

TEST REPORT

No.I23N00436-RF GSM

for

TCL Communication Ltd.

LINKHUB

Model Name: HH40L2

FCC ID: 2ACCJB202

with

Hardware Version: TZ7.823.397

Software Version: HH40L2.1.01

Issued Date: 2023-04-18

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I23N00436-RF GSM	Rev.0	1st edition	2023-04-18

CONTENTS

1.	SUMMARY OF TEST REPORT	
1.1	. TEST ITEMS	
1.2	. TEST STANDARDS	
1.3	. TEST RESULT	
1.4	. TESTING LOCATION	
1.5	. PROJECT DATA	
1.6	. SIGNATURE	4
2.	CLIENT INFORMATION	5
2.1	. APPLICANT INFORMATION	5
2.2	MANUFACTURER INFORMATION	5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1	. ABOUT EUT	6
3.2	. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3.3	. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4	. GENERAL DESCRIPTION	6
4.	REFERENCE DOCUMENTS	7
4.1	. REFERENCE DOCUMENTS FOR TESTING	7
5.	LABORATORY ENVIRONMENT	
6.	SUMMARY OF TEST RESULTS	9
7.	STATEMENT	
8.	TEST EQUIPMENTS UTILIZED	11
AN	NEX A: MEASUREMENT RESULTS	
A	A.1 OUTPUT POWER	
A	A.2 FIELD STRENGTH OF SPURIOUS RADIATION	
Α	A.3 FREQUENCY STABILITY	
	A.4 OCCUPIED BANDWIDTH	
	A.5 EMISSION BANDWIDTH	_
	A.7 CONDUCTED SPURIOUS EMISSION	
	A.8 PEAK-TO-AVERAGE POWER RATIO	
	NEX B: ACCREDITATION CERTIFICATE	
AN	NEX C: CERTIFICATE OF BRAND AUTHORIZATION	

1. SUMMARY OF TEST REPORT

1.1. Test Items

Description	LINKHUB
Model Name	HH40L2
Brand Name	TCL
Applicant's name	TCL Communication Ltd.
Manufacturer's Name	TCL Communication Ltd.

1.2. Test Standards

FCC Part 2/24	10-1-20 Edition
ANSI C63.26	2015
KDB971168 D01	v03r01

1.3. Test Result

All test items are passed. Please refer to "6 Summary of Test Results" for detail.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project Data

Testing Start Date: 2023-04-01

1.6. Signature

Wang Ping (Prepared this test report)

Zhang Hao (Approved this test report)

Testing End Date: 2023-04-09

着私欲

Huang Qiuqin (Reviewed this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name:TCL Communication Ltd.Address /Post:5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park,
Shatin, NT, Hong KongContact Person:Annie JiangContact Emailnianxiang.jiang@tcl.comTelephone:0086-755-3661 1621Fax:0086-755-36612000-81722

2.2. Manufacturer Information

Company Name:	TCL Communication Ltd.
Address /Post:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park, Shatin, NT, Hong Kong
Contact Person:	Annie Jiang
Contact Email	nianxiang.jiang@tcl.com
Telephone:	0086-755-3661 1621
Fax:	0086-755-36612000-81722

3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT

<u>(AE)</u>

3.1. About EUT

Descripti	on		LINKHUB		
Model N	ame		HH40L2		
FCC ID			2ACCJB202		
Frequen	cy Bands		PCS 1900		
Antenna			Integrated		
Extreme	vol. Limits		6.60V to 15.00V (no	minal: 12.00V)	
Condition	n of EUT as i	eceived	No abnormality in ap	opearance	
Note	: Component	ts list, pleas	e refer to documents	s of the manufacturer; it	is also included in
the o	riginal test re	cord of SAI	CT.		
3.2. Inte	ernal Ident	ification of	of EUT used durir	ng the test	
EUT ID*	SN or II	MEI	HW Version	SW Version	Date of receipt
UT01aa	355197410	026434	TZ7.823.397	HH40L2.1.01	2023-03-27
UT05aa	355197410	026798	TZ7.823.397	HH40L2.1.01	2023-03-27
*EUT ID:	is used to ide	entify the tes	st sample in the lab ir	nternally.	
UT01aa a	are used for c	onduction t	est, UT05aa is used i	for radiation test.	
3.3. <u>Int</u>	ernal Ident	ification of	of AE used during	the test	
AE ID*	Descripti	ion			
AE1	Battery				
AE2	Charger				
AE1					
Model		Z2000			
Manufa	cturer	Shenzhen	AerospaceElectronic	Co.,Ltd	

