a whath is a with	
-00 UDIII										
Start 799.0	0 MHz			1001	pts			Stop 8	305.0 MHz	
					Mea	suring		4 //)8.06.2018 03:51:08	

Date: 8.JUN.2018 03:51:08

Report No.: SZEM180400289801 Page: 32 of 58

Spectrum		5(110=20)								
	35.00 dBm		5.00 dB 👄							
e Att	40 dB	s 🔵 SWT	1 s 👄	VBW 200 k	Hz Mode	Auto Swee	р			
⊖1Rm Max			T	1	1					
30 dBm					M	1[1]	I		23.64 dBm 00000 MHz	
20 dBm										
10 dBm										
0 dBm	we-have glassic-received	n Malanakaran dari	-	and a second strategy of the second strategy						
-10 dBm	D1 -13.000	dem								
/20 dBm	D1 -13,000				1					
-30 dBm					manuntype	habiting and the former that	man manufactures	4 to		
-40 dBm								a spritter man and the	nu .	
-50 dBm										
-60 dBm CF 798.0 M	IHz			1001	L pts			Span	10.0 MHz	
	Measuring 1994 08.06.2018 03:23:06									

5.1.1.2.2.2 Test RB=25RB

Date: 8.JUN.2018 03:23:06

Report No.: SZEM180400289801 Page: 33 of 58

Spectrur	n]								(₩	
Ref Leve Att	el 15.00 dBn 30 dB		5.00 dB 👄 1 s 👄	RBW 6.25 VBW 20		· Auto Swee	a			
⊖1Rm Max		_	_				F			
10 dBm					M	1[1] 	-37.21 dBm 799.19480 MHz			
0 dBm										
-10 dBm—										
-20 dBm—										
-30 dBm										
utoring B photom	-D1 -35.000) dBm Գարություն 	here have a	1						
-50 dBm—				rhllolidendernder	HUNDU WAR HAND	rthughan Midporty	holeukiikaandelaa .	. kan statut sa d	0	
-60 dBm—							o.t. o.d. Mik	w.V.J.vit-alliter.Ar.Ally	annin that an an an	
-70 dBm—										
-80 dBm—										
Start 799.	.0 MHz	·		1001	pts			Stop 8	805.0 MHz	
					Mea	suring		4/4	18.06.2018 03:52:59	

Date: 8.JUN.2018 03:53:00

5.1.1.3 Test Mode = LTE/TM1 10MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM180400289801 Page: 34 of 58

5.1.1.3.1 Test Channel = LCH 5.1.1.3.1.1 Test RB=1RB#0 ₩ Spectrum Ref Level 30.00 dBm Offset 5.00 dB 👄 RBW 100 kHz Att 40 dB 💿 SWT 1 s 🔵 **VBW** 200 kHz Mode Auto Sweep ●1Rm Max M1[1] -16.03 dBm 788.0000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm -30 dBm-40 dBm Μ with the way -50 dBm handered -60 dBm 1001 pts Span 20.0 MHz CF 788.0 MHz 09.05.2018 Measuring... 10:33:24

Date: 9.MAY.2018 10:33:24

Report No.: SZEM180400289801 Page: 35 of 58

Spectrun	n)								
	l 15.00 dBn			RBW 6.25					`
e Att	30 dE	B 🔵 SWT	1 s 👄	VBW 20	KHZ Mode	e Auto Swee	p		
⊖1Rm Max	1	1	Т		1				
10 dBm					M	1[1]			73.78 dBm
10 0.000						I	1	173.	44460 MHz
0 40									
0 dBm——									
-10 dBm—									
-20 dBm									
-30 dBm—									
	D1 -35.000	dBm							
-40 dBm									
-50 dBm									
-60 dBm—									
-70 dBm							M1		
upper and a contraction of the c	linger for each state.	an a tana di Atta	All all locations and a star	alion waali oo	tuana data katusta	وريع وروح المراجل	-	n A matri Louit.	والتحريفا المحمد المراجع
չլիափ պոլու Նու -80 dBm	uhIhwawiMhaan.f	phones and the second	grown and a state	ար (Նայալ))։ ապետասխութ	an schranntrihadha	and to an information	n. malandra	1-1 - 1 - A - A - A - A - A - A - A - A	where a constrained and
Start 769.	0 MHz			1001	l pts			Stop 7	775.0 MHz
					Mea	suring		4/4	08.06.2018 03:41:22 //

