

FCC PART 15C TEST REPORT

BLUETOOTH LOW ENERGY (BLE) PART

No. 23T04Z80940-12

for

TCL Communication Ltd.

Tablet PC

Model Name: 9199S

FCC ID: 2ACCJB217

with

Hardware Version: 05

Software Version: 4DS9

Issued Date: 2024-2-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
23T04Z80940-12	Rev.0	1st edition	2024-2-26

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TE	ST LABORATORY	. 5
1	.1.	INTRODUCTION & ACCREDITATION	. 5
1	.2.	TESTING LOCATION	. 5
1	.3.	Testing Environment	. 6
1	.4.	PROJECT DATA	. 6
1	.5.	SIGNATURE	. 6
2.	CL	IENT INFORMATION	.7
	2.1.	Applicant Information	
	 	APPLICANT INFORMATION	
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 8
3	.1.	About EUT	. 8
3	.2.	INTERNAL IDENTIFICATION OF EUT	
3	.3.	INTERNAL IDENTIFICATION OF AE	
3	.4.	NORMAL ACCESSORY SETTING	
3	.5.	GENERAL DESCRIPTION	. 8
4.	RE	FERENCE DOCUMENTS	. 9
4	.1.	DOCUMENTS SUPPLIED BY APPLICANT	. 9
4	.2.	REFERENCE DOCUMENTS FOR TESTING	. 9
5.	те	ST RESULTS	10
	5.1.	SUMMARY OF EUT MODE	
-	5.2.	SUMMARY OF TEST RESULTS	
-	5.3.	STATEMENTS	
-	-	ST FACILITIES UTILIZED	
6. -			
7.	MĿ	CASUREMENT UNCERTAINTY	12
7	.1.	PEAK OUTPUT POWER - CONDUCTED	12
7	.2.	FREQUENCY BAND EDGES - CONDUCTED	
7	.3.	TRANSMITTER SPURIOUS EMISSION - CONDUCTED	
	.4.	RADIATED UNWANTED EMISSION	
7	.5.	6DB BANDWIDTH	
7	.6.	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
7	.7.	AC POWERLINE CONDUCTED EMISSION	13
AN	NEX	A: EUT PARAMETERS	14
AN	NEX	B: DETAILED TEST RESULTS	15
E	3.1. N	1easurement Method	15
E	3.2. P	EAK OUTPUT POWER	16
E	3 .3. F	REQUENCY BAND EDGES - CONDUCTED	18
~		which the reserved by CTTI Page 2 of A	6

	B.4. TRANSMITTER SPURIOUS EMISSION - CONDUCTED	. 20
	B.5. RADIATED UNWANTED EMISSION	. 29
	B.6. 6DB BANDWIDTH	
	B.7. MAXIMUM POWER SPECTRAL DENSITY LEVEL	. 38
	B.8. AC POWERLINE CONDUCTED EMISSION	. 41
	B.9. ANTENNA REQUIREMENT.	. 45
A	ANNEX C: ACCREDITATION CERTIFICATE	. 46

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website.

1.2. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address:

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China100191

Radiated testing Location: CTTL(BDA)

Address:No.18A, Kangding Street, Beijing Economic-TechnologyDevelopment Area, Beijing, 100176, P. R. China

1.3. Testing Environment

Normal Temperature:	20-27 ℃
Relative Humidity:	20-50%

1.4. Project data

Testing Start Date:	2023-12-26
Testing End Date:	2024-2-26

1.5. Signature

>

Wu Le (Prepared this test report)

8-

Sun Zhenyu (Reviewed this test report)

古门晚

Hu Xiaoyu (Approved this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	TCL Communication Ltd.
Address /Post:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Address /Post.	Park, Shatin, NT, Hong Kong
City:	Hong Kong
Postal Code:	1
Country:	China
Telephone:	+86 755 3661 1621
Fax:	+86 755 3661 2000-81722

2.2. Manufacturer Information

Company Name:	TCL Communication Ltd.
Address /Dest	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Address /Post:	Park, Shatin, NT, Hong Kong
City:	Hong Kong
Postal Code:	1
Country:	China
Telephone:	+86 755 3661 1621
Fax:	+86 755 3661 2000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Tablet PC
Model Name	9199S
FCC ID	2ACCJB217
Frequency Band	ISM 2400MHz~2483.5MHz
Type of Modulation(LE mode)	GFSK (Bluetooth Low Energy)
Number of Channels(LE mode)	40
Power Supply	3.85V DC by Battery
Antenna gain	-0.8dBi

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT85a	354709280002054	05	4DS9	2023-12-26
UT47a	354709280001031	05	4DS9	2023-12-26

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Note	Manufacturer
AE1	Battery	TLp058DA	ТМВ
AE2	Charger	/	/
AE3	USB cable	/	/

*AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery is used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of Tablet PC with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfill the test. Samples undergoing test were selected by the Client.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

U	0	
Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general	2023
FUC Pallis	requirements;	2023
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz.	
ANSI C63.10	American National Standard of Procedures for	luna 2012
ANSI 603.10	Compliance Testing of Unlicensed Wireless Devices	June,2013

5. Test Results

5.1. Summary of EUT Mode

Two modes are provided:

Mode	Conditions
Mode A	1Mbps
Mode B	2Mbps

*For the test results, the EUT had been tested all conditions. But only the worst case(Mode A) was shown in test report except the " Peak Output Power " test was shown all conditions.

