

SAR TEST REPORT

No. 24T04Z100346-001

For

TCL Communication Ltd.

Tablet PC

Model Name: 8493A

with

Hardware Version: 05

Software Version: AWW2

FCC ID: 2ACCJB207

Issued Date: 2024-03-05

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Issue Date	Description
24T04Z100346-001	Rev.0	2024-03-05	Initial creation of test report

TABLE OF CONTENT

1 TE	EST LABORATORY	5
1.1.	INTRODUCTION & ACCREDITATION	5
1.2.	TESTING LOCATION	5
1.3.	TESTING ENVIRONMENT	5
1.4.	PROJECT DATA	5
1.5.	SIGNATURE	5
2 S	2. TESTING LOCATION .3. TESTING ENVIRONMENT .4. PROJECT DATA .5. SIGNATURE STATEMENT OF COMPLIANCE CLIENT INFORMATION .3. 1 APPLICANT INFORMATION .3. 2 MANUFACTURER INFORMATION .3. 2 MANUFACTURER INFORMATION .4. 1 ABOUT EUT .4. 2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST .4. 3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST TEST METHODOLOGY .5. 1 APPLICABLE LIMIT REGULATIONS .5. 2 APPLICABLE MEASUREMENT STANDARDS SPECIFIC ABSORPTION RATE (SAR) .6. 1 INTRODUCTION. .6. 2 SAR DEFINITION TISSUE SIMULATING LIQUIDS .7. 1 TARGETS FOR TISSUE SIMULATING LIQUID .7. 2 DIELECTRIC PERFORMANCE SYSTEM VERIFICATION 8. 1 SYSTEM SETUP. 8. 2 SYSTEM VERIFICATION MEASUREMENT PROCEDURES 9. 1 TESTS TO BE PERFORMED 9. 2 GENERAL MEASUREMENT PROCEDURE. 9. 3 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR 9. 4 POWER DRIFT.	6
3.1	1 APPLICANT INFORMATION	7
3.2	2 Manufacturer Information	7
4 E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1	1 About EUT	8
5 TE	EST METHODOLOGY	g
9 M	EASUREMENT PROCEDURES	14
9.1	TESTS TO BE PERFORMED	14
10 (CONDUCTED OUTPUT POWER	18
11 <i>A</i>	STATEMENT OF COMPLIANCE	

11.1 Transmit Antenna Separation Distances	20
11.2 SAR MEASUREMENT POSITIONS	20
12 SAR TEST RESULT	21
13 SAR MEASUREMENT VARIABILITY	24
14 EVALUATION OF SIMULTANEOUS	25
14.1 Introduction	25
14.2 SIMULTANEOUS TRANSMISSION CAPABILITIES	26
14.3 SAR SIMULTANEOUS TRANSMISSION ANALYSIS	26
14.4 CONCLUSION	26
15 MEASUREMENT UNCERTAINTY	27
15.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)	27
15.2 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	28
16 MAIN TEST INSTRUMENTS	29
ANNEX A GRAPH RESULTS	30
ANNEX B SYSTEM VERIFICATION RESULTS	34
ANNEX C SAR MEASUREMENT SETUP	37
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	43
ANNEX E EQUIVALENT MEDIA RECIPES	45
ANNEX F SYSTEM VALIDATION	46
ANNEX G PROBE CALIBRATION CERTIFICATE	47
ANNEX H DIPOLE CALIBRATION CERTIFICATE	56
ANNEX I SENSOR TRIGGERING DATA SUMMARY	75
ANNEX J SPOT CHECK	77
ANNEX K ACCREDITATION CERTIFICATE	95

1 Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website.

1.2. Testing Location

Location 1: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China 100191

1.3. <u>Testing Environment</u>

Normal Temperature:

15-35°C

Extreme Temperature: -10/+55°C Relative Humidity: 20-75%

1.4. Project data

Testing Start Date: 2023-06-25 Testing End Date: 2024-02-27

1.5. Signature

Wang Meng

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Lu Bingsong

Deputy Director of the laboratory

(Approved this test report)

2 Statement of Compliance

This EUT is same as original product and the report of original sample is No.I23Z60957-SEM02.We do spot check on highest value point in all bands of the original report. The results of spot check are presented in the annex J.

The maximum results of Specific Absorption Rate (SAR) found during testing for TCL Communication Ltd. Tablet PC 8493A are as follows:

Table 2.1: Highest Reported SAR (1g)

Technology Band	Body SAR 1g (W/kg)	Equipment Class
WLAN 2.4GHz	1.23	DTS
WLAN 5GHz	1.11	NII
Bluetooth	0.39	DSS

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are:

Body: 1.23 W/kg(1g)

Table 2.2: The sum of SAR values

	Position	WLAN 5G	ВТ	Sum
Highest reported SAR value for Body	Left 0mm	1.11	0.39	1.50

According to the above tables, the highest sum of reported SAR values is **1.50 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 15.