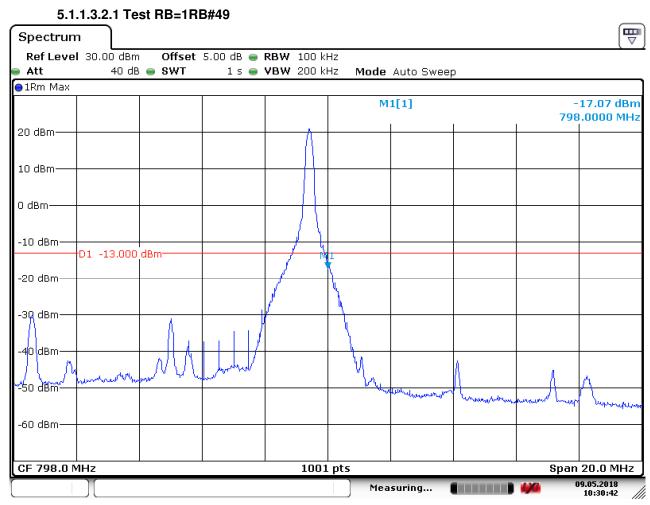
Date: 8.JUN.2018 03:41:22

Report No.: SZEM180400289801 Page: 36 of 58

Spectrum	<u> </u>									
Ref Level	35.00 dBm	Offset	5.00 dB 👄	RBW 100 k	Ηz					
🖷 Att	40 dB	s 🔵 SWT	1 s 👄	VBW 300 ki	Ηz	Mode	Auto Swee	эр		
⊖1Rm Max										
30 dBm						M:	1[1]	1		21.15 dBm 3.0000 MHz
20 dBm										
10 dBm										
0 dBm						un uplastationen	والمربية والمراجع المراجع المر	han an a	1944 Harrison Mariana M Mariana Mariana M	our and the second
-10 dBm	D1 -13.000	dBm								
-20 dBm				M	1					Ĺ
-30 dBm	wowner and	and a state of the	an a	engeneral and						
-40 dBm										
-50 dBm										
-60 dBm										
CF 788.0 M	IHz	·		1001	pts	I		•	Span	20.0 MHz
][]					Mea	suring		4/4)8.06.2018 03:28:38

5.1.1.3.1.2 Test RB=50RB

Date: 8.JUN.2018 03:28:39


Report No.: SZEM180400289801 Page: 37 of 58

Spectrun	n)								
	l 15.00 dBn		5.00 dB 👄						
Att	30 dE	B 👄 SWT	1 s 👄	VBW 20	Hz Mode	: Auto Swee	p		
●1Rm Max			1			1[1]			73.63 dBm
10 dBm						1[1] 			81520 MHz
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm—									
-40 dBm—	-D1 -35.000) dBm							
-50 dBm—									
-60 dBm—									
-70 dBm—						M1			
վեր Աեսի հանի -80 dBm	holow which the hole was	hunghallansystem	nandarighadaharadah	hopenrullintritulle	ownlynwydd, helenheth	hopenteringuture	Munipersidedine	an and the second	Mymbelieventhe
Start 769.	.0 MHz			1001	. pts			-	775.0 MHz
	Л				Mea	suring		4/4 0)8.06.2018 03:42:29 //

Date: 8.JUN.2018 03:42:29

Report No.: SZEM180400289801 Page: 38 of 58

5.1.1.3.2 Test Channel = HCH

Date: 9.MAY.2018 10:30:43

Report No.: SZEM180400289801 Page: 39 of 58

Spectrun	n								
	l 15.00 dBm		5.00 dB 😑						
Att	25 dE	B 🔵 SWT	1 s 👄	VBW 20	KHZ Mode	Auto Swee	p		
⊖1Rm Max	1	1	1						
10 dBm					INI I	1[1] 			52.27 dBm 00300 MHz
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm									
-40 dBm	D1 -35.000	dBm							
¹ -50 dBm—									
^{Աետիպիսա} տեստուկ -60 dBm——	ht Willmahandane			MANA					
-60 dBm—	10000	<u>1.4940-r4.00,874.88</u>	eliliddialau yw Arrithau Co	whypelle and the	lood-hollphicsphi	wheneutingethereing	enerstellersterated	manutation	with the states of the states
-70 dBm—									
-80 dBm—									
Start 799.	0 MHz	1	1	1001	. pts	1	1	Stop 8	305.0 MHz
][) Mea	suring		4/4	18.06.2018 03:34:31