5.2. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power	15.247 (b)(1)	Р
Frequency Band Edges- Conducted	15.247 (d)	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	Р
Radiated Unwanted Emission	15.247, 15.205, 15.209	Р
6dB Bandwidth	15.247 (a)(2)	Р
Maximum Power Spectral Density Level	15.247(e)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р
Antenna Requirement	15.203	Р

Please refer to **ANNEX A** for detail.

The measurement is made according to ANSI C63.10.

5.3. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
		Number		Period	Due date	
1	Vector Signal Analyzer	FSQ26	100024	R&S	1 year	2024-03-09
2	Test Receiver	ESCI	100766	R&S	1 year	2024-03-30
3	LISN	ENV216	101459	R&S	1 year	2024-03-29
4	Shielding Room	S81	1	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Test Receiver	ESW44	103015	R&S	1 year	2025-01-18
2	EMI Antenna	VULB9163	9163-235	Schwarzbeck	1 year	2024-02-28
3	EMI Antenna	3117	00139065	ETS	1 year	2024-04-25

Test Item	Software	Manufacturer
Conducted emission	EMC32 V8.53.0	R&S
Radiated emission	EMC32 V10.60.20	R&S

7. Measurement Uncertainty

7.1. Peak Output Power - Conducted

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.66dB
-------------------------------	--------

7.2. Frequency Band Edges - Conducted

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.66dB
-------------------------------	--------

7.3. Transmitter Spurious Emission - Conducted

Measurement Uncertainty:

Frequency Range	Uncertainty (k=2)
30 MHz ~ 8 GHz	1.22dB
8 GHz ~ 12.75 GHz	1.51dB
12.7GHz ~ 26 GHz	1.51dB

7.4. Radiated Unwanted Emission

Measurement Uncertainty:

Frequency Range	Uncertainty(dBm) (k=2)
9kHz-30MHz	/
30MHz ≤ f ≤ 1GHz	5.29dB
1GHz ≤ f ≤18GHz	5.62dB
18GHz ≤ f ≤40GHz	3.52dB

7.5. 6dB Bandwidth

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
-------------------------------	----------

7.6. Maximum Power Spectral Density Level

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.66dB
-------------------------------	--------

7.7. AC Powerline Conducted Emission

Measurement Uncertainty:

Measurement Uncertainty (k=2)

3.10dB

ANNEX A: EUT parameters

Disclaimer: The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.

ANNEX B: Detailed Test Results

B.1. Measurement Method

B.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

B.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The EUT was placed on a non-conductive table with 80cm above the ground plane for measurement below 1GHz and 1.5m above the ground plane for measurement above 1GHz. The measurement antenna was placed at a distance of 3 meters from the EUT. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated from 0° to 360° and the measurement antenna is moved from 1m to 4m to get the maximization result. The maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

B.2. Peak Output Power

B.2.1. Peak Output Power - Conducted Method of Measurement: See ANSI C63.10-clause 11.9.1.1

- a) Set the RBW = 3 MHz.
- b) Set VBW = 10 MHz.
- c) Set span = 10 MHz.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(3)	< 30

Measurement Results:

For **GFSK**

Sample Rate	Channel No.	Frequency (MHz)	Peak Conducted Output Power (dBm)	Conclusion
	0	2402	-4.24	Р
1Mbps	19	2440	-3.46	Р
	39	2480	-3.97	Р
	1	2404	-4.49	Р
2Mbps	19	2440	-3.76	Р
	38	2478	-3.71	Р

Conclusion: PASS

B.2.2. E.I.R.P.

The radiated E.I.R.P. is listed below:

Antenna gain = -0.8dBi

For GFSK

Sample Rate	Channel No.	Frequency (MHz)	E.I.R.P. (dBm)	Conclusion
	0	2402	-5.04	Р
1Mbps	19	2440	-4.26	Р
	39	2480	-4.77	Р
2Mbaa	1	2404	-5.29	Р
2Mbps	19	2440	-4.56	Р

38 2478	-4.51	Р
---------	-------	---

Note: E.I.R.P. are calculated with the antenna gain.

Conclusion: PASS

B.3. Frequency Band Edges - Conducted

Method of Measurement: See ANSI C63.10-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

- a) Set Span = 8MHz
- b) Sweep Time: Auto
- c) Set the RBW= 100 kHz
- c) Set the VBW= 300 kHz
- d) Detector: Peak
- e) Trace: Max hold

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)	
FCC 47 CFR Part 15.247 (d)	< -20	

Measurement Result:

For GFSK

Channel No.	Frequency (MHz)	Hopping	Band Edge Power (dBc)		Conclusion
0	2402	Hopping OFF	Fig.1	-50.17	Р
39	2480	Hopping OFF	Fig.2	-50.63	Р

