

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053

Fax: +86 (0) 755 2671 0594 Report No.: SZEM180100088202

Email: ee.shenzhen@sgs.com Page: 1 of 96

FCC REPORT

Application No: SZEM1801000882RG

Applicant: TCL Communication Ltd.

Manufacturer: TCL Communication Ltd.

Factory: TCL Mobile Communicate Co., LTD. Huizhou

Product Name: LTE/UMTS/GSM mobile phone

Model No.(EUT): T700A

Trade Mark: handy

FCC ID: 2ACCJH085

Standards: 47 CFR Part 15, Subpart C

KDB 558074 D01 DTS Meas Guidance v04

Test Method ANSI C63.10 (2013)

Date of Receipt: 2018-03-28

Date of Test: 2018-03-29 to 2018-04-10

Date of Issue: 2018-04-11

Test Result: PASS *

. * In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180100088202

Page: 2 of 96

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
01		2018-04-11		Original			

Authorized for issue by:		
Tested By	Nike Mu	2018-04-11
	(Mike Hu) /Project Engineer	Date
Checked By	Jim Hog	2018-04-11
	(Jim Huang) /Reviewer	Date

Report No.: SZEM180100088202

Page: 3 of 96

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	·		PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM180100088202

Page: 4 of 96

Contents

			Page
			1
2	VE	RSION	2
3	TE	ST SUMMARY	3
4	CO	ONTENTS	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	9
6	TE	ST RESULTS AND MEASUREMENT DATA	12
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8		
	6.8		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	78
7	PH	OTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	96

Report No.: SZEM180100088202

Page: 5 of 96

4 General Information

4.1 Client Information

Applicant:	TCL Communication Ltd.
Address of Applicant:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203
Manufacturer:	TCL Communication Ltd.
Address of Manufacturer:	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park, Pudong Area Shanghai, P.R. China. 201203
Factory:	TCL Mobile Communicate Co., LTD. Huizhou
Address of Factory:	No.86,Hechang 7 th West Road, ZhongKai Hi-tech Development District, Huizhou, Guangdong

4.2 General Description of EUT

Product Name:	LTE/UMTS/GSM mobile phone
Model No.:	T700A
Trade Mark:	handy
Operation	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Frequency:	IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Numbers.	IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)
Type of Modulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,QPSK,BPSK)
Sample Type:	Portable production
Antenna Type:	PIFA
Antenna Gain:	-3.8dBi
Dawas Comale	AC input: 100-240V 50/60Hz
Power Supply	DC output: 5V 2A
AC adaptor:	AC input: 100-240V 50/60Hz DC output: 5V 2A

Report No.: SZEM180100088202

Page: 6 of 96

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		
Operation	Frequency eac	h of channe	el(802.11n HT4	0)			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
3	2422MHz	6	2437MHz	9	2452MHz		
4	2427MHz	7	2442MHz				
5	2432MHz	8	2447MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency for 802.11b/g/n (HT20)	Frequency for 802.11n (HT40)		
The Lowest channel	2412MHz	2422MHz		
The Middle channel	2437MHz	2437MHz		
The Highest channel	2462MHz	2452MHz		

Report No.: SZEM180100088202

Page: 7 of 96

4.3 Test Environment and Mode

Operating Environment:					
Temperature:	25.0 °C				
Humidity:	50 % RH				
Atmospheric Pressure:	1010 MPa				
Test mode:					
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM180100088202

Page: 8 of 96

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

4.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	
1	Total RF power, conducted	0.75dB	
2	RF power density, conducted	2.84dB	
3	Spurious emissions, conducted	0.75dB	
		4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)	
5	Conduct emission test	3.12 dB(9KHz- 30MHz)	
6	Temperature test	1°C	
7	Humidity test	3%	
8	DC and low frequency voltages	0.5%	

Report No.: SZEM180100088202

Page: 9 of 96

4.11 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017-09-28	2018-09-28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09	

	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)		
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09		
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2018-03-13	2019-03-13		
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14		
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09		
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09		

Report No.: SZEM180100088202

Page: 10 of 96

			RE in Chamb	er		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017-11-24	2020-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)		
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10		
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14		
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29		
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06		
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14		

Report No.: SZEM180100088202

Page: 11 of 96

		ı	RE in Chamb	per		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017/5/10	2018/5/10
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017/7/19	2018/7/19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017/11/15	2020/11/15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017/10/9	2018/10/9
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015/6/14	2018/6/14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017/11/24	2020/11/24
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2017/10/17	2020/10/16
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017/10/9	2018/10/9
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM180100088202

Page: 12 of 96

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -3.8dBi.

Report No.: SZEM180100088202

Page: 13 of 96

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
		Limit (d	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
Limit:	0.15-0.5	66 to 56*	56 to 46*			
LIIIII.	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Not impedance. The power cast to a second LISN 2, which plane in the same way as the multiple socket outlet strip single LISN provided the result of the test was performed with of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated experience of the impediate of the impact of	o AC power source throetwork) which provides oles of all other units of was bonded to the grown the LISN 1 for the unit be was used to connect mating of the LISN was not be dupon a non-metallic and for floor-standing arround reference plane, the a vertical ground reference to a ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 the terface cables must be terface cables must be	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω line the EUT were connected the EUT were connected to the EUT were cables to the exceeded. The exceeded the exc	to a te was ar e		
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver			

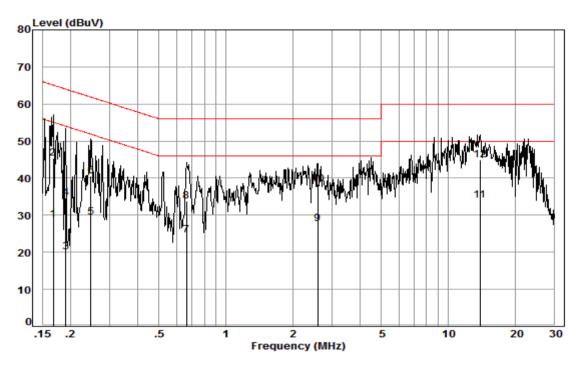
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180100088202

Page: 14 of 96

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
E de l'Arrive Maria	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
Final Test Mode:	Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM180100088202


Page: 15 of 96

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

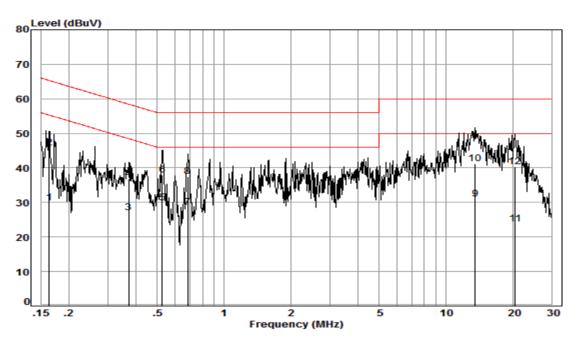
Live Line:

Site : Shielding Room

Condition: Line Job No. : 01198RG

Test mode: d

: 47A+06


		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
	1112	ub	ub	abav	abav	abav	ub.	
1	0.17	0.02	9.52	19.26	28.80	55.08	-26.28	Average
2	0.17	0.02	9.52	35.87	45.41	65.08	-19.67	QP
3	0.19	0.03	9.51	10.48	20.02	54.02	-34.00	Average
4	0.19	0.03	9.51	25.02	34.56	64.02	-29.46	QP
5	0.25	0.03	9.51	19.81	29.35	51.86	-22.51	Average
6	0.25	0.03	9.51	30.95	40.49	61.86	-21.37	QP
7	0.66	0.07	9.50	15.09	24.66	46.00	-21.34	Average
8	0.66	0.07	9.50	24.12	33.69	56.00	-22.31	QP
9	2.59	0.17	9.53	17.98	27.68	46.00	-18.32	Average
10	2.59	0.17	9.53	28.60	38.30	56.00	-17.70	QP
11	13.91	0.24	9.70	24.13	34.07	50.00	-15.93	Average
12	13.91	0.24	9.70	35.05	44.99	60.00	-15.01	QP

Report No.: SZEM180100088202

Page: 16 of 96

Neutral Line:

Site : Shielding Room

Condition: Neutral Job No. : 01198RG

Test mode: d

: 47A+06

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.02	9.59	20.17	29.78	55.30	-25.52	Average
2	0.16	0.02	9.59	36.26	45.87	65.30	-19.43	QP
3	0.37	0.03	9.58	17.37	26.98	48.47	-21.49	Average
4	0.37	0.03	9.58	27.13	36.74	58.47	-21.73	QP
5	0.53	0.04	9.61	20.31	29.96	46.00	-16.04	Average
6	0.53	0.04	9.61	28.18	37.83	56.00	-18.17	QP
7	0.69	0.07	9.62	18.89	28.58	46.00	-17.42	Average
8	0.69	0.07	9.62	27.86	37.55	56.00	-18.45	QP
9	13.55	0.24	9.89	20.90	31.03	50.00	-18.97	Average
10	13.55	0.24	9.89	31.16	41.29	60.00	-18.71	QP
11	20.49	0.27	10.06	13.52	23.85	50.00	-26.15	Average
12	20.49	0.27	10.06	29.96	40.29	60.00	-19.71	OP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM180100088202

Page: 17 of 96

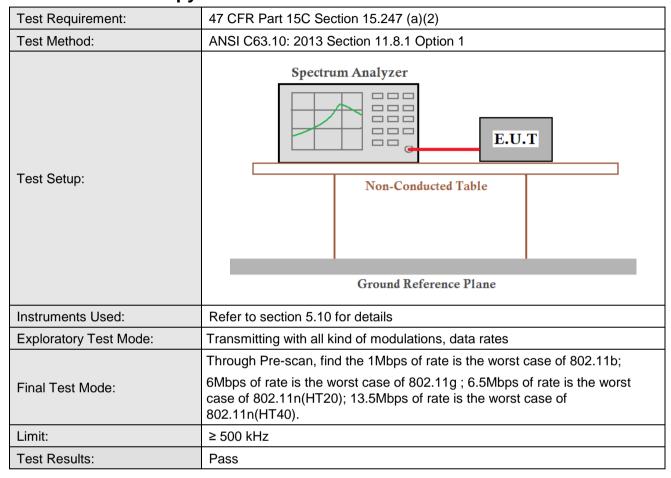
5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10 :2013 Section 11.9.1.3		
Test Setup:	POWER METER E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).		
Limit:	30dBm		
Test Results:	Pass		

Report No.: SZEM180100088202

Page: 18 of 96

Measurement Data


	802.11b mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	18.21	30.00	Pass			
Middle	19.29	30.00	Pass			
Highest	18.75	30.00	Pass			
	802.11g mo	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	17.80	30.00	Pass			
Middle	20.23	30.00	Pass			
Highest	18.06	30.00	Pass			
	802.11n(HT20)	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	17.56	30.00	Pass			
Middle	20.04	30.00	Pass			
Highest	17.74	30.00	Pass			
	802.11n(HT40)mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	17.27	30.00	Pass			
Middle	21.50	30.00	Pass			
Highest	17.73	30.00	Pass			

Report No.: SZEM180100088202

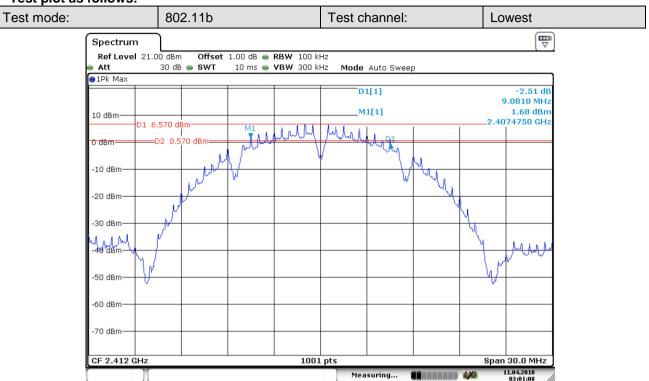
Page: 19 of 96

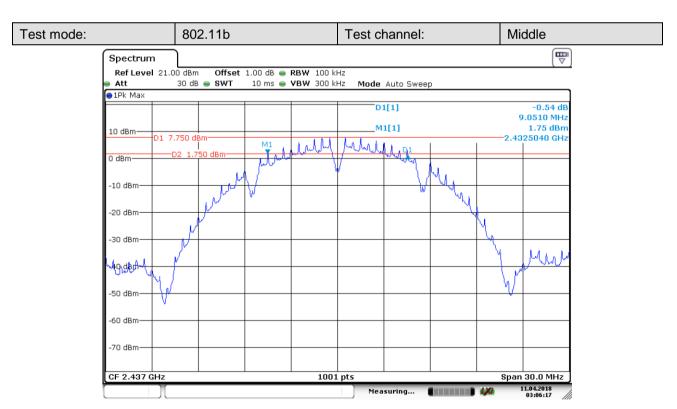
5.4 6dB Occupy Bandwidth

Report No.: SZEM180100088202

Page: 20 of 96

Measurement Data

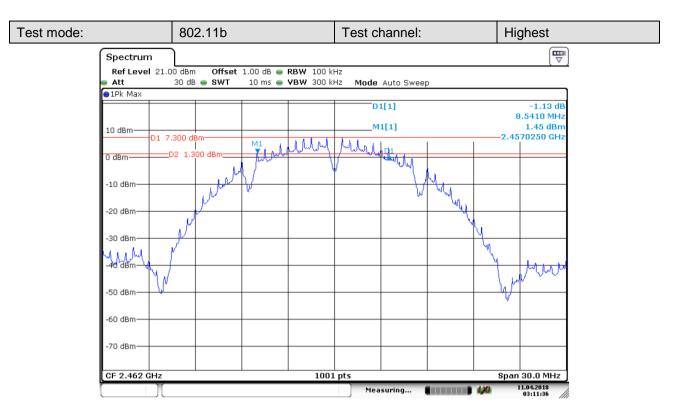

Measurement Data					
	802.11b mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	9.08	≥500	Pass		
Middle	9.05	≥500	Pass		
Highest	8.54	≥500	Pass		
	802.11g mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	15.88	≥500	Pass		
Middle	15.38	≥500	Pass		
Highest	15.70	≥500	Pass		
	802.11n(HT20) mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	17.11	≥500	Pass		
Middle	16.27	≥500	Pass		
Highest	16.06	≥500	Pass		
	802.11n(HT40) mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	35.90	≥500	Pass		
Middle	35.37	≥500	Pass		
Highest	35.90	≥500	Pass		


Report No.: SZEM180100088202

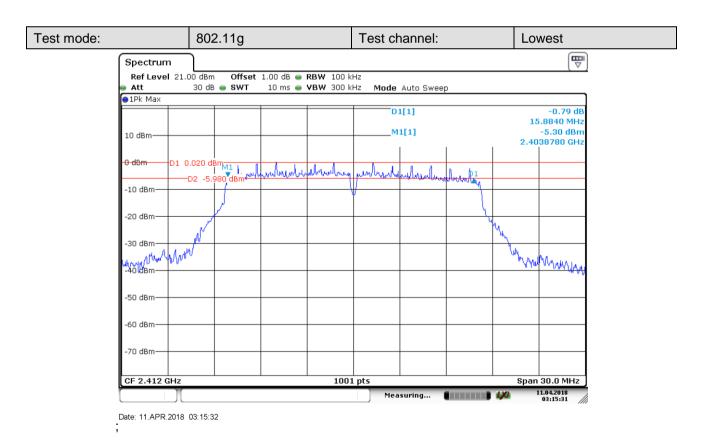
Page: 21 of 96

Test plot as follows:

Date: 11.APR.2018 03:01:08



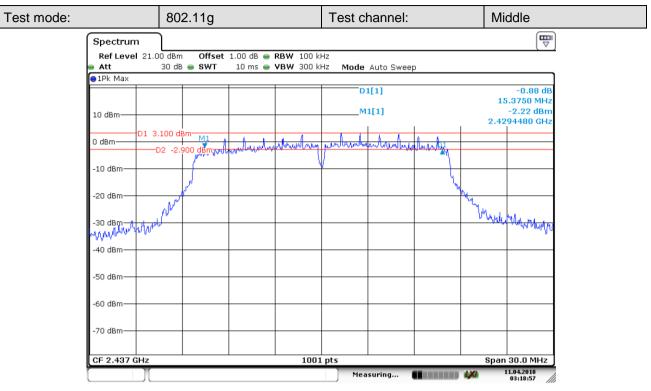
Date: 11.APR.2018 03:06:17



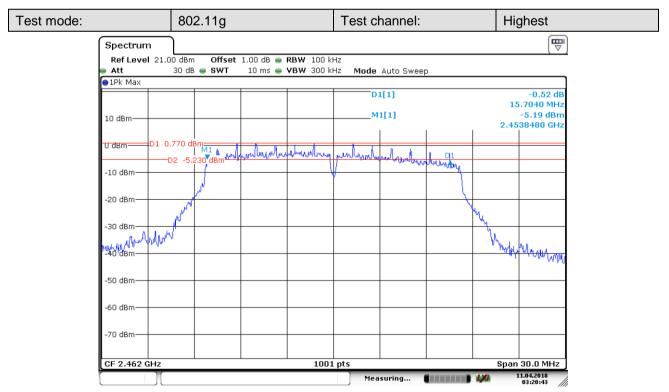
Report No.: SZEM180100088202

Page: 22 of 96

Date: 11.APR.2018 03:11:37



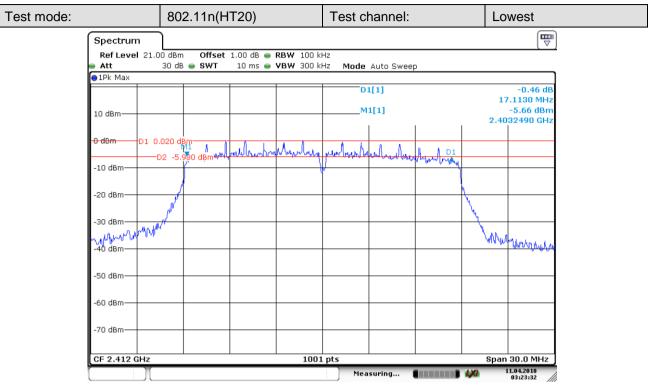
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



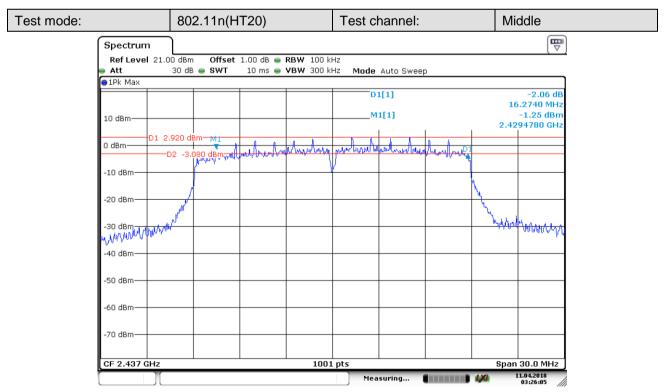
Report No.: SZEM180100088202

Page: 23 of 96

Date: 11.APR.2018 03:18:58



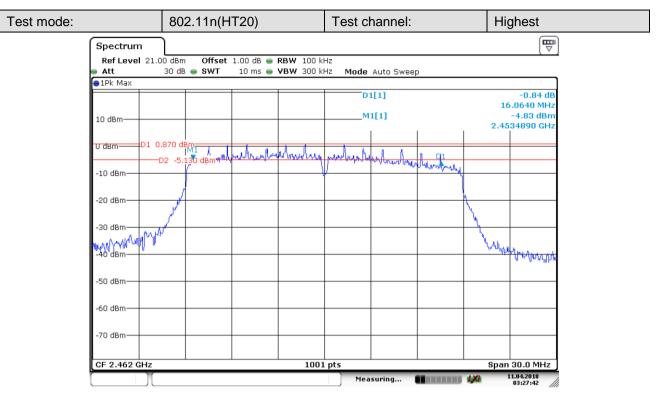
Date: 11.APR.2018 03:20:43



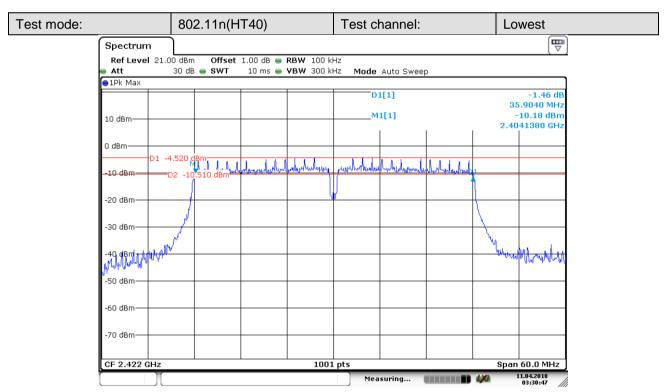
Report No.: SZEM180100088202

Page: 24 of 96

Date: 11.APR.2018 03:23:33

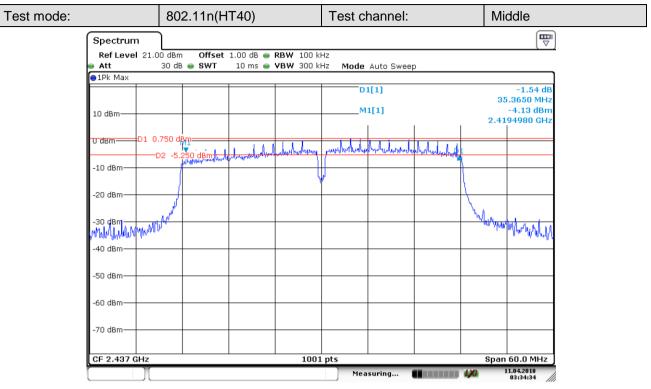


Date: 11.APR.2018 03:26:06

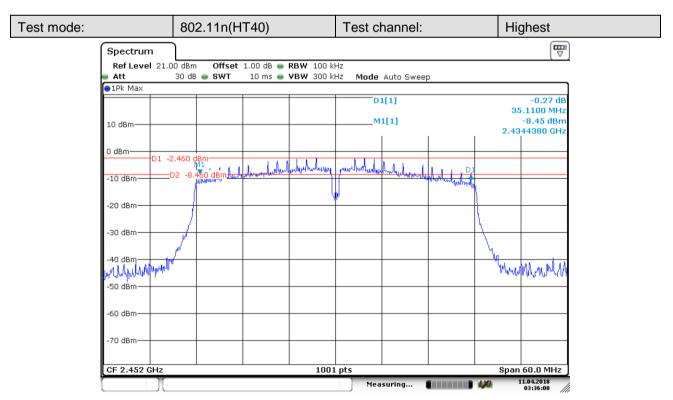


Report No.: SZEM180100088202

Page: 25 of 96



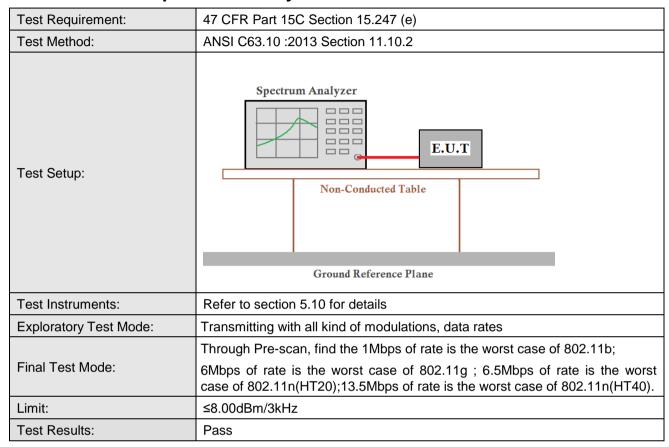
Date: 11.APR.2018 03:30:47



Report No.: SZEM180100088202

Page: 26 of 96

Date: 11.APR.2018 03:34:35


Date: 11.APR.2018 03:36:01

Report No.: SZEM180100088202

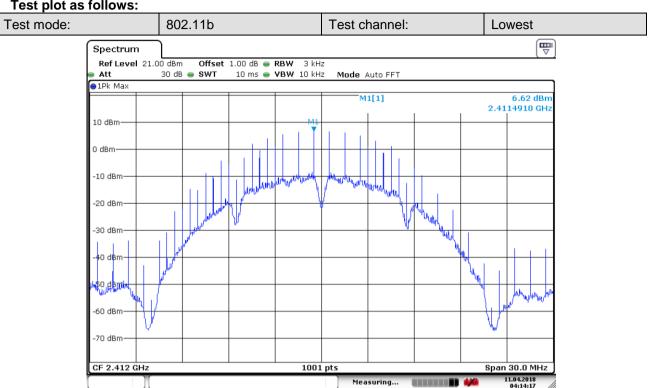
Page: 27 of 96

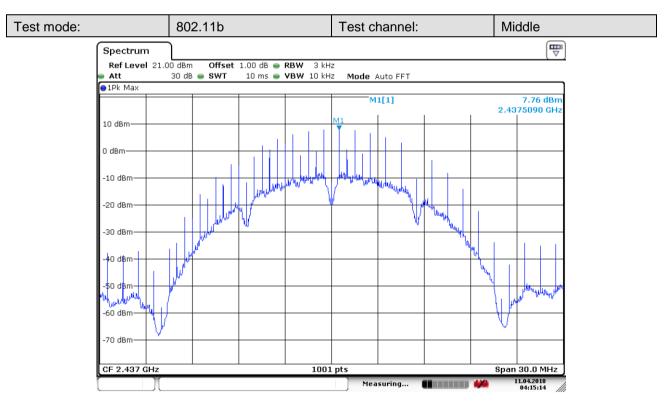
5.5 Power Spectral Density

Report No.: SZEM180100088202

Page: 28 of 96

Measurement Data

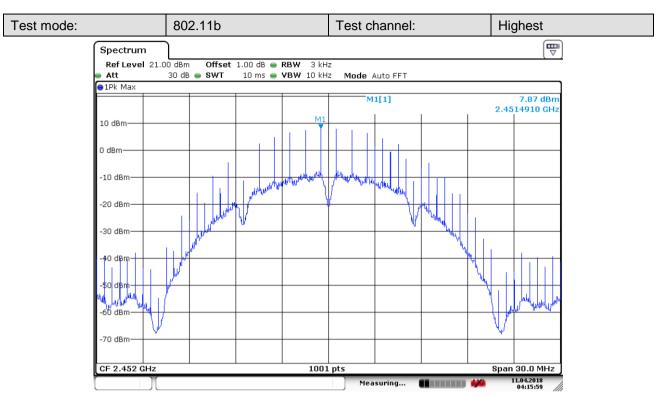

measurement Data						
	802.11b mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	6.62	≤8.00	Pass			
Middle	7.76	≤8.00	Pass			
Highest	7.87	≤8.00	Pass			
	802.11g mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-14.41	≤8.00	Pass			
Middle	-11.19	≤8.00	Pass			
Highest	-13.61	≤8.00	Pass			
	802.11n(HT20) mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-14.06	≤8.00	Pass			
Middle	-10.68	≤8.00	Pass			
Highest	-13.06	≤8.00	Pass			
	802.11n(HT40) mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-20.16	≤8.00	Pass			
Middle	-14.62	≤8.00	Pass			
Highest	-14.62	≤8.00	Pass			


Report No.: SZEM180100088202

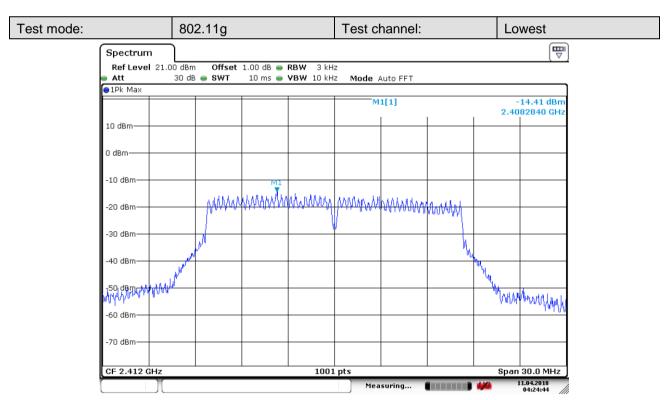
29 of 96 Page:

Test plot as follows:

Date: 11.APR.2018 04:14:17



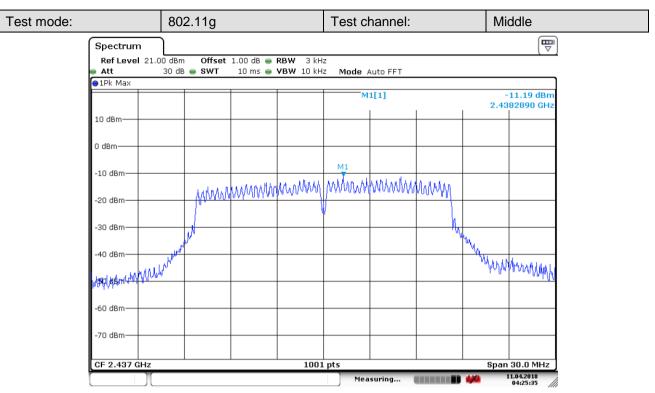
Date: 11.APR.2018 04:15:14



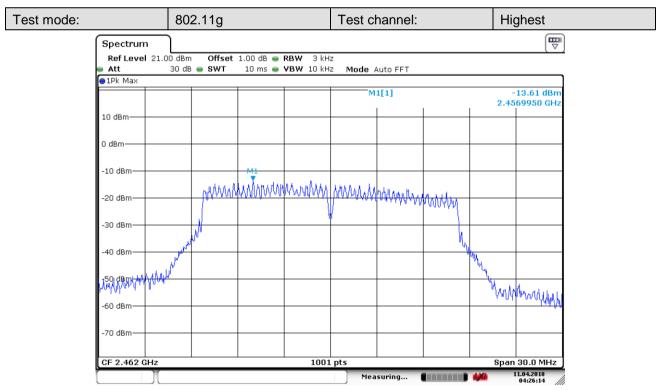
Report No.: SZEM180100088202

Page: 30 of 96

Date: 11.APR.2018 04:16:00



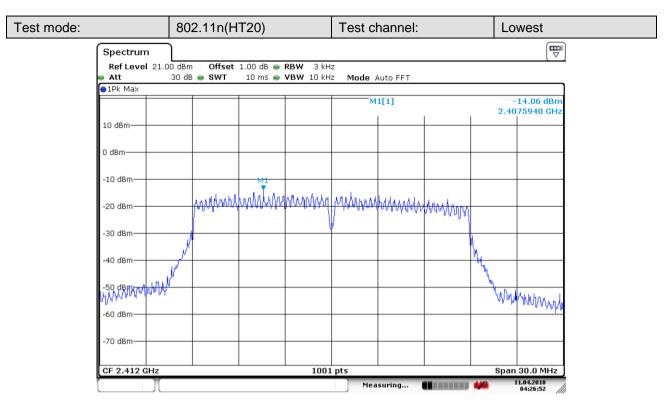
Date: 11.APR.2018 04:24:45



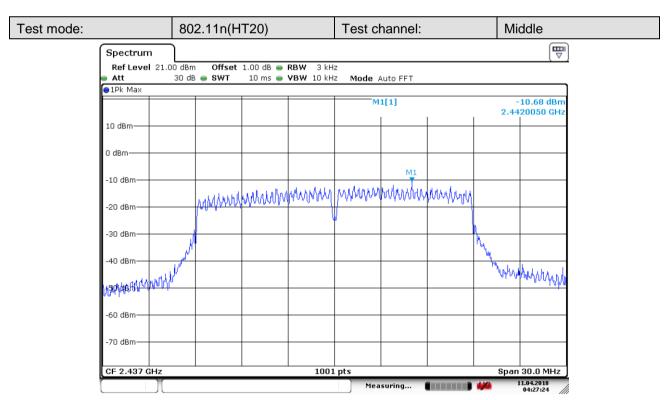
Report No.: SZEM180100088202

Page: 31 of 96

Date: 11.APR.2018 04:25:35



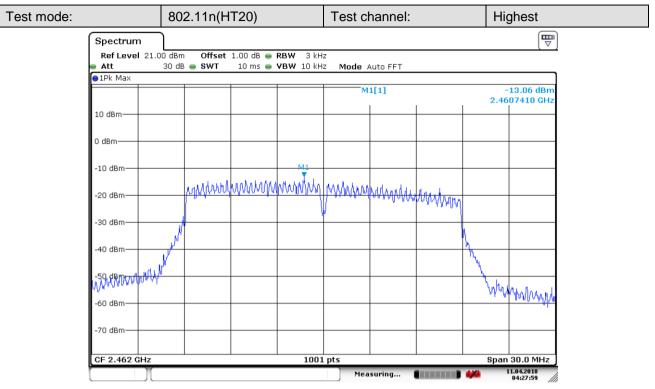
Date: 11.APR.2018 04:26:14



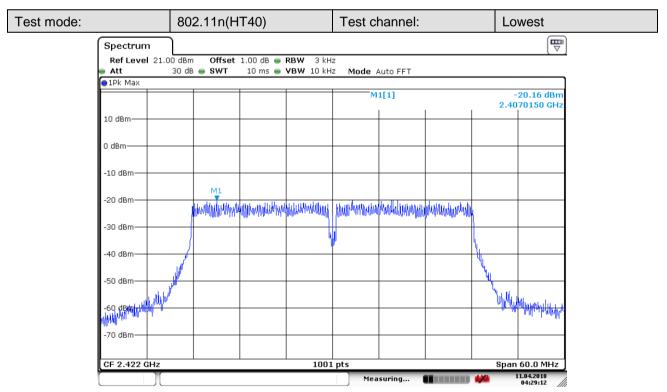
Report No.: SZEM180100088202

Page: 32 of 96

Date: 11.APR.2018 04:26:53



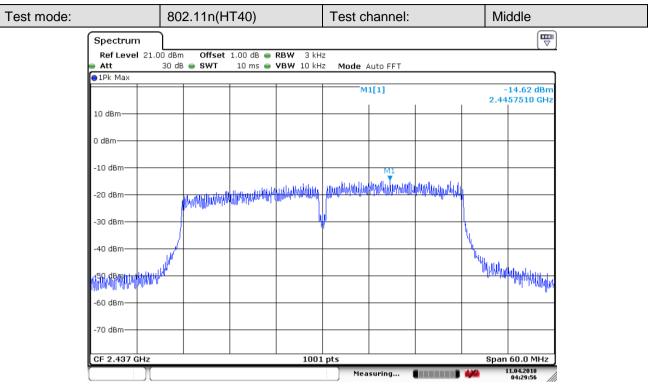
Date: 11.APR.2018 04:27:24



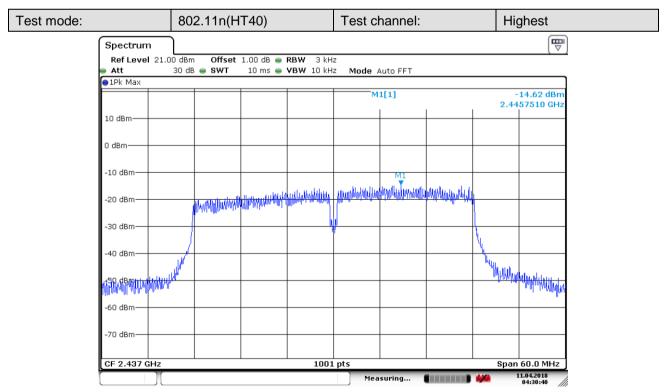
Report No.: SZEM180100088202

Page: 33 of 96

Date: 11.APR.2018 04:27:59



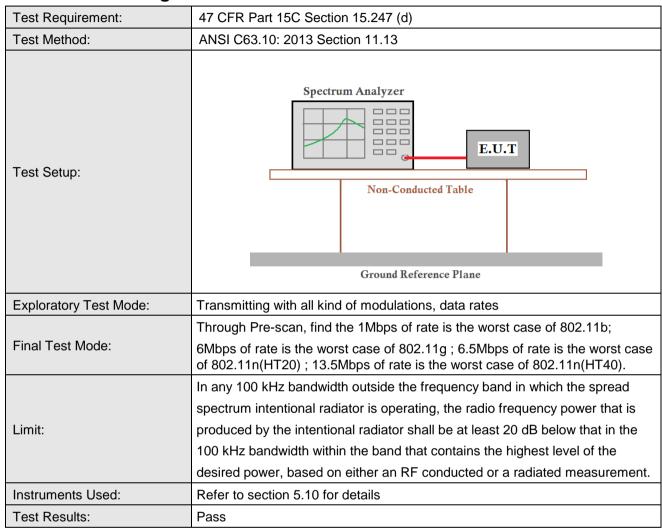
Date: 11.APR.2018 04:29:12



Report No.: SZEM180100088202

Page: 34 of 96

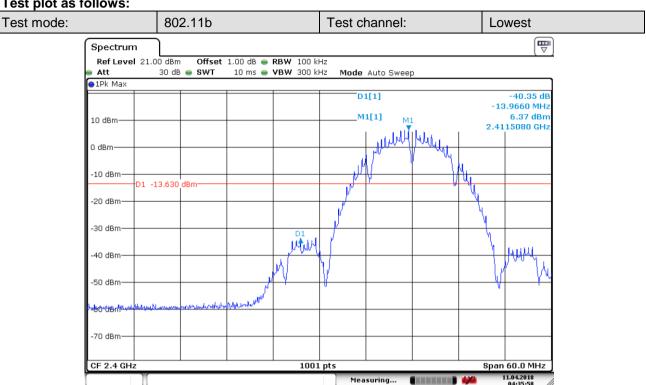
Date: 11.APR.2018 04:29:56

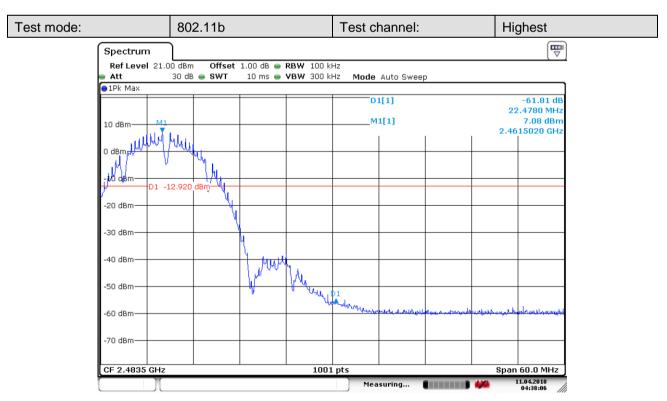

Date: 11.APR.2018 04:30:41

Report No.: SZEM180100088202

Page: 35 of 96

5.6 Band-edge for RF Conducted Emissions

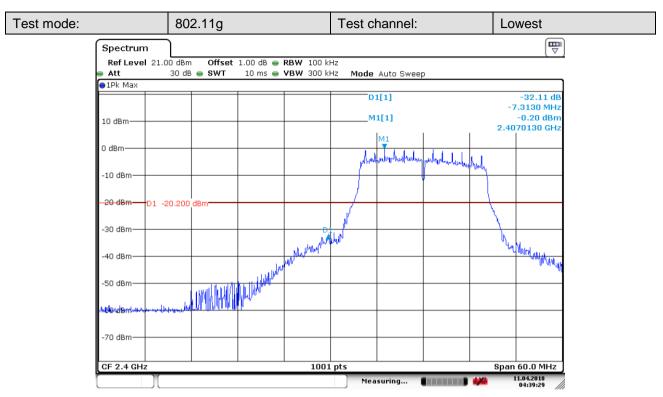



Report No.: SZEM180100088202

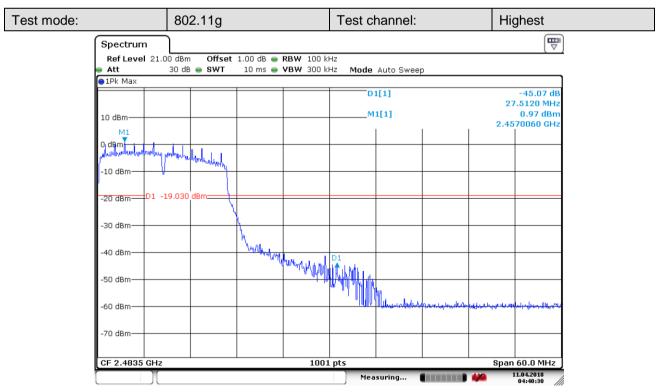
Page: 36 of 96

Test plot as follows:

Date: 11.APR.2018 04:35:58



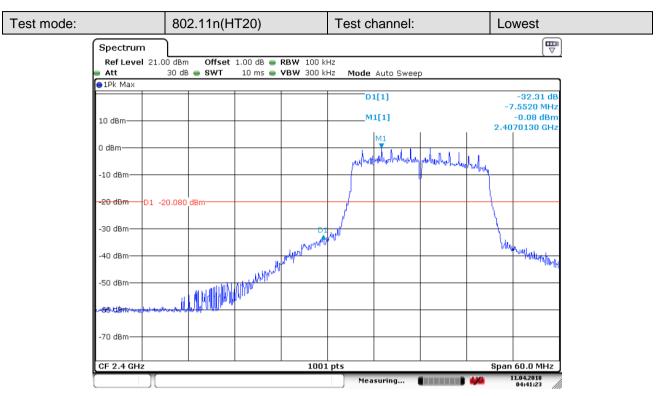
Date: 11.APR.2018 04:38:07



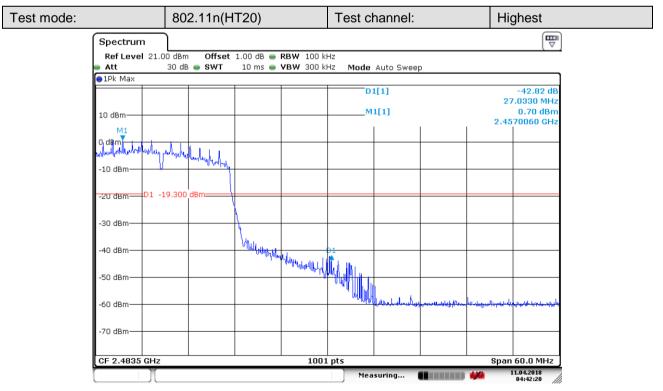
Report No.: SZEM180100088202

Page: 37 of 96

Date: 11.APR.2018 04:39:28



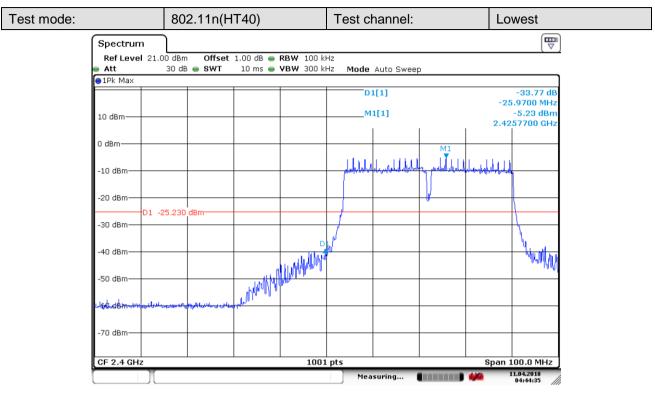
Date: 11.APR.2018 04:40:31



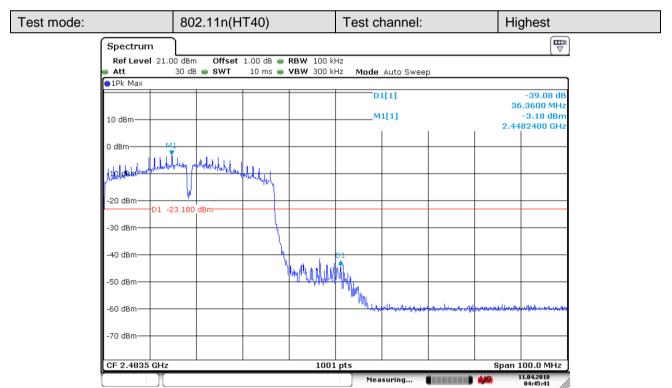
Report No.: SZEM180100088202

Page: 38 of 96

Date: 11.APR.2018 04:41:24



Date: 11.APR.2018 04:42:21



Report No.: SZEM180100088202

Page: 39 of 96

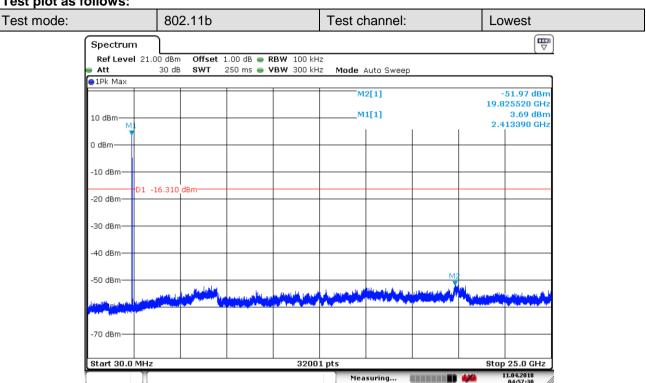
Date: 11.APR.2018 04:44:35

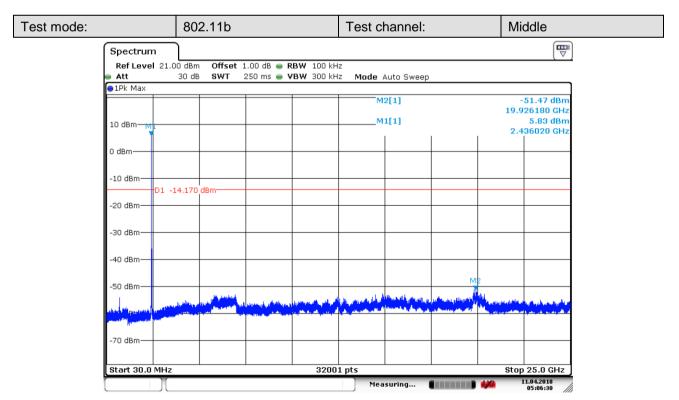
Date: 11.APR.2018 04:45:41

Report No.: SZEM180100088202

Page: 40 of 96

5.7 RF Conducted Spurious Emissions

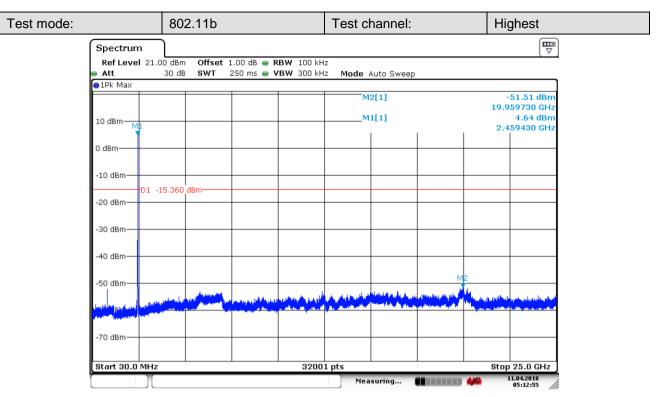

Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10: 2013 Section 11.11						
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates						
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Instruments Used:	Refer to section 5.10 for details						
Test Results:	Pass						