Capacity	2000mAh

Nominal Voltage 7.4 V

AE2

Model 1-CHUSB102-131

Manufacturer Huizhou Puan electronics Co.,Ltd

*AE ID: is used to identify the test sample in the lab internally.

AE: ancillary equipment

3.4. General Description

The Equipment Under Test (EUT) is a model Mobile Phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

4. <u>REFERENCE DOCUMENTS</u>

4.1. Reference Documents for Testing

The following documents listed in this section are referred for testing.

Title	Version
FREQUENCY ALLOCATIONS AND RADIO TREATY	10-1-20
MATTERS; GENERAL RULES AND REGULATIONS	Edition
RERSONAL COMMUNICATIONS SERVICES	10-1-20
PERSONAL COMMUNICATIONS SERVICES	Edition
American National Standard for Compliance Testing of	
Transmitters Used in Licensed Radio Services	2015
Power Meas License Digital Systems	v03r01
	FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS PERSONAL COMMUNICATIONS SERVICES American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

5. LABORATORY ENVIRONMENT

Shielded room did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	>2 MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
Verdict Column	Р	Pass
	F	Fail
	NA	Not applicable
	NM	Not measured

PCS1900

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/24.232	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/24.238	A.2	Р
3	Frequency Stability	2.1055/24.235	A.3	Р
4	Occupied Bandwidth	2.1049/24.238	A.4	Р
5	Emission Bandwidth	2.1049/24.238	A.5	Р
6	Band Edge Compliance	2.1051/24.238	A.6	Р
7	Conducted Spurious Emission	2.1051/24.238	A.7	Р
8	Peak-to-Average Power Ratio	24.232/KDB971168 D01	A.8	Р

7. STATEMENT

Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

This report takes measured values as criterion of test conclusion. The test conclusion meets the limit requirements.

8. TEST EQUIPMENTS UTILIZED

NO.	Description	ТҮРЕ	Manufacture	series number	Cal Due Date
1	Test Receiver	ESR7	R&S	101676	2023-11-23
2	BiLog Antenna	3142E	ETS-Lindgren	0224831	2024-05-27
3	Horn Antenna	3117	ETS-Lindgren	00066585	2025-03-15
4	Horn Antenna	QSH-SL-18-26-S -20	Q-par	17013	2026-01-30
5	Antenna	BBHA 9120D	Schwarzbeck	1593	2025-10-24
6	Antenna	VUBA 9117	Schwarzbeck	207	2023-07-15
7	Antenna	QWH-SL-18-40- K-SG	Q-par	15979	2026-01-30
8	preamplifier	83017A	Agilent	MY39501110	/
9	Signal Generator	SMB100A	R&S	179725	2023-11-23
10	Fully Anechoic Chamber	FACT3-2.0	ETS-Lindgren	1285	2023-05-29
11	Spectrum Analyzer	FSV40	R&S	101192	2024-01-11
12	Universal Radio Communication Tester	CMU200	R&S	114545	2024-01-11
13	Universal Radio Communication Tester	CMW500	R&S	152499	2023-07-14
14	Universal Radio Communication Tester	CMW500	R&S	129146	2023-04-24
15	Spectrum Analyzer	FSU	R&S	101506	2023-12-13
16	Temperature Chamber	SH-241	ESPEC	92007516	2023-10-15
17	DC Power Supply	U3606A	Agilent Technologies	MY50450012	2023-11-13
18	Spectrum Analyzer	FSW26	R&S	102197	2023-11-24

Test software

ltem	Name	Version
Radiated	EMC32	V10.50.40

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

Reference

FCC: CFR Part 2.1046, 24.232.