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.
A -1 -1 /D 4 -	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Address/Post:	Park, Shatin, NT, Hong Kong
Contact Person:	Annie Jiang
E-mail:	nianxiang.jiang@tcl.com
Telephone:	+86 755 3661 1621
Fax:	1

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.
A /D . (5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Address/Post:	Park, Shatin, NT, Hong Kong
Contact Person:	Annie Jiang
E-mail:	nianxiang.jiang@tcl.com
Telephone:	+86 755 3661 1621
Fax:	1

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Tablet PC
Model name:	8493A
Operating mode(s):	BT, Wi-Fi(2.4G/5G)
	2400 – 2483.5 MHz (Bluetooth)
Tested Tx Frequency:	2412 – 2462 MHz (Wi-Fi 2.4G)
lested 1x Frequency.	5150 – 5250 MHz (U-NII-1)
	5725 – 5850 MHz (U-NII-3)
Test device production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI/SN	HW Version	SW Version
EUT1	B4695F93911846C	05	AWW2
EUT2	B4695F94011846D	05	AWW2

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1 and conducted power with the EUT2.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	2853B7PL - 2P	/	HUNAN GAOYUAN BATTERY COMPANY LIMITED

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB616217 D04 SAR for laptop and tablets v01r02 SAR Evaluation Considerations for Laptop, Notebook, Notebook and Tablet Computers.

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

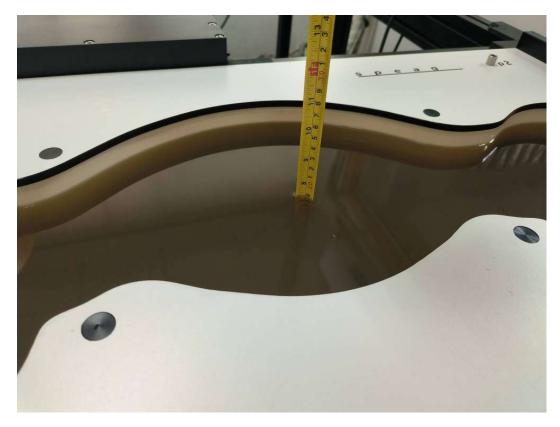
Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid


				·	
Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
2450	Head	1.8	1.71~1.89	39.2	37.24~41.16
5250	Head	4.71	4.47~4.95	35.93	34.13~37.73
5750	Head	5.22	4.96~5.48	35.36	33.59~37.13

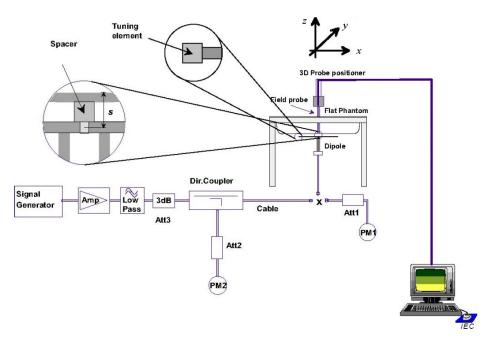
7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

	surement Date ry-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
20)23-6-25	Head	2450 MHz	39.37	0.43	1.831	1.72
20)23-6-26	Head	5250 MHz	35.17	-2.12	4.799	1.89
20)23-6-26	Head	5750 MHz	34.16	-3.39	5.325	2.01

Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Picture 7-1 Liquid depth in the Flat Phantom



8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Deviation		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average	
2023-6-25	2450 MHz	24.9	52.7	24.2	53.2	-2.97%	0.95%	
2023-6-26	5250 MHz	22.3	78.1	22.4	77.3	0.45%	-1.02%	
2023-6-26	5750 MHz	22.8	80.4	22.5	78.5	-1.32%	-2.36%	

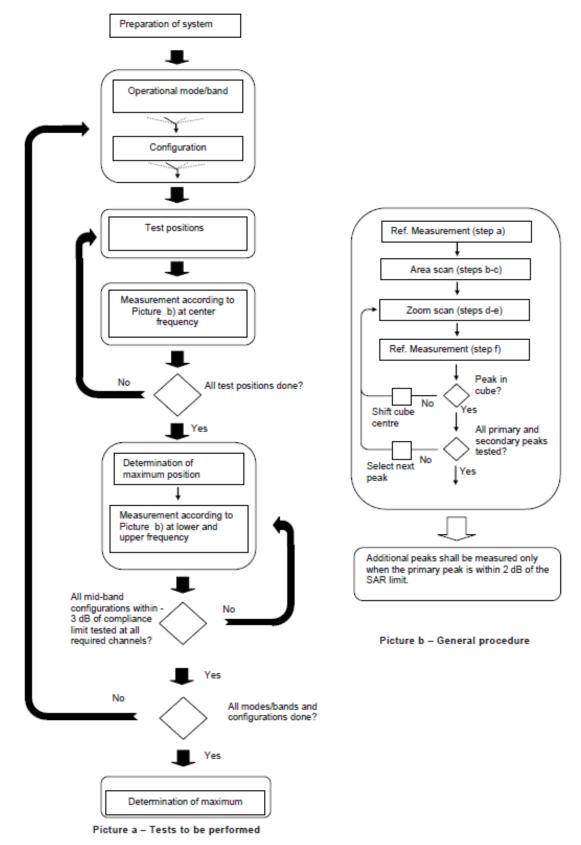
9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro		-	5 ± 1 mm	½-8·ln(2) ± 0.5 mm		
Maximum probe angle f normal at the measurem			30° ± 1° 20° ± 1°			
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spa	tial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan sp	atial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform g	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
surace		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Conducted Output Power

There is power reduction for WLAN by proximity sensor and the detail of proximity sensor is presented in annex I.

