ANNEX A GRAPH RESULTS

GSM850_CH128 GPRS(4TX)Rear0mm

Date: 2/14/2024 Electronics: DAE4 Sn1601 Medium: body 835 MHz Medium parameters used: f = 824.2; $\sigma = 0.893$ mho/m; $\epsilon r = 42.13$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 824.2 Duty Cycle: 1:2 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.553 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.67 V/m; Power Drift = 0.28 dB Peak SAR (extrapolated) = 2.27 W/kg SAR(1 g) = 0.496 W/kg; SAR(10 g) = 0.19 W/kg Maximum value of SAR (measured) = 1.15 W/kg

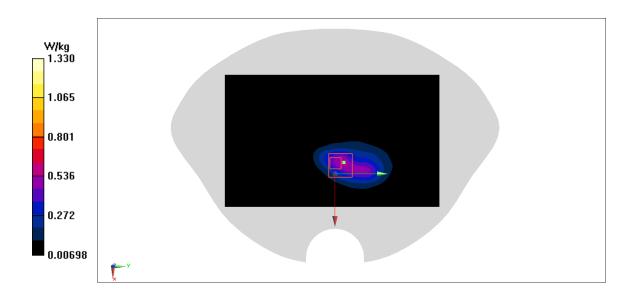


Fig A.1

PCS1900_CH810 GPRS(4TX) Rear 0mm

Date: 2/16/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1909.8; $\sigma = 1.398$ mho/m; $\epsilon r = 39.88$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1909.8 Duty Cycle: 1:2 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.25 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 9.84 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.82 W/kg SAR(1 g) = 0.986 W/kg; SAR(10 g) = 0.334 W/kg Maximum value of SAR (measured) = 2.26W/kg

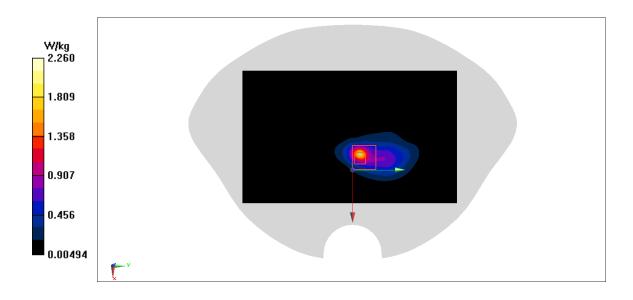


Fig A.2

WCDMA1900-BII_CH9262 Rear 0mm

Date: 2/16/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1852.4; $\sigma = 1.342$ mho/m; $\epsilon r = 39.95$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1852.4 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.87 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.036 V/m; Power Drift = -0.21 dB Peak SAR (extrapolated) = 2.29 W/kg SAR(1 g) = 1 W/kg; SAR(10 g) = 0.421 W/kg Maximum value of SAR (measured) = 1.72 W/kg

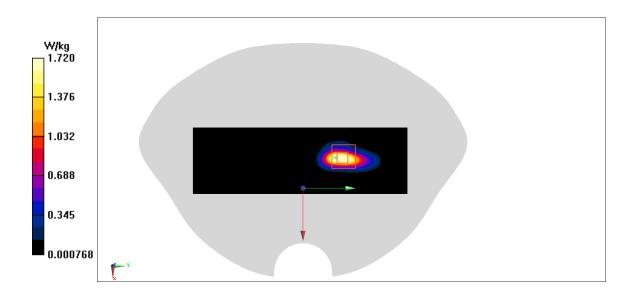


Fig A.3

WCDMA1700-BIV_CH1412 Rear 0mm

Date: 2/15/2024Electronics: DAE4 Sn1601 Medium: body 1750 MHz Medium parameters used: f = 1732.4; $\sigma = 1.365$ mho/m; $\epsilon r = 40.2$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1700-BIV 1732.4 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.76 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.296 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 2.54 W/kg SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.374 W/kg Maximum value of SAR (measured) = 2.02 W/kg

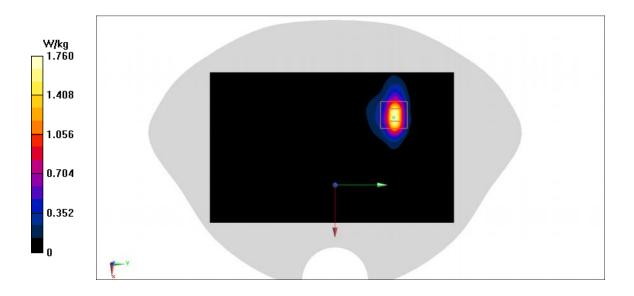


Fig A.4

WCDMA850-BV_CH4183 Rear 0mm

Date: 2/14/2024 Electronics: DAE4 Sn1601 Medium: body 835 MHz Medium parameters used: f = 836.6; $\sigma = 0.905$ mho/m; $\epsilon r = 42.12$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 836.6 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.553 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.67 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 2.27 W/kg SAR(1 g) = 0.535 W/kg; SAR(10 g) = 0.205 W/kg Maximum value of SAR (measured) = 1.33 W/kg

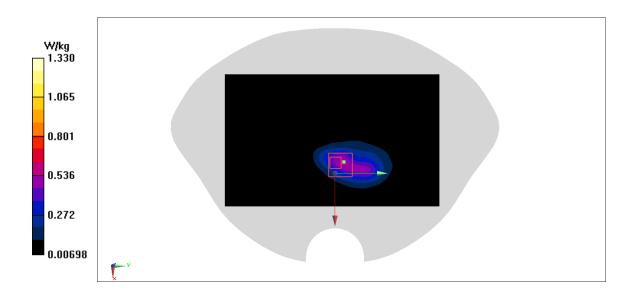


Fig A.5

LTE1900-FDD2_CH18900 1RB-Middle Right 0mm

Date: 2/16/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1880; $\sigma = 1.369$ mho/m; $\epsilon r = 39.91$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.31 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.4 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.1 W/kg SAR(1 g) = 0.932 W/kg; SAR(10 g) = 0.383 W/kg Maximum value of SAR (measured) = 1.62 W/kg

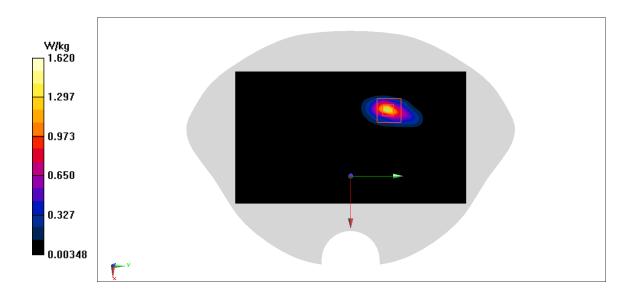


Fig A.6

LTE850-FDD5_CH20600 1RB-High Rear 0mm

Date: 2/14/2024 Electronics: DAE4 Sn1601 Medium: body 835 MHz Medium parameters used: f = 844; $\sigma = 0.912$ mho/m; $\epsilon r = 42.11$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.675 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 11.89 V/m; Power Drift = 0.29 dB Peak SAR (extrapolated) = 4.21 W/kg SAR(1 g) = 0.806 W/kg; SAR(10 g) = 0.277 W/kg Maximum value of SAR (measured) = 2.49 W/kg

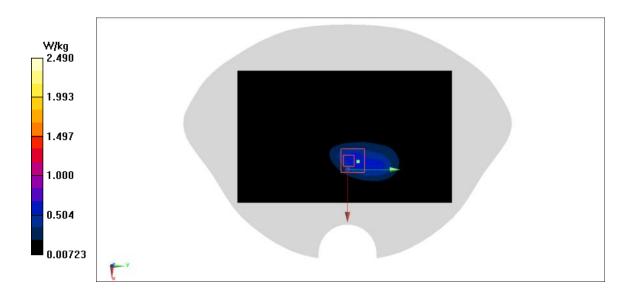


Fig A.7

LTE2500-FDD7_CH21100 1RB-Low Rear 0mm

Date: 2/18/2024 Electronics: DAE4 Sn1601 Medium: body 2600 MHz Medium parameters used: f = 2535; $\sigma = 1.93$ mho/m; $\epsilon r = 38.96$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.72,7.04,7.50)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.92 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 12.59 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 2.9 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.401 W/kg Maximum value of SAR (measured) = 2.15 W/kg

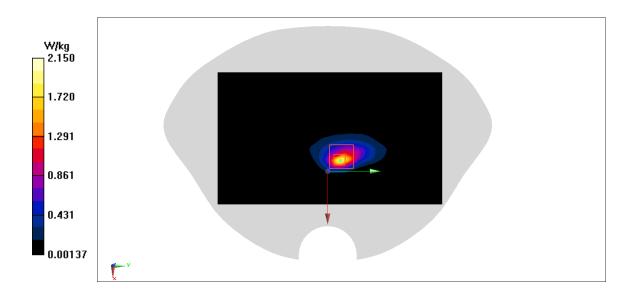


Fig A.8

LTE700-FDD12_CH23095 1RB-Low Rear 0mm

Date: 2/13/2024 Electronics: DAE4 Sn1601 Medium: body 750 MHz Medium parameters used: f = 707.5; $\sigma = 0.844$ mho/m; $\epsilon r = 41.84$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 707.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.98,8.99,10.08)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.39 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.69 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 4.47 W/kg SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.429 W/kg Maximum value of SAR (measured) = 2.72 W/kg

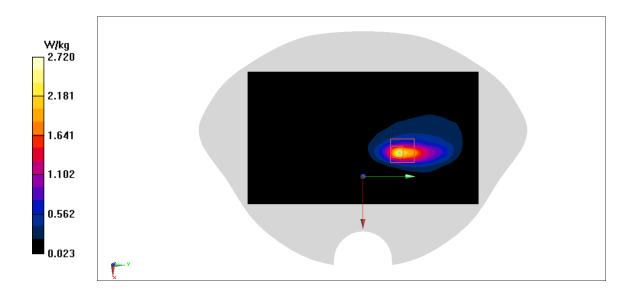


Fig A.9

LTE750-FDD13_CH23230 1RB-Low Rear 0mm

Date: 2/13/2024 Electronics: DAE4 Sn1601 Medium: body 750 MHz Medium parameters used: f = 782; $\sigma = 0.914$ mho/m; $\epsilon r = 41.75$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.98,8.99,10.08)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.27 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.91 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 4.23 W/kg SAR(1 g) = 0.897 W/kg; SAR(10 g) = 0.356 W/kg Maximum value of SAR (measured) = 2.57 W/kg

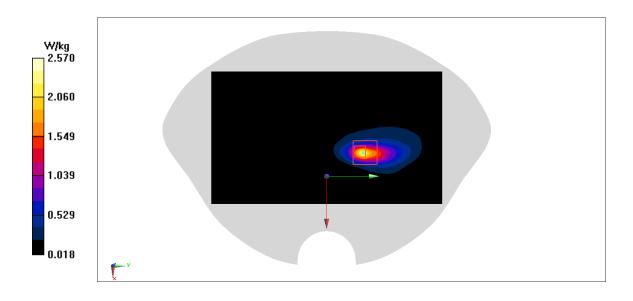


Fig A.10

LTE3500-TDD48_CH55340 1RB-High Top 0mm

Date: 2/13/2024 Electronics: DAE4 Sn1601 Medium: body 3500 MHz Medium parameters used: f = 3560; σ = 2.963 mho/m; ϵ r = 38.816; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3500-TDD42 4775 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.36 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mmReference Value = 0.719 V/m; Power Drift = -0.3 dB Peak SAR (extrapolated) = 5.14 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.271 W/kg Maximum value of SAR (measured) = 2.99 W/kg

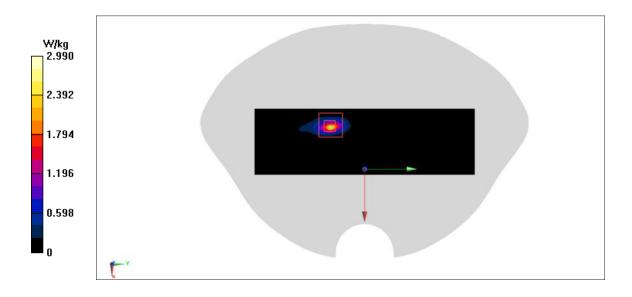


Fig A.11

LTE1700-FDD66_CH132322 1RB-High Rear 0mm

Date: 2/15/2024 Electronics: DAE4 Sn1601 Medium: body 1750 MHz Medium parameters used: f = 1745; $\sigma = 4.256$ mho/m; $\epsilon r = 36.55$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD66 4775 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.39 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.142 V/m; Power Drift = -0.26 dB Peak SAR (extrapolated) = 2.4 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.453 W/kg Maximum value of SAR (measured) = 1.22 W/kg