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains max output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band. (bottom, middle and top of operational frequency range).

PCS1900

	Power stop	Nominal Peak output
	Power step	power (dBm)
GPRS	3	30dBm(1W)

Measurement result

GPRS(GMSK,1Slot)

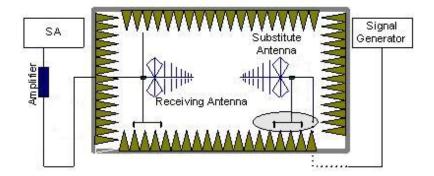
Frequency(MHz)	Power Step	Output power(dBm)
1850.2	3	28.78
1880.0	3	28.69
1909.8	3	28.62

Note: Expanded measurement uncertainty is U = 0.49dB, k = 1.96

A.1.3 Radiated


A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.


Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

A.1.3.2 Method of Measurement

 EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna

polarization.

 A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{Ag} - P_{cl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

PCS1900-EIRP 24.232(c)

Limits

	Power Step	Burst Peak EIRP (dBm)
GSM	0	≤33dBm (2W)
GPRS	3	≤33dBm (2W)
EGPRS	5	≤33dBm (2W)

Measurement result

GPRS 1900

Frequency	Pmea	Pcl(dB)+	Ga Antenna	EIRP	Limit(dBm)	Delorization
(MHz)	(dBm)	PAg(dB)	Gain(dBi)	(dBm)	Limit(dBm)	Polarization
1850.20	-10.38	-29.40	8.10	24.97	33.00	V
1880.00	-9.91	-29.30	8.10	25.34	33.00	V
1909.80	-9.99	-29.30	8.10	25.26	33.00	V

Frequency: 1909.80MHz

Peak EIRP(dBm)= PMea(-9.91dBm) -(Pcl+PAg)(-29.30dB)+Ga (8.10dB) =25.34dBm

ANALYZER SETTINGS: RBW = VBW = 3MHz

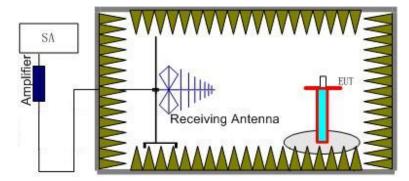
Note: The maximum value of expanded measurement uncertainty for this test item is

 ${\sf U}=2.87d{\sf B}(30M{\sf Hz}\text{-}3G{\sf Hz})/3.35d{\sf B}(3G{\sf Hz}\text{-}18G{\sf Hz})/2.68d{\sf B}(18G{\sf Hz}\text{-}40G{\sf Hz}),\,{\sf k}=2$

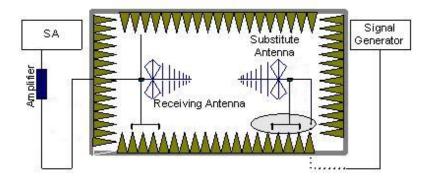
Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

A.2 FIELD STRENGTH OF SPURIOUS RADIATION

Reference


FCC: CFR 2.1053,24.238.

A.2.1 Measurement Method


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900.

The procedure of radiated spurious emissions is as follows:

 EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the

substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test.
 A amplifier should be connected in for the test.
 The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.
 The measurement results are obtained as described below:
 Power(EIRP)=P_{Mea} P_{pl} + G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
	Low	30MHz-20GHz	Pass
GSM 1900MHz	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
1900MHz	5~8	1 MHz	3 MHz	3
1900ivinz	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

GSM Mode Channel 512/1850.2MHz

	D (dDma)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16993.12	-42.24	2.90	16.50	-28.64	-13.00	Н
17130.62	-41.38	2.90	14.50	-29.78	-13.00	Н
17286.25	-40.42	3.20	14.50	-29.12	-13.00	Н
17520.00	-37.31	2.90	12.80	-27.41	-13.00	Н
17574.38	-36.77	3.30	12.80	-27.27	-13.00	Н
17818.12	-37.24	3.60	12.80	-28.04	-13.00	Н