Mode	GFSK					
Channel	0	39	78			
The conducted power (dBm)	10.18	9.72	10.50			
Tune up	11	11	11			

The average conducted power of Wi-Fi for full power is as following:

	802.11b(dBm)		
Channel\data rate	1Mbps	Tune up	
11(2462MHz)	19.84	20	
6(2437(MHz)	19.92	20	
1(2412MHz)	19.62	20	
	802.11g(dBm)		
Channel\data rate	6Mbps	Tune up	
11(2462MHz)	17.49	18	
6(2437(MHz)	17.96	18	
1(2412MHz)	17.42	18	
-	802.11n(dBm)-20MHz		
Channel\data rate	MCS0	Tune up	
11(2462MHz)	17.43	18	
6(2437(MHz)	17.95	18	
1(2412MHz)	17.32	18	
-	802.11n(dBm)-40MHz		
Channel\data rate	MCS0	Tune up	
9(2452MHz)	17.99	18	
6(2437MHz)	17.90	18	
3(2422MHz)	17.85	18	

	802.11a(dBm)	
Channel\data rate	6Mbps	Tune up
36(5180 MHz)	17.57	19
40(5200 MHz)	17.69	19
44(5220 MHz)	17.88	19
48(5240 MHz)	17.86	19
149(5745 MHz)	18.37	19
153(5765 MHz)	18.35	19
157(5785 MHz)	18.40	19
161(5805 MHz)	18.34	19
165(5825 MHz)	18.38	19

The average conducted power of Wi-Fi for low power is as following:

802.11b(dBm)			
002.115(dDIII)			
1Mbps	Tune up		
15.35	16		
15.44	16		
14.77	16		
802.11g(dBm)			
6Mbps	Tune up		
13.83	14.5		
14.10	14.5		
13.43	14.5		
2.11n(dBm)-20MHz			
MCS0	Tune up		
13.61	14.5		
13.07	14.5		
13.52	14.5		
2.11n(dBm)-40MHz			
MCS0	Tune up		
14.17	14.5		
14.03	14.5		
13.55	14.5		
	1Mbps 15.35 15.44 14.77 802.11g(dBm) 6Mbps 13.83 14.10 13.43 2.11n(dBm)-20MHz MCS0 13.61 13.07 13.52 2.11n(dBm)-40MHz MCS0 14.17 14.03		

	802.11a(dBm)	
Channel\data rate	6Mbps	Tune up
36(5180 MHz)	14.45	15.5
40(5200 MHz)	14.48	15.5
44(5220 MHz)	14.54	15.5
48(5240 MHz)	14.52	15.5
149(5745 MHz)	13.95	15.5
153(5765 MHz)	14.06	15.5
157(5785 MHz)	14.29	15.5
161(5805 MHz)	14.12	15.5
165(5825 MHz)	14.23	15.5

11 Antenna Location

11.1 Transmit Antenna Separation Distances

The detail for transmit antenna separation distance is described in the additional document:

Appendix to test report No.I23Z60957-SEM02

The photos of SAR test

11.2 SAR Measurement Positions

SAR measurement positions								
Mode	Mode Front Rear Left edge Right edge Top edge Bottom edge							
BT/WiFi antenna No Yes Yes No Yes No								

12 SAR Test Result

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 10.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac/ax modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n ac then ax) is selected.

SAR Test reduction was applied from KDB 248227 guidance, when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

Table 12-1: SAR Values (WiFi 2.4G - Body)

Test Position	Frequency Band	Channel Number	Frequency (MHz)	Test Position	Distance	Figure No	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Calculated SAR 10g (W/kg)	Power Drift
Body	WLAN-2.4G 11b	6	2437	Rear	Omm	1	19.92	20	0.557	0.57	0.188	0.19	0.07
Body	WLAN-2.4G 11b	6	2437	Left	Omm	/	15.44	16	1.05	1.19	0.354	0.40	-0.03
Body	WLAN-2.4G 11b	11	2462	Left	Omm	/	15.35	16	0.981	1.14	0.331	0.38	0.05
Body	WLAN-2.4G 11b	6	2437	Тор	Omm	/	19.92	20	0.044	0.04	0.017	0.02	0.11
Body	WLAN-2.4G 11b	6	2437	Left	5mm	FIG A.1	19.92	20	1.21	1.23	0.457	0.47	-0.08
Body	WLAN-2.4G 11b	11	2462	Left	5mm	/	19.84	20	1.16	1.20	0.440	0.46	-0.09
Body	WLAN-2.4G 11b	1	2412	Left	5mm	1	19.62	20	0.805	0.88	0.304	0.33	0.05
Body	WLAN-2.4G 11b	6	2437	Left	5mm	1	19.92	20	0.980	1.00	0.370	0.38	0.07

Note: SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

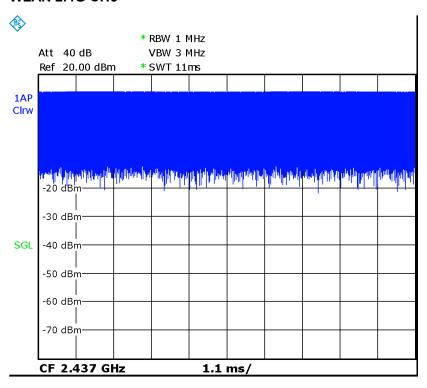
Table 12-2: SAR Values (WiFi 5G – Body)