Conclusion: PASS

Test graphs as below

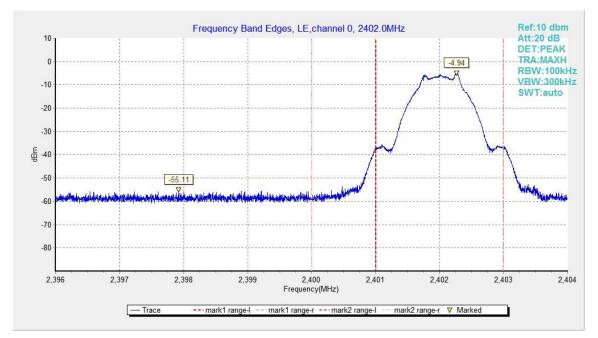


Fig.1. Frequency Band Edges: GFSK, 2402 MHz, Hopping Off

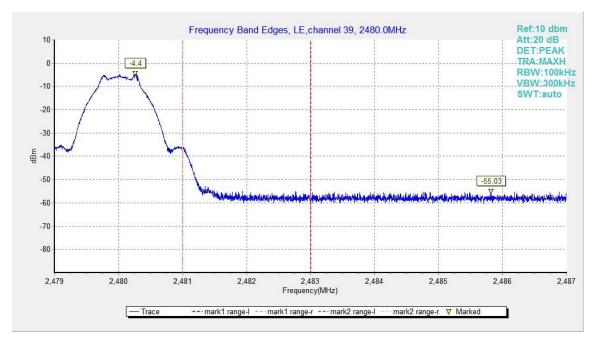


Fig.2. Frequency Band Edges: GFSK, 2480 MHz, Hopping Off

B.4. Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 11.11.2 and clause 11.11.3 Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to \geq 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8. Use the peak marker function to determine the maximum PSD level. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit		
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz		
	bandwidth		

Measurement Results:

Channel No.	Frequency (MHz)	Frequency Range	Test Results	Conclusion
		Center Frequency	Fig.3	Р
		30 MHz ~ 1 GHz	Fig.4	Р
0	2402	1 GHz ~ 3 GHz	Fig.5	Р
		3 GHz ~ 10 GHz	Fig.6	Р
		10GHz ~ 26 GHz	Fig.7	Р
	2440	Center Frequency	Fig.8	Р
		30 MHz ~ 1 GHz	Fig.9	Р
19		1 GHz ~ 3 GHz	Fig.10	Р
		3 GHz ~ 10 GHz	Fig.11	Р
		10GHz ~ 26 GHz	Fig.12	Р
		Center Frequency	Fig.13	Р
39	2480	30 MHz ~ 1 GHz	Fig.14	Р
		1 GHz ~ 3GHz	Fig.15	Р
		3 GHz ~ 10 GHz	Fig.16	Р
		10 GHz ~ 26 GHz	Fig.17	Р