GSM Mode Channel 661/1880.0MHz

Frequency(MHz)	P _{Mea} (dBm)	Path loss	Antenna Gain(dBi)	Peak EIRP(dBm)	Limit (dBm)	Polarization
3758.25	-39.29	1.10	12.20	-28.19	-13.00	V
16955.00	-41.94	2.90	16.50	-28.34	-13.00	Н
17361.25	-40.21	3.20	14.50	-28.91	-13.00	Н
17436.88	-39.13	2.90	14.50	-27.53	-13.00	Н
17596.88	-36.85	3.30	12.80	-27.35	-13.00	Н
17772.50	-37.09	3.60	12.80	-27.89	-13.00	Н

GSM Mode Channel 810/1909.8MHz

Fraguanov (MHz)	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	lz) P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3820.50	-34.88	1.20	12.20	-23.88	-13.00	V
16936.88	-42.57	2.90	16.50	-28.97	-13.00	Н
17366.25	-40.35	3.20	14.50	-29.05	-13.00	Н
17472.50	-38.81	2.90	14.50	-27.21	-13.00	Н
17616.88	-36.79	3.30	12.80	-27.29	-13.00	Н
17826.88	-37.49	3.60	12.80	-28.29	-13.00	Н

Note: The maximum value of expanded measurement uncertainty for this test item is

U = 2.87dB(30MHz-3GHz)/3.35dB(3GHz-18GHz)/2.68dB(18GHz-40GHz), k = 2

A.3 FREQUENCY STABILITY

Reference

FCC: CFR Part 2.1055, 24.235.

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30° C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on mid channel of all bands, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 $^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the center channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.3.2 Measurement results

PCS 1900

Frequency Error vs Voltage

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	
20				Olisel(HZ)	Frequency error(ppm)
50				-0.22	0.0002
40	12.00			-10.88 0.0116	0.0116
30		1850.036		10.35	0.0110
10			1909.964	-2.46	0.0026
0			14.8 7.87	-4.56	0.0048
-10				14.89	0.0158
-20				7.87	0.0084
-30				11.32	0.0120

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
6.60	20	1950 026	1000.064	10.31	0.0110
15.00	20	1850.036	1909.964	-13.79	0.0147

Expanded measurement uncertainty is 10Hz, k = 2

A.4 OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049, 24.238.

A.4.1 Measurement Procedure

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

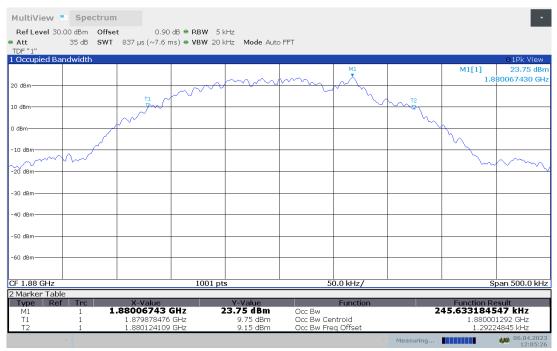
c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

d) Set the detection mode to peak, and the trace mode to max hold.

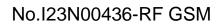
e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

A.4.2 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.


GPRS 1900(99% BW)

Frequency(MHz)	Occupied Bandwidth (99% BW)(kHz)
1850.2	245.231
1880.0	245.166
1909.8	244.599


Channel 512-Occupied Bandwidth (99% BW)