Test Position	Frequency Band	Channel Number	Frequency (MHz)	Test Position	Distance	Figure No	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Calculated SAR 10g (W/kg)	Power Drift
Body	WLAN-5G 11a	44	5220	Rear	Omm	1	17.88	19	0.512	0.66	0.160	0.21	-0.08
Body	WLAN-5G 11a	44	5220	Left	Omm	FIG A.2	14.54	15.5	0.889	1.11	0.212	0.26	-0.18
Body	WLAN-5G 11a	44	5220	Тор	Omm	1	17.88	19	0.086	0.11	0.027	0.03	0.05
Body	WLAN-5G 11a	44	5220	Left	5mm	1	17.88	19	0.574	0.74	0.174	0.23	-0.09
Body	WLAN-5G 11a	48	5240	Left	Omm	1	14.52	15.5	0.836	1.05	0.197	0.25	-0.15
Body	WLAN-5G 11a	44	5220	Left	Omm	1	14.54	15.5	0.863	1.08	0.234	0.29	-0.17
Body	WLAN-5G 11a	157	5785	Rear	Omm	1	18.95	19	0.549	0.56	0.168	0.17	0.09
Body	WLAN-5G 11a	157	5785	Left	Omm	1	14.29	15.5	0.824	1.09	0.174	0.23	-0.16
Body	WLAN-5G 11a	157	5785	Тор	Omm	1	18.95	19	0.075	0.08	0.026	0.03	0.13
Body	WLAN-5G 11a	157	5785	Left	5mm	1	18.95	19	0.803	0.81	0.203	0.21	-0.12
Body	WLAN-5G 11a	165	5825	Left	Omm	1	14.23	15.5	0.678	0.91	0.143	0.19	0.07
Body	WLAN-5G 11a	157	5785	Left	Omm	1	14.12	15.5	0.591	0.81	0.125	0.17	0.08

©Copyright. All rights reserved by CTTL.

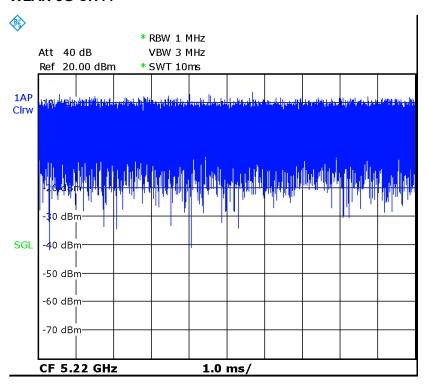
Page 21 of 95

Table 12-3: SAR Values (BT - Body)

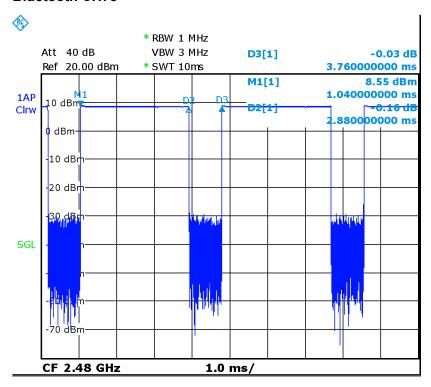

Test Position	Frequency Band	Channel Number	Frequency (MHz)	Test Position	Distance	Figure No	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Calculated SAR 10g (W/kg)	Power Drift
Body	Bluetooth	78	2480	Rear	Omm	1	10.50	11	0.038	0.04	0.013	0.01	0.14
Body	Bluetooth	78	2480	Left	Omm	FIG A.3	10.50	11	0.264	0.30	0.087	0.10	0.09
Body	Bluetooth	78	2480	Тор	Omm	1	10.50	11	< 0.01	< 0.01	< 0.01	< 0.01	/
Body	Bluetooth	39	2441	Left	Omm	1	9.72	11	0.219	0.29	0.070	0.09	-0.11
Body	Bluetooth	0	2402	Left	Omm	1	10.18	11	0.178	0.21	0.058	0.07	0.12
Body	Bluetooth	78	2480	Left	Omm	1	10.50	11	0.139	0.16	0.048	0.05	0.09

The reported SAR should be scaled to maximum supported transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 12-4: Scaled Reported SAR


Freque	Frequency		Actual duty	maximum	Reported SAR	Scaled reported
MHz	Ch.	Position	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)
2437	6	Left 5mm	100%	100%	1.23	1.23
5220	44	Left 0mm	100%	100%	1.11	1.11
2480	78	Left 0mm	76.6%	100%	0.30	0.39

Duty factor plot WLAN 2.4G CH6



WLAN 5G CH44

Bluetooth CH78

13 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Table 13.1: SAR Measurement Variability for Body (1g)

	Frequency			Test	Spacing	Original	First Repeated	The	Second Repeated
Band	Ch.	MHz	Mode	Position	(mm)	SAR (W/kg)	SAR (W/kg)	Ratio	SAR (W/kg)
WLAN 2.4G	6	2437	11b	Left	5	1.21	1.19	1.02	1
WLAN 5G	44	5220	11a	Left	0	0.889	0.875	1.02	/

14 Evaluation of Simultaneous

14.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as WLAN and Bluetooth devices which may simultaneously transmit with the licensed transmitter. KDB 447498 D01 provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

14.1.1 Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

14.1.2 SAR to Peak Location Ratio (SPLSR)

KDB 447498 D01 General RF Exposure Guidance explains how to calculate the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

 $SPLSR = (SAR1 + SAR2)^{1.5} /Ri$

Where:

SAR1 is the highest reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition.