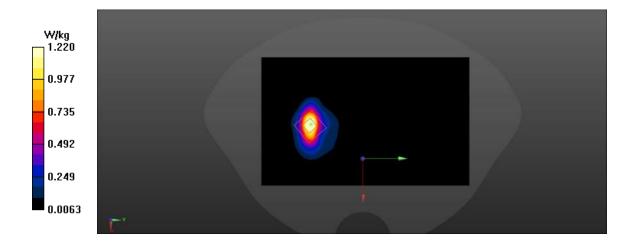


Fig A.12

LTE1900-FDD2_CH18900 1RB-Middle Right 0mm

Date: 2/25/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.386 mho/m; ϵ r = 39.95; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.266 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.492 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.374 W/kg SAR(1 g) = 0.584 W/kg; SAR(10 g) = 0.242 W/kg Maximum value of SAR (measured) = 0.718 W/kg

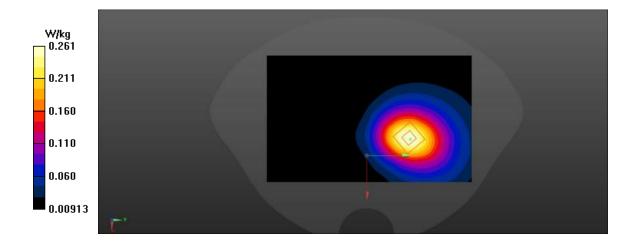


Fig A.13

LTE1900-FDD2_CH18900 1RB-Middle Rear 0mm

Date: 2/25/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.386 mho/m; ε r = 39.95; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.898 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.31 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.25 W/kg SAR(1 g) = 0.602 W/kg; SAR(10 g) = 0.251 W/kg Maximum value of SAR (measured) = 0.717 W/kg

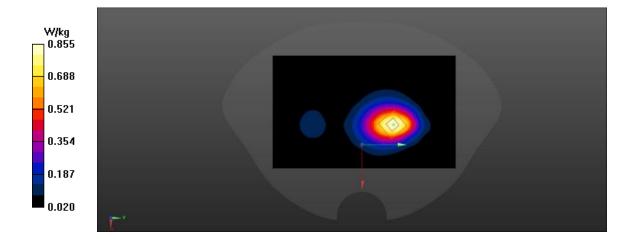


Fig A.14

Date: 2/23/2024 Electronics: DAE4 Sn1601 Medium: body 835 MHz Medium parameters used: f = 844 MHz; σ = 0.912 mho/m; ϵ r = 41.15; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.404 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 5.081 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.12 W/kg SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.137 W/kg Maximum value of SAR (measured) = 392 W/kg

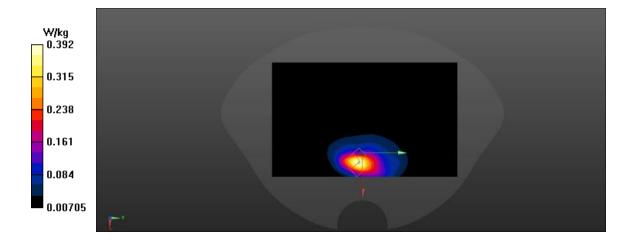


Fig A.15

LTE2500-FDD7_CH21100 1RB-Low Rear 0mm

Electronics: DAE4 Sn1601 Medium: body 2600 MHz Medium parameters used: f = 2535 MHz; σ = 1.898 mho/m; ϵ r = 39.03; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.72,7.04,7.50)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.789 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 0.744 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.4 W/kg SAR(1 g) = 0.561 W/kg; SAR(10 g) = 0.222 W/kg Maximum value of SAR (measured) = 0.614 W/kg

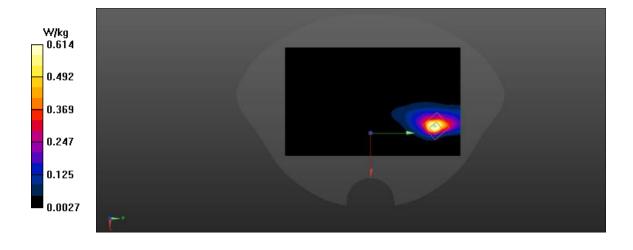


Fig A.16

LTE700-FDD12_CH23095 1RB-Low Rear 0mm

Medium: body 750 MHz Medium parameters used: f = 707.5 MHz; σ = 0.851 mho/m; ϵ r = 41.64; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE700-FDD12 707.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.98,8.99,10.08)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.489 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.13 V/m; Power Drift = 0.2 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.63 W/kg; SAR(10 g) = 0.304 W/kg Maximum value of SAR (measured) = 0.667 W/kg

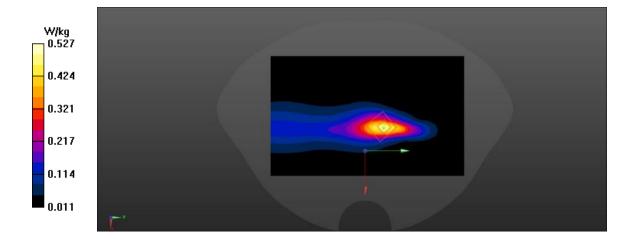


Fig A.17

LTE750-FDD13_CH23230 1RB-Low Rear 0mm

Date: 2/22/2024 Electronics: DAE4 Sn1601 Medium: body 750 MHz Medium parameters used: f = 782 MHz; $\sigma = 0.921$ mho/m; $\epsilon r = 41.55$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.98,8.99,10.08)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.764 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.78 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.73 W/kgSAR(1 g) = 0.606 W/kg; SAR(10 g) = 0.277 W/kg Maximum value of SAR (measured) = 0.750 W/kg

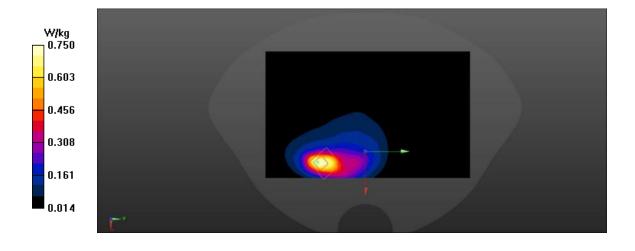


Fig A.18

Date: 2/22/2024 Electronics: DAE4 Sn1601 Medium: body 750 MHz Medium parameters used: f = 4775 MHz; $\sigma = 1.6$ mho/m; $\epsilon r = 51.04$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3500-TDD42 4775 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.569 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.195 V/m; Power Drift = -0.2 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 0.514 W/kg; SAR(10 g) = 0.138 W/kg Maximum value of SAR (measured) = 0.629 W/kg

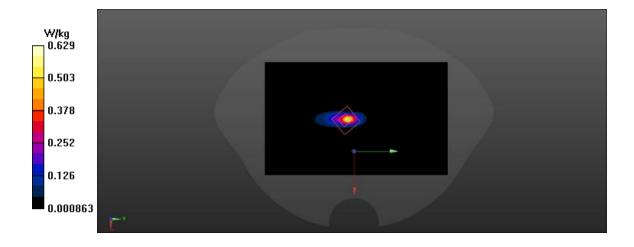


Fig A.19

Date: 2/24/2024 Electronics: DAE4 Sn1601 Medium: body 1750 MHz Medium parameters used: f = 4775 MHz; $\sigma = 4.222$ mho/m; $\epsilon r = 36.93$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD66 4775 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.478 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.791 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 0.661 W/kg SAR(1 g) = 0.506 W/kg; SAR(10 g) = 0.211 W/kg Maximum value of SAR (measured) = 0.566 W/kg

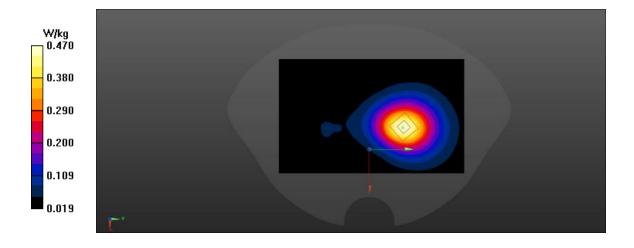


Fig A.20

WLAN2450_CH6 11b 8db Rear 0mm

Electronics: DAE4 Sn1601 Medium: Head 2450 MHz Medium parameters used: f = 2437; $\sigma = 1.782$ mho/m; $\epsilon r = 38.62$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.80,7.06,7.55)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 2.57 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.500 W/kg Maximum value of SAR (measured) = 2.47 W/kg

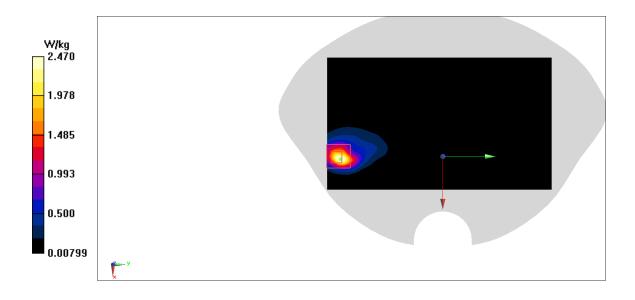


Fig A.21

WLAN_CH58 11a 18db Top 19mm

Electronics: DAE4 Sn1601 Medium: Head 5620 MHz Medium parameters used: f = 5290; σ = 1.576 mho/m; ϵ r = 34.63 ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN 5290 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(4.27,4.47,4.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.261 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.44 W/kg SAR(1 g) = 0.656 W/kg; SAR(10 g) = 0.338W/kg Maximum value of SAR (measured) = 0.7.4 W/kg

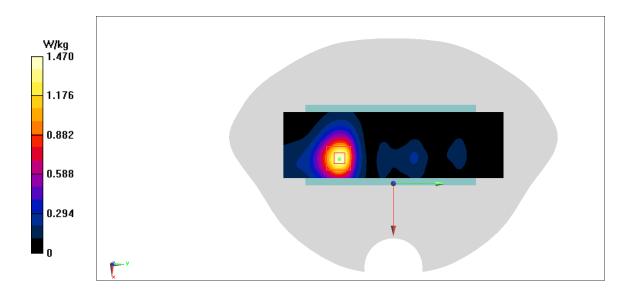


Fig A.22

Electronics: DAE4 Sn1601 Medium: Head 2450 MHz Medium parameters used: f = 2437; σ = 1.782 mho/m; ϵ r = 38.62; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.80,7.06,7.55)

Area Scan (71x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 2.57 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.61 W/kgSAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.056 W/kgMaximum value of SAR (measured) = 0.328 W/kg

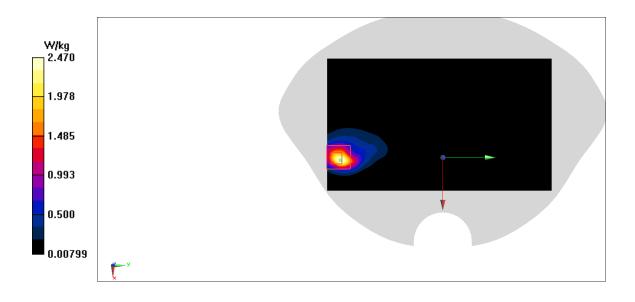


Fig A.23

Electronics: DAE4 Sn1601 Medium: Head 5250 MHz Medium parameters used: f = 5290; σ = 1.782 mho/m; ϵ r = 38.62; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN 5290 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(4.27,4.47,4.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.48 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.261 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.44 W/kg SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.072 W/kg Maximum value of SAR (measured) = 0.258 W/kg

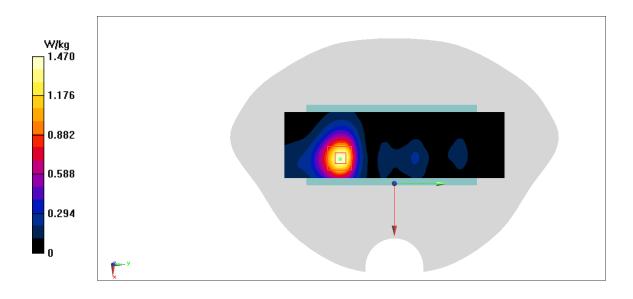


Fig A.24

N2 ANT2 15k 5M 12_6 DFT-S-OFDM-QPSK 13db Rear 0mm

Date: 1/21/2024 Electronics: DAE4 Sn1601 Medium: Head 1900 MHz Medium parameters used: f = 1880; $\sigma = 1.359$ mho/m; $\epsilon r = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.574 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.07 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.701 W/kgSAR(1 g) = 0.999 W/kg; SAR(10 g) = 0.386 W/kg Maximum value of SAR (measured) = 1.12 W/kg