Conclusion: PASS

Test graphs as below

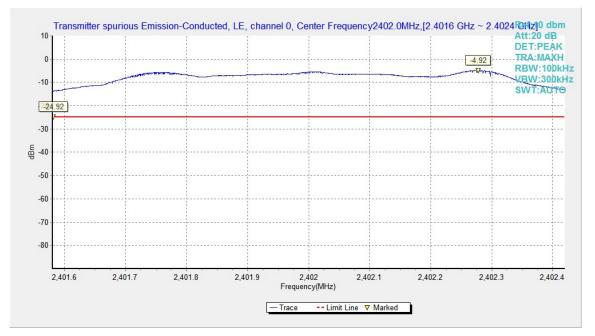


Fig.3. Transmitter Spurious Emission - Conducted: GFSK,2402MHz

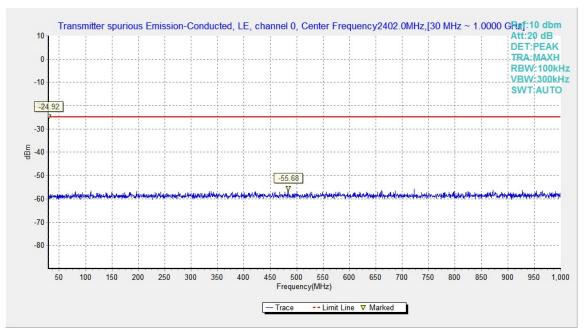


Fig.4. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz, 30MHz - 1GHz

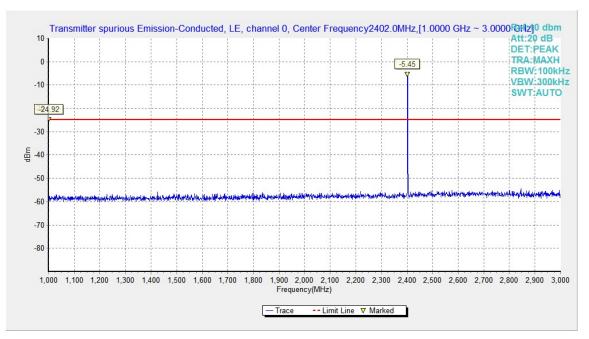


Fig.5. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,1GHz - 3GHz

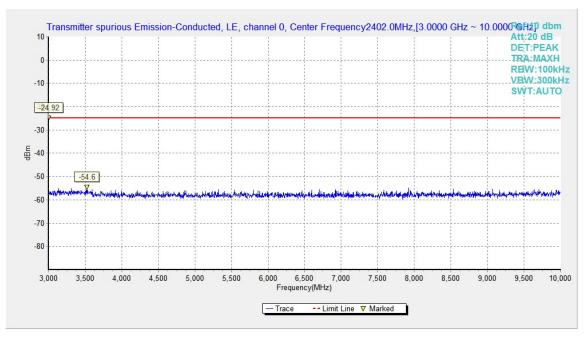


Fig.6. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz, 3GHz - 10GHz

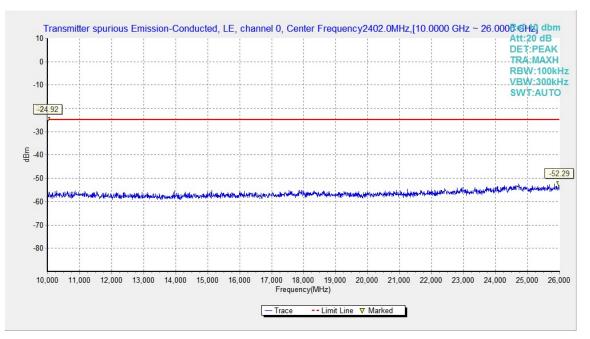


Fig.7. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz, 10GHz - 26GHz

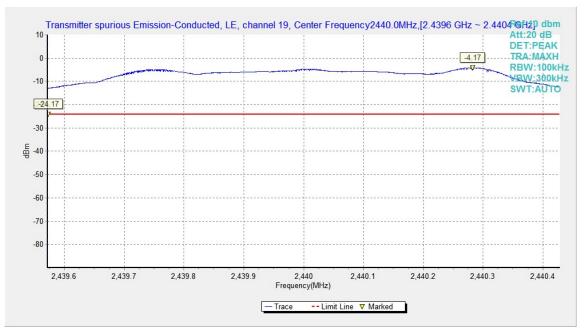


Fig.8. Transmitter Spurious Emission - Conducted: GFSK, 2440MHz

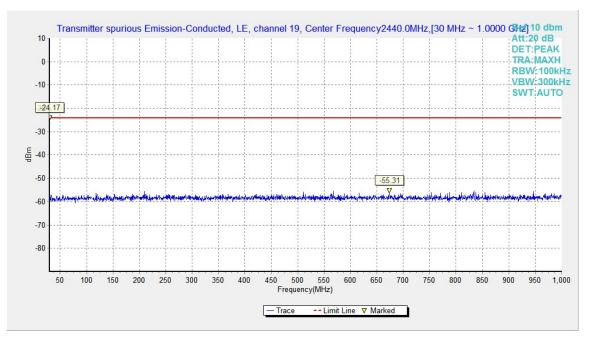


Fig.9. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 30MHz - 1GHz

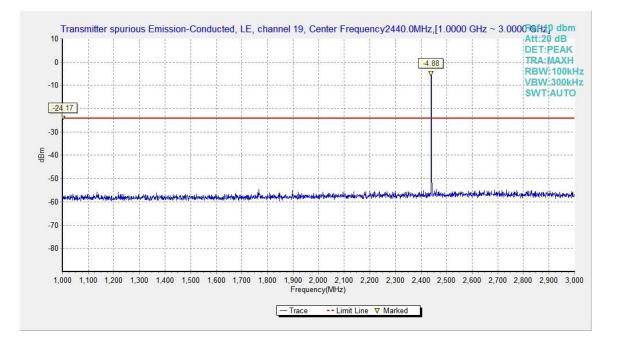


Fig.10. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 1GHz – 3GHz

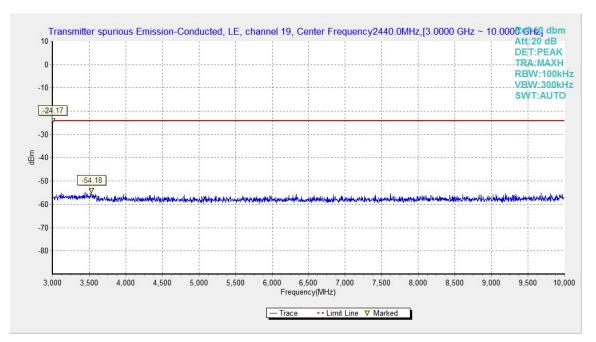


Fig.11. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 3GHz - 10GHz

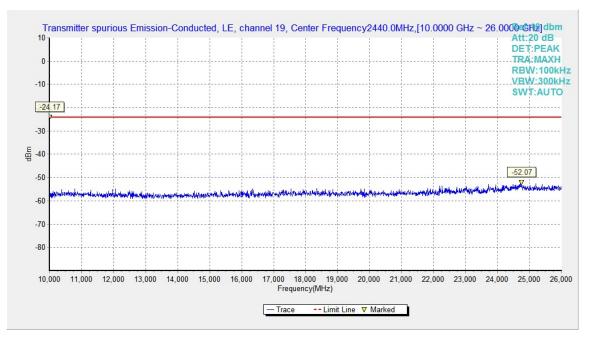


Fig.12. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 10GHz - 26GHz

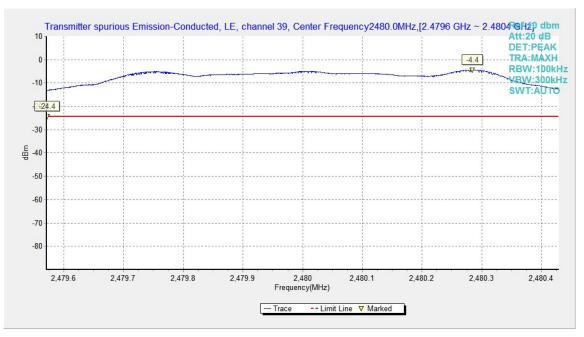


Fig.13. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz

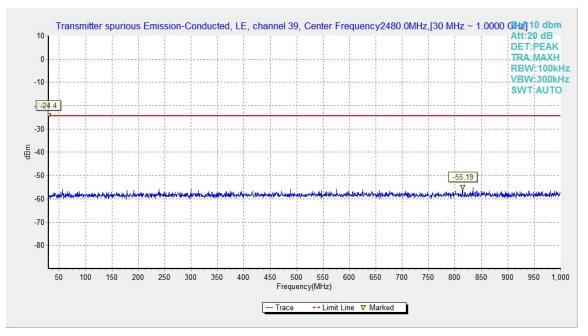


Fig.14. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 30MHz - 1GHz