SAR2 is the highest reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first . Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $I(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2I$

In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR1 + SAR2)^{1.5}/Ri \le 0.04$$

When an individual antenna transmits at on two bands simultaneously, the sum of the highest reported SAR for the frequency bands should be used to determine SAR1 or SAR2. When SPLSR is necessary, the smallest distance between the peak SAR locations for the antenna pair with respect to the peaks from each antenna should be used.

14.2 Simultaneous Transmission Capabilities

The simultaneous transmission possibilities for this device are listed as below:

NO	If support: WWAN*1TX and WLAN*1TX	Y or N
1	WLAN 2.4GHz +BT	N
2	WLAN 5GHz +BT	Y

Note:

- 1. The reported SAR summation is calculated based on the same configuration and test position.
- 2. For the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR, we determined the SAR of this edges were less than 0.01. For the convenience of simultaneous transmission calculation, all SAR values less than or equal to 0.01 are uniformly written as 0.00

14.3 SAR Simultaneous Transmission Analysis

Table 14.1: The sum of reported SAR values for main antenna and WiFi

	Position	WLAN 5G	ВТ	Sum
Highest reported SAR value for Body	Left 0mm	1.11	0.39	1.50

14.4 Conclusion

According to the above tables, the highest simultaneous transmission reported SAR values is **1.50W/kg (10g).** The sum of reported SAR values is **<** 1.6W/kg.

15 Measurement Uncertainty

15.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		-31-	value	Distribution		1g	10g	Unc.	Unc.	of
						8		(1g)	(10g)	freedom
Meas	Measurement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions- reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test sam	ple related						
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phantom	and set-up		•	•		•	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
-	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					19.1	18.9	

15.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
	•	31	value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	Measurement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions- reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test sam	ple related						
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phantom	and set-up		•				
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Con	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
-	nded uncertainty idence interval of 95 %)	ı	$u_e = 2u_c$					21.4	21.1	

16 MAIN TEST INSTRUMENTS

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 10, 2023	One year	
02	Power meter	NRP110T	101139	January 12, 2022	One year	
03	Power sensor	NRP110T	101159	January 13, 2023		
04	Signal Generator	E4438C	MY49071430	January 19, 2023	One Year	
05 Amplifier		60S1G4	0331848	No Calibration	Requested	
06	E-field Probe	SPEAG EX3DV4	3617	March 31, 2023	One year	
07	DAE	SPEAG DAE4	1556	January 11, 2023	One year	
08	Dipole Validation Kit	SPEAG D2450V2	853	July 20, 2022	One year	
09	Dipole Validation Kit	SPEAG D5GHzV2	1060	July 5,2022	One year	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

WLAN2450 Rear 0mm

Date: 6/25/2023

Electronics: DAE4 Sn1556 Medium: H700-6000

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.819$ S/m; $\varepsilon_r = 39.381$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(7.68,7.68,7.68)

Area Scan (101x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.96 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.53 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 2.97 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.457 W/kgMaximum value of SAR (measured) = 2.06 W/kg

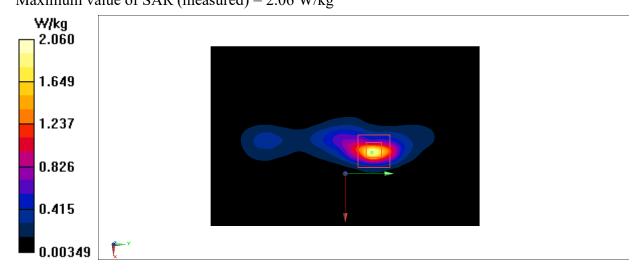


Fig A.1

WLAN5G Rear 0mm

Date: 6/26/2023

Electronics: DAE4 Sn1556 Medium: H700-6000

Medium parameters used: f = 5220 MHz; $\sigma = 4.749$ S/m; $\varepsilon_r = 35.302$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: WLAN5G 5220 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(5.5, 5.5, 5.5)

Area Scan (161x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.15 W/kg

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.688 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 4.87 W/kg

SAR(1 g) = 0.889 W/kg; SAR(10 g) = 0.212 W/kg

Maximum value of SAR (measured) = 2.49 W/kg

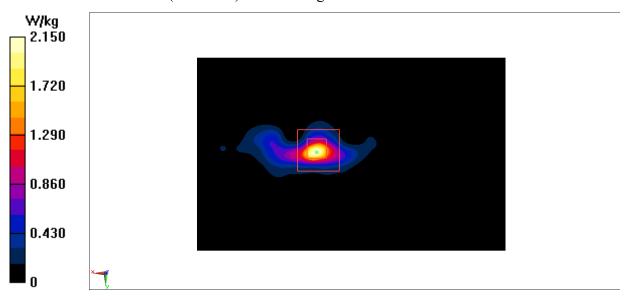


Fig A.2

BT Rear 0mm

Date: 6/25/2023

Electronics: DAE4 Sn1556 Medium: H700-6000

Medium parameters used: f = 2480 MHz; $\sigma = 1.859 \text{ S/m}$; $\varepsilon_r = 39.315$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C

Communication System: BT 2480 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN3617 ConvF(7.68,7.68,7.68)