Report No.: SZEM180100088202

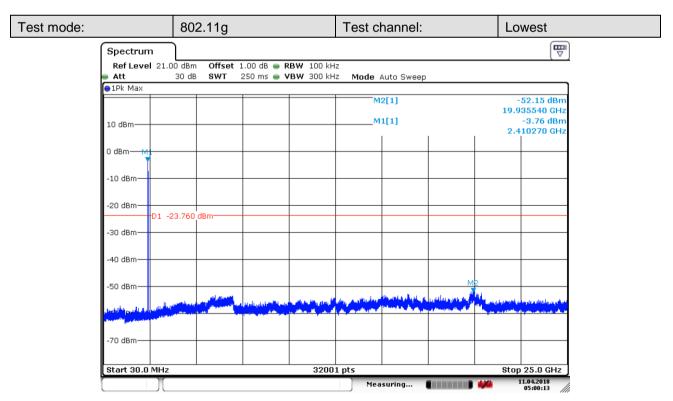
Page: 41 of 96

Test plot as follows:

Date: 11.APR.2018 04:57:31



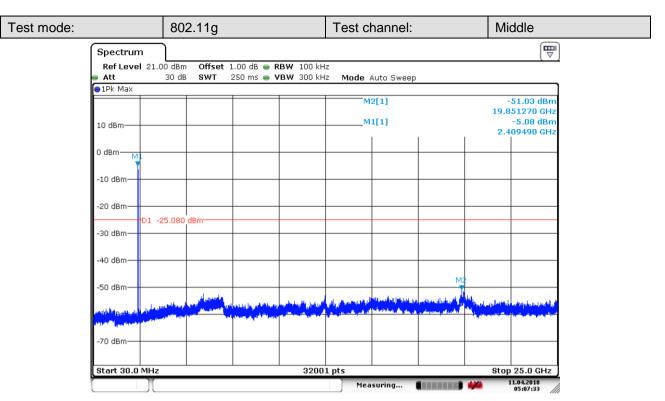
Date: 11.APR.2018 05:06:30



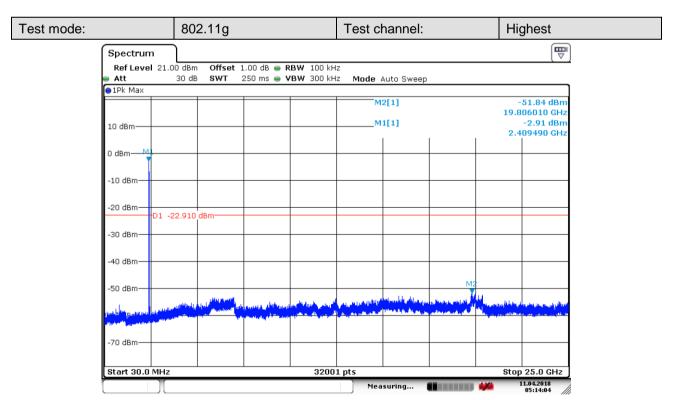
Report No.: SZEM180100088202

Page: 42 of 96

Date: 11.APR.2018 05:12:56



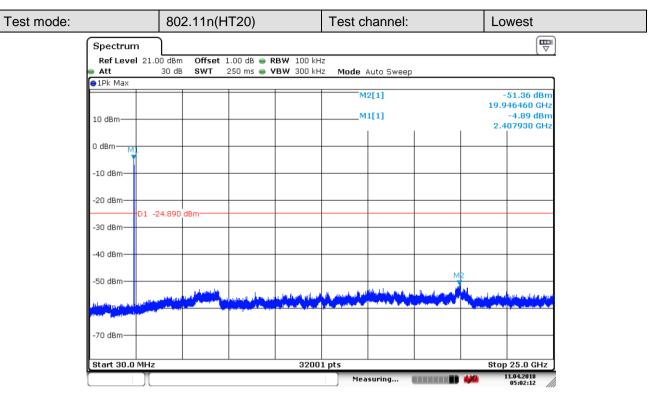
Date: 11.APR.2018 05:00:13



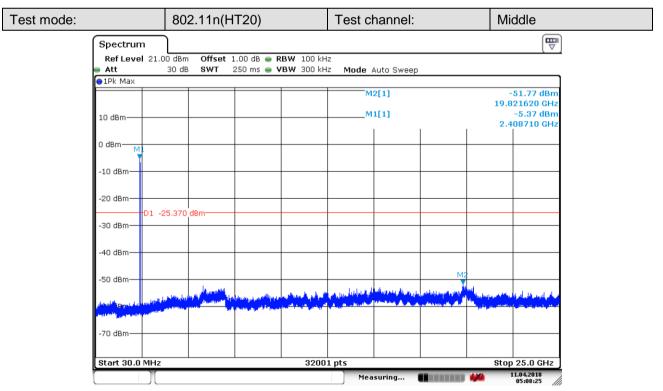
Report No.: SZEM180100088202

Page: 43 of 96

Date: 11.APR.2018 05:07:33



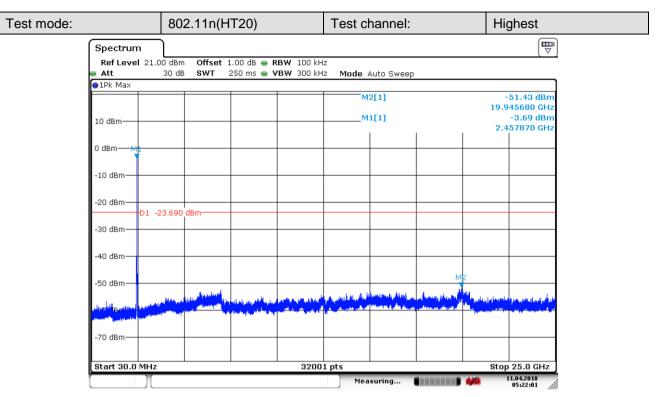
Date: 11.APR.2018 05:14:05



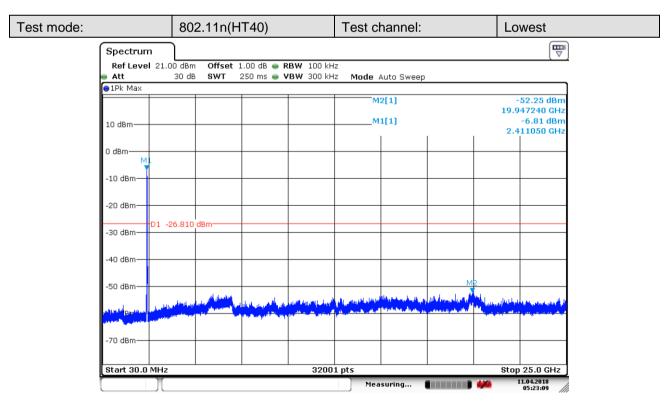
Report No.: SZEM180100088202

Page: 44 of 96

Date: 11.APR.2018 05:02:12



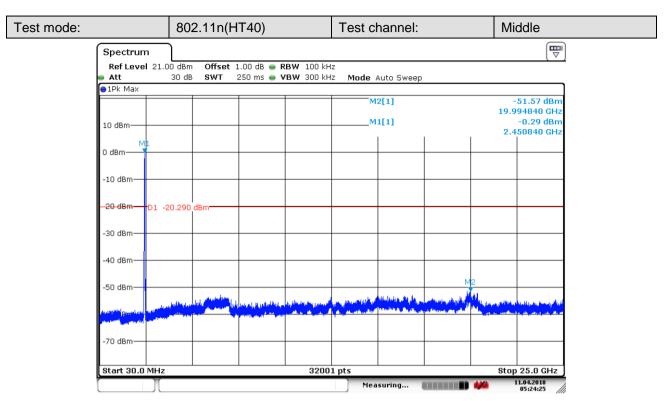
Date: 11.APR.2018 05:08:25



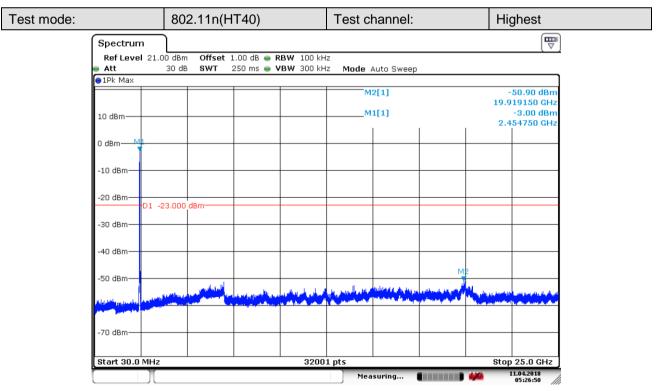
Report No.: SZEM180100088202

Page: 45 of 96

Date: 11.APR.2018 05:22:01



Date: 11.APR.2018 05:23:09



Report No.: SZEM180100088202

Page: 46 of 96

Date: 11.APR.2018 05:24:25

Date: 11.APR.2018 05:26:50

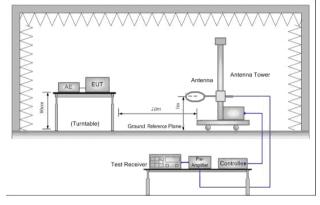
Report No.: SZEM180100088202

Page: 47 of 96

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

5.8 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15.2	205		
Test Method:	ANSI C63.10 :2013 Sec	ction 11.12			
Test Site:	Measurement Distance	: 3m or 10m (Semi	-Anechoic Chaml	per)	
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
Dagaiyar Caturu	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3
Liniit.	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Note: 15.35(b), Unless	otherwise specified	I, the limit on pea	k radio freque	ncy
	emissions is 20dB abov	e the maximum pe	ermitted average	emission limit	
	applicable to the equipr level radiated by the de		is peak limit appl	ies to the total	peak emission

Report No.: SZEM180100088202

Page: 48 of 96

Test Setup:

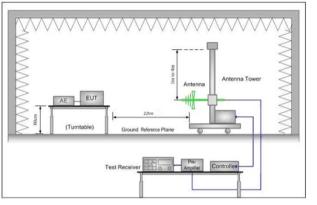


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

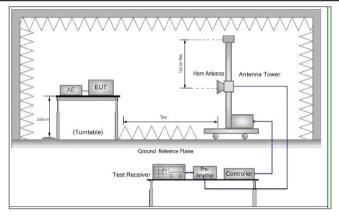


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's to responsibility is to its Client and this document accounted parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180100088202

Page: 49 of 96

	EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel						
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. 						
	j. Repeat above procedures until all frequencies measured was complete.						
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.						
	Charge + Transmitting mode.						
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.						
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;						
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case						
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)						
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowes channel is the worst case. Only the worst case is recorded in the report.						
Instruments Used:	Refer to section 5.10 for details						
Test Results:	Pass						

Report No.: SZEM180100088202

Page: 50 of 96

5.8.1 Radiated emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

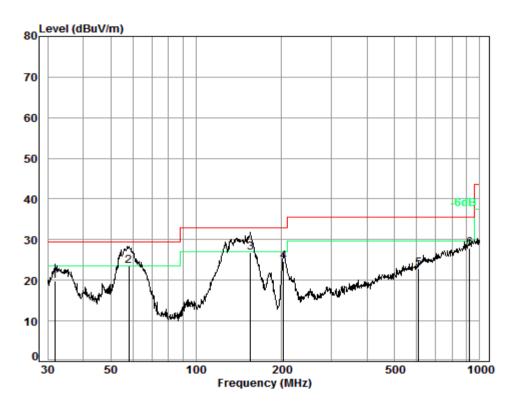
Note:

L₃: Level @ 3m distance. Unit: uV/m;

L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m D₁₀: 10m distance. Unit: m

The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Over Limit (dB)	Ant. Polarization
31.73	19.94	9.93	33.10	30.40	40	-9.60	V
58	23.51	14.98	49.93	33.97	40	-6.03	V
155.36	26.8	21.88	72.93	37.26	43.5	-6.24	V
203.52	24.61	17.00	56.67	35.07	46	-10.93	V
609.92	22.87	13.92	46.39	33.33	46	-12.67	V
919.29	28	25.12	83.73	38.46	46	-7.54	V
54.26	15.04	5.65	18.83	25.50	40	-14.50	Н
143.83	15.41	5.90	19.65	25.87	40	-14.13	Н
345.6	17.09	7.15	23.84	27.55	43.5	-15.95	Н
460.73	21.29	11.60	38.67	31.75	46	-14.25	Н
682.35	24.38	16.56	55.19	34.84	46	-11.16	Н
935.55	26.81	21.90	73.01	37.27	46	-8.73	Н

Report No.: SZEM180100088202

Page: 51 of 96

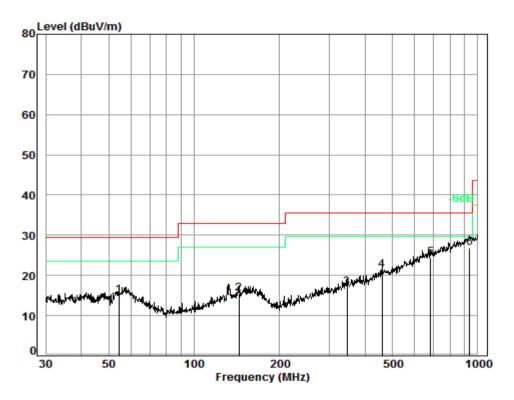
30MHz~1GHz (QP)						
Test mode:	Charge + Transmitting	Vertical				