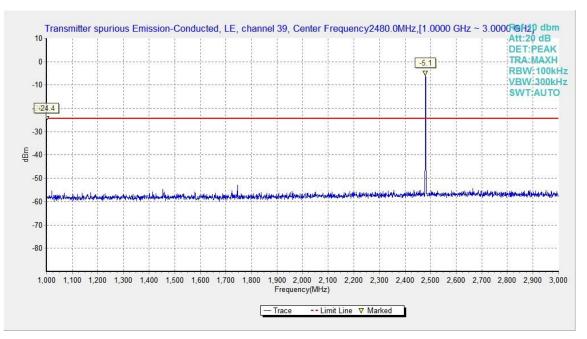


Fig.15. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 1GHz - 3GHz

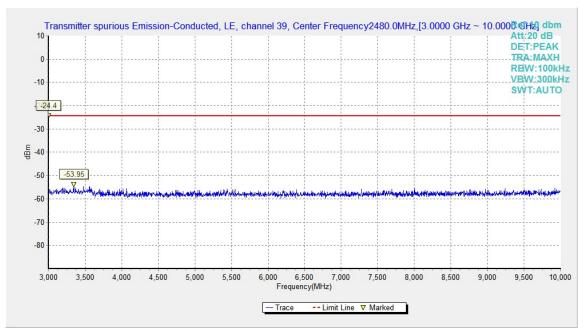


Fig.16. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 3GHz - 10GHz

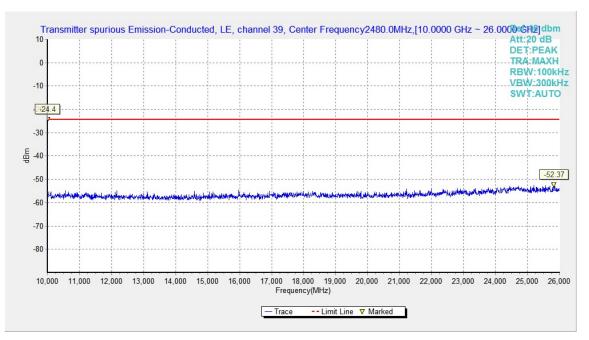


Fig.17. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 10GHz - 26GHz

B.5. Radiated Unwanted Emission

<u>Limits</u>

Measurement Limit

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band

Frequency (MHz)	Field strength(µV/m)	Measurement distance
r requercy (initz)		(m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30

Frequency of emission	Field strength	Field strength	Measurement distance
(MHz)	(uV/m)	(dBuV/m)	(m)
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Note: When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor.

Test setup

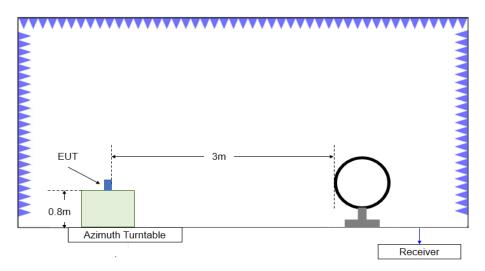
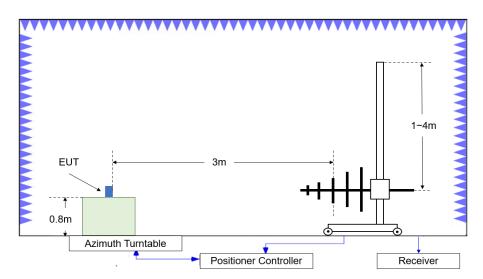



Figure B.5.1. Test Site Diagram (9kHz-30MHz)

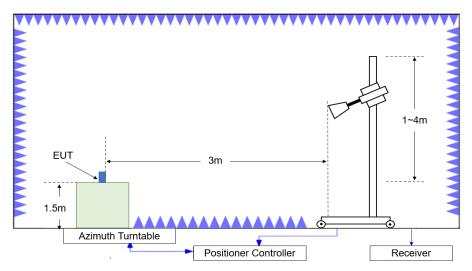


Figure B.5.3. Test Site Diagram (1GHz-40GHz)

Test Procedures

Radiated unwanted emissions from the EUT were measured according to ANSI C63.10-2013. Test setting

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)	
30-1000	100kHz/300kHz	5	
1000-3000	1MHz/3MHz	15	
3000-18000	1MHz/3MHz	40	
18000-26500	1MHz/3MHz	20	

Sample Calculation

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

©Copyright. All rights reserved by CTTL.