Area Scan (101x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.614 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.342 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.829 W/kg

SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.087 W/kgMaximum value of SAR (measured) = 0.562 W/kg

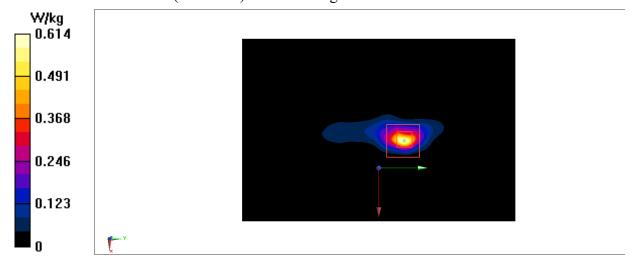
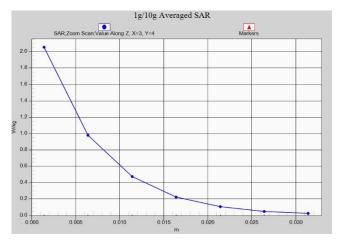
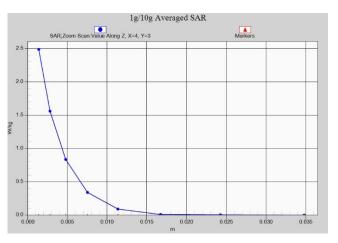
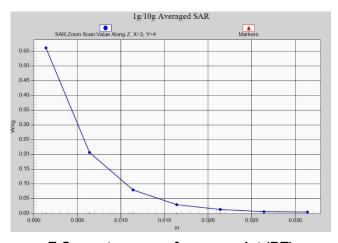




Fig A.3



Z-Scan at power reference point (WIFI2.4G)

Z-Scan at power reference point (WIFI5G)

Z-Scan at power reference point (BT)

ANNEX B System Verification Results

2450MHz

Date: 6/25/2023

Electronics: DAE4 Sn1556 Medium: H700-6000

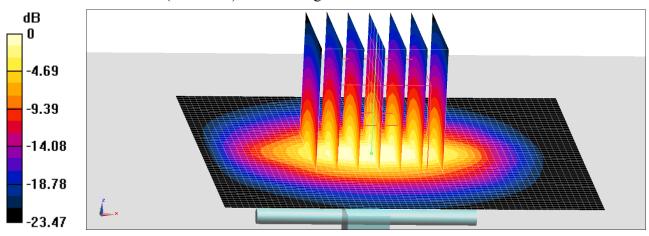
Medium parameters used: f = 2450 MHz; $\sigma = 1.831 \text{ S/m}$; $\epsilon r = 39.37$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(7.68, 7.68, 7.68)

Area Scan (61x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 22.4 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.7 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 22.8 W/kg

0 dB = 22.8 W/kg = 13.58 dBW/kg

Fig.B.1 validation 2450MHz 250mW

5250 MHz

Date: 6/26/2023

Electronics: DAE4 Sn1556 Medium: H700-6000

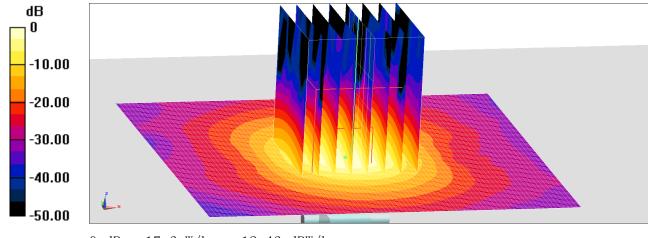
Medium parameters used: f = 5250 MHz; $\sigma = 4.799$ S/m; $\epsilon r = 35.17$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5250 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(5.5, 5.5, 5.5)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 17.7 W/kg


Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.26 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Fig.B.2 validation 5250 MHz 100mW

5750 MHz

Date: 6/26/2023

Electronics: DAE4 Sn1556 Medium: H700-6000

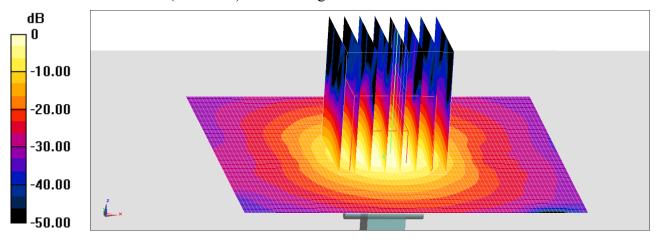
Medium parameters used: f = 5750 MHz; $\sigma = 5.325$ S/m; $\epsilon r = 34.16$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8°C Liquid Temperature: 22.3°C Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(5.15, 5.15, 5.15)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.7 W/kg


Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.78 V/m; Power Drift = 0.00 dB

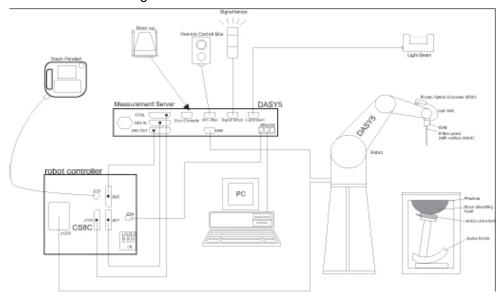
Peak SAR (extrapolated) = 34.7 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Fig.B.3 validation 5750 MHz 100mW



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal
 multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
 detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal
 is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 DynamicRange: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)