Condition: 10m VERTICAL

Job No. : 00882RG

Test Mode: d

: 47A+06


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.73	6.70	12.53	32.60	33.31	19.94	29.50	-9.56
2 pp	58.00	7.00	12.15	32.54	36.90	23.51	29.50	-5.99
3	155.36	7.48	13.40	32.51	38.43	26.80	33.00	-6.20
4	203.52	7.62	9.38	32.53	40.14	24.61	33.00	-8.39
5	609.92	8.93	18.91	32.40	27.43	22.87	35.60	-12.73
6	919.29	9.50	22.48	31.39	27.41	28.00	35.60	-7.60

Report No.: SZEM180100088202

Page: 52 of 96

Test mode: Charge + Transmitting Horizontal

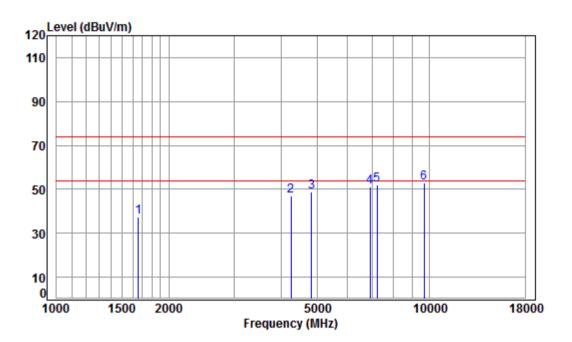
Condition: 10m HORIZONTAL

Job No. : 00882RG

Test Mode: d

: 47A+06

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	54.26	6.99	12.43	32.53	28.15	15.04	29.50	-14.46
2	143.83	7.42	13.01	32.52	27.50	15.41	33.00	-17.59
3	345.60	8.23	13.76	32.43	27.53	17.09	35.60	-18.51
4	460.73	8.45	16.30	32.42	28.96	21.29	35.60	-14.31
5	682.35	9.11	19.92	32.39	27.74	24.38	35.60	-11.22
6 рр	935.55	9.54	22.63	31.26	25.90	26.81	35.60	-8.79



Report No.: SZEM180100088202

Page: 53 of 96

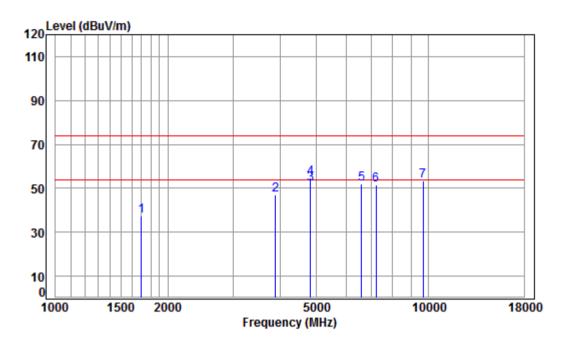
5.8.2 Transmitter emission above 1GHz

Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2412 TX SE


OL	2	: 2.4	a Wifi	TID							
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1		1658.337	5.28	26.50	41.51	46.96	37.23	74.00	-36.77	peak	
2		4254.921	7.28	33.60	42.37	48.60	47.11	74.00	-26.89	peak	
3		4824.000	7.91	34.19	42.47	49.26	48.89	74.00	-25.11	peak	
4		6914.763	10.36	36.27	40.91	45.36	51.08	74.00	-22.92	peak	
5		7236.000	10.07	36.40	40.69	46.17	51.95	74.00	-22.05	peak	
6	pp	9648.000	10.77	37.53	37.68	42.16	52.78	74.00	-21.22	peak	

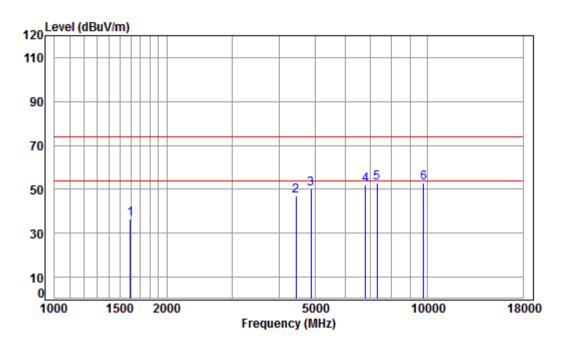
Report No.: SZEM180100088202

Page: 54 of 96

Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2412 TX SE Note : 2.4G WiFi 11B


_									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1697.129	5.23	26.66	41.53	46.96	37.32	74.00	-36.68	peak
	3890.255	6.87	33.31	42.30	49.01	46.89	74.00	-27.11	peak
pp	4824.000	7.91	34.19	42.47	52.43	52.06	54.00	-1.94	Average
pk	4824.000	7.91	34.19	42.47	55.34	54.97	74.00	-19.03	peak
	6602.265	11.24	35.39	41.14	46.60	52.09	74.00	-21.91	peak
	7236.000	10.07	36.40	40.69	45.91	51.69	74.00	-22.31	peak
	9648.000	10.77	37.53	37.68	42.58	53.20	74.00	-20.80	peak
	pp pk	MHz 1697.129 3890.255 pp 4824.000 pk 4824.000 6602.265 7236.000	Freq Loss MHz dB 1697.129 5.23 3890.255 6.87 pp 4824.000 7.91 pk 4824.000 7.91 6602.265 11.24 7236.000 10.07	Freq Loss Factor MHz dB dB/m 1697.129 5.23 26.66 3890.255 6.87 33.31 pp 4824.000 7.91 34.19 pk 4824.000 7.91 34.19 6602.265 11.24 35.39 7236.000 10.07 36.40	Freq Loss Factor Factor MHz dB dB/m dB 1697.129 5.23 26.66 41.53 3890.255 6.87 33.31 42.30 pp 4824.000 7.91 34.19 42.47 pk 4824.000 7.91 34.19 42.47 6602.265 11.24 35.39 41.14 7236.000 10.07 36.40 40.69	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1697.129 5.23 26.66 41.53 46.96 3890.255 6.87 33.31 42.30 49.01 pp 4824.000 7.91 34.19 42.47 52.43 pk 4824.000 7.91 34.19 42.47 55.34 6602.265 11.24 35.39 41.14 46.60 7236.000 10.07 36.40 40.69 45.91	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1697.129 5.23 26.66 41.53 46.96 37.32 3890.255 6.87 33.31 42.30 49.01 46.89 pp 4824.000 7.91 34.19 42.47 52.43 52.06 pk 4824.000 7.91 34.19 42.47 55.34 54.97 6602.265 11.24 35.39 41.14 46.60 52.09 7236.000 10.07 36.40 40.69 45.91 51.69	Freq Loss Factor Factor Level Level Line MHz	Freq Loss Factor Factor Level Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 1697.129 5.23 26.66 41.53 46.96 37.32 74.00 -36.68

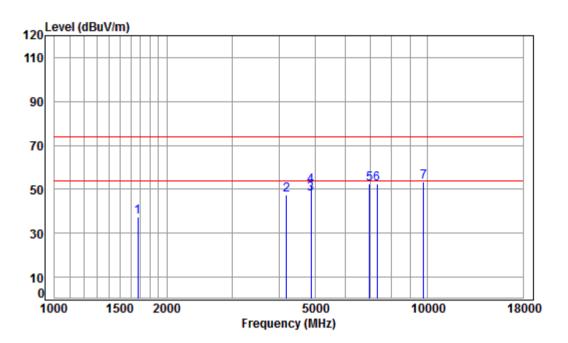
Report No.: SZEM180100088202

Page: 55 of 96

Test mode:	802.11b	Test channel:	Middle	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2437 TX SE Note : 2.4G WiFi 11B


loce	. 2.4	G MILI	IID						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4507.404		06.04		46.34	26.42	74.00		
1	1597.181	5.35	26.24	41.4/	46.31	36.43	/4.00	-3/.5/	peak
2	4430.628	7.48	33.60	42.41	48.21	46.88	74.00	-27.12	peak
3	4874.000	7.96	34.28	42.48	50.34	50.10	74.00	-23.90	peak
4	6815.551	10.64	36.00	40.98	46.25	51.91	74.00	-22.09	peak
5	7311.000	10.05	36.37	40.64	47.00	52.78	74.00	-21.22	peak
6 pp	9748.000	10.82	37.55	37.54	42.13	52.96	74.00	-21.04	peak

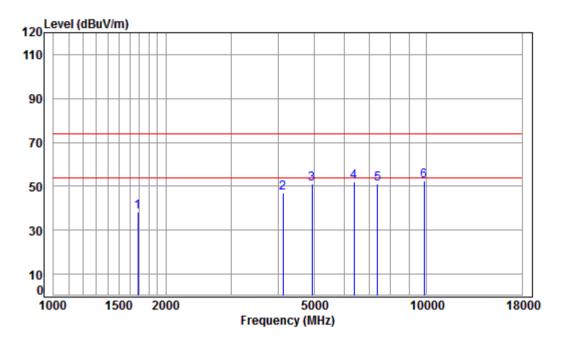
Report No.: SZEM180100088202

Page: 56 of 96

Test mode:	802.11b	Test channel:	Middle	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2437 TX SE Note : 2.4G WiFi 11B


_									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1672.779	5.26	26.56	41.52	47.27	37.57	74.00	-36.43	peak
	4181.768	7.20	33.60	42.36	48.96	47.40	74.00	-26.60	peak
pp	4874.000	7.96	34.28	42.48	47.96	47.72	54.00	-6.28	Average
	4874.000	7.96	34.28	42.48	52.01	51.77	74.00	-22.23	peak
	6974.982	10.20	36.43	40.87	46.68	52.44	74.00	-21.56	peak
	7311.000	10.05	36.37	40.64	46.86	52.64	74.00	-21.36	peak
pk	9748.000	10.82	37.55	37.54	42.52	53.35	74.00	-20.65	peak
	pp	MHz 1672.779 4181.768 pp 4874.000 4874.000 6974.982 7311.000	Freq Loss MHz dB 1672.779 5.26 4181.768 7.20 pp 4874.000 7.96 4874.000 7.96 6974.982 10.20 7311.000 10.05	Freq Loss Factor MHz dB dB/m 1672.779 5.26 26.56 4181.768 7.20 33.60 pp 4874.000 7.96 34.28 4874.000 7.96 34.28 6974.982 10.20 36.43 7311.000 10.05 36.37	Freq Loss Factor Factor MHz dB dB/m dB 1672.779 5.26 26.56 41.52 4181.768 7.20 33.60 42.36 pp 4874.000 7.96 34.28 42.48 4874.000 7.96 34.28 42.48 6974.982 10.20 36.43 40.87 7311.000 10.05 36.37 40.64	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1672.779 5.26 26.56 41.52 47.27 4181.768 7.20 33.60 42.36 48.96 pp 4874.000 7.96 34.28 42.48 47.96 4874.000 7.96 34.28 42.48 52.01 6974.982 10.20 36.43 40.87 46.68 7311.000 10.05 36.37 40.64 46.86	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1672.779 5.26 26.56 41.52 47.27 37.57 4181.768 7.20 33.60 42.36 48.96 47.40 pp 4874.000 7.96 34.28 42.48 47.96 47.72 4874.000 7.96 34.28 42.48 52.01 51.77 6974.982 10.20 36.43 40.87 46.68 52.44 7311.000 10.05 36.37 40.64 46.86 52.64	Freq Loss Factor Factor Level Level Line MHz	Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 1672.779 5.26 26.56 41.52 47.27 37.57 74.00 -36.43 4181.768 7.20 33.60 42.36 48.96 47.40 74.00 -26.60 pp 4874.000 7.96 34.28 42.48 47.96 47.72 54.00 -6.28

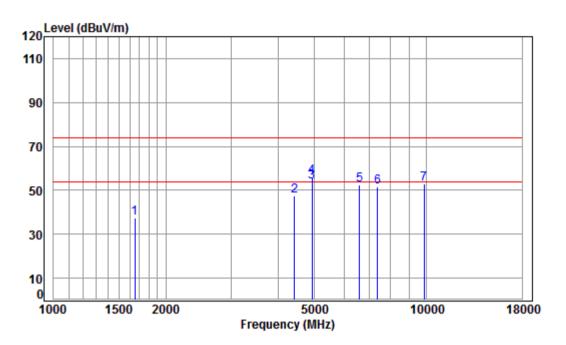
Report No.: SZEM180100088202

Page: 57 of 96

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Vertical
------------	---------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2462 TX SE Note : 2.4G WiFi 11B


OLE		. 2.4	a MTLT	IID						
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1682.477	5.25	26.60	41.52	47.81	38.14	74.00	-35.86	peak
2		4121.768	7.13	33.60	42.35	48.66	47.04	74.00	-26.96	peak
3		4924.000	8.01	34.37	42.49	51.44	51.33	74.00	-22.67	peak
4		6395.654	11.34	35.02	41.30	46.89	51.95	74.00	-22.05	peak
5		7386.000	10.03	36.34	40.59	45.46	51.24	74.00	-22.76	peak
6	pp	9848.000	10.87	37.57	37.41	41.23	52.26	74.00	-21.74	peak

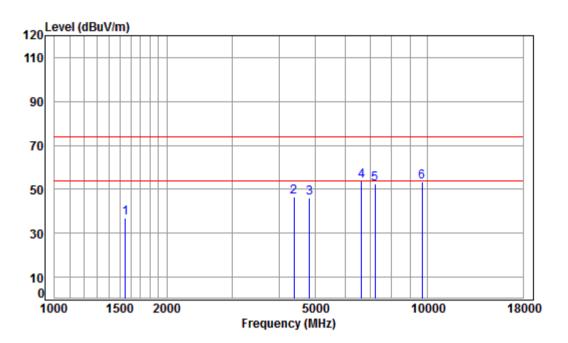
Report No.: SZEM180100088202

Page: 58 of 96

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2462 TX SE Note : 2.4G WiFi 11B


	_									
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1653.550	5.28	26.48	41.50	47.02	37.28	74.00	-36.72	peak
2		4417.841	7.47	33.60	42.40	48.59	47.26	74.00	-26.74	peak
3	pp	4924.000	8.01	34.37	42.49	53.83	53.72	54.00	-0.28	Average
4	pk	4924.000	8.01	34.37	42.49	56.14	56.03	74.00	-17.97	peak
5		6602.265	11.24	35.39	41.14	46.97	52.46	74.00	-21.54	peak
6		7386.000	10.03	36.34	40.59	45.63	51.41	74.00	-22.59	peak
7		9848.000	10.87	37.57	37.41	41.89	52.92	74.00	-21.08	peak

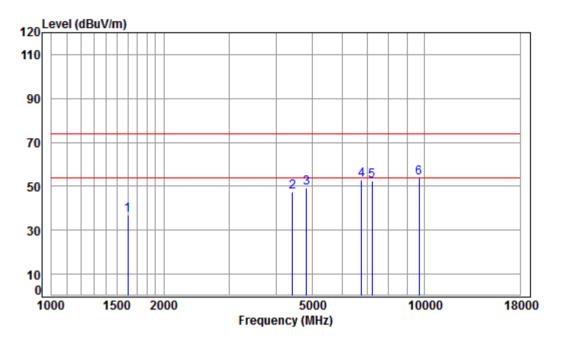
Report No.: SZEM180100088202

Page: 59 of 96

Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical
------------	---------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2412 TX SE Note : 2.4G WiFi 11G


ote	. 2.4	G MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1547.199	5.42	26.02	41.44	46.86	36.86	74.00	-37.14	peak
2	4379.699	7.43	33.60	42.40	48.05	46.68	74.00	-27.32	peak
3	4824.000	7.91	34.19	42.47	46.51	46.14	74.00	-27.86	peak
4 pp	6640.542	11.13	35.50	41.11	48.40	53.92	74.00	-20.08	peak
5	7236.000	10.07	36.40	40.69	46.70	52.48	74.00	-21.52	peak
6	9648.000	10.77	37.53	37.68	42.65	53.27	74.00	-20.73	peak