Test note

1. Investigation has been done on all modes and modulations/data rates. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

2. Spurious emissions for all channels were investigated and almost the same below 1GHz. According to FCC 47 CFR §15.31, emission levels are not report much lower than the limit by over 20dB

3. Measurement frequencies were performed from 9 kHz to the 10th harmonic of highest fundamental frequency or 40GHz, whichever is lower.

Test Result

EUT ID: UT85a

Average Measurement results GFSK 2402MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2353.600	41.82	5.50	27.61	8.72	54.00	12.18	V
2369.000	42.01	5.60	27.64	8.77	54.00	11.99	V
4804.000	28.17	-34.09	32.91	29.35	54.00	25.83	Н
7206.000	32.95	-32.32	37.50	27.77	54.00	21.05	V
9608.000	35.05	-30.30	38.00	27.35	54.00	18.95	V
12010.000	34.61	-30.30	38.69	26.22	54.00	19.39	V

GFSK 2440MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2373.200	42.03	5.62	27.65	8.77	54.00	11.97	V
2487.600	44.05	5.73	27.75	10.57	54.00	9.95	V
4882.000	28.74	-33.82	33.00	29.57	54.00	25.26	Н
7323.000	33.42	-32.20	37.60	28.02	54.00	20.58	Н
9764.000	34.32	-30.96	38.13	27.16	54.00	19.68	Н
12205.000	34.04	-30.63	38.69	25.97	54.00	19.96	V

GFSK 2480MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2493.400	44.14	5.74	27.77	10.62	54.00	9.86	V
2496.400	44.18	5.73	27.79	10.66	54.00	9.82	V
4960.000	28.38	-33.79	32.90	29.27	54.00	25.62	V
7440.000	33.16	-31.92	37.58	27.51	54.00	20.84	Н

©Copyright. All rights reserved by CTTL.

9920.000	32.61	-31.56	38.28	25.89	54.00	21.39	Н
12400.000	33.76	-30.29	38.60	25.45	54.00	20.24	V

Peak Measurement results

GFSK 2402MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2381.120	55.98	5.64	27.66	22.67	74.00	18.02	Н
2385.040	56.39	5.66	27.67	23.06	74.00	17.61	Н
4804.000	39.14	-34.09	32.91	40.32	74.00	34.86	Н
7206.000	44.81	-32.32	37.50	39.63	74.00	29.19	V
9608.000	46.79	-30.30	38.00	39.09	74.00	27.21	V
12010.000	45.68	-30.30	38.69	37.29	74.00	28.32	Н

GFSK 2440MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2434.800	55.65	5.73	27.63	22.29	74.00	18.35	V
2445.200	55.48	5.70	27.61	22.17	74.00	18.52	Н
4882.000	40.51	-33.82	33.00	41.33	74.00	33.49	Н
7323.000	45.10	-32.20	37.60	39.70	74.00	28.90	V
9764.000	45.81	-30.96	38.13	38.64	74.00	28.19	Н
12205.000	45.33	-30.63	38.69	37.26	74.00	28.67	Н

GFSK 2480MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2483.725	56.76	5.71	27.74	23.32	74.00	17.24	V
2483.875	56.00	5.71	27.74	22.55	74.00	18.00	V
4960.000	39.95	-33.79	32.90	40.85	74.00	34.05	Н
7440.000	46.11	-31.92	37.58	40.45	74.00	27.89	Н
9920.000	44.85	-31.56	38.28	38.13	74.00	29.15	V
12400.000	45.21	-30.29	38.60	36.90	74.00	28.79	V

Conclusion: PASS

Note: the spurious emission above 18G is noise only and did not show on the report.

Band edge compliance

Mode	Channel	Frequency Range	Test Results	Conclusion
CERK	0	2.31GHz ~2.43GHz	Fig.18	Р
GFSK	39	2.45GHz ~2.5GHz	Fig.19	Р

Conclusion: PASS Test graphs as below

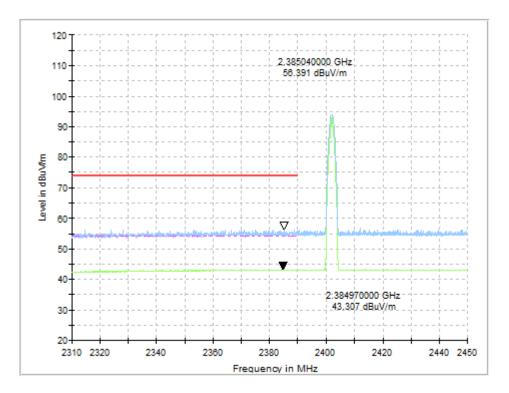


Fig.18. Frequency Band Edges: GFSK, 2402 MHz, Hopping Off, 2.31 GHz – 2.43GHz

Fig.19. Frequency Band Edges: GFSK, 2480 MHz, Hopping Off , 2.45 GHz - 2.50GHz

B.6. 6dB Bandwidth

Method of Measurement:

The measurement is made according to ANSI C63.10 clause 11.8.1

- 1.Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) = 300 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(2)	>= 500KHz

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	6dB Bandwidth (kHz)		Conclusion
0	2402	Fig.20	665.00	Р
19	2440	Fig.21	665.50	Р
39	2480	Fig.22	667.00	Р

Conclusion: PASS

Test graphs as below:

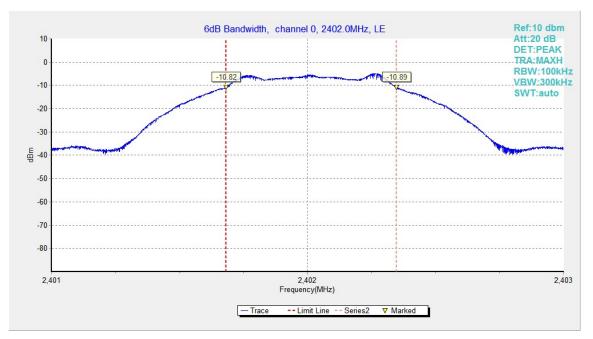


Fig.20. 6dB Bandwidth: GFSK, 2402 MHz

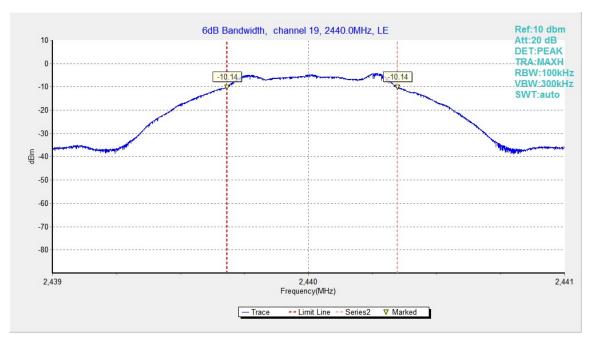


Fig.21. 6dB Bandwidth: GFSK, 2440 MHz

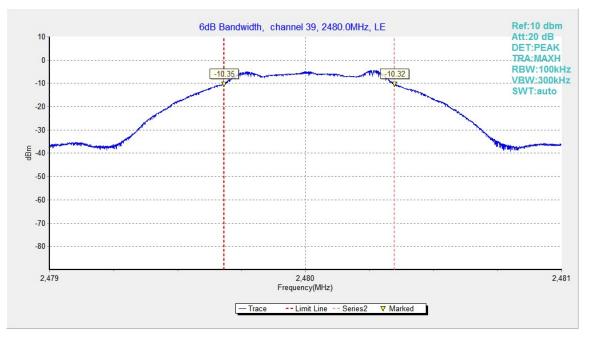


Fig.22. 6dB Bandwidth: GFSK, 2480 MHz

B.7. Maximum Power Spectral Density Level

Method of Measurement:

The measurement is made according to ANSI C63.10 clause 11.10.2

- 1. Set the RBW = 3 kHz.
- 2. Set the VBW = 10 kHz.
- 3. Set the span to 2 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(e)	<=8.0dBm/3kHz

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	Maximum Powe Level(d	Conclusion	
0	2402	Fig.23	-21.21	Р
19	2440	Fig.24	-20.39	Р
39	2480	Fig.25	-20.61	Р

Test graphs as below:

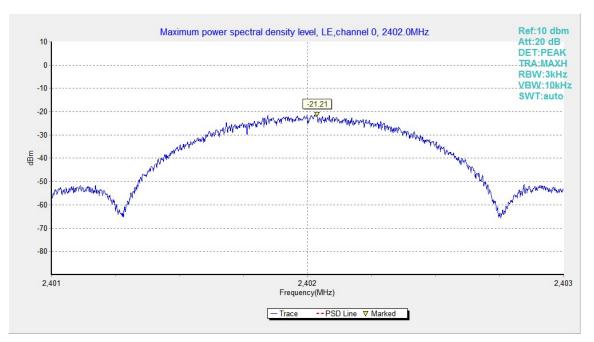


Fig.23. Maximum Power Spectral Density Level Function: GFSK, 2402 MHz

Fig.24. Maximum Power Spectral Density Level Function: GFSK, 2440 MHz

Fig.25. Maximum Power Spectral Density Level Function: GFSK, 2480 MHz

B.8. AC Powerline Conducted Emission

Summary

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section

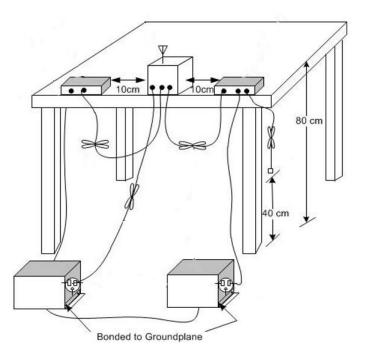
Method of Measurement:

See Clause 6.2 of ANSI C63.10 specifically.

See Clause 4 and Clause 5 of ANSI C63.10 generally.

The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector.

The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector.