Date: 8.JUN.2018 03:34:32

Report No.: SZEM180400289801 Page: 40 of 58

Spectrum	,)								
	35.00 dBm		5.00 dB 👄						
Att 1Rm Max	40 dE	3 👄 SWT	1 s 👄	VBW 300 k	Hz Mode	Auto Swee	p		
30 dBm					M	1[1]	1		22.01 dBm 1.0000 MHz
20 dBm									
10 dBm									
0 dBm			and a second						
-10 dBm									
,≁20 dBm—	D1 -13.000	dBm		4	1				
-30 dBm					Markan de de series	the month of the second second	almahan ana ana	anyoung	lege,
-40 dBm) men and
-50 dBm									
-60 dBm									
CF 798.0 M	1Hz	I		1001	L pts	1	I	Span	20.0 MHz
					Mea	isuring		W	03:25:59

5.1.1.3.2.2 Test RB=50RB

Date: 8.JUN.2018 03:25:59

Report No.: SZEM180400289801 Page: 41 of 58

Spectrum	ι								
	l 15.00 dBm		5.00 dB 👄						`
Att	25 dB	SWT 😑 SWT	1 s 👄	VBW 20	Hz Mode	Auto Swee	p		,
⊖1Rm Max			1	1					
10 dBm					M	1[1]			39.71 dBm
								799.	18880 MHz
0 dBm									
-10 dBm—									
-20 dBm——									
-30 dBm									
	D1 -35.000	d8m							
M1 4 7 JB-s									
LATASURAN AND AND AND AND AND AND AND AND AND A	that we have have been been been been been been been be	an a share the most	A showing the solution	athat, marking	des desite to	an mathan an air	uliata a c	J	
-50 dBm		in Linning	Halmholdmanipple	a tel el den el la sertita de la	nd Alberta deserved e	hadden ffersalad da	anna an ann an an an an an an an an an a	manufallan	and market and the second states
-JU UBIII									
-60 dBm									
-70 dBm									
-80 dBm									
Start 799.	D MHz			1001	. pts			Stop 8	805.0 MHz
					Mea	suring		4/4)8.06.2018 03:39:13

Date: 8.JUN.2018 03:39:13

Report No.: SZEM180400289801 Page: 42 of 58

5.1.1.4 Test Mode = LTE/TM2 10MHz

5.1.1.4.1 Test Channel = LCH 5.1.1.4.1.1 Test RB=1RB#0 ₩ Spectrum Offset 5.00 dB 👄 RBW 100 kHz Ref Level 30.00 dBm 40 dB 💿 SWT 1 s 👄 **VBW** 200 kHz Mode Auto Sweep Att ●1Rm Max M1[1] -16.80 dBm 788.0000 MHz 20 dBm-10 dBm-0 dBm· -10 dBm-D1 -13.000 dBm -20 dBm -30 dBm--40 dBm alling the product of the state hurbert with Try wanter and the second states of the second stat W Marker -50 dBm -60 dBm-CF 788.0 MHz 1001 pts Span 20.0 MHz 09.05.2018 Measuring... 10:32:34

Date: 9.MAY.2018 10:32:35

Report No.: SZEM180400289801 Page: 43 of 58

Spectrun	n)								
	l 15.00 dBm		_	RBW 6.25		A			
Att 1Rm Max	30 dE	B 👄 SWT	1 s 👄	VBW 20	Hz Mode	Auto Swee	p		
10 dBm					M	1[1]	1		-73.72 dBm 39360 MHz
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm—	D1 -35.000	dem							
-40 dBm—	51 -33.000								
-50 dBm—									
-60 dBm									
-70 dBm		M1 Y.u		u .lt					
հղավերժիկվութ -80 dBm—	ethick-chilenderifferhad	foretifidallyseets	hulinarchantartartartar	printed the second	hthlikikningahanlifian	helperhonelandrad	hyphologueralityrus	uhun huburu yin	Marmon Marillipa
Start 769.	L O MHz	1	1	1001	. pts	1	1	L Stop 7	 775.0 MHz
][) Mea	suring (4/4	08.06.2018 03:41:42 //