MultiView	Spectru	m							÷
Ref Level 30	.00 dBm Offs	et 0.90	dB • RBW 51	<hz< td=""><td></td><td></td><td></td><td></td><td></td></hz<>					
 Att 	35 dB 🛛 SW 1	Г 837 µs (~7.6 r	ns) = VBW 201	Hz Mode Auto	FFT				
TDF "1"									
1 Occupied Ba	ndwidth				141		T		●1Pk View
					M1			M1[1]	25.33 dBm
20 dBm			\sim	$\sim\sim\sim\sim$	~ ~	\sim		1.8	50216980 GHz
20 000		т1 /	m j i				0 m ^{T2}		
10 dBm		- <u>m</u>				• `	Mr R		
		Jan					\sim		
0 dBm								5	
-10 dBm									
\sim	\sim							$ \sim \sim$	m
-20 dBm		-							
-30 dBm									
-40 dBm									
-50 dBm									
-50 UBIN									
-60 dBm									
CF 1.8502 GH:	Z	1	1001 pt	s	5	0.0 kHz/	1	Si	pan 500.0 kHz
2 Marker Tabl			· · ·			· · · · ·			
Type Ref	f Trc	X-Value		Y-Value		Function		Function Re	esult
M1	1	1.85021698		25.33 dBm	Occ Bw		2	44.6760961	
T1	1	1.850077849		10.62 dBm	Occ Bw Cer				0187 GHz
T2	1	1.850322525	GHZ	10.56 dBm	Occ Bw Fre	iq uffset		186.6326	
	Ψ.						Measuring		06.04.2023 13:41:25

Channel 661-Occupied Bandwidth (99% BW)

Channel 810-Occupied Bandwidth (99% BW)

TDF "1" Occupied Band	width								o1Pk View
				ma.	M1			M1[1] 1.9	24.14 dB 909821980 GH
dBm		т1 /	m				T2		
dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					- Marine Contraction		
dBm		Ĩ					\	₩ M	
	\sim				 I			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm
0 dBm									
0 dBm									
0 dBm									
0 dBm									
0 dBm									
^{0 dBm} <u>1.9098 GHz</u> Marker Table			1001 pt	ts		0.0 kHz/		3	ipan 500.0 kH

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 2.1049, 24.238

A.5.1 Measurement Procedure

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

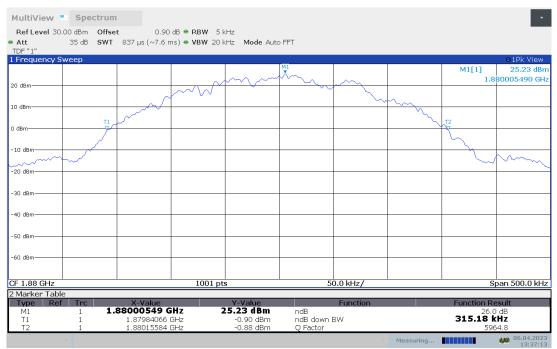
d) Set the detection mode to peak, and the trace mode to max hold.

e) Use the 26dB bandwidth function of the spectrum analyzer and report the measured bandwidth.

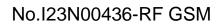
A.5.2Emission Bandwidth Results

Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

GPRS 1900(-26dBc BW)


Frequency(MHz)	Emission Bandwidth (-26dBc BW)(kHz)
1850.2	310.69
1880.0	317.68
1909.8	322.68

GPRS 1900



Channel 661-Emission Bandwidth (-26dBc BW)

Channel 810-Emission Bandwidth (-26dBc BW)

Att DF "1" Frequency S		837 µs (~7.6 r	IIS) - VDYY 201	KIIZ MOUE AULU					
Frequency S									
	weep								●1Pk View
					M1	\sim		M1[1] 1.9	24.57 dB 09811490 GF
) dBm			m	V = 20 - 2					
I dBm						\sim	m		
dBm	T1	for the second s					\sim	T2	
	<u></u>							m -	
.0 dBm	~~								
0 dBm									
0 dBm									
IO dBm									
i0 dBm									-
i0 dBm									
o abiii									
- 1.9098 GHz		1	1001 pt	is is a second s	5	0.0 kHz/		s	pan 500.0 kH
Marker Table		X-Value		Y-Value					
Type Ref	Trc					Function		Function Re	

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

A.6 BAND EDGE COMPLIANCE

Reference

FCC: CFR Part 2.1051, 24.238

Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

Measurement Procedure

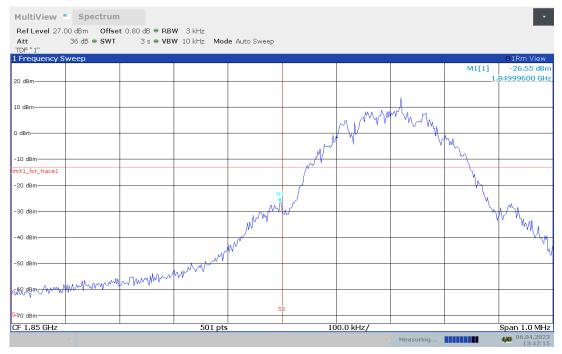
The testing follows ANSI C63.26

a) The EUT was connected to spectrum analyzer and system simulator via a power divider.