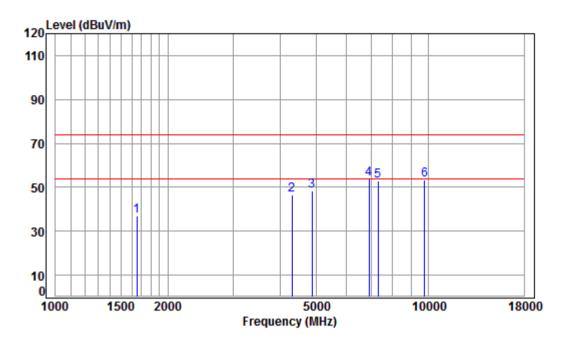
Report No.: SZEM180100088202

Page: 60 of 96

rest mode: 802.11g rest channel: Lowest Remark: Peak Horizon	Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
--	------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2412 TX SE Note : 2.4G WiFi 11G


ote	. 2.4	G MILI	110							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1601.804	5.35	26.26	41.47	46.66	36.80	74.00	-37.20	peak	
2	4417.841	7.47	33.60	42.40	48.62	47.29	74.00	-26.71	peak	
3	4824.000	7.91	34.19	42.47	49.70	49.33	74.00	-24.67	peak	
4	6776.265	10.75	35.89	41.01	47.51	53.14	74.00	-20.86	peak	
5	7236.000	10.07	36.40	40.69	46.90	52.68	74.00	-21.32	peak	
6 r	p 9648.000	10.77	37.53	37.68	43.01	53.63	74.00	-20.37	peak	

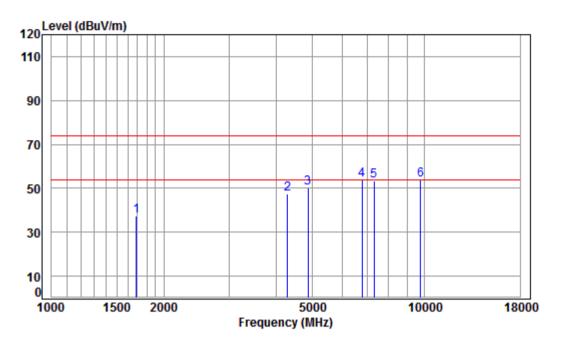
Report No.: SZEM180100088202

Page: 61 of 96

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Vertical
------------	---------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2437 TX SE Note : 2.4G WiFi 11G


ote	. 2.4	G MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1653.550	5.28	26.48	41.50	46.88	37.14	74.00	-36.86	peak
2	4304.400	7.34	33.60	42.38	48.00	46.56	74.00	-27.44	peak
3	4874.000	7.96	34.28	42.48	48.64	48.40	74.00	-25.60	peak
4 pp	6914.763	10.36	36.27	40.91	48.20	53.92	74.00	-20.08	peak
5	7311.000	10.05	36.37	40.64	46.99	52.77	74.00	-21.23	peak
6	9748.000	10.82	37.55	37.54	42.50	53.33	74.00	-20.67	peak

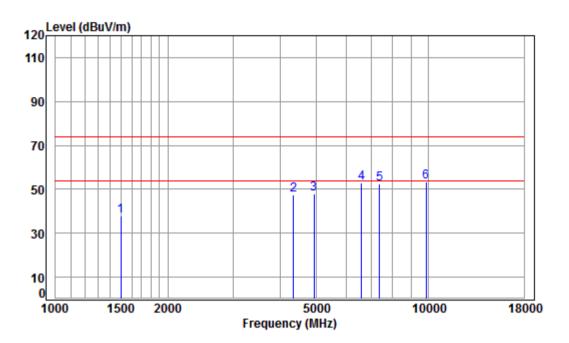
Report No.: SZEM180100088202

Page: 62 of 96

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2437 TX SE Note : 2.4G WiFi 11G


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1687.347	5.24	26.62	41.52	47.12	37.46	74.00	-36.54	peak
2	4291.977	7.33	33.60	42.38	49.13	47.68	74.00	-26.32	peak
3	4874.000	7.96	34.28	42.48	50.24	50.00	74.00	-24.00	peak
4	6795.879	10.69	35.94	41.00	48.04	53.67	74.00	-20.33	peak
5	7311.000	10.05	36.37	40.64	47.72	53.50	74.00	-20.50	peak
6 p	op 9748.000	10.82	37.55	37.54	42.91	53.74	74.00	-20.26	peak

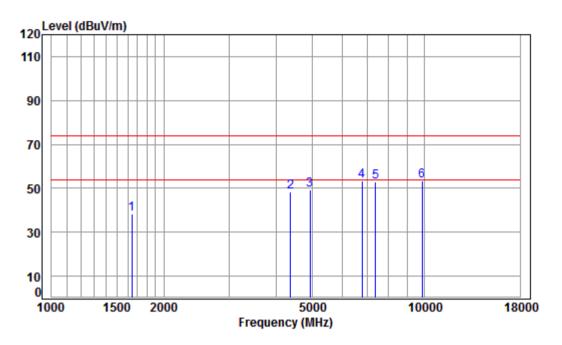
Report No.: SZEM180100088202

Page: 63 of 96

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2462 TX SE Note : 2.4G WiFi 11G

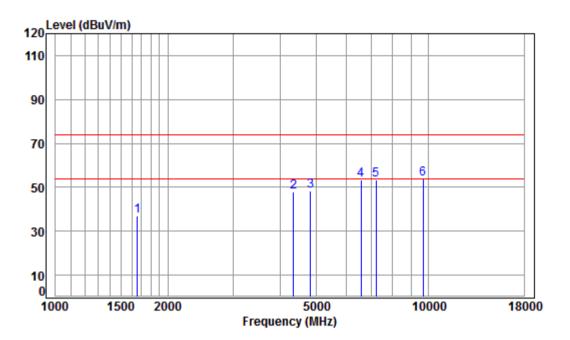

voce	. 2.4	G MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1498.781	5.48	25.80	41.41	47.82	37.69	74.00	-36.31	peak
2	4341.886	7.38	33.60	42.39	48.87	47.46	74.00	-26.54	peak
3	4924.000	8.01	34.37	42.49	47.83	47.72	74.00	-26.28	peak
4	6602.265	11.24	35.39	41.14	47.30	52.79	74.00	-21.21	peak
5	7386.000	10.03	36.34	40.59	46.59	52.37	74.00	-21.63	peak
6 pp	9848.000	10.87	37.57	37.41	42.51	53.54	74.00	-20.46	peak

Report No.: SZEM180100088202

Page: 64 of 96

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
					. • • • • • • • • • • • • • • • • • • •	

Condition: 3m HORIZONTAL


Job No : 00882RG Mode : 2462 TX SE Note : 2.4G WiFi 11G

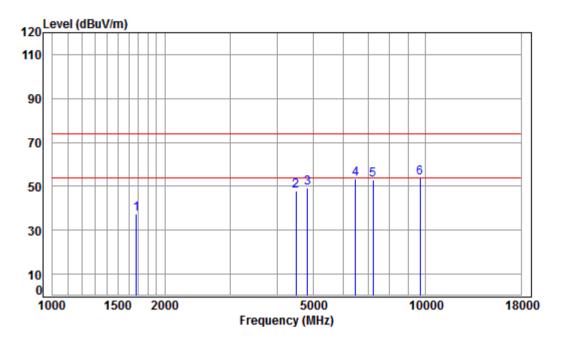
loce	. 2.4	G MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1644.019	5.30	26.44	41.50	48.08	38.32	74.00	-35.68	peak
2	4367.058	7.41	33.60	42.39	49.83	48.45	74.00	-25.55	peak
3	4924.000	8.01	34.37	42.49	49.43	49.32	74.00	-24.68	peak
4 pp	6795.879	10.69	35.94	41.00	47.96	53.59	74.00	-20.41	peak
5	7386.000	10.03	36.34	40.59	47.37	53.15	74.00	-20.85	peak
6	9848.000	10.87	37.57	37.41	42.48	53.51	74.00	-20.49	peak

Report No.: SZEM180100088202

Page: 65 of 96

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2412 TX SE


voce	. 2.4	G MILI	TIN Z	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1658.337	5.28	26.50	41.51	46.47	36.74	74.00	-37.26	peak
2	4341.886	7.38	33.60	42.39	49.18	47.77	74.00	-26.23	peak
3	4824.000	7.91	34.19	42.47	48.58	48.21	74.00	-25.79	peak
4	6583.209	11.30	35.34	41.15	47.84	53.33	74.00	-20.67	peak
5	7236.000	10.07	36.40	40.69	47.39	53.17	74.00	-20.83	peak
6 pp	9648.000	10.77	37.53	37.68	43.00	53.62	74.00	-20.38	peak

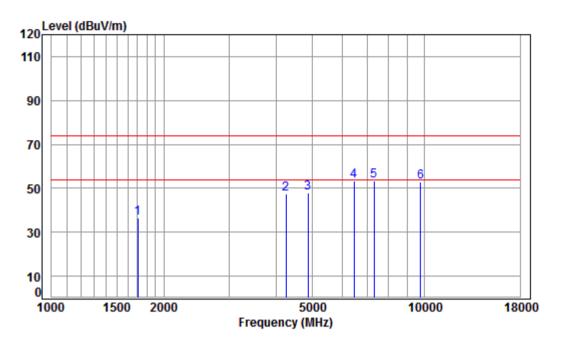
Report No.: SZEM180100088202

Page: 66 of 96

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2412 TX SE


10 LE	. 2.4	G MILI	TIN Z	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1677.621	5.25	26.58	41.52	47.31	37.62	74.00	-36.38	peak
2	4495.125	7.55	33.60	42.42	49.02	47.75	74.00	-26.25	peak
3	4824.000	7.91	34.19	42.47	49.81	49.44	74.00	-24.56	peak
4	6488.754	11.52	35.09	41.22	47.80	53.19	74.00	-20.81	peak
5	7236.000	10.07	36.40	40.69	46.93	52.71	74.00	-21.29	peak
6 pp	9648.000	10.77	37.53	37.68	43.19	53.81	74.00	-20.19	peak

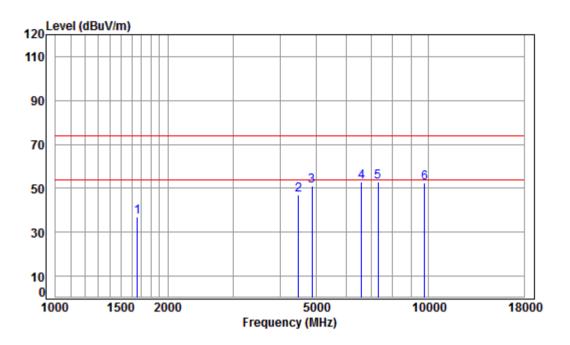
Report No.: SZEM180100088202

Page: 67 of 96

Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2437 TX SE


10 LE	. 2.4	G MILI	TIN Z	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	——dB	
1	1702.042	5.23	26.68	41.53	46.09	36.47	74.00	-37.53	peak
2	4254.921	7.28	33.60	42.37	48.92	47.43	74.00	-26.57	peak
3	4874.000	7.96	34.28	42.48	48.25	48.01	74.00	-25.99	peak
4 pp	6470.026	11.48	35.08	41.24	48.14	53.46	74.00	-20.54	peak
5	7311.000	10.05	36.37	40.64	47.55	53.33	74.00	-20.67	peak
6	9748.000	10.82	37.55	37.54	42.23	53.06	74.00	-20.94	peak

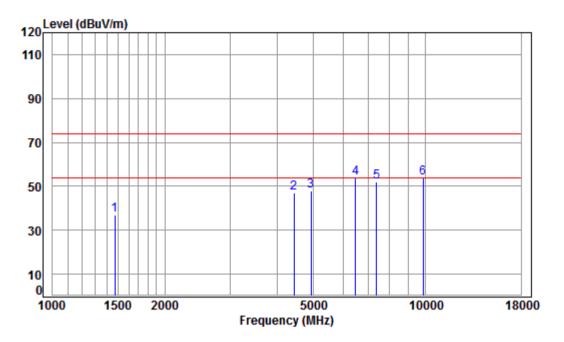
Report No.: SZEM180100088202

Page: 68 of 96

Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2437 TX SE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1658.337	5.28	26.50	41.51	46.68	36.95	74.00	-37.05	peak
2	4482.150	7.54	33.60	42.41	48.44	47.17	74.00	-26.83	peak
3	4874.000	7.96	34.28	42.48	51.54	51.30	74.00	-22.70	peak
4 pp	6602.265	11.24	35.39	41.14	47.47	52.96	74.00	-21.04	peak
5	7311.000	10.05	36.37	40.64	47.16	52.94	74.00	-21.06	peak
6	9748.000	10.82	37.55	37.54	41.77	52.60	74.00	-21.40	peak

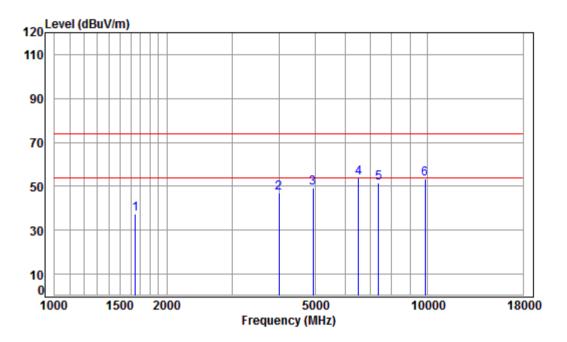
Report No.: SZEM180100088202

Page: 69 of 96

Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2462 TX SE


voce	. 2.4	G MILI	TIN Z	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1468.761	5.38	25.68	41.38	47.06	36.74	74.00	-37.26	peak
2	4430.628	7.48	33.60	42.41	48.55	47.22	74.00	-26.78	peak
3	4924.000	8.01	34.37	42.49	48.02	47.91	74.00	-26.09	peak
4	6488.754	11.52	35.09	41.22	48.34	53.73	74.00	-20.27	peak
5	7386.000	10.03	36.34	40.59	46.12	51.90	74.00	-22.10	peak
6 pp	9848.000	10.87	37.57	37.41	42.72	53.75	74.00	-20.25	peak