Application:SAR Dosimetry Testing

Compliance tests ofmobile phones

Dosimetry in strong gradient fields

Picture C.3E-field Probe

Picture C.2Near-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5DASY 4

Picture C.6DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

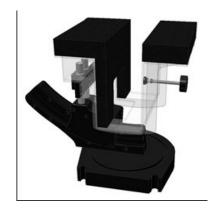
The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

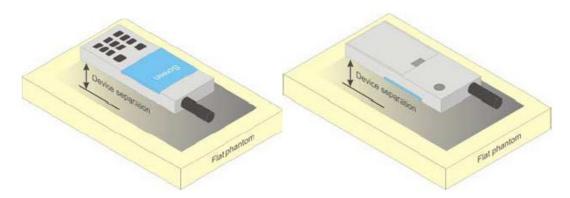
Shell Thickness: 2±0. 2 mm

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

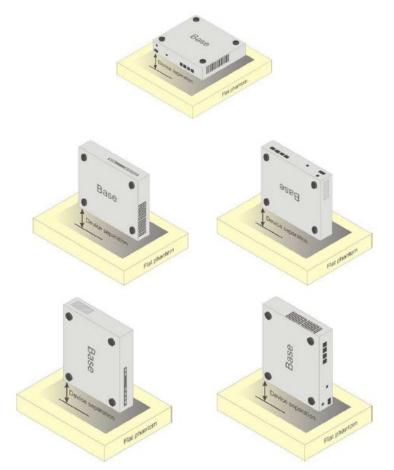
Picture C.10: SAM Twin Phantom



ANNEX D Position of the wireless device in relation to the phantom

D.1 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.1 Test positions for body-worn devices

D.2 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.2 Test positions for desktop devices

D.3 DUT Setup Photos

Picture D.3

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

TableE.1: Composition of the Tissue Equivalent Matter

Frequency	835Head	835Body	1900	1900	2450	2450	5800	5800		
(MHz)	osoneau	ossbouy	Head	Body	Head	Body	Head	Body		
Ingredients (% by weight)										
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53		
Sugar	56.0	45.0	\	\	\	\	\	\		
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\		
Preventol	0.1	0.1	\	\	\	\	\	\		
Cellulose	1.0	1.0	\	\	\	\	\	\		
Glycol	,	1	44.452	29.96	41.15	27.22	,	,		
Monobutyl	\	\	44.432	29.90	41.13	21.22	١			
Diethylenglycol	,	١	\	\	\	\	17.04	17.04		
monohexylether	\	1	\	\	\	\	17.24	17.24		
Triton X-100	\	1	\	\	\	\	17.24	17.24		
Dielectric	c=11 F	c=55.0	ε=40.0	ε=53.3	ε=39.2	c=52.7	c=25.2	ε=48.2		
Parameters	ε=41.5	ε=55.2				ε=52.7	ε=35.3			
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00		

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation for 3617

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3617	Head 750MHz	April.24,2023	750 MHz	OK
3617	Head 900MHz	April.24,2023	900 MHz	OK
3617	Head 1750MHz	April.24,2023	1750 MHz	OK
3617	Head 1900MHz	April.25,2023	1900 MHz	OK
3617	Head 2300MHz	April.25,2023	2300 MHz	OK
3617	Head 2450MHz	April.25,2023	2450 MHz	OK
3617	Head 2600MHz	April.25,2023	2600 MHz	OK
3617	Head 3300MHz	April.26,2023	3300 MHz	OK
3617	Head 3500MHz	April.26,2023	3500 MHz	OK
3617	Head 3700MHz	April.26,2023	3700 MHz	OK
3617	Head 5250MHz	April.27,2023	5250 MHz	OK
3617	Head 5600MHz	April.27,2023	5600 MHz	OK
3617	Head 5750MHz	April.27,2023	5750 MHz	OK

ANNEX G Probe Calibration Certificate

Probe 3617 Calibration Certificate

中国认可 CAICT 国际互认 CAICT 国际互认 CAICT CAICT CAIBRATION CALIBRATION CALIBRATION COMAS L0570

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Client CTTL

Certificate No: Z23-60161

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 3617

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: March 31, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2 101919		14-Jun-22(CTTL, No.J22X04181)	Jun-23	
Power sensor NRP-Z91	101547	14-Jun-22(CTTL, No.J22X04181)	Jun-23	
Power sensor NRP-Z91	101548	14-Jun-22(CTTL, No.J22X04181)	Jun-23	
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25	
Reference 20dBAttenuator 18N50W-20		19-Jan-23(CTTL, No.J23X00211)	Jan-25	
Reference Probe EX3DV4 SN 3846		20-May-22(SPEAG, No.EX3-3846_May2	(2) May-23	
DAE4 SN 1555		25-Aug-22(SPEAG, No.DAE4-1555_Aug	22) Aug-23	
DAE4	SN 549	24-Jan-23(SPEAG, No.DAE4-549_Jan23	3) Jan-24	
Secondary Standards ID #		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
SignalGenerator MG3700A 6201052605		14-Jun-22(CTTL, No.J22X04182)	Jun-23	
Network Analyzer E5071C MY46110673		10-Jan-23(CTTL, No.J23X00104)	Jan-24	
Nan	ne	Function	Signature	

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: April 07, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z23-60161

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

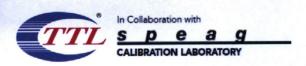
Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:


- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the
 E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z23-60161

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3617

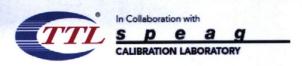
Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) A	0.33	0.22	0.34	±10.0%
DCP(mV) ^B	102.7	97.9	99.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	cw	Х	0.0	0.0	1.0	0.00	137.3	±2.0%
		Υ	0.0	0.0	1.0		101.8	
		Z	0.0	0.0	1.0		139.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.