The measurement bandwidth is:

Frequency of Emission (MHz)	RBW/IF bandwidth
0.15-30	9kHz

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Test setup

Measurement Result and limit:

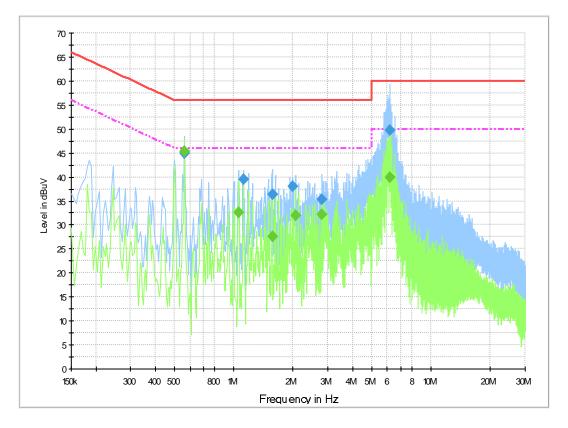
Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak	Result (dBμV) With charger						Conclusion
(MHz) Limit (dBµV)		bluetooth	Idle]				
0.15 to 0.5	66 to 56							
0.5 to 5	56	Fig.B.8.1	Fig. B.8.2	Р				
5 to 30	60							
NOTE. The limit decreases linearly with the lenerithm of the framework in the range 0.45 MI is to								

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Bluetooth (Average Limit)

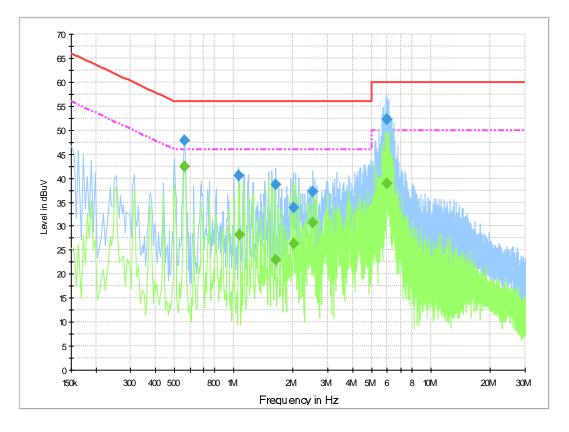
Eroquanay ranga Ayaraga Limit		Result									
Frequency range	Average Limit	With charger		With charger Conc		With charger 0	With charger Con		With charger		Conclusion
(MHz)	(dBµV)	bluetooth	Idle								
0.15 to 0.5	56 to 46										
0.5 to 5	46	Fig.B.8.1	Fig. B.8.2	Р							
5 to 30	50										


NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: Pass

Test graphs as below:

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.


Final Result 1 Frequency QuasiPeak Meas. Bandwidth Filter Line Corr. Margin Limit (dBµV) Time (kHz) (dB) (dB) (dBµV) (MHz) 0.559500 45.0 2000.0 9.000 Off Ν 19.6 11.0 56.0 1.122000 39.4 2000.0 9.000 19.7 16.6 56.0 Off L1 1.567500 36.3 2000.0 9.000 Off 19.7 19.7 56.0 L1 1.995000 38.0 2000.0 9.000 Off L1 19.7 18.0 56.0 2.805000 35.4 2000.0 9.000 Off Ν 19.7 20.6 56.0 6.171000 49.7 2000.0 9.000 Off L1 19.8 10.3 60.0

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
0.559500	45.4	2000.0	9.000	Off	L1	19.6	0.6	46.0
1.063500	32.6	2000.0	9.000	Off	L1	19.7	13.5	46.0
1.567500	27.7	2000.0	9.000	Off	L1	19.7	18.3	46.0
2.062500	32.0	2000.0	9.000	Off	L1	19.7	14.0	46.0
2.805000	32.2	2000.0	9.000	Off	L1	19.7	13.8	46.0
6.171000	39.8	2000.0	9.000	Off	Ν	19.8	10.2	50.0

Fig.B.8.2 AC Powerline Conducted Emission-Idle

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
0.559500	47.8	2000.0	9.000	Off	L1	19.6	8.2	56.0
1.059000	40.5	2000.0	9.000	Off	L1	19.7	15.5	56.0
1.630500	38.6	2000.0	9.000	Off	L1	19.7	17.4	56.0
2.004000	33.9	2000.0	9.000	Off	Ν	19.7	22.1	56.0
2.508000	37.2	2000.0	9.000	Off	L1	19.7	18.8	56.0
5.946000	52.3	2000.0	9.000	Off	L1	19.8	7.7	60.0

Final Result 1

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
0.564000	42.5	2000.0	9.000	Off	L1	19.6	3.5	46.0
1.068000	28.3	2000.0	9.000	Off	L1	19.7	17.7	46.0
1.630500	23.0	2000.0	9.000	Off	Ν	19.7	23.0	46.0
2.004000	26.3	2000.0	9.000	Off	Ν	19.7	19.7	46.0
2.508000	30.8	2000.0	9.000	Off	L1	19.7	15.2	46.0
5.946000	38.8	2000.0	9.000	Off	Ν	19.8	11.2	50.0

B.9. Antenna Requirement

The antenna of the device is permanently attached. There are no provisions for connection to an external antenna.

The unit complies with the requirement of FCC Part 15.203.

ANNEX C: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 26th day of June 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2024

or the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT