

DASY5 Validation Report for Head TSL

Date: 10.21,2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System; UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.809 S/m; ϵ_r = 39.51; ρ = 1000 kg/m³

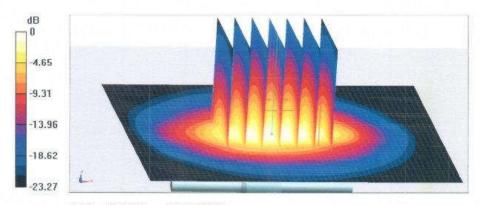
Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial; 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.0 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 28.0 W/kg

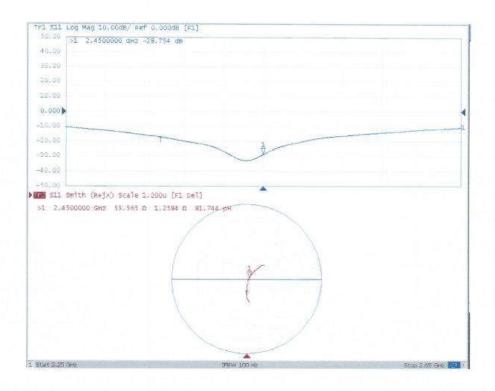
SAR(1~g) = 13.3~W/kg; ~SAR(10~g) = 6.05~W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 46.9%

Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg


Certificate No: Z21-60358

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60358

Page 6 of 6

2550MHz Dipole (2021)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client T

TMC-SZ (Auden)

Certificate No: D2550V2-1010_May21

ALIBRATION CE	RTIFICATE		
Diject	D2550V2 - SN:10	10	
	QA CAL-05.v11 Calibration Proced	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	May 21, 2021		
The measurements and the uncertainty	ainties with confidence pr	and standards, which realize the physical unionability are given on the following pages any tacility: environment temperature $(22 \pm 3)^{\circ}$ 0	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601	09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349 Dec-20) 02-Nov-26 (No. DAE-4-601 Nov-20)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21
D. Tillet			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
TOUR SO	SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41086477	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21
Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB39512475 SN: U537292783 SN: MY41092317 SN: 100972	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Secondary Standards Power meter E4419B Power sensor HP 8461A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41086477 Name	30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21

Certificate No: D2550V2-1010_May21

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_May21

Page 2 of 8

Measurement Conditions

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The state of the s	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	172422	1999

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The second secon	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	50.8 ± 6 %	2.16 mho/m ± 5 %
Body TSL temperature change during test	< 0.5 °C		7 2000

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW Input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2550V2-1010_May21

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω - 3.8 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49,3 Ω - 1,8 μΩ
Return Loss	- 34.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Gertificate No: D2550V2-1010_May21

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW; Frequency; 2550 MHz

Medium parameters used: f = 2550 MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 37.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated; 28.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

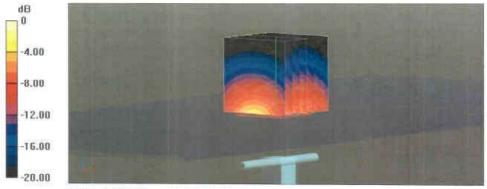
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 119.0 V/m; Power Drift = 0.05 dB

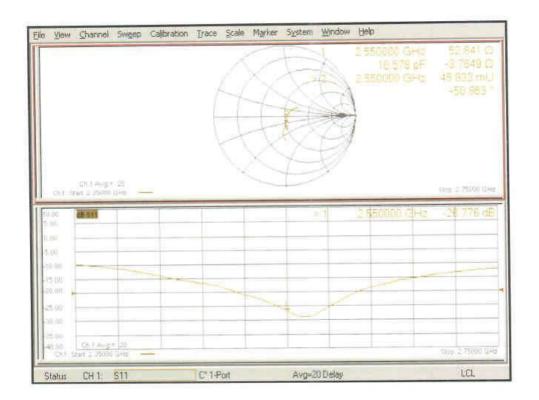

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 48.2%

Maximum value of SAR (measured) = 24.3 W/kg



0 dB = 24.3 W/kg = 13.86 dBW/kg

Certificate No: D2550V2-1010_May21

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 2550 MHz

Medium parameters used: f = 2550 MHz; $\sigma = 2.16$ S/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

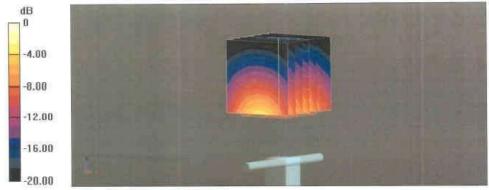
DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2550 MHz; Calibrated: 28.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

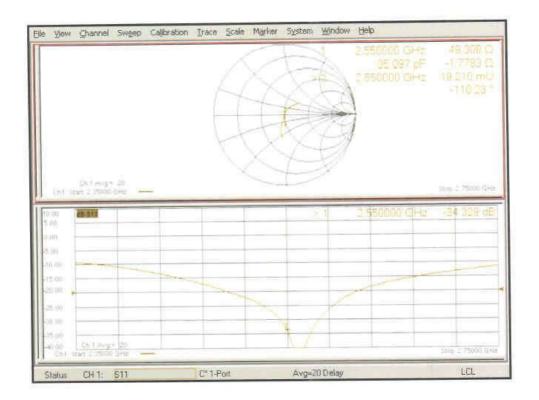

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.04 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 22.1 W/kg



0 dB = 22.1 W/kg = 13.44 dBW/kg

Certificate No: D2550V2-1010_May21

Impedance Measurement Plot for Body TSL

5GHz Dipole (2019)

E-mail: cttl a chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 http://www.chinattl.cn CTTL(South Branch)

Certificate No:

Z19-60293

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1238

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 29, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	106276 101369 SN 3617 SN 1555 ID# MY49071430	106276 11-Apr-19 (CTTL, No.J19X02605) 101369 11-Apr-19 (CTTL, No.J19X02605) SN 3617 31-Jan-19(SPEAG,No.EX3-3617_Jan19) SN 1555 22-Aug-19(CTTL-SPEAG,No.Z19-60295) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 23-Jan-19 (CTTL, No.J19X00336)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	2000
Reviewed by:	Lin Hao	SAR Test Engineer	林始
Approved by:	Qi Dianyuan	SAR Project Leader	3002

Issued: September 2, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60293

Page 1 of 14

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60293

Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.69 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	71.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations w

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.70 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.78 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 24.2 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.8Ω - 4.65jΩ	
Return Loss	- 26.2dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$49.2\Omega + 0.58j\Omega$	1107
Return Loss	- 40.0dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$50.3\Omega + 1.08j\Omega$	
Return Loss	- 39.0dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.8Ω - 2.02jΩ	
Return Loss	- 32.5dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	51.3Ω + 3.94jΩ	
Return Loss	- 27.8dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.2Ω + 4.77jΩ	
Return Loss	- 25.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.059 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60293

Page 8 of 14

Date: 08.28.2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.com

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.692 S/m; ϵ_r = 35.71; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.992 S/m; ϵ_r = 35.42; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.096 S/m; ϵ_r = 35.13; ρ = 1000 kg/m3,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(5.06, 5.06, 5.06) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.41 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.02 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

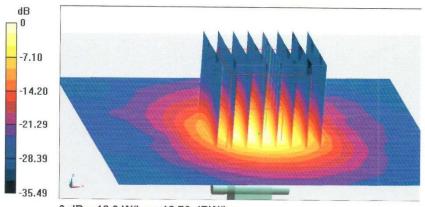
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.55 V/m; Power Drift = 0.02 dB

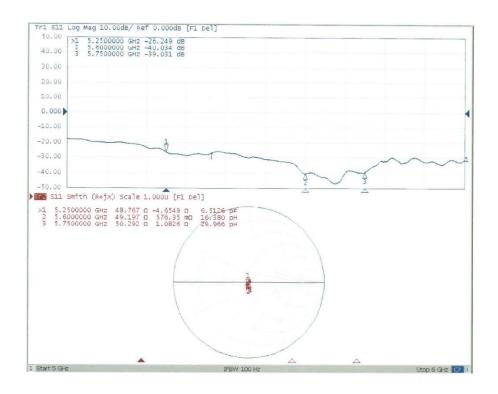
Peak SAR (extrapolated) = 36.5 W/kg

SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.23 W/kg


Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: Z19-60293

Page 9 of 14



0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.29.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.402 S/m; ϵ_r = 48.05; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.703 S/m; ϵ_r = 47.61; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.782 S/m; ϵ_r = 47.49; ρ = 1000 kg/m3,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(4.76, 4.76, 4.76) @ 5250 MHz; ConvF(4.23, 4.23, 4.23) @ 5600 MHz; ConvF(4.36, 4.36, 4.36) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.85 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 7.17 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 16.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.17 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

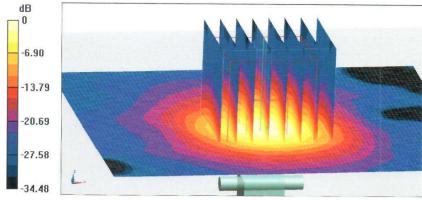
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.47 V/m; Power Drift = 0.04 dB

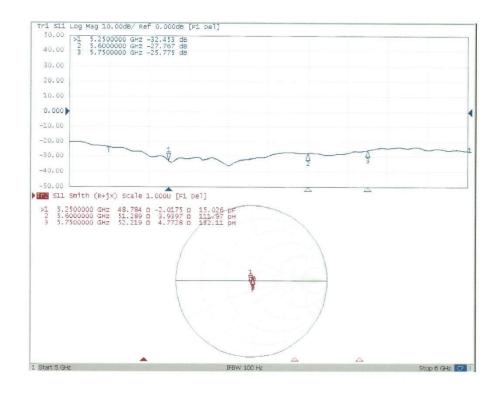
Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.1 W/kg


Maximum value of SAR (measured) = 18.1 W/kg

Certificate No: Z19-60293

Page 12 of 14



0 dB = 18.1 W/kg = 12.58 dBW/kg

Impedance Measurement Plot for Body TSL

5GHz Dipole (2022)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 http://www.caic.ac.cn

E-mail: emf@caict.ac.en

SAICT Client

Certificate No:

Z22-60336

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1238

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 17, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No. J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	杨
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	de

Issued: August 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60336

Page 1 of 8

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528; Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60336 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ±1 MHz 5600 MHz ±1 MHz 5750 MHz ±1 MHz	

Head TSL parameters at 5250MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	36.3 ±6 %	4.64 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃	1	

SAR result with Head TSL at 5250MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ±24.2 % (k=2)

Certificate No: Z22-60336

Head TSL parameters at 5600MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	35.2 ±6 %	5.01 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL at 5600MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ±24.2 % (k=2)

Head TSL parameters at 5750MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	35.4	5,22 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	35,0 ±6 %	5.18 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃	_	-

SAR result with Head TSL at 5750MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.5 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ±24.2 % (k=2)

Certificate No: Z22-60336

Page 4 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250MHz

Impedance, transformed to feed point	48.4Ω- 3.36jΩ	
Return Loss	- 28.5dB	

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	50.8Ω+ 2.69jΩ	
Return Loss	- 31.1dB	

Antenna Parameters with Head TSL at 5750MHz

Impedance, transformed to feed point	53.5Ω+ 2.34jΩ	
Return Loss	- 27.9dB	

General Antenna Parameters and Design

		_
Electrical Delay (one direction)	1.098 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Certificate No: Z22-60336

Page 5 of 8

Date: 2022-08-17

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 4.643 S/m; ϵ_r = 36.34; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.006 S/m; ϵ_r = 35.17; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.18 S/m; ϵ_r = 34.96; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN7464; ConvF(5.43, 5.43, 5.43) @ 5250 MHz;
 ConvF(4.91, 4.91) @ 5600 MHz; ConvF(4.85, 4.85, 4.85) @ 5750 MHz;
 Calibrated: 2022-01-26

- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.66 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.1%

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.44 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 35.2 W/kg

SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.37 W/kg

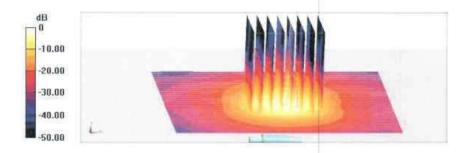
Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 20.1 W/kg

Certificate No. Z22-60336

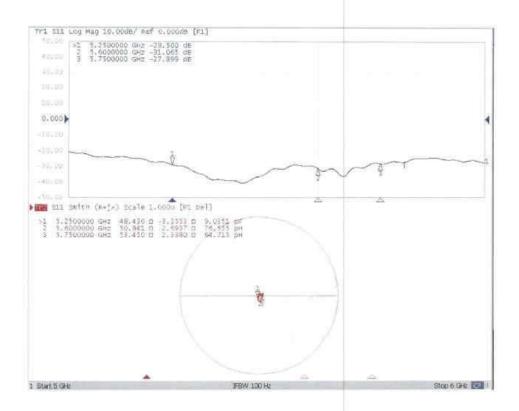
Page 6 of 8



Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.17 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 35.8 W/kg
SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.22 W/kg
Smallest distance from peaks to all points 3 dB below = 7.4 mm

Smallest distance from peaks to all points 3 dB below = 7.4 mn Ratio of SAR at M2 to SAR at M1 = 61.3% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg


Certificate No: Z22-60336

Impedance Measurement Plot for Head TSL

Certificate No: Z22-60336

Page 8 of 8

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D750V3- serial no.1163 (2019)

Head									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)			
2019-09-03	-26.9	/	50.5	1	-4.53	1			
2020-09-01	-25.8	4.1	51.2	0.7	-4.29	0.24			
2021-08-30	-25.2	6.3	51.7	1.2	-4.16	0.37			

Justification of Extended Calibration SAR Dipole D835V2 - serial no. 4d057

Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)		
2021-10-18	-27.5	/	49.8	1	-4.19	1		
2022-10-18	-26.8	2.5	51.4	1.6	-3.97	0.22		

Justification of Extended Calibration SAR Dipole D1750V2- serial no.1152 (2019)

	Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)			
2019-08-30	-38.1	1	49.1	1	-0.84	1			
2020-08-28	-36.5	4.2	50.2	1.1	-0.49	0.35			
2021-08-26	-35.7	6.3	50.8	1.7	-0.42	0.42			

Justification of Extended Calibration SAR Dipole D1900V2 - serial no. 5d088

Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)		
2021-10-18	-22.6	/	53.7	1	6.80	1		
2022-10-18	-22.2	1.8	54.6	0.9	6.93	0.13		

Justification of Extended Calibration SAR Dipole D2450V2 - serial no. 873

Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)		
2021-10-21	-28.8	1	53.6	1	1.26	/		
2022-10-20	-28.1	2.4	54.9	1.3	1.43	0.17		

Justification of Extended Calibration SAR Dipole D2550V2- serial no.1010

Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)		
2021-05-21	-26.8	/	52.8	1	-3.80	/		
2022-05-20	-26.3	1.9	53.6	0.8	-3.64	0.16		

Justification of Extended Calibration SAR Dipole D5GHzV2- serial no.1238 (2019)

	Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)			
	5250MHz								
2019-08-29	-26.2	/	48.8	/	-4.65	/			
2020-08-28	-25.1	4.2	49.7	0.9	-4.26	0.39			
2021-08-26	-24.7	5.7	50.2	1.4	-4.01	0.64			
			5600MHz						
2019-08-29	-40.0	1	49.2	1	0.58	1			
2020-08-28	-38.1	4.8	50.3	1.1	0.85	0.27			
2021-08-26	-37.7	5.7	50.8	1.6	0.92	0.34			
	5750MHz								
2019-08-29	-39.0	1	50.3	1	1.08	1			
2020-08-28	-37.7	3.3	51.1	0.8	1.44	0.36			
2021-08-26	-37.2	4.6	51.6	1.3	1.53	0.45			

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Spot Check Test

As the test lab for T506A from TCL Communication Ltd., we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

K.1. Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version	Receipt Date	
UT01aa	353380540012514	05	vVJ52	2023-02-22	

K.2. Measurement results

GSM850 SAR Values:

Freq	uency		Conducted	Max.	SA	R(1g) (W/kg)		
	Test Position		tune-un Spo		eck data	Original			
Ch.	MHz	Test Fosition	Power (dBm)	Power	Measured	Reported	data		
		(dDIII)	(dBm)	SAR	SAR	uala			
	GSM850 - Head								
251	848.8	Right Cheek	32.45	34.0	0.615	0.88	1.23		
	GSM850 - Body								
128	824.2	Rear	28.70	29.5	0.128	0.15	0.16		

K.3. Graph Results for Spot Check

GSM850 Head

Date: 2023-2-24

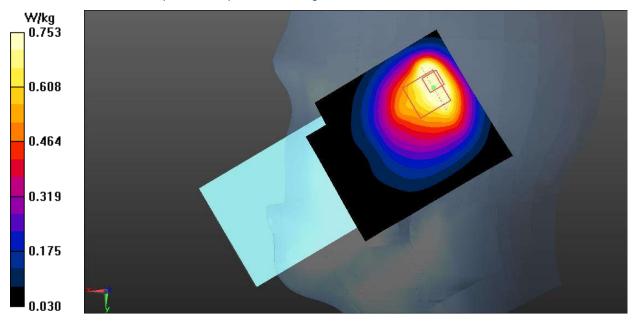
Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.926 \text{ S/m}$; $\varepsilon_r = 40.282$; $\rho = 1000 \text{ kg/m}^3$

Communication System: UID 0, GSM (0) Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek High/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.748 W/kg


Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.94 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.981 W/kg

SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.425 W/kg

Maximum value of SAR (measured) = 0.753 W/kg

GSM850 Body

Date: 2023-2-24

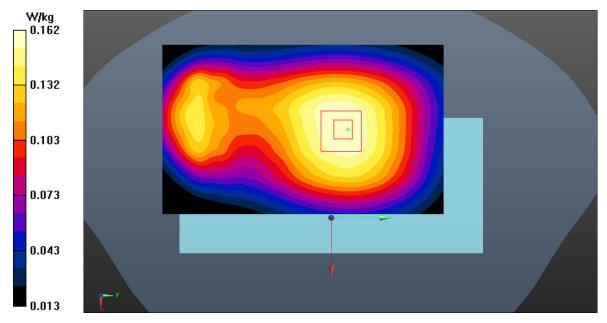
Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.903 \text{ S/m}$; $\varepsilon_r = 40.577$; $\rho = 1000 \text{ kg/m}^3$

Communication System: UID 0, 4 slot GPRS (0) Frequency: 824.2 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Rear Side Low/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.159 W/kg


Rear Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.28 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.162 W/kg

K.4. System Verification Results for Spot Check

835MHz

Date: 2023-2-24

Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.913 \text{ S/m}$; $\epsilon r = 40.447$; $\rho = 1000 \text{ kg/m}^3$

Communication System: CW TMC Frequency: 835 MHz Duty Cycle: 1:1

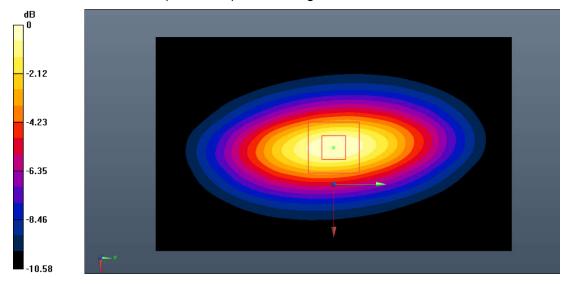
Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 65.349 V/m; Power Drift = -0.03 dB

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (interpolated) = 3.33 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.349 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.82 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.31 W/kg

0 dB = 3.31 W/kg = 5.20 dB W/kg

ANNEX L: Second Spot Check Test

As the test lab for T507J from TCL Communication Ltd., we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

L.1. Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version	Receipt Date
UT02aa	354419230000386	V01	vVK54	2022-12-19

L.2. Measurement results

Note: Because the spot check tests condition is same to I22N02642-SAR report, so the spot check data is all referenced to I22N02642-SAR report ANNEX K.

GSM part (GSM850 - Head)

Fred	quency	ency		Conducted	Max.	SAR(1g) (W/kg)		
Ch. MHz	To	st Position	Power	tune-up	Spot che	eck data	Original	
	MHz	rest r osition	St FOSItion	(dBm)	Power	Measured	Reported	data
				(dBiii)	(dBm)	SAR	SAR	uata
251	848.8	Head	Right Cheek	32.45	34.0	0.673	0.96	1.23

GSM part (GSM1900 - Body)

Freq	quency			Conducted	Max.	SAR(1g) (W/kg)		
	Test Position	et Position	Power	tune-up	Spot che	eck data	Original	
Ch.	MHz	rest rosition	(dBm)	Power	Measured	Reported	data	
		(dBiii)	(dBm)	SAR	SAR	uata		
810	1909.8	Body	Bottom	30.27	31.5	0.487	0.65	0.98

WCDMA part (WCDMA Band 5 - Head)

Freq	luency			Conducted	Max.	SAR(1g) (W/kg)		
	Test Pr	st Position	Power	tune-up	Spot che	eck data	Original	
Ch.	MHz	Test Fosition	(dBm)	Power	Measured	Reported	data	
				(dBiii)	(dBm)	SAR	SAR	uata
4132	826.4	Head	Right Cheek	23.30	24.0	0.638	0.75	1.08

WCDMA part (WCDMA Band 2 - Body)

Freq	luency			Conducted	Max.	SAR(1g) (W/kg)		
Ch. MHz	To	st Position	Conducted Power	tune-up	Spot check data		Original	
	MHz	rest rosition	St FOSITION	(dBm)	Power	Measured	Reported	data
				(dBiii)	(dBm)	SAR	SAR	uala
9262	1852.4	Body	Bottom	22.20	22.5	1.070	1.15	1.19

LTE part (LTE Band 13 - Head)

	Frequ	ency			Conducted	Max.	SAR(1g) (W/kg)		
	Ch. MHz	Test Position		Power	tune-up	Spot che	eck data	Original	
		MHz	rest rosition	(dBm)	Power	Measured	Reported	data	
					(dDIII)	(dBm)	SAR	SAR	uata
	23230	782.0	Head	Right Cheek	23.38	24.5	0.801	1.04	1.17

LTE part (LTE Band 66 - Body)

Frequ	iency			Conducted	Max.	SA	R(1g) (W/kg)
Ch. MHz	Test Position		Conducted Power	tune-up	Spot che	eck data	Original	
	MHz	rest rosition	(dBm)	Power	Measured	Reported	data	
				(מטווו)	(dBm)	SAR	SAR	uata
132572	1770.0	Body	Bottom	20.48	21.5	0.858	1.09	1.32

Bluetooth part (Bluetooth - Head)

	Frequ	iency			Conducted	Max.	SAR(1g) (W/kg)		
		Test Position		Power	tune-up	Spot che	eck data	Original	
	Ch. MH:	MHz	rest rosition	est Fusition	(dBm)	Power	Measured	Reported	data
				(ubiii)	(dBm)	SAR	SAR	uala	
ſ	0	2402.0	Head	Left Cheek	10.08	11.0	0.008	0.01	0.10

Bluetooth part (Bluetooth - Body)

			<u> </u>					
Frequ	iency			Conducted	Max.	SAR(1g) (W/kg)		
	Test Position		Power	tune-up	Spot che	eck data	Original	
Ch. MHz	Test Fosition	(dBm)	Power	Measured	Reported	data		
				(ubiii)	(dBm)	SAR	SAR	uala
0	2402.0	Body	Rear	10.08	11.0	0.005	0.01	0.04

WLAN 2.4GHz part (WLAN 2.4GHz - Head)

Frequ	iency			Conducted	Max.	SAR(1g) (W/kg)		
Ch. MHz	Test Position		Power	tune-up	Spot che	eck data	Original	
	MHz	rest rosition	(dBm)	Power	Measured	Reported	data	
				(ubiii)	(dBm)	SAR	SAR	uata
6	2437.0	Head	Left Cheek	15.92	17.0	0.354	0.45	0.48

WLAN 2.4GHz part (WLAN 2.4GHz - Body)

Frequ	iency	ісу		Conducted	Max.	SAR(1g) (W/kg)		
		Test Position		Conducted Power	tune-up	Spot che	eck data	Original
Ch. MHz	MHz		est Fosition	(dBm)	Power	Measured	Reported	data
				(dDIII)	(dBm)	SAR	SAR	uata
6	2437.0	Body	Rear	15.92	17.0	0.129	0.17	0.17

WLAN 2.4GHz part (WLAN 5GHz - Head)

Frequ	iency			Conducted	Max.	SAR(1g) (W/kg)		
Ch. MHz	Test Position		Power	tune-up	Spot che	eck data	Original	
	MHz		(dBm)	Power	Measured	Reported	data	
			(GDIII)	(dBm)	SAR	SAR	uala	
165	5825.0	Head	Left Cheek	14.72	15.5	0.292	0.35	0.35

WLAN 2.4GHz part (WLAN 5GHz - Body)

Frequency				Conducted	Max.	SAR(1g) (W/kg)		
Ch.	MHz	Test Position		Power (dBm)	tune-up Power (dBm)	Spot check data		Original
						Measured	Reported	data
						SAR	SAR	
48	5280.0	Body	Rear	14.42	15.5	0.128	0.16	0.17

L.3. Graph Results for Spot Check

GSM850 Head

Date: 2022-12-25

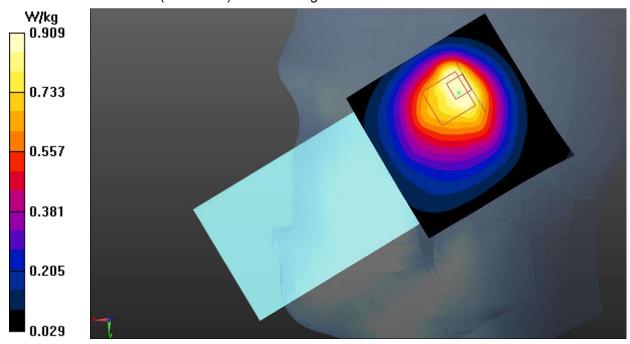
Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.93 \text{ S/m}$; $\epsilon_r = 40.319$; $\rho = 1000 \text{ kg/m}^3$

Communication System: UID 0, GSM (0) Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.00 W/kg


Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.25 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.673 W/kg; SAR(10 g) = 0.440 W/kg

Maximum value of SAR (measured) = 0.909 W/kg

GSM1900 Body

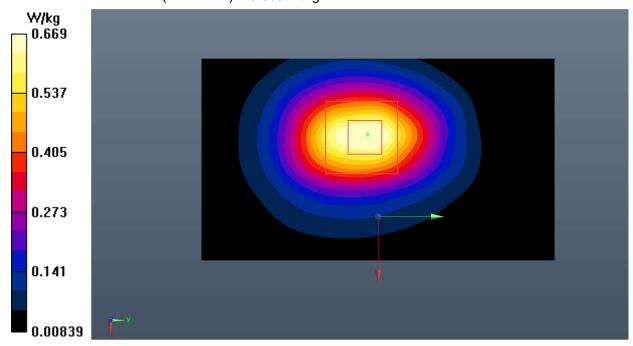
Date: 2022-12-26

Electronics: DAE4 Sn1527 Medium: Head 1900MHz

Medium parameters used: f = 1910 MHz; σ = 1.432 S/m; ϵ_r = 38.658; ρ = 1000 kg/m³ Communication System: UID 0, 1 slot GPRS (0) Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Bottom Side High/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.693 W/kg


Bottom Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.72 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.268 W/kg

Maximum value of SAR (measured) = 0.669 W/kg

WCDMA Band 5 Head

Date: 2022-12-25

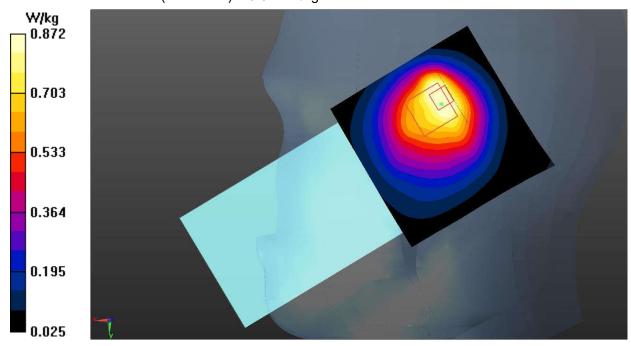
Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.909 \text{ S/m}$; $\varepsilon_r = 40.588$; $\rho = 1000 \text{ kg/m}^3$

Communication System: UID 0, WCDMA (0) Frequency: 826.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Right Cheek Low/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.942 W/kg


Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.37 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.638 W/kg; SAR(10 g) = 0.416 W/kg