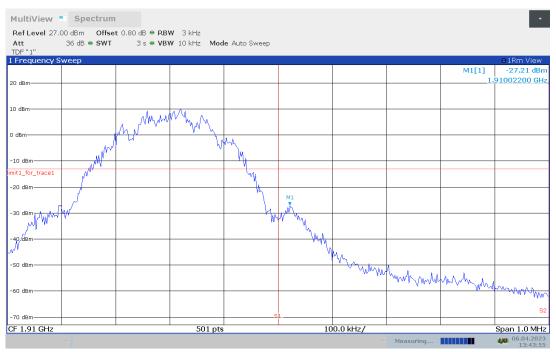
b) The band edges of low and high channels for the highest RF powers were measured.

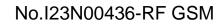
c) Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.

d) Set spectrum analyzer with RMS detector.


e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

f) Checked that all the results comply with the emission limit line.


Only worst case result is given below


GPRS 1900 LOW BAND EDGE BLOCK-A-Channel 512

HIGH BAND EDGE BLOCK-C-Channel 810

Note: Expanded measurement uncertainty is U = 0.49dB(100KHz-2GHz)/1.21dB(2GHz-26.5GHz), k = 1.96

A.7 CONDUCTED SPURIOUS EMISSION

Reference

FCC: CFR Part 2.1051, 24.238

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

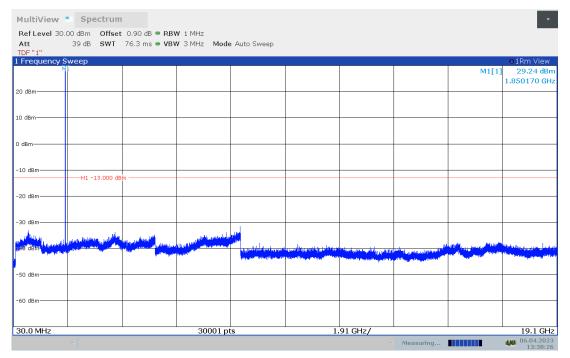
PCS1900 Transmitter

Channel	Frequency (MHz)
512	1850.2
661	1880.0
810	1909.8

A. 7.2 Measurement Limit

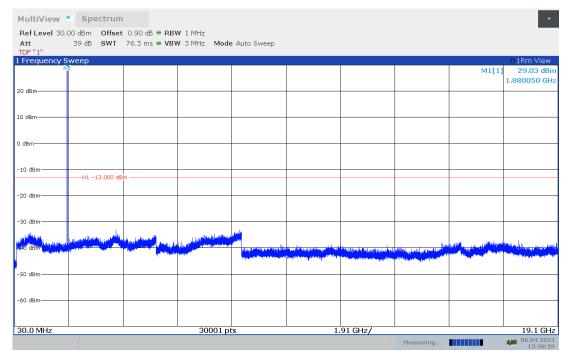
Part 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.



A.7.3 Measurement result

Only worst case result is given below PCS1900


Channel 512: 30MHz – 19.1GHz

Spurious emission limit –13dBm.

Channel 661: 30MHz –19.1GHz

Spurious emission limit –13dBm

Channel 810: 30MHz –19.1GHz

Spurious emission limit -13dBm.