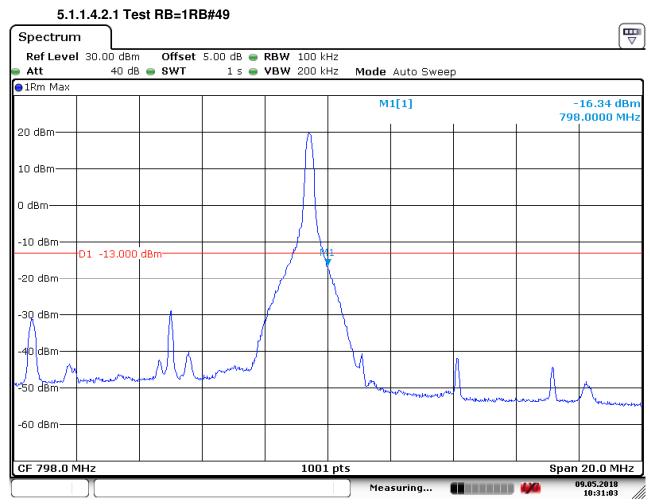
Date: 8.JUN.2018 03:41:43

Report No.: SZEM180400289801 Page: 44 of 58

Spectrum		51 ND=30								
Ref Level Att	30.00 dBn	n Offset B e SWT	5.00 dB 👄 1 s 👄	RBW 100 kł VBW 200 kł		Mode	Auto Swee	p		
⊖1Rm Max										
						М	1[1]			30.65 dBr 3.0000 MH
20 dBm										
10 dBm										
0 dBm						protocomentation	www.	- marken brought	yysterstand alaram	any and the second
-10 dBm										
-20 dBm	D1 -13.000) dBm								
				м	¥					
-30 dBm			n waarda ya waa ya waa waa waa waa waa waa waa	multinenpermit	<u> </u>					
-40 dBm	about how we are	an who many for a shift which is	However 1							
~5Q/018111										
-60 dBm										
CF 788.0 M	U 7			1001	nt	te				20.0 MHz
UP 700.0 M				1001	Pr.					20.0 MH2
						Mea	suring		e /0	10:34:05

5.1.1.4.1.2 Test RB=50RB

Date: 9.MAY.2018 10:34:05


Report No.: SZEM180400289801 Page: 45 of 58

Spectrun	n)								
	l 15.00 dBm		5.00 dB 👄						
e Att	30 dE	B 🔵 SWT	1 s 👄	VBW 20	(Hz Mode	: Auto Swee	p		
⊖1Rm Max		1	1						
10 dBm					M	1[1] 	l		·74.11 dBm 20780 MHz
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm	-D1 -35.000	dBm							
-50 dBm									
-60 dBm									
-70 dBm	- IV	1							
անուվ_{ում}իկսիսվ, -80 dBm—	unithurmlightum	frompowerds	Walter	hternetaghartelit	Hilliomproduallywayad	Muph be layer day on a	ppaneeullymufubb	adjoingtonthy and	hurphonikhuhuhu
Start 769.	 0 MHz			1001	 pts			Stop 7	 775.0 MHz
)[suring			08.06.2018 03:42:03

Date: 8.JUN.2018 03:42:03

Report No.: SZEM180400289801 Page: 46 of 58

5.1.1.4.2 Test Channel = HCH

Date: 9.MAY.2018 10:31:04

Report No.: SZEM180400289801 Page: 47 of 58

Spectrun	ı]								
	l 15.00 dBm			RBW 6.25					
Att	25 dB	🛛 🔵 SWT	1 s 👄	VBW 20	Hz Mode	Auto Swee	p		
⊖1Rm Max	I		1						
10 dBm					M	1[1]			53.66 dBm 02100 MHz
0 dBm									
-10 dBm—									
-20 dBm—									
20 4511									
-30 dBm—									
	D1 -35.000	dBm							
-40 dBm—									
1 <u>1</u> 50 dBm									
60 dBm	ughrithet the standy	Preferance martine	den barrika, Natilika,	, under the second s					
			hlintaans telsi oo oodi	Wildlord The The	the performance of the second	why why why why	ntulasty undur	Manushan	harvinghandya
-70 dBm—									
-80 dBm—									
Start 799.	0 MHz	ı	I	1001	pts	·	·	Stop 8	305.0 MHz
()[Mea	suring		4/4)8.06.2018 03:35:04

Date: 8.JUN.2018 03:35:04

Report No.: SZEM180400289801 Page: 48 of 58

Spectrum	')								
Ref Level	30.00 dBm	Offset	5.00 dB 👄	RBW 100 k	Hz				`.
🔵 Att	40 dB	SWT	1 s 👄	VBW 200 k	Hz Mode	Auto Sweep	0		
⊖1Rm Max									
					м	1[1]			29.58 dBm 1.0000 MHz
20 dBm									
10 dBm									
0 dBm	antyaathaathaantaantaa	www.uken.guwwm	- Warranger - Constant	man					
-10 dBm	D1 -13.000	dBm							
-20 dBm									
/-30 dBm				۲ų.	1 Murrilla Mar more	lahada at sa			
-40 dBm						a a marine and the state	Hermonton	Winny hours	the warden and
-50 dBm									
-60 dBm									
CF 798.0 M	IHz			1001	. pts			Span	20.0 MHz
					Mea	suring		4/4 0	9.05.2018 10:30:08

5.1.1.4.2.2 Test RB=50RB

Date: 9.MAY.2018 10:30:09

Report No.: SZEM180400289801 Page: 49 of 58

Spectrun	ı)								
	l 15.00 dBm			RBW 6.25 k					
Att 1Rm Max	25 dB	s 🥃 SWT	1 s 👄	VBW 20 k	Hz Mode	Auto Swee	ip		,
10 dBm					M	1[1]			40.55 dBm 45850 MHz
0 dBm									
-10 dBm——									
-20 dBm—									
-30 dBm	D1 -35.000	dBm							
-40 dBm ահուդերիորություն ահուղերիորություն			hubrighthat	Madriahanauthau	and the second second	Muunputtulingh	all all and the later later later later and the		and a
-50 dBm——							1041	aharradhaana a du	rr~~nllwurulkau _{wi} le
-60 dBm									
-70 dBm——									
-80 dBm	0 MHz			1001	pts			Stop 8	305.0 MHz
						suring (-)8.06.2018 03:38:54

Date: 8.JUN.2018 03:38:54

Report No.: SZEM180400289801 Page: 50 of 58

 \square

6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB. Part I - Test Plots

6.1 For LTE

6.1.1 Test Band = LTE band14

6.1.1.1 Test Mode = LTE / TM1 10MHz RB1#0

6.1.1.1.1 Test Channel = MCH

Spectrun	n I														
Ref Leve	l 25.00) dBm	1	Offset	5.00 c	iB 😑	RBW	100 k	Ηz						
Att 🗧	:	30 dB		SWT	1	s 😑	VBW	300 ki	Ηz	Mode	Auto Swe	эер			
😑 1Rm Max															
20 dBm										M	1[1]		¥	8 A A	20.88 dBm
20 UBIII											1	I.		^{MI} 788	.6230 MHz
10 dBm													+		
0 dBm													+		
-10 dBm													-		
	D1 -13	3.000	dBm												
-20 dBm															
-30 dBm															
-30 abiii															
10 10													ľ		
-40 dBm—													Π		
													11		
-50 dBm—													H		
-60 dBm	t construction	Litikalar . A			at all the second		h	en bruce			Internet and the second	the state of the state of the	—	المعربة والمعرف والمعرفة والمعر	والحراري القاصر فالأروق أتريب
della segui da stra la Statema para provisione	and a straighted by	aller of the second	li de la com	ng patra palata.	al contractory of the second secon	ana ing pangang pangan Pangang pangang	a na si na sina si na si n Na si na s	a surrai a surrai da surrai da Na surrai da surrai d	and tailet a	alite Manufacture	designs dotter it.	a pilo and a finite pilo of		line, particular de la prim	depression of the leadership o
-70 dBm															
01								0000							
Start 30.0	MHz		_					2000	1 pts	_					p 1.0 GHz
	Л]	Mea	suring			444	06.06.2018 08:42:18

Date: 6.JUN.2018 08:42:18

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180400289801 Page: 51 of 58

Spectrun	n)								
Ref Leve	l 25.0			et 5.00 dB 👄						`
e Att		30 dB	SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep	כ		
⊖1Rm Max										
20 dBm						M	1[1]			-54.68 dBm
20 0011							1	1	1.46	544080 GHz
10 dBm										
0 dBm										
-10 dBm—										
	D1 -1	3.000	dBm							
-20 dBm—										
-30 dBm										
-30 abiii										
-40 dBm										
-40 uBIII										
-50 dBm									M1	
		a selected	al a star colorett	less have been a strength					and a second second	
-60 dBm										+
-70 dBm—										
Start 1.0 (<u> </u>				20001	nte			Pton	1.550.001
	<u>۲۱۲</u>				20001		_			1.559 GHz
						Mea	suring		444	06.06.2018 08:42:59