Maximum value of SAR (measured) = 0.872 W/kg

WCDMA Band 2 Body

Date: 2022-12-26

Electronics: DAE4 Sn1527 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.383$ S/m; $\epsilon_r = 38.875$; $\rho = 1000$

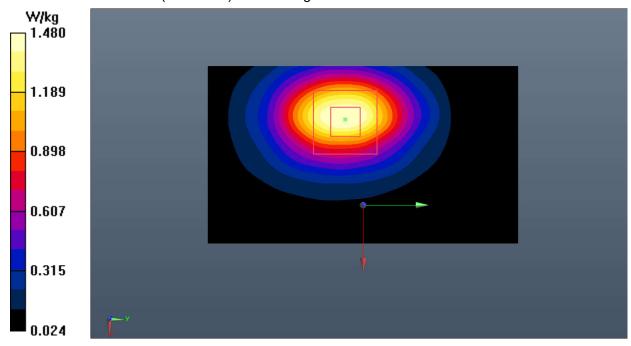
kg/m³

Communication System: UID 0, WCDMA (0) Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Bottom Side Low/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.49 W/kg


Bottom Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.07 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.589 W/kg

Maximum value of SAR (measured) = 1.48 W/kg

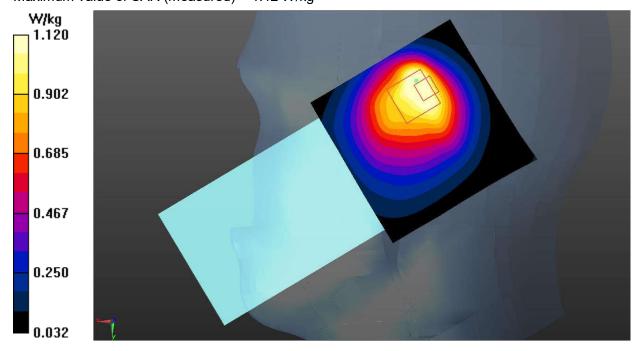
LTE Band 13 Head

Date: 2022-12-25

Electronics: DAE4 Sn1527 Medium: Head 750MHz

Medium parameters used: f = 782 MHz; σ = 0.894 S/m; ϵ_r = 42.394; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)


Right Cheek Middle 1RB24/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.34 W/kg

Right Cheek Middle 1RB24/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.61 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.801 W/kg; SAR(10 g) = 0.516 W/kg Maximum value of SAR (measured) = 1.12 W/kg

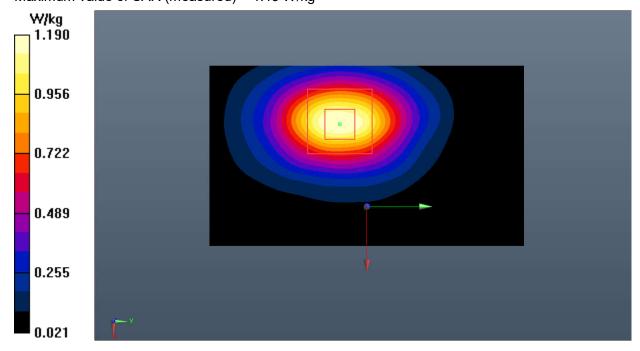
LTE Band 66 Body

Date: 2022-12-26

Electronics: DAE4 Sn1527 Medium: Head 1750MHz

Medium parameters used: f = 1770 MHz; σ = 1.404 S/m; ϵ_r = 39.364; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1770 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)


Bottom Side Middle 1RB50/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.21 W/kg

Bottom Side Middle 1RB50/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.67 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.470 W/kg Maximum value of SAR (measured) = 1.19 W/kg

Bluetooth Head

Date: 2022-12-22

Electronics: DAE4 Sn1527 Medium: Head 2450MHz

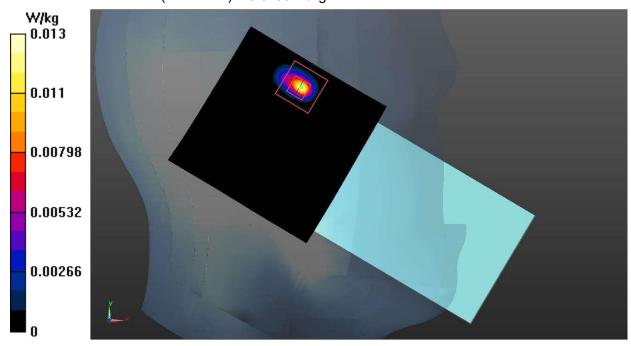
Medium parameters used: f = 2402 MHz; $\sigma = 1.77$ S/m; $\epsilon_r = 38.107$; $\rho = 1000$ kg/m³

Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Left Cheek Ch.0/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0127 W/kg


Left Cheek Ch.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.033 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.0190 W/kg

SAR(1 g) = 0.00815 W/kg; SAR(10 g) = 0.0026 W/kg

Maximum value of SAR (measured) = 0.0133 W/kg

Bluetooth Body

Date: 2022-12-22

Electronics: DAE4 Sn1527 Medium: Head 2450MHz

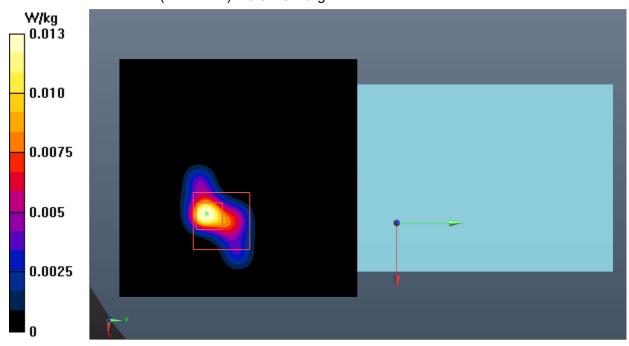
Medium parameters used: f = 2402 MHz; σ = 1.77 S/m; ϵ_r = 38.107; ρ = 1000 kg/m 3

Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Rear Side Ch.0/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0140 W/kg


Rear Side Ch.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.6570 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0220 W/kg

SAR(1 g) = 0.00516 W/kg; SAR(10 g) = 0.00127 W/kg

Maximum value of SAR (measured) = 0.0125 W/kg

WLAN 2.4GHz Head

Date: 2022-12-22

Electronics: DAE4 Sn1527 Medium: Head 2450MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.812$ S/m; $\varepsilon_r = 37.992$; $\rho = 1000$ kg/m³

Communication System: UID 0, WLAN (0) Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Left Cheek Ch.6/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.593 W/kg

Left Cheek Ch.6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.294 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.722 W/kg

SAR(1 g) = 0.354 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.467 W/kg

WLAN 2.4GHz Body

Date: 2022-12-22

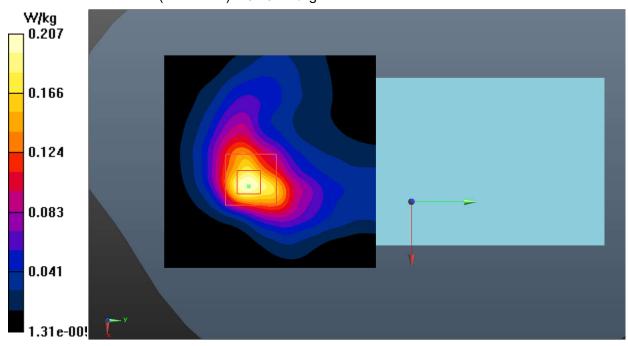
Electronics: DAE4 Sn1527 Medium: Head 2450MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.812$ S/m; $\varepsilon_r = 37.992$; $\rho = 1000$ kg/m³

Communication System: UID 0, WLAN (0) Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Rear Side Ch.6/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.208 W/kg


Rear Side Ch.6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.029 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.129 W/kg; SAR(10 g) = 0.063 W/kg

Maximum value of SAR (measured) = 0.207 W/kg

WLAN 5GHz Head

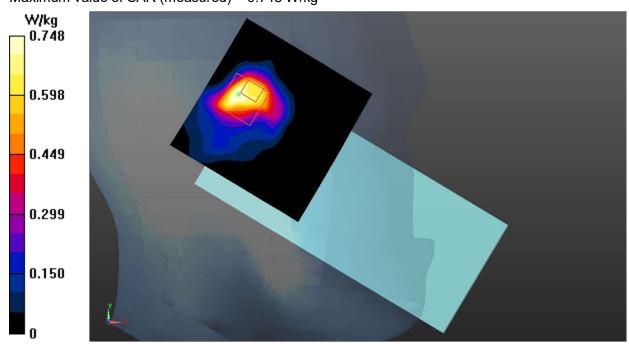
Date: 2022-12-21

Electronics: DAE4 Sn1527 Medium: Head 5750MHz

Medium parameters used (interpolated): f = 5825 MHz; $\sigma = 5.414 \text{ S/m}$; $\varepsilon_r = 34.482$; $\rho = 1000 \text{ kg/m}^3$

Communication System: UID 0, WLAN 5G (0) Frequency: 5825 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)


Left Cheek Ch.165/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.805 W/kg

Left Cheek Ch.165/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.194 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.092 W/kg Maximum value of SAR (measured) = 0.748 W/kg

WLAN 5GHz Body

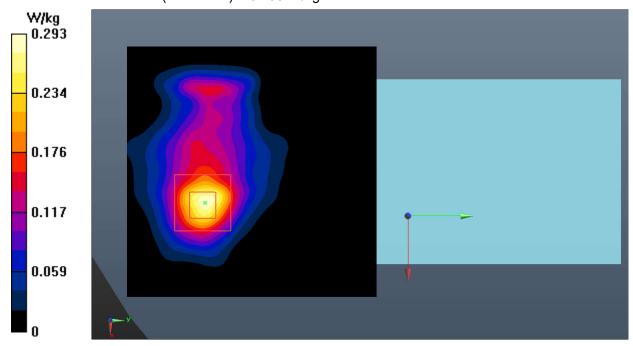
Date: 2022-12-21

Electronics: DAE4 Sn1527 Medium: Head 5250MHz

Medium parameters used: f = 5240 MHz; σ = 4.623 S/m; ϵ_r = 36.445; ρ = 1000 kg/m³ Communication System: UID 0, WLAN 5G (0) Frequency: 5240 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (5.98, 5.98, 5.98)

Rear Side Ch.48/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.285 W/kg


Rear Side Ch.48/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.7140 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.293 W/kg

L.4. System Verification Results for Spot Check

750MHz

Date: 2022-12-25

Electronics: DAE4 Sn1527 Medium: Head 750MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.874 \text{ S/m}$; $\varepsilon_r = 42.778$; $\rho = 1000 \text{ kg/m}^3$

Communication System: CW TMC Frequency: 750 MHz Duty Cycle: 1:1

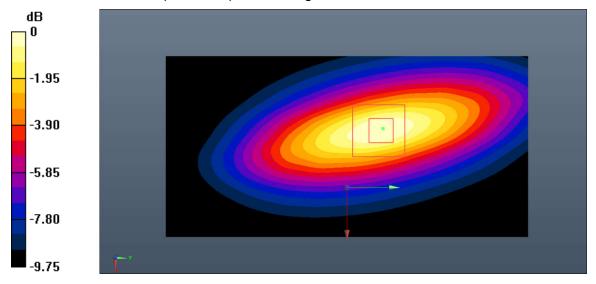
Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 59.064 V/m; Power Drift = -0.12 dB

SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (interpolated) = 2.84 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.064 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.05 W/kg

SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.39 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dB W/kg

Fig.B.10. Validation 750MHz 250mW

Date: 2022-12-25

Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.917 \text{ S/m}$; $\epsilon r = 40.485$; $\rho = 1000 \text{ kg/m}^3$