Ref Level 30. Att	00 dBm Offset 39 dB SWT	: 0.90 dB • RBV 76.3 ms • VBV		Auto Sweep					
TDF "1" Frequency S	ween								o1Rm View
Frequency a	u 1							M1[1]	
									1.909920 GF
0 dBm									
									l
0 dBm									
									l –
dBm									
									l –
10 dBm	H1 -13.000 dB	m							
									l –
20 dBm									
30 dBm									
su asm									
1 and Annual I	والمحمدين وألاهته والمنافق والار	ر 📩 منطقا و 🖓 م	alterneterla						
to dBm	And the state of t	A Designation of the second	a la d ^{ara} na da kara da	u Algebraidered an gebr	the Marshaulter Mars	the second sectors of the last	والمتعادية والمعادية		Western and the second s
				and the second	Museeline, different states	Construction and Source and State	which which and stated of the	the second s	and the shines of the second states and
i0 dBm									
JO GDIII									
i0 dBm									
									l
						<u> </u>			l
0.0 MHz			30001 pt	S	1.	91 GHz/			19.1 G

Note: Expanded measurement uncertainty is U = 0.49dB(100KHz-2GHz)/1.21dB(2GHz-26.5GHz), k = 1.96

A.8 PEAK-TO-AVERAGE POWER RATIO

Reference

FCC: CFR Part 24.232, KDB971168 D01.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval to 1 ms

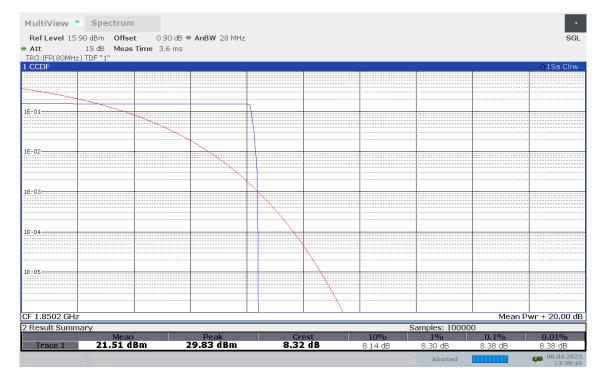
e) Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

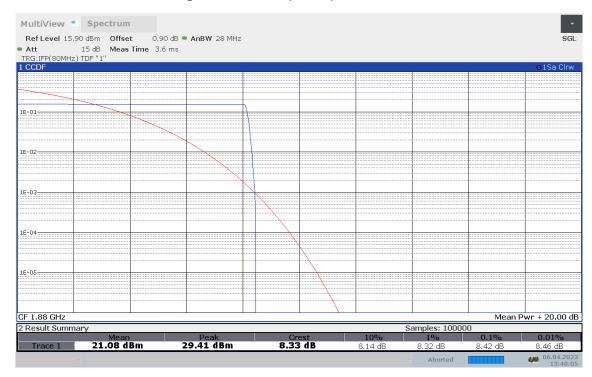
not exceed 13 dB

A.8.2 Measurement results

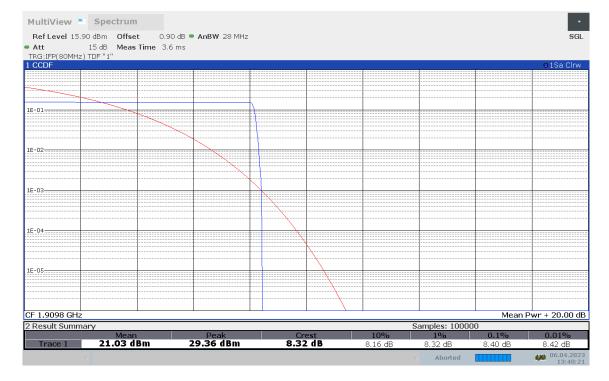
Only worst case result is given below



GPRS1900 (PAPR)


Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1852.4	8.28
1880.0	8.24
1909.7	8.32

GPRS 1900


Channel 512- Peak-To-Average Power Ratio(PAPR)

Channel 661- Peak-To-Average Power Ratio(PAPR)

Channel 810- Peak-To-Average Power Ratio(PAPR)

Note: Expanded measurement uncertainty is U = 0.49 dB, k = 2

ANNEX B: Accreditation Certificate

Accredited Laboratory

A2LA has accredited

SHENZHEN ACADEMY OF INFORMATION AND COMMUNICATIONS TECHNOLOGY

Shenzhen, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of November 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 4353.01 Valid to November 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

ANNEX C: Certificate of Brand Authorization

END OF REPORT