Date: 6.JUN.2018 08:43:00

Report No.: SZEM180400289801 Page: 52 of 58

Spectrum	ı										
Ref Level				et 5.00 dB			_				`
e Att	3	0 dB	SWT	1 s	e vbw	/ 3 MHz	Mode A	∖uto Sweep)		
⊖1Rm Max											
20 dBm							M	1[1]			41.81 dBm 32210 GHz
								1			
10 dBm											
0 dBm											
-10 dBm—											
-20 dBm—											
-30 dBm—											
-40 dBm	D1 -40	.000 (dBm	M1							
				$\perp \Delta$							
-50 dBm—											
		-									
-60 dBm—											
-70 dBm—								1			
Start 1.559	GHz					20001	pts	·	-	Stop	1.61 GHz
()[Mea	asuring		440	06.06.2018 08:44:03

Date: 6.JUN.2018 08:44:04

Report No.: SZEM180400289801 Page: 53 of 58

Spectrun	n ()								[₩
Ref Leve	l 25.0			et 5.00 dB 👄						
🗕 Att		30 dB	🔵 SWT	. 1s 👄	VBW 3 MHz	Mode A	∖uto Swee	р		
●1Rm Max										
20 dBm						M1[1]				48.86 dBm
							1		6.9	45980 GHz
10 dBm										
0 dBm										
-10 dBm										
	D1 -1	3,000	dBm							
-20 dBm										
-30 dBm										
SO GBIII										
-40 dBm—										
-40 ubiii										
							M1			
-50 dBm—		الدوافر و	والمراجع والمراجع		-		No.		and the second	State of the second
			and a second							
-60 dBm										
-70 dBm—										
Start 1.61	CH2				20001	nts			Ston	10.0 GHz
					2000.					6.06.2018
L I						Mea	asuring			08:44:44

Date: 6.JUN.2018 08:44:44

Report No.: SZEM180400289801 Page: 54 of 58

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE band14

7.1.1.1 Test Mode =LTE/TM1 20MHz RB1#0

7.1.1.1.1	Test Channel = LC	н		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.400000	-80.76	-13.00	67.76	Vertical
109.700000	-80.48	-13.00	67.48	Vertical
3702.000000	-64.25	-13.00	51.25	Vertical
5553.200000	-64.88	-13.00	51.88	Vertical
7404.400000	-64.79	-13.00	51.79	Vertical
9255.275000	-60.35	-13.00	47.35	Vertical
56.200000	-78.21	-13.00	65.21	Horizontal
182.150000	-82.40	-13.00	69.40	Horizontal
3702.000000	-57.90	-13.00	44.90	Horizontal
5553.200000	-66.33	-13.00	53.33	Horizontal
7404.400000	-65.04	-13.00	52.04	Horizontal
9255.600000	-55.84	-13.00	42.84	Horizontal

7.1.1.1.2 Test Channel = MCH

7.1.1.1.2		-		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
65.100000	-81.14	-13.00	68.14	Vertical
109.350000	-80.25	-13.00	67.25	Vertical
266.450000	-84.79	-13.00	71.79	Vertical
3741.975000	-66.89	-13.00	53.89	Vertical
5613.325000	-66.32	-13.00	53.32	Vertical
7484.025000	-65.09	-13.00	52.09	Vertical
56.300000	-77.77	-13.00	64.77	Horizontal
110.950000	-83.73	-13.00	70.73	Horizontal
184.550000	-79.25	-13.00	66.25	Horizontal
3741.975000	-60.92	-13.00	47.92	Horizontal
6061.175000	-65.56	-13.00	52.56	Horizontal
9355.375000	-63.06	-13.00	50.06	Horizontal

Report No.: SZEM180400289801 Page: 55 of 58

7.1.1.1.3	Test Channel = HC	<u>CH</u>		
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.000000	-81.51	-13.00	68.51	Vertical
110.200000	-80.07	-13.00	67.07	Vertical
352.100000	-86.04	-13.00	73.04	Vertical
3781.950000	-67.68	-13.00	54.68	Vertical
5673.125000	-63.82	-13.00	50.82	Vertical
9455.475000	-63.68	-13.00	50.68	Vertical
62.850000	-77.87	-13.00	64.87	Horizontal
182.050000	-82.76	-13.00	69.76	Horizontal
3781.950000	-64.63	-13.00	51.63	Horizontal
5673.125000	-65.34	-13.00	52.34	Horizontal
7564.625000	-65.58	-13.00	52.58	Horizontal
9455.475000	-59.31	-13.00	46.31	Horizontal

NOTE:

- 1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) We have tested all modulation and all Bandwidth, but only the worst case data presented in this report.