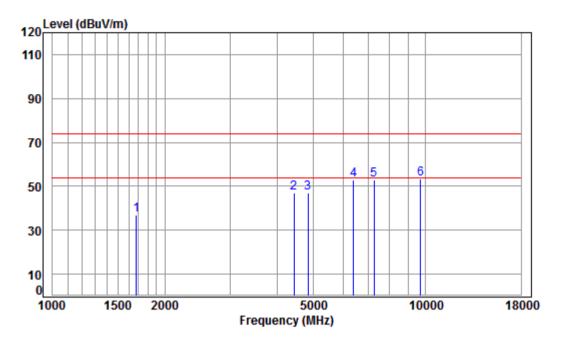
Report No.: SZEM180100088202

Page: 70 of 96

Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal
------------	---------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2462 TX SE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1648.778	5.29	26.46	41.50	47.03	37.28	74.00	-36.72	peak
2	3992.781	6.97	33.58	42.32	48.94	47.17	74.00	-26.83	peak
3	4924.000	8.01	34.37	42.49	49.38	49.27	74.00	-24.73	peak
4 pp	6526.373	11.46	35.18	41.20	48.33	53.77	74.00	-20.23	peak
5	7386.000	10.03	36.34	40.59	45.99	51.77	74.00	-22.23	peak
6	9848.000	10.87	37.57	37.41	42.19	53.22	74.00	-20.78	peak

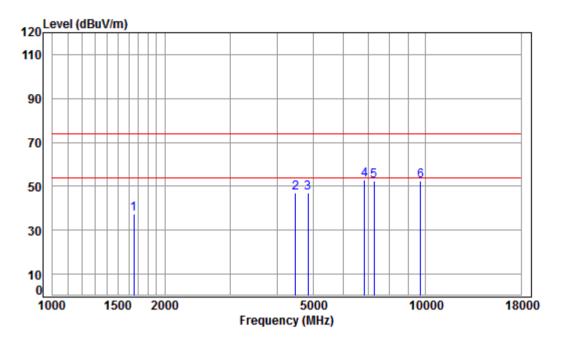
Report No.: SZEM180100088202

Page: 71 of 96

Test mode:	802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Vertical
------------	---------------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2422 TX SE


10 CE	. 2.4	G MILT	TIM 4	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	dB	
1	1677.621	5.25	26.58	41.52	46.78	37.09	74.00	-36.91	peak
2	4443.453	7.50	33.60	42.41	48.19	46.88	74.00	-27.12	peak
3	4844.000	7.93	34.23	42.48	47.49	47.17	74.00	-26.83	peak
4	6414.167	11.38	35.03	41.28	47.69	52.82	74.00	-21.18	peak
5	7266.000	10.06	36.39	40.67	47.33	53.11	74.00	-20.89	peak
6 pp	9688.000	10.79	37.54	37.63	42.71	53.41	74.00	-20.59	peak

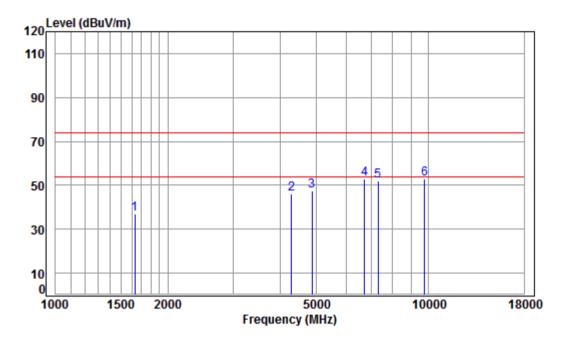
Report No.: SZEM180100088202

Page: 72 of 96

Test mode:	802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2422 TX SE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1653.550	5.28	26.48	41.50	47.28	37.54	74.00	-36.46	peak
2	4482.150	7.54	33.60	42.41	48.17	46.90	74.00	-27.10	peak
3	4844.000	7.93	34.23	42.48	47.18	46.86	74.00	-27.14	peak
4 pr	6855.063	10.53	36.10	40.96	47.13	52.80	74.00	-21.20	peak
5	7266.000	10.06	36.39	40.67	46.62	52.40	74.00	-21.60	peak
6	9688.000	10.79	37.54	37.63	41.95	52.65	74.00	-21.35	peak

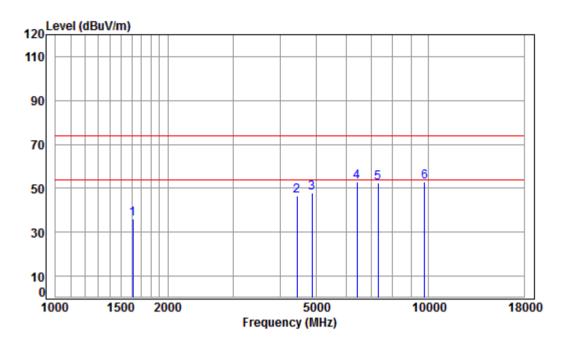
Report No.: SZEM180100088202

Page: 73 of 96

Test mode:	802.11n(HT40)	Test channel:	Middle	Remark:	Peak	Vertical
------------	---------------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2437 TX SE


IOLE	. 2.4	G MILI	TIM 4	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1629.825	5.31	26.38	41.49	46.96	37.16	74.00	-36.84	peak
2	4291.977	7.33	33.60	42.38	47.75	46.30	74.00	-27.70	peak
3	4874.000	7.96	34.28	42.48	47.65	47.41	74.00	-26.59	peak
4 pp	6737.207	10.86	35.78	41.04	47.39	52.99	74.00	-21.01	peak
5	7311.000	10.05	36.37	40.64	46.43	52.21	74.00	-21.79	peak
6	9748.000	10.82	37.55	37.54	42.11	52.94	74.00	-21.06	peak

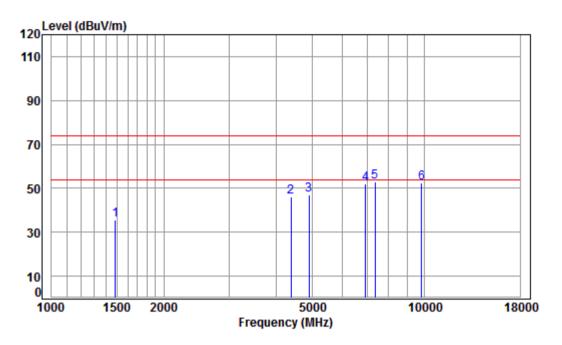
Report No.: SZEM180100088202

Page: 74 of 96

Test mode:	802.11n(HT40)	Test channel:	Middle	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2437 TX SE


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1611.091	5.34	26.30	41.48	45.69	35.85	74.00	-38.15	peak
2	4430.628	7.48	33.60	42.41	47.95	46.62	74.00	-27.38	peak
3	4874.000	7.96	34.28	42.48	48.25	48.01	74.00	-25.99	peak
4 pr	6432.732	11.41	35.05	41.27	47.62	52.81	74.00	-21.19	peak
5	7311.000	10.05	36.37	40.64	46.49	52.27	74.00	-21.73	peak
6	9748.000	10.82	37.55	37.54	41.92	52.75	74.00	-21.25	peak

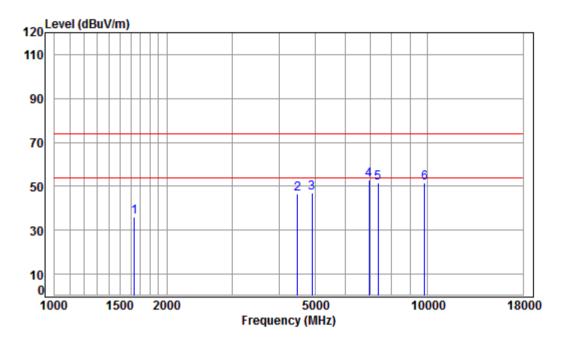
Report No.: SZEM180100088202

Page: 75 of 96

Test mode:	802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 00882RG Mode : 2452 TX SE


loce	. 2.4	G MILI	11N 4	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1481.553	5.42	25.73	41.39	46.02	35.78	74.00	-38.22	peak
2	4379.699	7.43	33.60	42.40	47.42	46.05	74.00	-27.95	peak
3	4904.000	7.99	34.33	42.48	47.12	46.96	74.00	-27.04	peak
4	6934.778	10.31	36.32	40.90	46.38	52.11	74.00	-21.89	peak
5 pp	7356.000	10.04	36.36	40.61	46.99	52.78	74.00	-21.22	peak
6	9808.000	10.85	37.56	37.46	41.71	52.66	74.00	-21.34	peak

Report No.: SZEM180100088202

Page: 76 of 96

Test mode:	802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Horizontal
------------	---------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG Mode : 2452 TX SE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1639.274	5.30	26.42	41.49	45.60	35.83	74.00	-38.17	peak
2	4482.150	7.54	33.60	42.41	47.96	46.69	74.00	-27.31	peak
3	4904.000	7.99	34.33	42.48	47.12	46.96	74.00	-27.04	peak
4 pp	6954.852	10.25	36.38	40.89	47.39	53.13	74.00	-20.87	peak
5	7356.000	10.04	36.36	40.61	45.66	51.45	74.00	-22.55	peak
6	9808.000	10.85	37.56	37.46	40.50	51.45	74.00	-22.55	peak

Report No.: SZEM180100088202

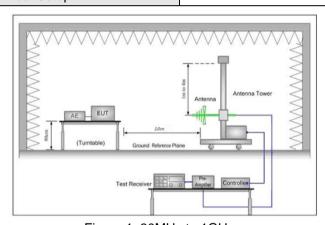
Page: 77 of 96

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz,The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM180100088202

Page: 78 of 96

5.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 2	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	า 11.12								
Test Site:	Measurement Distance: 3n	n or 10m (Semi-Anechoic (Chamber)							
	Frequency	Limit (dBuV/m @3m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
Limit:	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 4011=	54.0	Average Value							
	Above 1GHz	74.0	Peak Value							
Test Setup:		•								

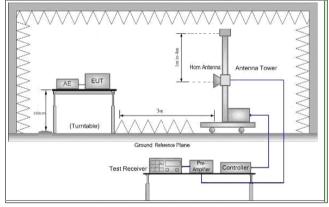


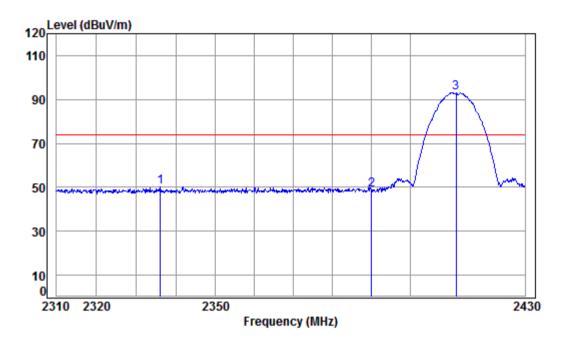
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM180100088202

Page: 79 of 96

	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.					
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.					
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.					
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.					
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.					
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel					
	h. Test the EUT in the lowest channel, the Highest channel					
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.					
	j. Repeat above procedures until all frequencies measured was complete.					
Evaloratory Toot Mada:	Transmitting with all kind of modulations, data rates.					
Exploratory Test Mode:	Charge + Transmitting mode.					
	Pretest the EUT at Charge +Transmitting mode.					
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;					
Final Test Mode:	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					



Report No.: SZEM180100088202

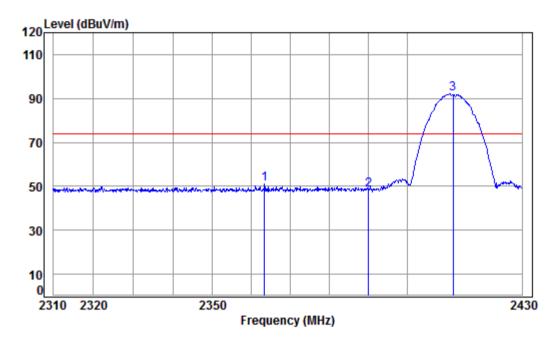
Page: 80 of 96

Test plot as follows:

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2412 Band edge Note : 2.4G WiFi 11B


oce	. 2.4	G MILIT	110							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2336.118	5.40	28.91	41.85	57.84	50.30	74.00	-23.70	Peak	
2	2390.000	5.47	29.08	41.87	56.14	48.82	74.00	-25.18	Peak	
3 pp	2412.000	5.50	29.14	41.88	100.40	93.16	74.00	19.16	Peak	

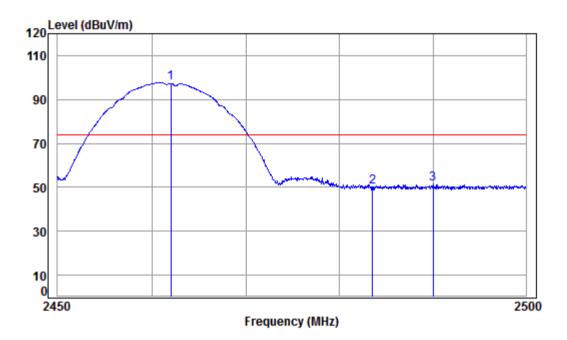
Report No.: SZEM180100088202

Page: 81 of 96

Worse case mode: 8	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG


Mode : 2412 Band edge Note : 2.4G WiFi 11B

		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2363.249	5.44	29.00	41.86	58.69	51.27	74.00	-22.73	peak	
2	2390.000	5.47	29.08	41.87	55.60	48.28	74.00	-25.72	peak	
3	pp 2412.000	5.50	29.14	41.88	99.30	92.06	74.00	18.06	peak	

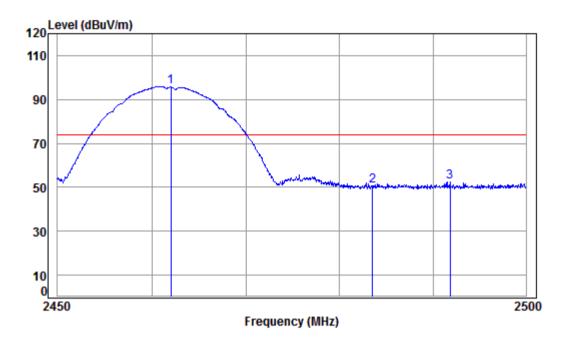
Report No.: SZEM180100088202

Page: 82 of 96

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2462 Band edge Note : 2.4G WiFi 11B


	_										
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
											_
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	pp	2462.000	5.57	29.29	41.90	104.79	97.75	74.00	23.75	Peak	
2		2483.500	5.60	29.35	41.91	56.96	50.00	74.00	-24.00	Peak	
3		2490.020	5.61	29.37	41.91	58.37	51.44	74.00	-22.56	Peak	

Report No.: SZEM180100088202

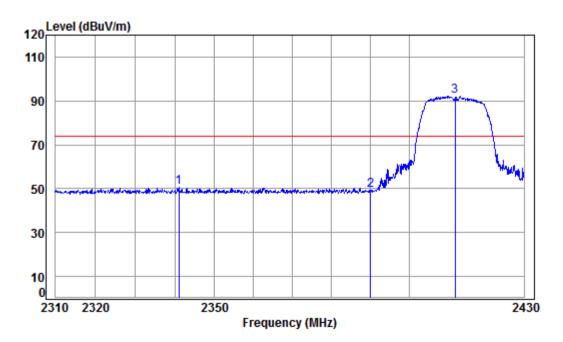
Page: 83 of 96

Worse case mode: 802.11b Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG

Mode : 2462 Band edge Note : 2.4G WiFi 11B


oce	. 2.4	G MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2462.000	5.57	29.29	41.90	103.02	95.98	74.00	21.98	peak
2	2483.500	5.60	29.35	41.91	57.82	50.86	74.00	-23.14	peak
3	2491.831	5.61	29.38	41.91	59.54	52.62	74.00	-21.38	peak