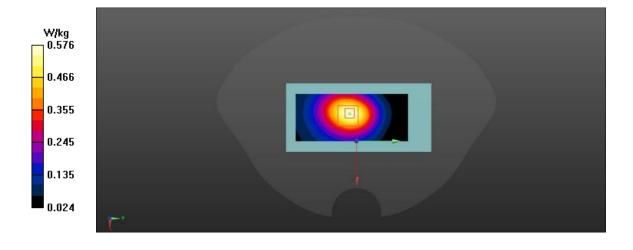


Fig A.25

N5 ANT0 15k 5M 12_6 DFT-S-OFDM-QPSK 20db Rear 0mm

Date: 1/19/2024 Electronics: DAE4 Sn1601 Medium: Head 835 MHz Medium parameters used: f = 836.5; $\sigma = 0.902$ mho/m; $\epsilon r = 41.15$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 836.5 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.636 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.77 V/m; Power Drift = 0.29 dB Peak SAR (extrapolated) = 2.15 W/kg SAR(1 g) = 0.548 W/kg; SAR(10 g) = 0.216 W/kg Maximum value of SAR (measured) = 1.07W/kg

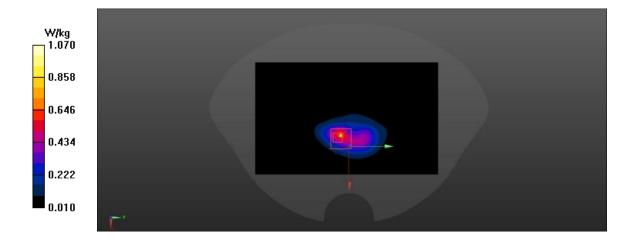


Fig A.26

N66 ANT2 15k 5M 12_6 DFT-S-OFDM-QPSK 13db Rear 0mm

Date: 1/20/2024 Electronics: DAE4 Sn1601 Medium: Head 1750 MHz Medium parameters used: f = 1745; σ = 1.445 mho/m; ϵ r =41.175; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE1700-FDD4 34615 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.645 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.84 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.774 W/kg SAR(1 g) = 0.98 W/kg; SAR(10 g) = 0.393 W/kg Maximum value of SAR (measured) = 1.24 W/kg

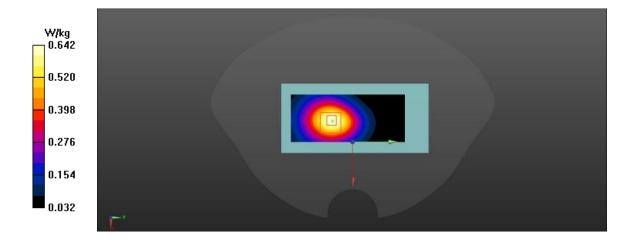


Fig A.27

N77L ANT5 30k 20M 25_12 DFT-S-OFDM-QPSK 25.5db Top 29mm

Date: 1/20/2024 Electronics: DAE4 Sn1601 Medium: Head 3500 MHz Medium parameters used: f = 3500.01; σ = 2.78 mho/m; ϵ r = 37.693; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3500-TDD42 62574.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.759 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 10.45 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.559 W/kg; SAR(10 g) = 0.295 W/kg Maximum value of SAR (measured) = 0.758 W/kg

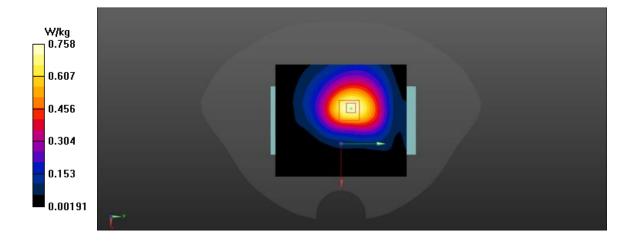


Fig A.28

N77H ANT5 30k 20M 25_12 DFT-S-OFDM-QPSK 10.5db Top 0mm

Date: 1/20/2024 Electronics: DAE4 Sn1601 Medium: Head 3700 MHz Medium parameters used: f = 3969.99; σ = 2.906 mho/m; ϵ r =38.914; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3500-TDD42 65707.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.38,6.68,7.11)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.09 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 4.35 W/kg SAR(1 g) = 1 W/kg; SAR(10 g) = 0.377 W/kg Maximum value of SAR (measured) = 2.47 W/kg

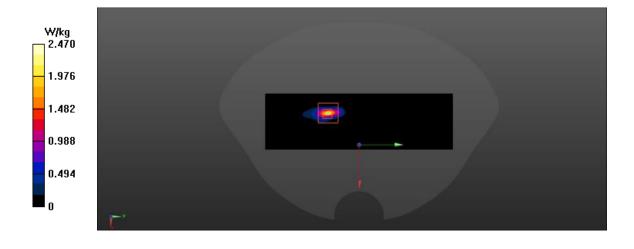


Fig A.29

N78L ANT5 30k 20M 25_12 DFT-S-OFDM-QPSK 23db Top 29mm

Date: 1/20/2024 Electronics: DAE4 Sn1601 Medium: Head 3500 MHz Medium parameters used: f = 3500.01; σ = 2.653 mho/m; ϵ r = 37.179; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3700-TDD43 62574.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (71x121x1): Interpolated grid: dx=1.00 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 21.1 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.52 W/kg; SAR(10 g) = 0.263 W/kg Maximum value of SAR (measured) = 1.09 W/kg

Fig A.30

N78H ANT5 30k 20M 25_12 DFT-S-OFDM-QPSK 10db Top 0mm

Date: 1/20/2024 Electronics: DAE4 Sn1601 Medium: Head 3700 MHz Medium parameters used: f = 3750; σ = 2.906 mho/m; ϵ r = 38.914; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3700-TDD43 64241 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.38,6.68,7.11)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.46 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.25 dB Peak SAR (extrapolated) = 4.88 W/kgSAR(1 g) = 0.984 W/kg; SAR(10 g) = 0.41 W/kg Maximum value of SAR (measured) = 2.80 W/kg

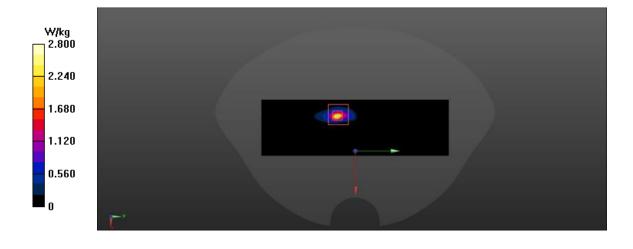


Fig A.31

N2 ANTO 15k 5M 12_6 DFT-S-OFDM-QPSK 23db Top 24mm

Date: 2/29/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1880; $\sigma = 1.359$ mho/m; $\epsilon r = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.266 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.492 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.374 W/kg SAR(1 g) = 0.611 W/kg; SAR(10 g) = 0.462 W/kg Maximum value of SAR (measured) = 0.855 W/kg

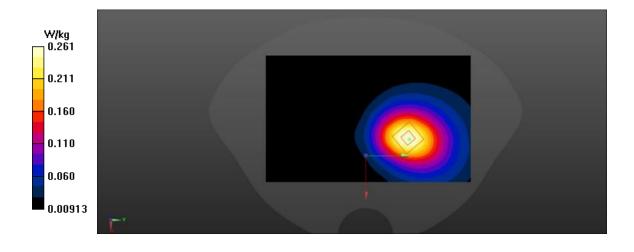


Fig A.32

N66 ANT0 15k 5M 12_6 DFT-S-OFDM-QPSK 10db Rear 0mm

Date: 2/28/2024 Electronics: DAE4 Sn1601 Medium: body 1750 MHz Medium parameters used: f = 1745; $\sigma = 1.37$ mho/m; $\epsilon r = 39.77$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1700-BIV 1745 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.259 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.921 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.295 W/kg SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.253 W/kg

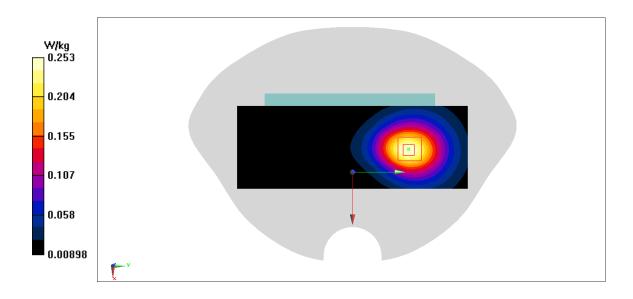


Fig A.33

N2 ANT2 15k 5M 12_6 DFT-S-OFDM-QPSK 10db Rear 0mm

Date: 2/29/2024 Electronics: DAE4 Sn1601 Medium: body 1900 MHz Medium parameters used: f = 1880; $\sigma = 1.359$ mho/m; $\epsilon r = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: CDMA1900-BC1 1880 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.898 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.31 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 1.25 W/kg SAR(1 g) = 0.176 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.261 W/kg

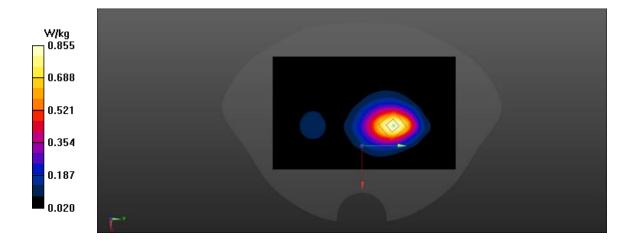


Fig A.34

N5 ANT0 15k 5M 12_6 DFT-S-OFDM-QPSK 17db Rear 0mm

Date: 2/27/2024 Electronics: DAE4 Sn1601 Medium: body 835 MHz Medium parameters used: f = 836.5; $\sigma = 0.902$ mho/m; $\epsilon r = 41.15$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: CDMA800-BC10 836.5 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.116 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.615 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.118 W/kg SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.023 W/kg Maximum value of SAR (measured) = 0.099 W/kg

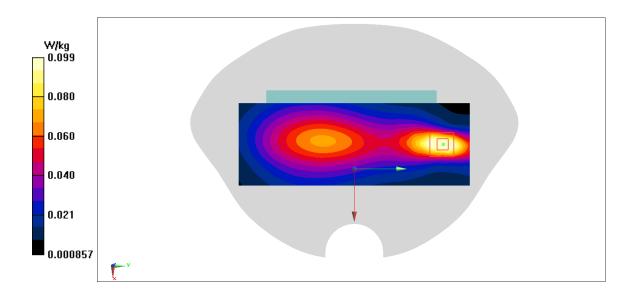


Fig A.35

N66 ANT2 15k 5M 12_6 DFT-S-OFDM-QPSK 10db Rear 0mm

Date: 2/27/2024 Electronics: DAE4 Sn1601 Medium: body 1750 MHz Medium parameters used: f = 1745; $\sigma = 1.405$ mho/m; $\epsilon r = 42.593$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: CDMA1700-BC15 1745 Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

Area Scan (71x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.259 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 3.921 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.295 W/kg SAR(1 g) = 0.157 W/kg; SAR(10 g) = 0.102 W/kg Maximum value of SAR (measured) = 0.253 W/kg

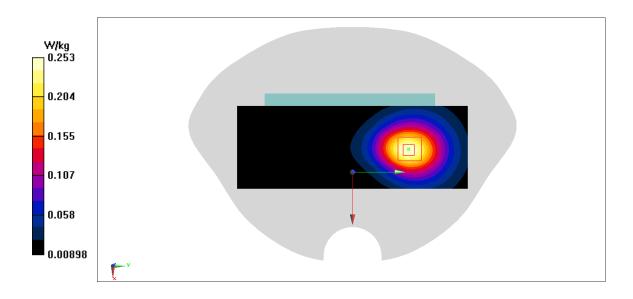


Fig A.36

N77H ANT5 30k 20M 25_12 DFT-S-OFDM-QPSK 9.5db Top 0mm

Date: 2/27/2024 Electronics: DAE4 Sn1601 Medium: body 3700 MHz Medium parameters used: f = 3969.99; $\sigma = 2.78$ mho/m; $\epsilon r = 37.693$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3700-TDD43 65707.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.363 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.24 W/kg SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.123 W/kg Maximum value of SAR (measured) = 0.758 W/kg