Report No.: SZEM180400289801 Page: 56 of 58

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	8.41	0.01060	PASS
		LCH	TN	VN	-9.13	-0.01151	PASS
				VH	0.45	0.00057	PASS
				VL	-9.81	-0.01237	PASS
	LTE/TM1 10MHz	MCH	TN	VN	-3.91	-0.00493	PASS
				VH	-7.47	-0.00943	PASS
		НСН	TN	VL	-0.91	-0.00115	PASS
				VN	2.25	0.00284	PASS
LTEband14				VH	-3.50	-0.00441	PASS
LIEDanu14		LCH	TN	VL	-1.35	-0.00170	PASS
				VN	3.16	0.00399	PASS
				VH	-4.33	-0.00546	PASS
			TN	VL	7.84	0.00988	PASS
	LTE/TM2 10MHz	MCH		VN	-1.22	-0.00154	PASS
				VH	-2.46	-0.00310	PASS
				VL	-4.40	-0.00555	PASS
		HCH	TN	VN	6.13	0.00773	PASS
				VH	7.86	0.00991	PASS

Report No.: SZEM180400289801 Page: 57 of 58

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	3.76	0.00475	PASS
				-20	-5.94	-0.00749	PASS
				-10	-3.12	-0.00394	PASS
				0	1.11	0.00139	PASS
		LCH	VN	10	-7.63	-0.00962	PASS
				20	4.48	0.00564	PASS
				30	3.79	0.00478	PASS
				40	-6.83	-0.00861	PASS
				50	-9.17	-0.01157	PASS
	LTE/TM1 10MHz		VN	-30	8.95	0.01128	PASS
		МСН		-20	5.64	0.00711	PASS
				-10	-8.60	-0.01085	PASS
				0	-4.16	-0.00524	PASS
LTEband14				10	-7.16	-0.00903	PASS
				20	5.66	0.00714	PASS
				30	8.93	0.01127	PASS
				40	6.65	0.00839	PASS
				50	5.18	0.00653	PASS
				-30	1.62	0.00204	PASS
				-20	3.15	0.00397	PASS
				-10	-8.62	-0.01087	PASS
				0	-3.78	-0.00477	PASS
		HCH	VN	10	7.08	0.00892	PASS
				20	1.73	0.00218	PASS
				30	-9.18	-0.01158	PASS
				40	2.79	0.00351	PASS
				50	8.65	0.01090	PASS

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM180400289801 Page: 58 of 58

					Page:	58 of 58	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	5.25	0.00661	PASS
				-20	4.40	0.00554	PASS
				-10	-9.71	-0.01224	PASS
				0	-4.48	-0.00565	PASS
		LCH	VN	10	9.11	0.01149	PASS
				20	5.89	0.00743	PASS
				30	-1.91	-0.00241	PASS
				40	-3.42	-0.00431	PASS
				50	-7.58	-0.00956	PASS
	LTE/TM2 10MHz		VN	-30	-6.75	-0.00851	PASS
				-20	7.30	0.00921	PASS
				-10	4.36	0.00549	PASS
				0	8.24	0.01039	PASS
LTEband14		MCH		10	-9.90	-0.01248	PASS
				20	-1.99	-0.00250	PASS
				30	2.25	0.00284	PASS
				40	9.01	0.01136	PASS
				50	-1.23	-0.00155	PASS
				-30	-3.67	-0.00463	PASS
				-20	-5.75	-0.00725	PASS
				-10	-0.92	-0.00117	PASS
				0	-4.03	-0.00508	PASS
		НСН	VN	10	4.20	0.00529	PASS
				20	-9.90	-0.01248	PASS
				30	0.56	0.00071	PASS
				40	3.98	0.00501	PASS
				50	2.32	0.00292	PASS

The End