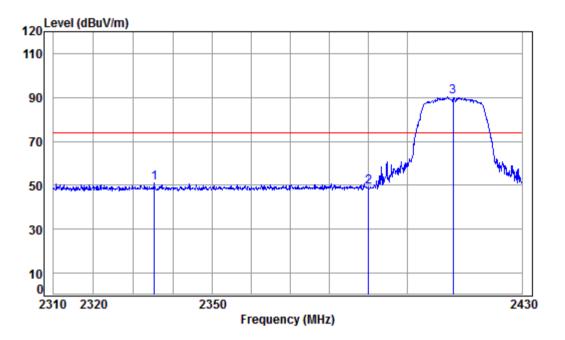
Report No.: SZEM180100088202

Page: 84 of 96

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical
------------------	---------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL Job No : 00882RG

Mode : 2412 Band edge


	_									
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2340.973	5.41	28.93	41.85	58.32	50.81	74.00	-23.19	Peak
2		2390.000	5.47	29.08	41.87	56.77	49.45	74.00	-24.55	Peak
3	pp	2412.000	5.50	29.14	41.88	99.40	92.16	74.00	18.16	Peak

Report No.: SZEM180100088202

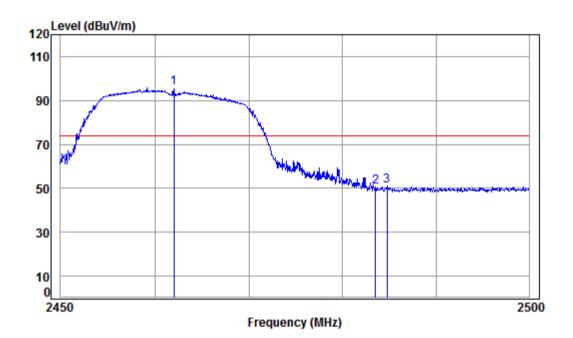
Page: 85 of 96

Worse case mode: 802.11g Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG

Mode : 2412 Band edge Note : 2.4G WiFi 11G


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2335.290	5.40	28.91	41.85	58.55	51.01	74.00	-22.99	peak
2	2390.000	5.47	29.08	41.87	56.73	49.41	74.00	-24.59	peak
3 рр	2412.000	5.50	29.14	41.88	97.39	90.15	74.00	16.15	peak

Report No.: SZEM180100088202

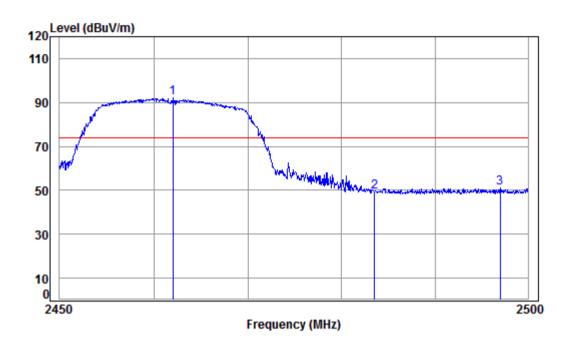
Page: 86 of 96

Worse case mode:	802.11g	Test channel:	Highest	Remark:	Peak	Vertical
------------------	---------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2462 Band edge Note : 2.4G WiFi 11G


	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2462.000	5.57	29.29	41.90	102.80	95.76	74.00	21.76	Peak
2483.500	5.60	29.35	41.91	57.53	50.57	74.00	-23.43	Peak
2484.743	5.60	29.36	41.91	57.87	50.92	74.00	-23.08	Peak
	MHz 2462.000 2483.500	Freq Loss MHz dB 2462.000 5.57 2483.500 5.60	Freq Loss Factor MHz dB dB/m 2462.000 5.57 29.29 2483.500 5.60 29.35	Freq Loss Factor Factor MHz dB dB/m dB 2462.000 5.57 29.29 41.90 2483.500 5.60 29.35 41.91	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 2462.000 5.57 29.29 41.90 102.80 2483.500 5.60 29.35 41.91 57.53	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2462.000 5.57 29.29 41.90 102.80 95.76 2483.500 5.60 29.35 41.91 57.53 50.57	Freq Loss Factor Factor Level Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 2462.000 5.57 29.29 41.90 102.80 95.76 74.00 2483.500 5.60 29.35 41.91 57.53 50.57 74.00	Cable Ant Preamp Read Limit Over Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 2462.000 5.57 29.29 41.90 102.80 95.76 74.00 21.76 2483.500 5.60 29.35 41.91 57.53 50.57 74.00 -23.43 2484.743 5.60 29.36 41.91 57.87 50.92 74.00 -23.08

Report No.: SZEM180100088202

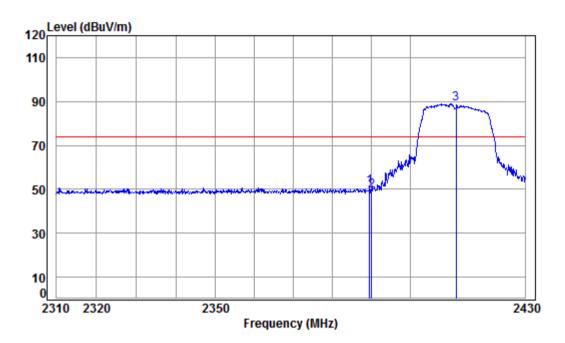
Page: 87 of 96

Worse case mode:	802.11a	Test channel:	Highest	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG

Mode : 2462 Band edge Note : 2.4G WiFi 11G


IOLE	. 2.4	G MILT	110							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
_										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	2462.000	5.57	29.29	41.90	99.23	92.19	74.00	18.19	peak	
2	2483.500	5.60	29.35	41.91	56.09	49.13	74.00	-24.87	peak	
3	2496.971	5.62	29.39	41.92	57.94	51.03	74.00	-22.97	peak	

Report No.: SZEM180100088202

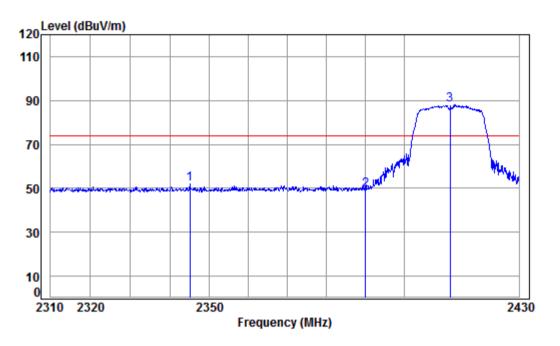
Page: 88 of 96

Worse case mode: 802.11n(HT20) Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2412 Band edge Note : 2.4G WiFi 11N 20


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.484	5.47	29.08	41.87	58.65	51.33	74.00	-22.67	Peak
2	2390.000	5.47	29.08	41.87	56.47	49.15	74.00	-24.85	Peak
3 рр	2412.000	5.50	29.14	41.88	96.05	88.81	74.00	14.81	Peak

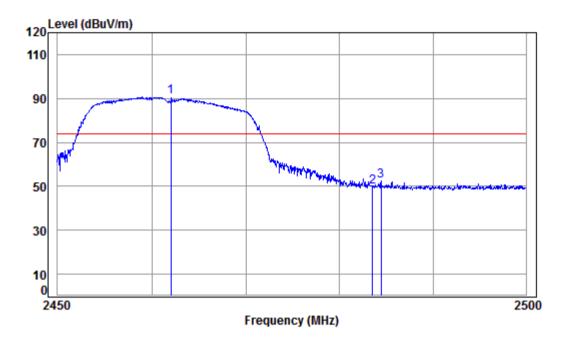
Report No.: SZEM180100088202

Page: 89 of 96

Worse case mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG


Mode : 2412 Band edge Note : 2.4G WiFi 11N 20

				_						
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2345.126	5.41	28.94	41.85	59.29	51.79	74.00	-22.21	peak	
2	2390.000	5.47	29.08	41.87	56.73	49.41	74.00	-24.59	peak	
3 p	p 2412.000	5.50	29.14	41.88	95.22	87.98	74.00	13.98	peak	

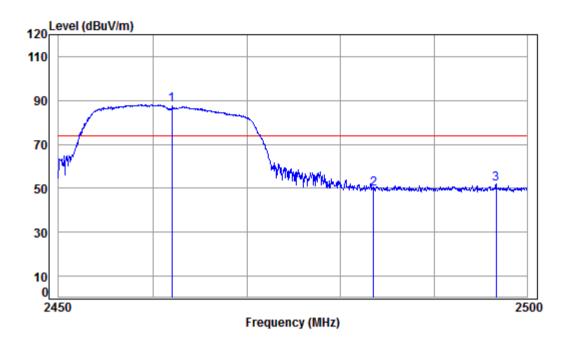
Report No.: SZEM180100088202

Page: 90 of 96

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2462 Band edge Note : 2.4G WiFi 11N 20


00	_	. 2.7	a w11 1	1114 2	•						
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
											_
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	pp	2462.000	5.57	29.29	41.90	97.69	90.65	74.00	16.65	Peak	
2		2483.500	5.60	29.35	41.91	56.67	49.71	74.00	-24.29	Peak	
3		2484.442	5.60	29.36	41.91	59.42	52.47	74.00	-21.53	Peak	

Report No.: SZEM180100088202

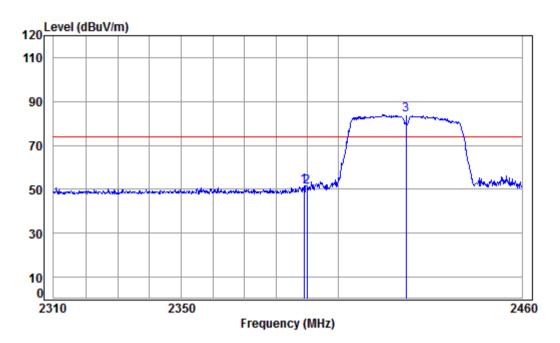
Page: 91 of 96

Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 00882RG

Mode : 2462 Band edge Note : 2.4G WiFi 11N 20


iore	. 2.4	G MILI	TIN Z	0					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2462.000	5.57	29.29	41.90	95.04	88.00	74.00	14.00	peak
2	2483.500	5.60	29.35	41.91	56.66	49.70	74.00	-24.30	peak
3	2496.669	5.62	29.39	41.92	58.86	51.95	74.00	-22.05	peak

Report No.: SZEM180100088202

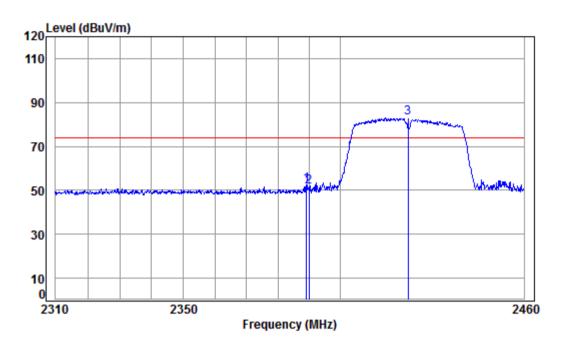
Page: 92 of 96

Worse case mode: 802.11n(HT40) Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL

Job No : 00882RG

Mode : 2422 Band edge Note : 2.4G WiFi 11N 40


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2389.075 2390.000 2422.000	5.47	29.08	41.87	58.22	50.90	74.00	-23.10	Peak

Report No.: SZEM180100088202

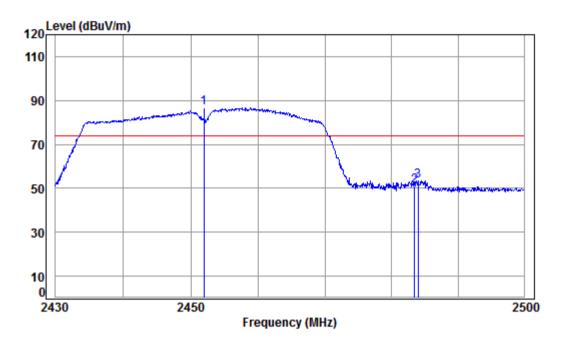
Page: 93 of 96

Worse case mode:	802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG

Mode : 2422 Band edge Note : 2.4G WiFi 11N 40


. 2.7									
	Cable	Ant	Preamp	Read		Limit	0ver		
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
2389.226	5.47	29.08	41.87	59.81	52.49	74.00	-21.51	peak	
2390.000	5.47	29.08	41.87	58.89	51.57	74.00	-22.43	peak	
op 2422.000	5.52	29.17	41.89	90.05	82.85	74.00	8.85	peak	
	MHz 2389.226 2390.000	Freq Loss MHz dB 2389.226 5.47 2390.000 5.47	Freq Loss Factor MHz dB dB/m 2389.226 5.47 29.08 2390.000 5.47 29.08	Freq Loss Factor Factor MHz dB dB/m dB 2389.226 5.47 29.08 41.87 2390.000 5.47 29.08 41.87	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 2389.226 5.47 29.08 41.87 59.81 2390.000 5.47 29.08 41.87 58.89	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2389.226 5.47 29.08 41.87 59.81 52.49 2390.000 5.47 29.08 41.87 58.89 51.57	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m 2389.226 5.47 29.08 41.87 59.81 52.49 74.00 2390.000 5.47 29.08 41.87 58.89 51.57 74.00	MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 2389.226 5.47 29.08 41.87 59.81 52.49 74.00 -21.51 2390.000 5.47 29.08 41.87 58.89 51.57 74.00 -22.43	Freq Loss Factor Factor Level Level Line Limit Remark

Report No.: SZEM180100088202

Page: 94 of 96

Worse case mode:	802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Vertical	ĺ
------------------	---------------	---------------	---------	---------	------	----------	---

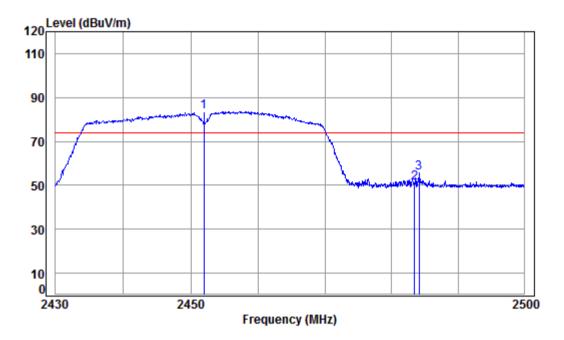
Condition: 3m VERTICAL Job No : 00882RG

2484.006

3

Mode : 2452 Band edge Note : 2.4G WiFi 11N 40

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Limit Remark Freq Level Level Line dBuV dBuV/m dBuV/m MHz dB/m dB dB dB 1 pp 2452.000 5.56 29.26 41.90 93.71 86.63 74.00 12.63 Peak 2483.500 5.60 29.35 41.91 57.85 50.89 74.00 -23.11 Peak


5.60 29.35 41.91 60.46 53.50 74.00 -20.50 Peak

Report No.: SZEM180100088202

Page: 95 of 96

		Worse case mode:	802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Horizontal
--	--	------------------	---------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00882RG

Mode : 2452 Band edge Note : 2.4G WiFi 11N 40

_	_				_						
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	pp	2452.000	5.56	29.26	41.90	90.77	83.69	74.00	9.69	peak	
2		2483.500	5.60	29.35	41.91	58.21	51.25	74.00	-22.75	peak	
3		2484.147	5.60	29.35	41.91	62.66	55.70	74.00	-18.30	peak	

Report No.: SZEM180100088202

Page: 96 of 96

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

6 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1801000882RG.