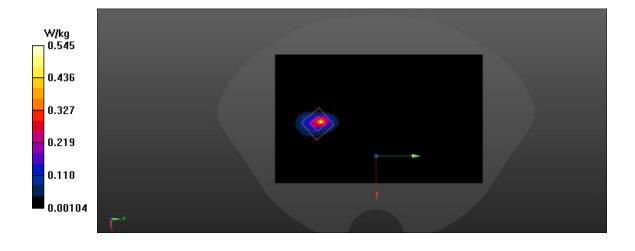


Fig A.37

N78H ANT5 30k 20M 25_12 DFT-S-OFDM-QPSK 9db Top 0mm

Date: 2/27/2024 Electronics: DAE4 Sn1601 Medium: body 3700 MHz Medium parameters used: f = 3750; σ = 1.6 mho/m; ϵ r = 51.04; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE3700-TDD43 64241 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.435 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.147 W/kg Maximum value of SAR (measured) = 0.656 W/kg

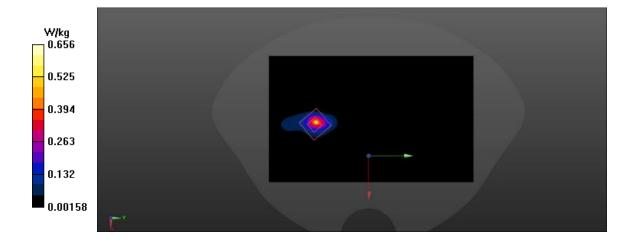
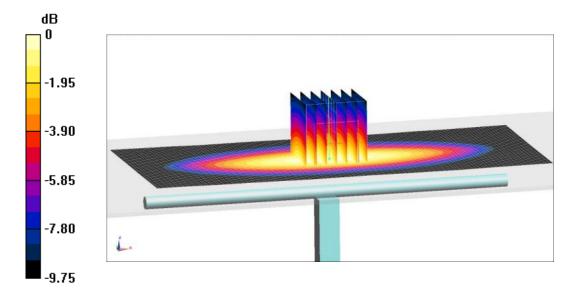


Fig A.38

ANNEX B SYSTEM VALIDATION RESULTS

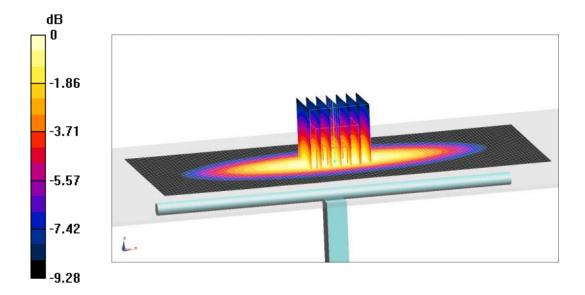

750 MHz

Date: 2/13/2024 Electronics: DAE4 Sn1601 Medium: Head 750 MHz Medium parameters used: f = 750 MHz; σ =0.908 mho/m; ε_r = 41.93; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.98,8.99,10.08)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 59.92 V/m; Power Drift = -0.02Fast SAR: SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (interpolated) = 2.77 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =59.92 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.3 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.85 W/kg



Date: 2/14/2024 Electronics: DAE4 Sn1601 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; σ =0.884 mho/m; ε_r = 41.79; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.98,8.99,10.08)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm mm Reference Value = 62.33 V/m; Power Drift = 0.01

Fast SAR: SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 3.18 W/kg

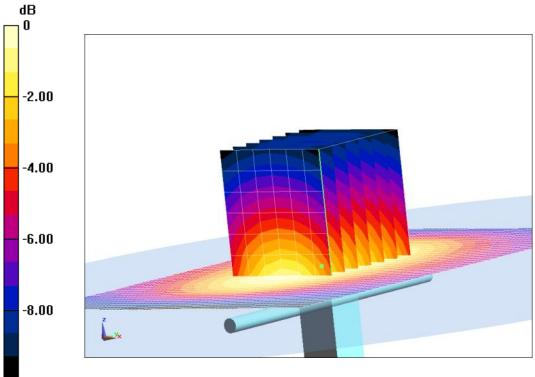
System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =62.33 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.23 W/kg


```
0 dB = 3.23 W/kg = 5.09 dB W/kg
```

Fig.B.2 validation 835 MHz 250mW

Date: 2/15/2024 Electronics: DAE4 Sn1601 Medium: Head 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 0.903$ mho/m; $\epsilon_r = 42.12$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 104.79 V/m; Power Drift = 0.05Fast SAR: SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.86 W/kgMaximum value of SAR (interpolated) = 13.87 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =104.79 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 16.99 W/kg

SAR(1 g) = 8.96 W/kg; SAR(10 g) = 4.75 W/kg

Maximum value of SAR (measured) = 13.89 W/kg

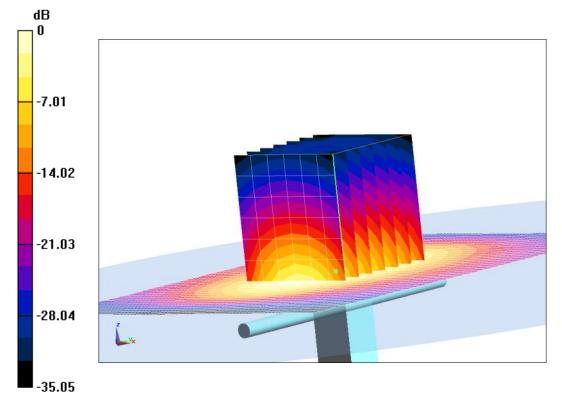
-10.00

0 dB = 13.89 W/kg = 11.43 dB W/kg

Fig.B.4 validation 1750 MHz 250mW

Date: 2/16/2024 Electronics: DAE4 Sn1601 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.382$ mho/m; $\epsilon_r = 40.18$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 108.76 V/m; Power Drift = 0.05Fast SAR: SAR(1 g) = 9.74 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (interpolated) = 15.11 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =108.76 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.49 W/kg

SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.1 W/kg

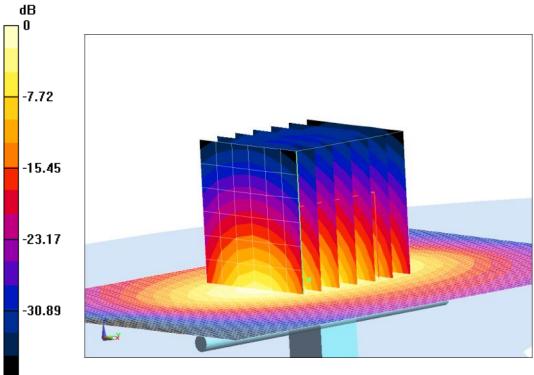
Maximum value of SAR (measured) = 15.38 W/kg

0 dB = 15.38 W/kg = 11.87 dB W/kg

Fig.B.6 validation 1900 MHz 250mW

Date: 2/17/2024 Electronics: DAE4 Sn1601 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.388$ mho/m; $\epsilon_r = 39.89$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 116.41 V/m; Power Drift = -0.03Fast SAR: SAR(1 g) = 13.09 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (interpolated) = 21.4 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =116.41 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 25.87 W/kg

SAR(1 g) = 13.37 W/kg; SAR(10 g) = 6.1 W/kg

Maximum value of SAR (measured) = 21.61 W/kg

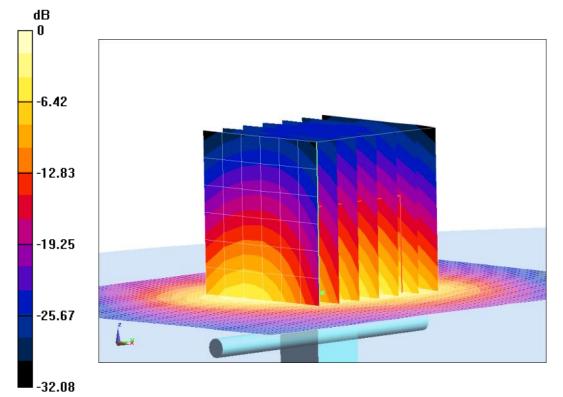
-38.61

0 dB = 21.61 W/kg = 13.35 dB W/kg

Fig.B.8 validation 2450 MHz 250mW

Date: 2/18/2024 Electronics: DAE4 Sn1601 Medium: Head 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 1.834$ mho/m; $\epsilon_r = 39.84$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.80,7.06,7.55)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 120.91 V/m; Power Drift = -0.09Fast SAR: SAR(1 g) = 14.05 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (interpolated) = 24.61 W/kg

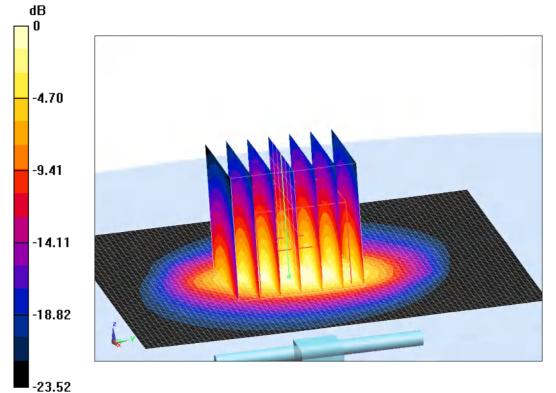
System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =120.91 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 29.54 W/kg

SAR(1 g) = 13.99 W/kg; SAR(10 g) = 6.39 W/kg

Maximum value of SAR (measured) = 24.23 W/kg

0 dB = 24.23 W/kg = 13.84 dB W/kg


Fig.B.10 validation 2600 MHz 250mW

Date: 2/19/2024 Electronics: DAE4 Sn1601 Medium: Head 5250 MHz Medium parameters used: f = 5250 MHz; σ =1.992 mho/m; ϵ_r = 38.88; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.72,7.04,7.50)

System Validation: Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 80.51 V/m; Power Drift = 0.04

System Validation(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value =80.51 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.65 W/kg SAR(1 g) = 19.94 W/kg; SAR(10 g) = 5.8 W/kg

Maximum value of SAR (measured) = 18.17 W/kg

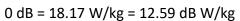
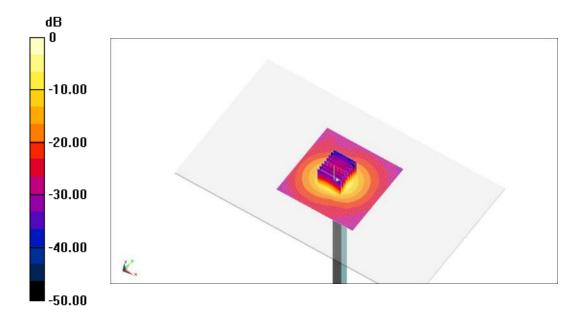



Fig.B.12 validation 5250 MHz 100mW

Date: 2/20/2024 Electronics: DAE4 Sn1601 Medium: Head 5600 MHz Medium parameters used: f = 5600 MHz; σ =4.761 mho/m; ϵ_r = 35.85; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(5.05,5.27,5.51)

System Validation: Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 80.08 V/m; Power Drift = -0.03

System Validation(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =80.08 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.06 W/kg SAR(1 g) = 20.62 W/kg; SAR(10 g) = 5.82 W/kg Maximum value of SAR (measured) = 19.8 W/kg

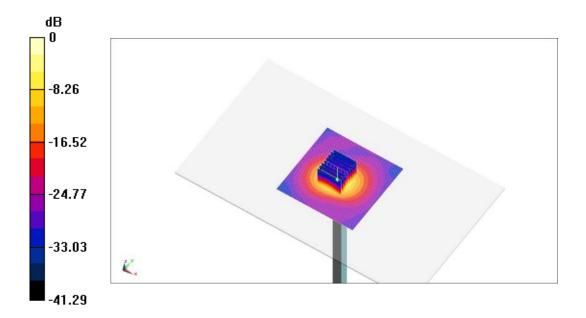

0 dB = 19.8 W/kg = 12.97 dB W/kg

Fig.B.14 validation 5600 MHz 100mW

Date: 2/21/2024 Electronics: DAE4 Sn1601 Medium: Head 5750 MHz Medium parameters used: f = 5750 MHz; σ =5.111 mho/m; ϵ_r = 35.97; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(4.27,4.47,4.70)

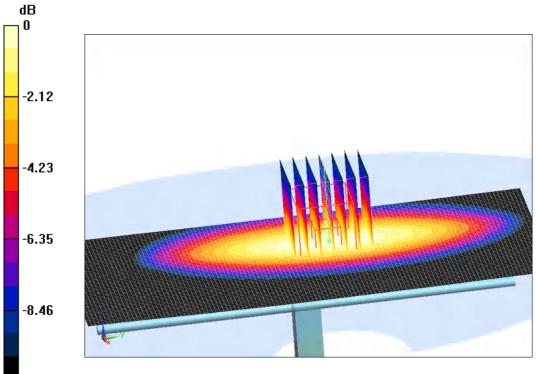
System Validation: Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 75.5 V/m; Power Drift = -0.02 Fast SAR: SAR(1 g) = 20.34 W/kg; SAR(10 g) = 5.7 W/kg Maximum value of SAR (interpolated) = 20.14 W/kg