Communication System: CW TMC Frequency: 835 MHz Duty Cycle: 1:1

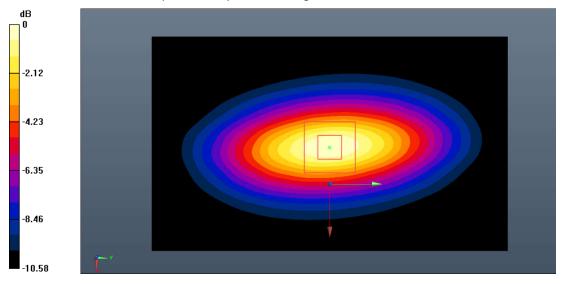
Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 63.849 V/m; Power Drift = 0.09 dB

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (interpolated) = 3.65 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.849 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 4.33 W/kg

SAR(1 g) = 2.50 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 3.69 W/kg

0 dB = 3.69 W/kg = 5.67 dB W/kg

Date: 2022-12-26

Electronics: DAE4 Sn1527 Medium: Head 1750MHz

Medium parameters used: f = 1750 MHz; σ = 1.386 S/m; ε_r = 39.442; ρ = 1000 kg/m³

Communication System: CW TMC Frequency: 1750 MHz Duty Cycle: 1:1

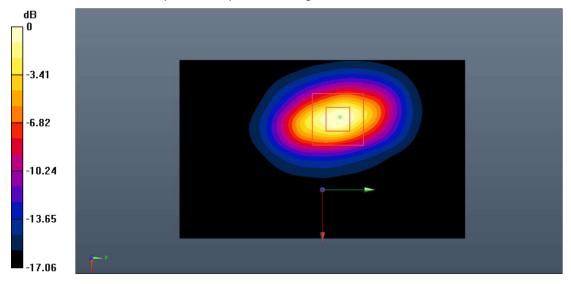
Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 81.056 V/m; Power Drift = 0.03 dB

SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.90 W/kg

Maximum value of SAR (interpolated) = 11.1 W/kg


System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.056 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 23.7 W/kg

SAR(1 g) = 9.35 W/kg; SAR(10 g) = 4.97 W/kg

Maximum value of SAR (measured) = 11.3 W/kg

0 dB = 11.3 W/kg = 10.53 dB W/kg

Date: 2022-12-26

Electronics: DAE4 Sn1527 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.425 S/m; ε_r = 38.689; ρ = 1000 kg/m³

Communication System: CW TMC Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 84.582 V/m; Power Drift = 0.13 dB

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (interpolated) = 12.4 W/kg


System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.582 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.29 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dB W/kg

Date: 2022-12-22

Electronics: DAE4 Sn1527 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; σ = 1.827 S/m; ϵ_r = 37.949; ρ = 1000 kg/m³

Communication System: CW TMC Frequency: 2450 MHz Duty Cycle: 1:1

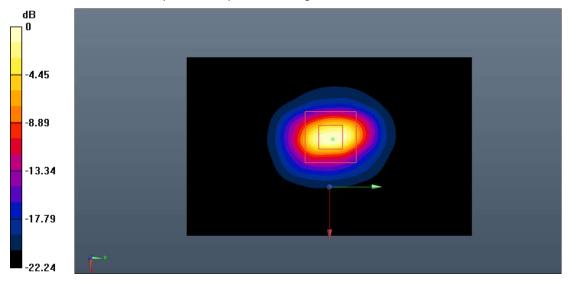
Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 91.786 V/m; Power Drift = 0.13 dB

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (interpolated) = 15.3 W/kg


System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.786 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 38.1 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dB W/kg

Date: 2022-12-21

Electronics: DAE4 Sn1527 Medium: Head 5250MHz

Medium parameters used: f = 5250 MHz; σ = 4.636 S/m; ϵ_r = 36.418; ρ = 1000 kg/m³

Communication System: CW TMC Frequency: 5250 MHz Duty Cycle: 1:1

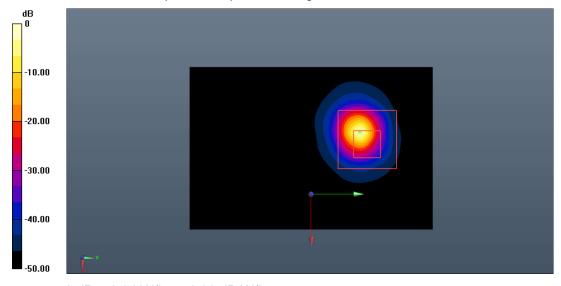
Probe: EX3DV4 - SN7621 ConvF (5.98, 5.98, 5.98)

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 65.456 V/m; Power Drift = -0.06 dB

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (interpolated) = 9.89 W/kg


System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.456 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 7.70 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 9.84 W/kg

0 dB = 9.84 W/kg = 9.93 dB W/kg

Date: 2022-12-21

Electronics: DAE4 Sn1527 Medium: Head 5750MHz

Medium parameters used: f = 5750 MHz; σ = 5.313 S/m; ε_r = 34.685; ρ = 1000 kg/m³

Communication System: CW TMC Frequency: 5750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

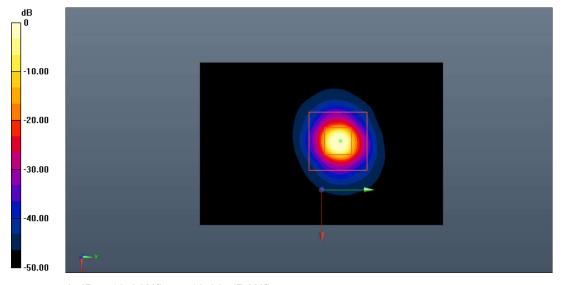
System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 67.514 V/m; Power Drift = 0.05 dB

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (interpolated) = 10.0 W/kg

System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm,


dz=1.4mm

Reference Value = 67.514 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dB W/kg

END OF REPORT