Certificate No:Z23-60161

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3617

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.10	10.10	10.10	0.14	1.32	±12.7%
900	41.5	0.09	9.68	9.68	9.68	0.15	1.31	±12.7%
						0.13	1.35	±12.7%
1450	40.5	1.20	8.77	8.77	8.77			
1750	40.1	1.37	8.40	8.40	8.40	0.23	1.11	±12.7%
1900	40.0	1.40	8.14	8.14	8.14	0.25	1.09	±12.7%
2000	40.0	1.40	8.20	8.20	8.20	0.22	1.13	±12.7%
2300	39.5	1.67	7.93	7.93	7.93	0.63	0.64	±12.7%
2450	39.2	1.80	7.68	7.68	7.68	0.55	0.69	±12.7%
2600	39.0	1.96	7.46	7.46	7.46	0.63	0.65	±12.7%
3300	38.2	2.71	7.19	7.19	7.19	0.32	0.98	±13.9%
3500	37.9	2.91	7.02	7.02	7.02	0.36	0.94	±13.9%
3700	37.7	3.12	6.88	6.88	6.88	0.38	0.91	±13.9%
3900	37.5	3.32	6.76	6.76	6.76	0.30	1.45	±13.9%
4100	37.2	3.53	6.68	6.68	6.68	0.35	1.25	±13.9%
4200	37.1	3.63	6.58	6.58	6.58	0.30	1.50	±13.9%
4400	36.9	3.84	6.47	6.47	6.47	0.30	1.50	±13.9%
4600	36.7	4.04	6.43	6.43	6.43	0.35	1.48	±13.9%
4800	36.4	4.25	6.32	6.32	6.32	0.45	1.25	±13.9%
4950	36.3	4.40	6.12	6.12	6.12	0.45	1.25	±13.9%
5250	35.9	4.71	5.50	5.50	5.50	0.45	1.38	±13.9%
5600	35.5	5.07	5.01	5.01	5.01	0.45	1.38	±13.9%
5750	35.4	5.22	5.15	5.15	5.15	0.45	1.40	±13.9%

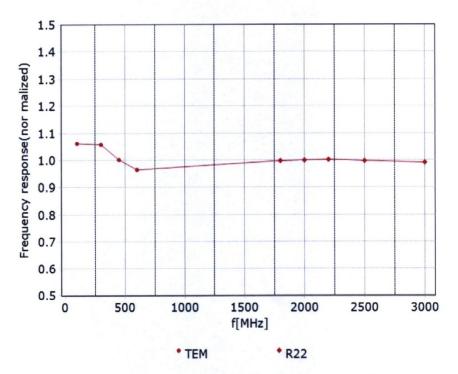
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:Z23-60161

Page 4 of 9

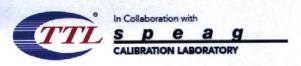
F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

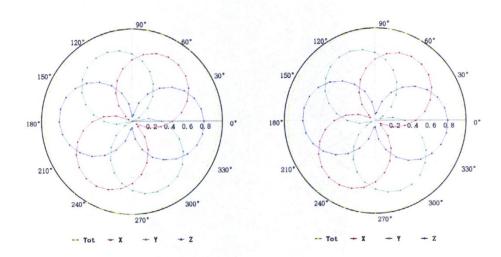
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

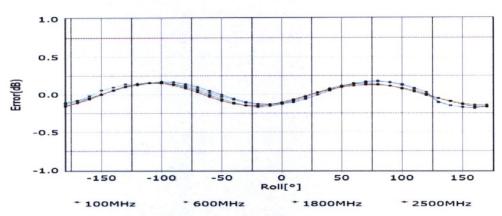


Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z23-60161

Page 5 of 9

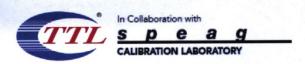



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

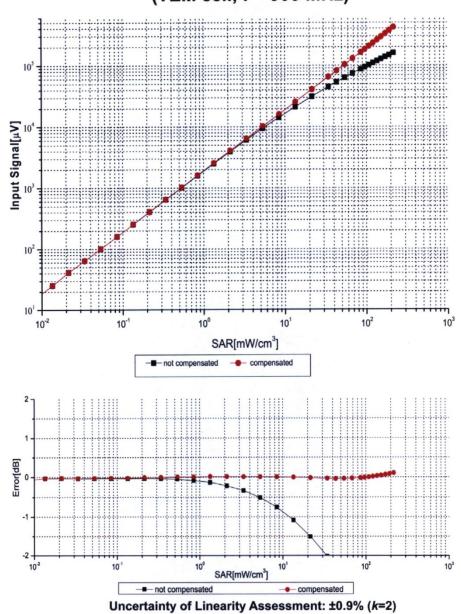
f=1800 MHz, R22



Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:Z23-60161

Page 6 of 9



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Certificate No:Z23-60161

Page 7 of 9