System Validation(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =75.5 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.37 W/kg SAR(1 g) = 19.89 W/kg; SAR(10 g) = 5.59 W/kg Maximum value of SAR (measured) = 20.01 W/kg

0 dB = 20.01 W/kg = 13.01 dB W/kg Fig.B.16 validation 5750 MHz 100mW

Date: 1/19/2024 Electronics: DAE4 Sn1601 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; σ =0.907 mho/m; ε_r = 41.63; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 62.64 V/m; Power Drift = -0.1Fast SAR: SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (interpolated) = 3.18 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =62.64 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.7 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.59 W/kg

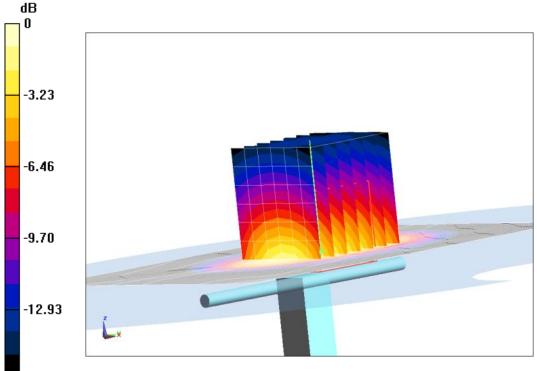
Maximum value of SAR (measured) = 3.32 W/kg

⁰ dB = 3.32 W/kg = 5.21 dB W/kg

Fig.B.17 validation 835 MHz 250mW

1750 MHz

Date: 1/20/2024 Electronics: DAE4 Sn1601 Medium: Head 1750 MHz Medium parameters used: f = 1750 MHz; σ =1.346 mho/m; ϵ_r = 40.03; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)


System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 106.62 V/m; Power Drift = -0.05

Fast SAR: SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (interpolated) = 14.15 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =106.62 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.02 W/kg SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.73 W/kg Maximum value of SAP (measured) = 12.88 W/kg

Maximum value of SAR (measured) = 13.88 W/kg

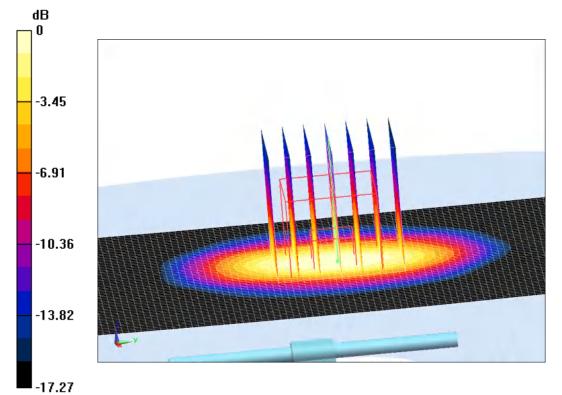
-16.16

0 dB = 13.88 W/kg = 11.42 dB W/kg

Fig.B.18 validation 1750 MHz 250mW

Date: 1/21/2024 Electronics: DAE4 Sn1601 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.404$ mho/m; $\epsilon_r = 39.36$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 107.96 V/m; Power Drift = -0.04Fast SAR: SAR(1 g) = 10.09 W/kg; SAR(10 g) = 5.1 W/kg Maximum value of SAR (interpolated) = 15.24 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =107.96 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.06 W/kg

SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 15.33 W/kg

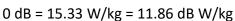


Fig.B.19 validation 1900 MHz 250mW

Date: 2024/1/22 Electronics: DAE4 Sn1601 Medium: Head 3500 MHz Medium parameters used: f = 3500 MHz; σ = 2.818 S/m; ϵ r = 40.96; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3500 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.50,6.78,7.20)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

```
Maximum value of SAR (interpolated) = 13.2 W/kg
```

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm Reference Value = 71.26 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 6.70 W/kg; SAR(10 g) = 2.53 W/kg Maximum value of SAR (measured) = 12.8 W/kg

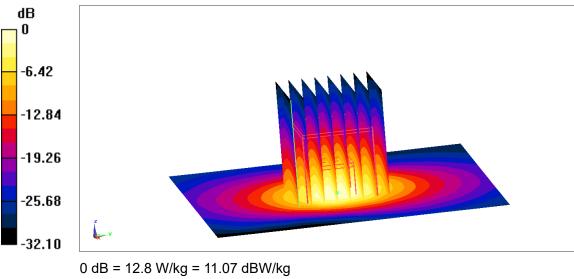


Fig.B.20 validation 3500 MHz 250mW

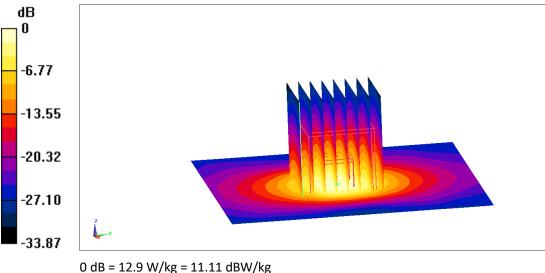
Date: 2024/1/23 Electronics: DAE4 Sn1601 Medium: head 3700 MHz Medium parameters used: f = 3700 MHz; σ = 2.653 S/m; ϵ r = 37.179; ρ = 1000 kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3700 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(6.79, 6.79, 6.79)

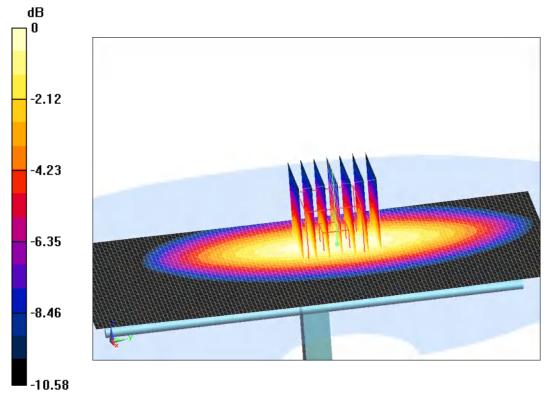
Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

```
Maximum value of SAR (interpolated) = 13.6 W/kg
```

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm Reference Value = 68.92 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 6.46 W/kg; SAR(10 g) = 2.49 W/kg Maximum value of SAR (measured) = 12.9 W/kg




Fig.B.21 validation 3700 MHz 250mW

Date: 2/27/2024 Electronics: DAE4 Sn1601 Medium: Head 835 MHz Medium parameters used: f = 835 MHz; σ =0.907 mho/m; ε_r = 41.63; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(8.50,9.01,9.47)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 62.64 V/m; Power Drift = -0.1 Fast SAR: SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (interpolated) = 3.18 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =62.64 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.7 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.32 W/kg

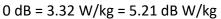
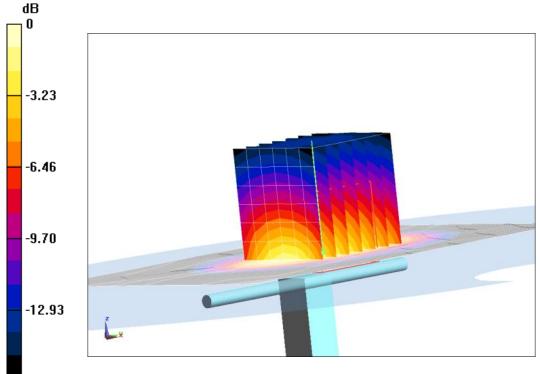


Fig.B.22 validation 835 MHz 250mW

Date: 2/28/2024 Electronics: DAE4 Sn1601 Medium: Head 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.346$ mho/m; $\epsilon_r = 40.03$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.47,7.79,8.45)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 106.62 V/m; Power Drift = -0.05Fast SAR: SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (interpolated) = 14.15 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =106.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 17.02 W/kg

SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.73 W/kg

Maximum value of SAR (measured) = 13.88 W/kg

-16.16

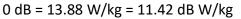


Fig.B.23 validation 1750 MHz 250mW

1900 MHz

Date: 2/29/2024 Electronics: DAE4 Sn1601 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; σ =1.404 mho/m; ϵ_r = 39.36; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3846 ConvF(7.27,7.55,8.11)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 107.96 V/m; Power Drift = -0.04 Fast SAR: SAR(1 g) = 10.09 W/kg; SAR(10 g) = 5.1 W/kg

Maximum value of SAR (interpolated) = 15.24 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =107.96 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.06 W/kg SAR(1 g) = 9.77 W/kg; SAR(10 g) = 5.13 W/kg Maximum value of SAR (measured) = 15.33 W/kg

dB 0 -3.45 -6.91 -10.36 -13.82

-17.27

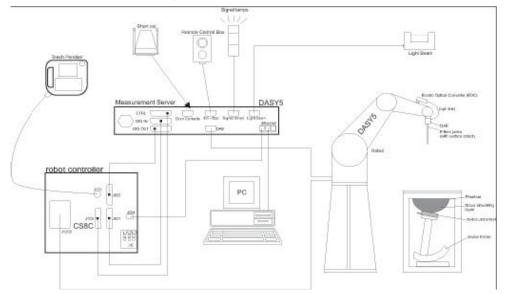

0 dB = 15.33 W/kg = 11.86 dB W/kg

Fig.B.24 validation 1900 MHz 250mW

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy5 or DASY6 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the E[°]C.
- The Electro-optical converter (E[°]C) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the E[°]C is required. The E[°]C signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 or DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the E° box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 or DASY6 software reads the reflection durning a software approach and looks for the maximum using 2^{nd} ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
± 0.2 dB(30 MHz	to 4 GHz) for ES3DV3
DynamicRange:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:SAF	R Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields
Picture C.3E-fiel	d Probe

Picture C.2Near-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration pr°C edure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the cl°Ck.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical pr°C esses. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\ell = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C7-1: Device Holder

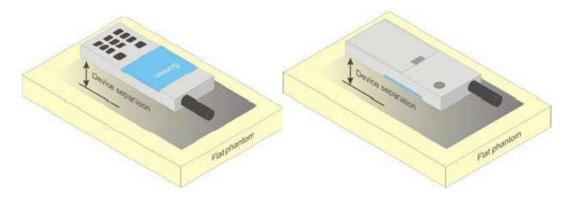
Picture C.7-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2±0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

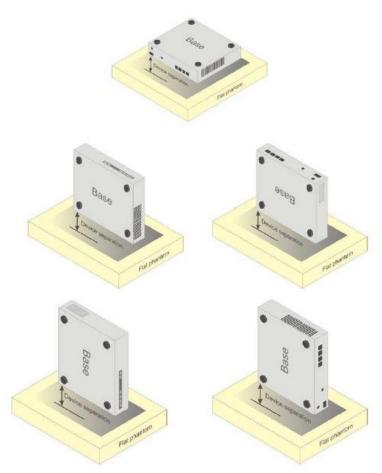


Picture C.8: SAM Twin Phantom

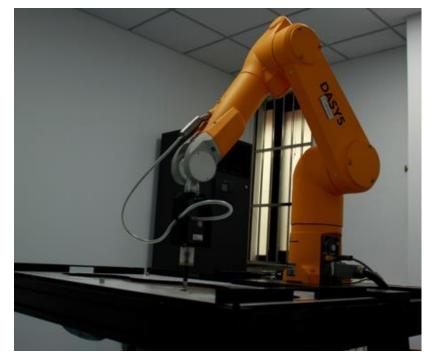
ANNEX D Position of the wireless device in relation to the phantom

D.1 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.



Picture D.4Test positions for body-worn devices


D.2 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.3 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

		Compositi		1133461	-quivaloi	it matter		
Frequency	835Hea	835Bod	1900	1900	2450	2450	5800	5800
(MHz)	d	у	Head	Body	Head	Body	Head	Body
Ingredients (% by	v weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	١	١	١	١	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	/
Preventol	0.1	0.1	١	١	١	١	١	١
Cellulose	1.0	1.0	١	١	١	١	١	/
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22	١	١
Diethylenglycol monohexylethe r	١	١	١	١	١	١	17.24	17.24
Triton X-100	١	١	١	١	١	١	17.24	17.24
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Parameters	ε=41.5 σ=0.90	ε=55.2 σ=0.97	σ=1.4	σ=1.5	σ=1.8	σ=1.9	σ=5.2	σ=6.0
Target Value	0-0.90	0-0.97	0	2	0	5	7	0

TableE.1: Composition of the Tissue Equivalent Matter

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3846	Head 750MHz	July.10,2023	750 MHz	OK
3846	Head 900MHz	July.10,2023	900 MHz	OK
3846	Head 1450MHz	July.14,2023	1450 MHz	OK
3846	Head 1750MHz	July.14,2023	1750 MHz	OK
3846	Head 1810MHz	July.14,2023	1810 MHz	OK
3846	Head 1900MHz	July.15,2023	1900 MHz	OK
3846	Head 2000MHz	July.15,2023	2000 MHz	OK
3846	Head 2300MHz	July.15,2023	2300 MHz	OK
3846	Head 2450MHz	July.16,2023	2450 MHz	OK
3846	Head 2600MHz	July.16,2023	2600 MHz	OK
3846	Head 3300MHz	July.16,2023	3300 MHz	OK
3846	Head 3500MHz	July.17,2023	3500 MHz	OK
3846	Head 3700MHz	July.17,2023	3700 MHz	OK
3846	Head 4200MHz	July.17,2023	4200 MHz	OK
3846	Head 5250MHz	July.17,2023	5250 MHz	OK
3846	Head 5600MHz	July.18,2023	5600 MHz	OK
3846	Head 5750MHz	July.18,2023	5750 MHz	OK

 Table F.1: System Validation for 3846

ANNEX G PROBE CALIBRATION CERTIFICATE

Probe 3846 Calibration Certificate

eughaus	ering AG	-h Culturaland	S S	Swiss Calibration Service
	sstrasse 43, 8004 Zurie	ch, Switzerland	"The field all all all all all all all all all a	
ne Swis	ed by the Swiss Accred ss Accreditation Serveral Agreement for the	ditation Service (SAS) vice is one of the signatorie e recognition of calibration	s to the EA	ccreditation No.: SCS 010
lient	CTTL		Certificate No.	EX-3846_May23
	Beijing			
CAL	IBRATION CI	ERTIFICATE		
Object	1	EX3DV4 - SN:384	6	
Calibra	ation procedure(s)	QA CAL-25.v8	QA CAL-12.v10, QA CAL-14.v7	
Outbur	ation date	May 31, 2023		
This ca The m All cali	alibration certificate do neasurements and the u ibrations have been co	cuments the traceability to nat uncertainties with confidence	tional standards, which realize the physic probability are given on the following pag bry facility: environment temperature (22 :	es and are part of the certificate
This ca The m All cali	alibration certificate do neasurements and the u ibrations have been co	cuments the traceability to na uncertainties with confidence inducted in the closed laborate	probability are given on the following pag	es and are part of the certificate
This ca The m All cali Calibra Primar	alibration certificate do leasurements and the u librations have been co ation Equipment used ry Standards	cuments the traceability to na uncertainties with confidence inducted in the closed laborate	probability are given on the following pag bry facility: environment temperature (22 Cal Date (Certificate No.)	es and are part of the certificate ± 3) °C and humidity < 70%.
This ca The m All cali Calibra Primar Power	alibration certificate do leasurements and the u librations have been co ation Equipment used ry Standards meter NRP2	cuments the traceability to nat uncertainties with confidence (nducted in the closed laborato (M&TE critical for calibration)	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24
This ca The m All cali Calibra Primar Power Power	alibration certificate do neasurements and the ibrations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91	cuments the traceability to na uncertainties with confidence nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24
This ca The m All calibra Calibra Primar Power Power OCP D	alibration certificate do neasurements and the r ibrations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted)	cuments the traceability to na uncertainties with confidence inducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1249	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 20-Oct-22 (OCP-DAK3.5-1249_Oct2)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23
This ca The m All calibra Calibra Primar Power Power OCP D	alibration certificate do leasurements and the i librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12	Currents the traceability to nat uncertainties with confidence in nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1249 SN: 1016	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 20-Oct-22 (OCP-DAK3.5-1249_Oct22 20-Oct-22 (OCP-DAK12-1016_Oct22	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23
This ca The m All calibra Calibra Primar Power Power OCP I OCP I Refere	alibration certificate do leasurements and the u librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-3.5 (weighted) DAK-12 ence 20 dB Attenuator	Luments the traceability to nat uncertainties with confidence in nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 10244 SN: 1249 SN: 1016 SN: CC2552 (20x)	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct2) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. 217-03809)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23
This ca The m All cali Calibra Primar Power OCP D OCP D Refere DAE4	alibration certificate do leasurements and the u librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-3.5 (weighted) DAK-12 ence 20 dB Attenuator	Currents the traceability to nat uncertainties with confidence in nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1249 SN: 1016	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 20-Oct-22 (OCP-DAK3.5-1249_Oct22 20-Oct-22 (OCP-DAK12-1016_Oct22	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 2) Oct-23 Mar-24
This ca The m All cali Calibra Primar Power Power OCP D OCP D OCP D Refere DAE4 Refere	alibration certificate do neeasurements and the o ibrations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12 ence 20 dB Attenuator ence Probe ES3DV2	LUC Currents the traceability to nat uncertainties with confidence in nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct2 20-Oct-22 (OCP-DAK12-1016_Oct22 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 2) Oct-23 2) Oct-23 Mar-24 Mar-24 Mar-24
This ci The m All cali Calibra Primar Power Power OCP C OCP C Refere DAE4 Refere Secon	alibration certificate do leeasurements and the o librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12 ance 20 dB Attenuator	LUC Currents the traceability to nat uncertainties with confidence (nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 20-Oct-22 (OCP-DAK3.5-1249_Oct22) 20-Oct-22 (OCP-DAK12-1016_Oct22) 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 2) Oct-23 Mar-24 Mar-24 Jan-24 Scheduled Check
This ca The m All cali Calibra Primar Power Power OCP D OCP D Refere DAE4 Refere Secon Power	alibration certificate do leasurements and the i librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12 ance 20 dB Attenuator ance Probe ES3DV2 idary Standards	cuments the traceability to nature trainties with confidence inducted in the closed laborate (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. ES3-3013_Jan23) Check Date (in house)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 0 Oct-23 Mar-24 Mar-24 Jan-24 Scheduled Check In house check: Jun-2
This ca The m All cali Calibra Primar Power OCP D OCP D Refere DAE4 Refere Secon Power Power	alibration certificate do leasurements and the i librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-35 (weighted) DAK-35 (weighted) DAK-35 (weighted) DAK-32 dd Attenuator ence 20 dB Attenuator ence Probe ES3DV2 indary Standards meter E4419B	cuments the traceability to nat uncertainties with confidence in nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 2) Oct-23 Mar-24 Mar-24 Mar-24 Jan-24
This c: The m All cali Calibri Power Power Power DAE4 Refere DAE4 Refere Secon Power Power Power	alibration certificate do leasurements and the u librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-291 DAK-35 (weighted) DAK-12 ance 20 dB Attenuator ance Probe ES3DV2 indary Standards meter E4419B sensor E4412A	cuments the traceability to nat uncertainties with confidence i nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 10244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK12-1016_Oct22 30-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 2) Oct-23 2) Oct-23 2) Oct-23 2) Oct-23 3 Mar-24 Mar-24 Jan-24 Scheduled Check In house check: Jun-2 In house check: Jun-2 In house check: Jun-2 In house check: Jun-2
This ci The m All calibri Calibri Power Power OCP D OCP D OCP D OCP D OCP D OCP D DAE4 Refere Secon Power Power Power RF ge	alibration certificate do leeasurements and the o librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12 ence 20 dB Attenuator ence Probe ES3DV2 indary Standards meter E4419B sensor E4412A sensor E4412A	cuments the traceability to nature traceability to nature traceability to nature traceability to nature the construction of the closed laborate (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK15-1249_Oct2) 20-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 2) Oct-23 2) Oct-23 2) Oct-23 3 Mar-24 Mar-24 Jan-24 Scheduled Check In house check: Jun-2 In house check: Jun-2 In house check: Jun-2
This ci The m All calibri Calibri Power Power OCP D OCP D OCP D OCP D OCP D OCP D DAE4 Refere Secon Power Power Power RF ge	alibration certificate do leasurements and the librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12 ence 20 dB Attenuator ence Probe ES3DV2 indary Standards meter E44198 sensor E4412A reerator HP 8648C	currents the traceability to nature trainties with confidence inducted in the closed laborator (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: WY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK12-1016_Oct22 30-Mar-23 (No. DAE4-660_Mar23) 06-Jan-23 (No. ES3-3013_Jan23) Check Date (in house 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 2) Oct-23 2) Oct-23 2) Oct-23 2) Oct-23 3 Mar-24 Mar-24 Jan-24 Scheduled Check In house check: Jun-2 In house check: Jun-2 In house check: Jun-2 In house check: Jun-2
This ci The m All calibri Calibri Power Power DAE4 Refere DAE4 Refere Power Power Power Power Netwo	alibration certificate do leasurements and the librations have been co ation Equipment used ry Standards meter NRP2 sensor NRP-Z91 DAK-3.5 (weighted) DAK-12 ence 20 dB Attenuator ence Probe ES3DV2 indary Standards meter E44198 sensor E4412A reerator HP 8648C	cuments the traceability to nat uncertainties with confidence in nducted in the closed laborato (M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 20-Oct-22 (OCP-DAK3.5-1249_Oct22 20-Oct-22 (OCP-DAK3.5-1249_Oct22 30-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. 217-03809) 16-Mar-23 (No. ES3-3013_Jan23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	es and are part of the certificate ± 3) °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 2) Oct-23 0 Oct-23 Mar-24 Jan-24 Scheduled Check In house check: Jun-2 In house check: Jun-2

Certificate No: EX-3846_May23

Page 1 of 23

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Parameters of Probe: EX3DV4 - SN:3846

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.39	0.47	0.48	±10.1%
DCP (mV) B	101.0	101.5	101.5	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Max dev.	$Max Unc^{E} k = 2$
0	CW	X	0.00	0.00	1.00	0.00	140.1	±1.8%	±4.7%
		Y	0.00	0.00	1.00		148.9		
		Z	0.00	0.00	1.00		126.6		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	89.81	20.09	10.00	60.0	±2.8%	±9.6%
		Y	20.00	90.89	21.02		60.0		
		Z	20.00	89.26	19.67		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.30	19.76	6.99	80.0	±1.5%	±9.6%
		Y	20.00	90.93	19.73		80.0		
		Z	20.00	91.12	19.59		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	95.59	20.50	3.98	95.0	±1.2%	±9.6%
		Y	20.00	91.21	18.30		95.0		
		Z	20.00	92.86	19.14		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	101.33	21.82	2.22	120.0	±1.2%	±9.6%
10000		Y	20.00	90.19	16.42		120.0		
		Z	20.00	96.09	19.41		120.0		
10387	QPSK Waveform, 1 MHz	X	1.73	65.72	15.13	1.00	150.0	±2.3%	±9.6%
10007		Y	1.74	65.85	15.06	1	150.0		
		Z	1.80	66.67	15.50	1	150.0	1	
10388	QPSK Waveform, 10 MHz	X	2.32	68.34	15.86	0.00	150.0	±0.9%	±9.6%
10000	ar on marchann, romme	Y	2.35	68.57	15.78	1	150.0	1	
		Z	2.45	69.32	16.27	1	150.0	1	·
10396	64-QAM Waveform, 100 kHz	X	3.42	72.59	19.56	3.01	150.0	±0.7%	±9.6%
10550		Y	3.37	71.20	18.88		150.0	1	
		Z	4.04	76.02	21.06		150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.54	67.15	15.81	0.00	150.0	±2.2%	±9.6%
10399		Y	3.59	67.40	15.85		150.0		
		Z	3.50	67.10	15.77	1	150.0	1	
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.93	65.48	15.46	0.00	150.0	±3.9%	±9.6%
10414		Y	5.04	65.88	15.64		150.0	1	
		Z	4.86	65.40	15.41	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 to 7).
 ^B Linearization parameter uncertainty for maximum specified field strength.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Parameters of Probe: EX3DV4 - SN:3846

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	58.2	434.80	35.66	16.47	0.12	5.08	1.72	0.27	1.01
v	60.8	458.93	36.20	14.64	0.63	5.08	0.25	0.63	1.01
z	55.2	411.11	35.41	17.17	0.00	5.09	1.93	0.20	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	17.8°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3846_May23

Page 4 of 23

Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	17.76	17.76	17.76	0.00	1.25	±13.3%
64	54.2	0.75	13.68	13.68	13.68	0.00	1.25	±13.3%
150	52.3	0.76	12.35	12.35	12.35	0.00	1.25	±13.3%
300	45.3	0.87	11.38	11.38	11.38	0.09	1.00	±13.3%
450	43.5	0.87	10.64	10.64	10.64	0.16	1.30	±13.3%
750	41.9	0.89	8.98	8.99	10.08	0.43	1.27	±12.0%
835	41.5	0.90	8.50	9.01	9.47	0.43	1.27	±12.0%
900	41.5	0.97	7.98	8.23	9.62	0.42	1.27	±12.0%
1450	40.5	1.20	7.49	7.73	8.40	0.53	1.27	±12.0%
1640	40.2	1.31	7.40	7.67	8.37	0.49	1.27	±12.0%
1750	40.1	1.37	7.47	7.79	8.45	0.31	1.27	±12.0%
1810	40.0	1.40	7.37	7.68	8.24	0.33	1.27	±12.0%
1900	40.0	1.40	7.27	7.55	8.11	0.33	1.27	±12.0%
2000	40.0	1.40	7.02	7.30	7.84	0.33	1.27	±12.0%
2100	39.8	1.49	6.97	7.28	7.79	0.33	1.27	±12.0%
2300	39.5	1.67	6.90	7.19	7.69	0.34	1.27	±12.0%
2450	39.2	1.80	6.80	7.06	7.55	0.34	1.27	±12.0%
2600	39.0	1.96	6.72	7.04	7.50	0.32	1.27	±12.0%
3300	38.2	2.71	6.48	6.85	7.25	0.38	1.27	±14.0%
3500	37.9	2.91	6.50	6.78	7.20	0.37	1.27	±14.0%
3700	37.7	3.12	6.38	6.68	7.11	0.37	1.27	±14.0%
3900	37.5	3.32	6.36	6.63	7.02	0.38	1.27	±14.0%
4100	37.2	3.53	6.31	6.59	6.98	0.38	1.27	±14.0%
4200	37.1	3.63	6.29	6.57	6.96	0.38	1.27	±14.09
4400	36.9	3.84	6.22	6.52	6.88	0.41	1.27	±14.0%
4600	36.7	4.04	6.15	6.44	6.82	0.41	1.27	±14.0%
4800	36.4	4.25	6.11	6.41	6.76	0.41	1.27	±14.0%
4950	36.3	4.40	5.95	6.21	6.41	0.42	1.36	±14.09

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3846_May23

Page 5 of 23

Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
5200	36.0	4.66	5.20	5.41	5.66	0.40	1.51	±14.0%
5250	35.9	4.71	5.05	5.27	5.51	0.42	1.53	±14.0%
5300	35.9	4.76	4.98	5.21	5.33	0.41	1.55	±14.0%
5500	35.6	4.96	4.44	4.64	4.90	0.40	1.70	±14.0%
5600	35.5	5.07	4.27	4.47	4.70	0.39	1.75	±14.0%
5750	35.4	5.22	4.54	4.76	4.98	0.41	1.75	±14.0%
5800	35.3	5.27	4.45	4.64	4.88	0.40	1.78	±14.0%

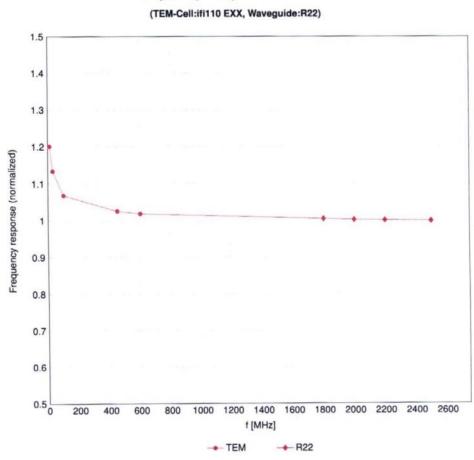
^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. The probes are calibrated using tissue simulating liquids (TSL) that deviate for *e* and *σ* by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0,7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3846_May23

Parameters of Probe: EX3DV4 - SN:3846

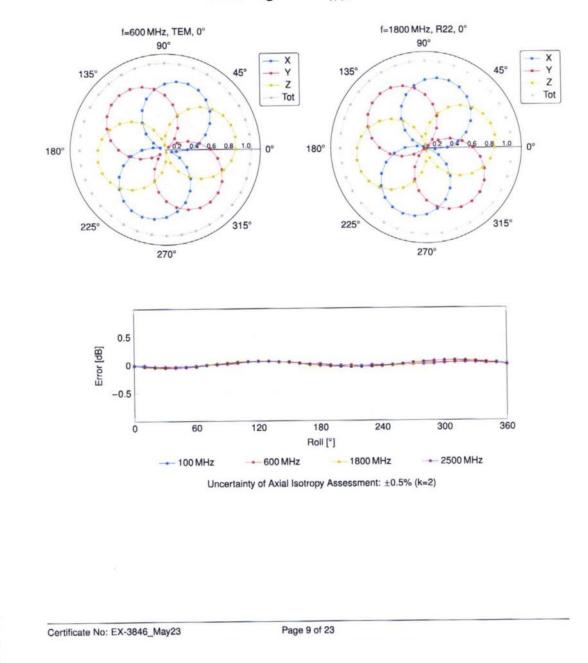
Calibration Parameter Determined in Head Tissue Simulating Media

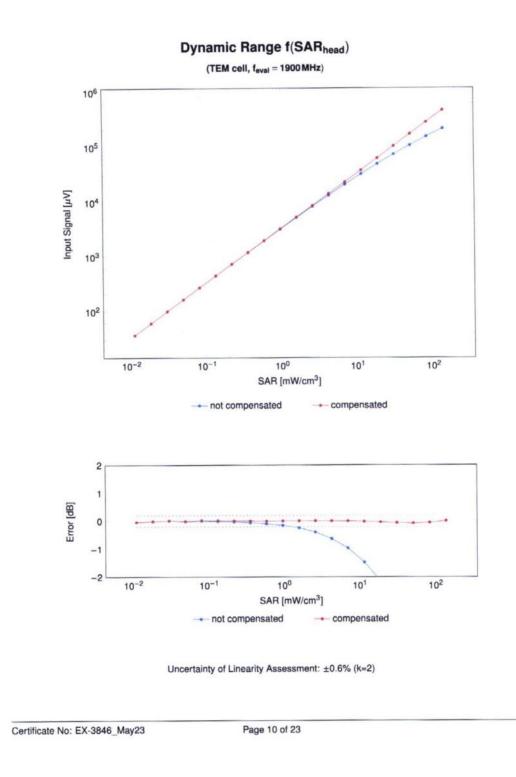

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.15	5.59	5.71	0.20	2.00	±18.6%
7000	33.9	6.65	5.39	5.83	5.88	0.20	2.00	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for e and σ by less than $\pm10\%$ from the target values (typically better than $\pm6\%$) and are valid for TSL with deviations of up to $\pm10\%$.

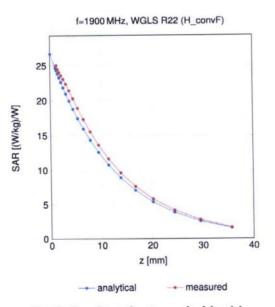
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3846_May23

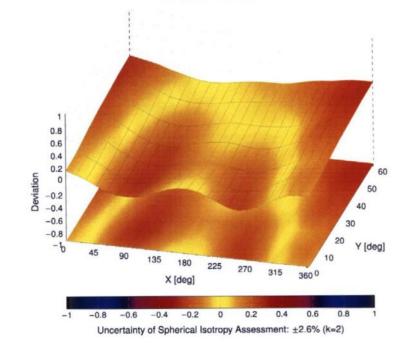

Page 7 of 23


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)


Page 8 of 23

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ , θ), f = 900 MHz

Certificate No: EX-3846_May23

Page 11 of 23

May 31, 2023

EX3DV4 - SN:3846

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0		CW	CW	0.00	±4.7
0010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
0011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
0012	CAB	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
0013	CAB		GSM	9.39	±9.6
0021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.57	±9.6
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	6.56	±9.6
0024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	12.62	±9.6
0025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	9.55	±9.6
0026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	4.80	±9.6
0027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)		3.55	±9.6
0028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	7.78	±9.6
0029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM		-
0030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
0031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
0032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
0033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
0034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
0035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
		CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10039	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10042	CAB		AMPS	0.00	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	DECT	13.80	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	10.79	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	-	11.01	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA		-
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.0
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.
	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.0
10068	-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 46 Mbps)	WLAN	10.56	±9.0
10069	CAD	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.
10071	CAB		WLAN	9.62	±9.
10072		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.94	±9.
10073	-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	10.30	±9.
10074		IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.
10075	-				±9.
10076	-		WLAN	10.94	
10077	CAB		WLAN	11.00	±9.
10081	CAB		CDMA2000	3.97	±9.
10082	CAB		AMPS	4.77	±9.
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.
10097	_	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.
10100		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9
10101	-		LTE-FDD	6.42	±9.
10102	_		LTE-FDD	6.60	±9.
10102	-		LTE-TDD	9.29	±9.
10103	-		LTE-TDD	9.97	±9.
	-		LTE-TDD	10.01	±9.
10105			LTE-FDD	5.80	±9.
10108			LTE-FDD	6.43	±9
10109	-		LTE-FDD	5.75	±9
10110	_				
10111	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9

Certificate No: EX-3846_May23

Page 12 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
0113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
0114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
0115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
0116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
0117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
0118	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
0119		LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
0140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 10 QAM)	LTE-FDD	6.53	±9.6
0141	CAF	LTE-FDD (SC-FDMA, 100% RB, 19MHz, 04-04M)	LTE-FDD	5.73	±9.6
0142	CAF		LTE-FDD	6.35	±9.6
0143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.65	±9.6
0144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
0145	CAG		LTE-FDD	6.41	±9.6
0146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.72	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.42	±9.6
0149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.60	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)		9.28	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TOD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD		
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.
10160	-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
		LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.0
10162		LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.
10166	-		LTE-FDD	6.21	±9.
10167	-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.79	±9.
10168	-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	5.73	±9.
10169	-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	6.52	±9.
10170	-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.49	±9.
10171	-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)		9.21	±9.
10172	CAH		LTE-TDD		_
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.
10178		LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.
10179			LTE-FDD	6.50	±9.
10180			LTE-FDD	6.50	±9.
10181	-		LTE-FDD	5.72	±9.
10182	-		LTE-FDD	6.52	±9.
	-		LTE-FDD	6.50	±9
10183	-		LTE-FDD	5.73	±9
10184	-		LTE-FDD	6.51	±9
10185			LTE-FDD	6.50	±9
10186	-		LTE-FDD	5.73	±9
10187			LTE-FDD	6.52	±9
10188			LTE-FDD	6.50	19
10189					_
10193	-		WLAN	8.09	±9
10194			WLAN	8.12	±9
10195	5 CAD		WLAN	8.21	±9
10196	_		WLAN	8.10	±9
1019	7 CAD		WLAN	8.13	±9
1019	8 CAD	D IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9
1021	_	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9
1022	-		WLAN	8.13	±9
1022	-		WLAN	8.27	±9
1022			WLAN	8.06	±9
1022	-		WLAN	8.48	±9
	4 CAE		WLAN	8.08	±\$

Certificate No: EX-3846_May23

Page 13 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
0226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
0227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
0228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
0229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
0229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
		LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
0231	CAE		LTE-TDD	9.48	±9.6
0232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	10.25	±9.6
0233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	9.21	±9.6
0234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TOD	9.48	±9.6
0235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	10.25	±9.6
0236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)		9.21	±9.6
0237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD		-
0238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
0239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
0240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
0241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
0242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
0243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
0244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
0245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6
0246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6
0247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6
0248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6
0249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
	_	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
10252	CAH		LTE-TDD	9.90	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	10.14	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)			-
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.
	CAG		LTE-TDD	10.13	±9.
10269	-	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	9.58	±9.0
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	WCDMA	4.87	±9.
10274		UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)		4.87	_
10275	-	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA		±9.
10277	-	PHS (QPSK)	PHS	11.81	±9.
10278	-	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.
10279	-		PHS	12.18	±9.
10290		CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.
10291		CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.
10298	-	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.
10299		LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.
10300	-		LTE-FDD	6.60	±9.
10300	_		WIMAX	12.03	±9.
10301	_		WIMAX	12.57	±9.
	-		WIMAX	12.52	±9.
10303	_		WIMAX	12.52	±9.
10304	AAA			11.86	±9
10305	AAA	IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)	WIMAX		

Certificate No: EX-3846_May23

Page 14 of 23

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0307	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
0308	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
0309	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	±9.6
0310	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	14.57	±9.6
0311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
0313	AAA	IDEN 1:3	IDEN	10.51	±9.6
0314	AAA	IDEN 1:6	IDEN	13.48	±9.6
0315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
0316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
0317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
			Generic	5.10	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.22	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	6.27	±9.6
10396	AAA	64-QAM Waveform, 100 kHz			-
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WIFI 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10431	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
	-			8.34	-
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.60	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA		±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6
10449	-	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	-	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456		IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10457	AAB	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458		CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA.	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10466	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10467		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10468	-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10469	-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10470	-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

Certificate No: EX-3846_May23

Page 15 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
0473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
0474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
0475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
0477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
0478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
0479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
04/9	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
0481	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
0483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 10-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
0484	AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
0485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 16-QAM, UL Subirame=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
0486	AAG		LTE-TDD	8.60	±9.6
0487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL SubIrame=2,3,4,7,8,9)	LTE-TDD	7,70	±9.6
0488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
0489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.54	±9.6
0490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)		7.74	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD		-
0492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10502		LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subfame=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10504	AAG		LTE-TDD	8.54	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		8.55	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD		-
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG		LTE-TDD	7.74	±9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.
10518		IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519		IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.0
10520	-		WLAN	8.12	±9.
10521	-		WLAN	7.97	±9,
10522			WLAN	8.45	±9.
10523	-		WLAN	8.08	±9.
10523	-		WLAN	8.27	±9.
10524			WLAN	8.36	±9.
-			WLAN	8.42	±9.
10526	-		WLAN	8.21	±9.
10527	-		WLAN	8.36	±9.
10528	_		WLAN	8.36	±9.
10529			WLAN	8.43	±9.
10531			and the second se		
10532	-		WLAN	8.29	±9.
10533	_		WLAN	8.38	±9.
10534			WLAN	8.45	±9.
10535			WLAN	8.45	±9.
10536	-		WLAN	8.32	±9.
10537	_		WLAN	8.44	±9,
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.
10540	AAC	IEEE 802.11ac WIFI (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.

Certificate No: EX-3846_May23

Page 16 of 23

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = :
0541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
0542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
		IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
0543	AAC		WLAN	8.47	±9.6
0544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.55	±9.6
0545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	-	8.35	±9.6
0546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN		
0547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
0548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
0550	AAC	IEEE 802.11ac WIFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
0551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
0552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10556		IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10557	AAD		WLAN	8.61	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.73	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)		8.56	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN		
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10569		IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 44 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
10570	AAA		WLAN	1.99	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)		1.98	
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN		±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10584	AAC		WLAN	8.70	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)			-
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
10592	-	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593		IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594		IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.
10595	-	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.
	1.1.0	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.
10596	-	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.72	±9.
10597	_	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.0
10598	_				_
10599		IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.0
10600	_	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.0
10601	-	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.
10602	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.
10603	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.
10604	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.
10605	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.
10606	-	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.
10607	-		WLAN	8.64	±9.
10001		IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±9.

Certificate No: EX-3846_May23

Page 17 of 23

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0609	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
0610	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
0611	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
0612	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
0613	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
0614	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
0615		IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
0616	AAC	IEEE 802.11ac WIFI (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
0617	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.58	±9.6
0618	AAC	IEEE 802.11ac WIFI (40 MHz, MCS2, 90pc doty cycle) IEEE 802.11ac WIFI (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
0619	AAC		WLAN	8.87	±9.6
0620	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.77	±9.6
0621	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.68	±9.6
0622	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.82	±9.6
0623	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.96	±9.6
0624	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)			-
0625	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
0626	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
0627	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
0628	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
0629	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
10631	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
10632	AAC	IEEE 802.11ac WIFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10633	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
10634	AAC	IEEE 802.11ac WIFI (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
10636	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8,79	±9.6
10638	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	-	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10642		IEEE 802.11ac WiFi (160 MHz, MCS0, 50c duty cycle)	WLAN	8.89	±9.6
		IEEE 802.11ac WiFi (160 MHz, MCS7, 50pc duty cycle)	WLAN	9.05	±9.6
10644	-		WLAN	9.11	±9.6
10645		IEEE 802.11ac WiFI (160 MHz, MCS9, 90pc duty cycle) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2.7)	LTE-TDD	11.96	±9.6
10646	-		LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	CDMA2000	3.45	±9.6
10648	-	CDMA2000 (1x Advanced)			-
10652	-	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	-	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.
10662		Pulse Waveform (200Hz, 80%)	Test	0.97	±9.
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672		IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673		IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.
10674	_	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.
10675		IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.
10676	_	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.
10677	-	IEEE 802.11ax (20 MHz, MCSG, 90pc duty cycle)	WLAN	8.73	±9.0
10678	-	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.
10679	-	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.
	-	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.
10680			WLAN	8.62	±9.
10681		IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)			
10682	_	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.
10683		IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.
10684		IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.
10685			WLAN	8.33	±9.
10686	S AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.

Certificate No: EX-3846_May23

Page 18 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6
0688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
0689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6
0690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
0691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
0692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS3, 350: 0019 (3016)	WLAN	8.25	±9.6
0693		IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.57	±9.6
0694	AAC	IEEE 802.11ax (20 MHz, MCS) 1, 590 duty cycle)	WLAN	8.78	±9.6
0695	AAC		WLAN	8.91	±9.6
0696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.61	±9.6
0697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.89	±9.6
0698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.82	±9.6
0699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.73	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.86	±9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)			
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6
10703	AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.70	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
	AAC		WLAN	8.74	±9.6
10725	-	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.66	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)			+
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.
10741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.
10743	-	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.0
10745	1.	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.0
10746	-	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.
10740	-	IEEE 802.11ax (160 MHz, MCS3, sopc duty cycle)	WLAN	9.04	±9.
10748	-	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.0
	-	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.0
		IEEE OVE. Hax (100 MINE, MOSO, SOPE duty cycle)	VIL/IN	0.50	
10749	-	IEEE 002 11mg (160 MHz MCS7 00cc duty cucic)	JA/I ANI	9.70	101
	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle)	WLAN WLAN	8.79	±9.0 ±9.0

Certificate No: EX-3846_May23

Page 19 of 23

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6
0754	AAC	IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
0755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
0756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
0757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
0758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
		IEEE 802.11ax (160 MHz, MCS3, 39pc duty cycle)	WLAN	8.58	±9.6
759	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
0760	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
0761	AAC		WLAN	8.49	±9.6
0762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.53	±9.6
0763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.54	±9.6
0764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
0765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.51	±9.6
0766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	5G NR FR1 TDD	7.99	±9.6
0767	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
0768	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
0769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
0770	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)		8.02	±9.6
0771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		-
0772	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
0773	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
0774	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
0775	AAD	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
0776	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
0777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
0778	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
0779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
0780	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
0781	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
0782	AAD	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.0
0783	AAE	5G NB (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.
0784	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.
0785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	B.40	±9.
0786	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.
0787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.
10788	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.
10789	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.
10790	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.
10791	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.
10792	-	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.
10793	-	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.
10794	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.
		5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.
10795		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSN, 30 KHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	-	±9.
10796			5G NR FR1 TDD		±9.
10797	_	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.
10798	_	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	-	±9.
10799		5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.
10801	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		19.
10802	_	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)		-	
10803	-	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	-	±9. ±9.
10805		5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		
10806		5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)			±9.
10809	-	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.
10810	-	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	-	±9.
10812	-	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9
10817	-	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9
10818	_	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	_	±9.
10819	AAD		5G NR FR1 TDD		±9.
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9
10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9
10823	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9
10824	-		5G NR FR1 TDD	8.39	±9
10825	-		5G NR FR1 TDD	8.41	±9
10827	-		5G NR FR1 TDD	8.42	±9
		5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9

Certificate No: EX-3846_May23

Page 20 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0829	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.40	±9.6
0830	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
0831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.73	±9.6
0832	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	±9.6
0833	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
0834	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
0835	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 KHz)	5G NR FR1 TDD	7.70	±9.6
	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
0836			5G NR FR1 TDD	7.68	±9.6
0837	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
0839	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
0840	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
0841	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)		8.49	±9.6
0843	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD 5G NR FR1 TDD		-
0844	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)		8.34	±9.6
0846	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0854	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
0855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
0856	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
0857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
0858	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
0859	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
0860	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0861	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
0863	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0864	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
0865	AAD	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
0866	AAD	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
0868	AAD	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
			5G NR FR2 TDD	5.75	±9.6
0869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
0870	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)		5.86	±9.6
0871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD		
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
0873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
0874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.12	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.57	±9.6
10884	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.53	±9.6
10885	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10886	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.35	±9.6
10889	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 160AM, 120 KHz)	5G NR FR2 TDD	8.02	19.6
		5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.40	±9.6
10890	AAE		5G NR FR2 TDD	8.13	-
10891	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)		-	±9.6
10892	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898			5G NR FR1 TDD	5.67	±9.6
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAB	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAB	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAB	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAB	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10905	AAB	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906	AAB	5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10907	AAC	5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAB	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6
	- mmD	ad the last taron and, ad a national tarine, an and a dealer	Jummentiou	0.00	13.0

Certificate No: EX-3846_May23

Page 21 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
0911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
0912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
0915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
0916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
0917		5G NR (DFT-s-OFDM, 100% RB, 50MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
0918	AAC		5G NR FR1 TDD	5.86	±9.6
0919	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
0920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
0922	AAB		5G NR FR1 TDD	5.84	±9.6
0923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
0925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)			
0926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
0927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
0928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
0929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
0930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
0931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
0936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
0938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
0940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
0941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10945	AAC	5G NR (DFTs-OFDM, 100% RB, 15MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.83	±9.6
	AAC		5G NR FR1 FDD	5.87	±9.6
10947	1 4 1 4	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)			±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.0
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965		5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.
10966	-	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.
10967	-	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.
10968		5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD		±9.
10972	-	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	-	±9.6
10973		5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	-	±9.0
10974	_	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	_	±9.0
10978	-	ULLA BDR	ULLA	1.16	±9.0
	-	ULLA HDR4	ULLA	8.58	±9.0
10979	-		ULLA	10.32	19.
10980	-	ULLA HDR8	ULLA	3.19	-
10981	AAA	ULLA HDRp4	ULLA	3.19	±9.

Certificate No: EX-3846_May23

Page 22 of 23

May 31, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAA	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAA	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAA	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAA	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAA	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAA	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAA	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAA	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAA	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAA	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAA	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAA	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAA	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAA	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 23 of 23

ANNEX H DIPOLE CALIBRATION CERTIFICATE

750 MHz Dipole Calibration Certificate

Add: No.52 HuaYuanBei Roa				
Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn	http://www.caict			
Client Potin (Beljing) Technolo	gy Co.,Ltd Certificate No:	J23Z60263	
CALIBRATION CE	ERTIFICAT	E		
Object	D750V3	3 - SN: 1196		
Calibration Procedure(s)		000.04		
	FF-Z11-003-01 Calibration Procedures for dipole validation kits			
Collibration data:				
Calibration date:	May 24	May 24, 2023		
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	conducted in t	he closed laboratory facility: environmen or calibration)	t temperature (22±3)℃ and	
All calibrations have been numidity<70%. Calibration Equipment used	conducted in t		t temperature (22±3)°C and Scheduled Calibration	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	conducted in t	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561)	Scheduled Calibration Sep-23	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	conducted in t (M&TE critical for ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561)	Scheduled Calibration Sep-23 Sep-23	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical for ID # 106277 104291 SN 3617	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Scheduled Calibration Sep-23 Sep-23 Mar-24	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	conducted in t (M&TE critical for ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561)	Scheduled Calibration Sep-23 Sep-23 Mar-24	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical for ID # 106277 104291 SN 3617	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Scheduled Calibration Sep-23 Sep-23 Mar-24	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	conducted in ti (M&TE critical fo ID # 106277 104291 SN 3617 SN 1556	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	conducted in t (M&TE critical for 106277 104291 SN 3617 SN 1556 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical for 106277 104291 SN 3617 SN 1556 ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107)	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	conducted in t (M&TE critical for 106277 104291 SN 3617 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) 10-Jan-23 (CTTL, No. J23X00104)	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24 Jan-24	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in the conduc	Cal Date (Calibrated by, Certificate No.) 22-Sep-22 (CTTL, No.J22X09561) 22-Sep-22 (CTTL, No.J22X09561) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034) Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) 10-Jan-23 (CTTL, No. J23X00104) Function	Scheduled Calibration Sep-23 Sep-23 Mar-24 Jan-24 Scheduled Calibration Jan-24 Jan-24	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 6