



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

g

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 2450 MHz ± 1 MHz         |             |

### Head TSL parameters

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.5±6%      | 1.81 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                          |
|------------------------------------------------|--------------------|--------------------------|
| SAR measured                                   | 250 mW input power | 13.3 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 53.2 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                          |
| SAR measured                                   | 250 mW input power | 6.05 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 24.2 W/kg ± 18.7 % (k=2) |

Certificate No: Z21-60358

Page 3 of 6





#### Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.6Ω+ 1.26jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 28.8dB      |

#### General Antenna Parameters and Design

| Electrical Delay (one direction)                                                                                | 1.066 ns |  |
|-----------------------------------------------------------------------------------------------------------------|----------|--|
| Consider a second second decision and the second | 1.050000 |  |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| M | lanufactured by | SPEAG |
|---|-----------------|-------|
|   |                 |       |

Certificate No: Z21-60358

Page 4 of 6





Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl.achinattl.com http://www.chinattl.cn

**DASY5 Validation Report for Head TSL** 

Date: 10.21.2021

#### Test Laboratory: CTTL, Beijing, China **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.809 S/m; ε<sub>r</sub> = 39.51; ρ = 1000 kg/m<sup>3</sup> Phantom section: Right Section DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
   Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Versi (7501)

**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 108.0 V/m; Power Drift = -0.03 dB
Peak SAR (extrapolated) = 28.0 W/kg
SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.05 W/kg
Smallest distance from peaks to all points 3 dB below = 9.2 mm
Ratio of SAR at M2 to SAR at M1 = 46.9\%
Maximum value of SAR (measured) = 22.6 W/kg
```



0 dB = 22.6 W/kg = 13.54 dBW/kg

Certificate No: Z21-60358

Page 5 of 6







Impedance Measurement Plot for Head TSL



Certificate No: Z21-60358

Page 6 of 6



# 2550MHz Dipole

| credited by the Swiss Accreditation<br>e Swiss Accreditation Service In                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Service (BAS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s one of the signatories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to the EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | preditation No.: SCS 0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Internal Agreement for the rect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ognition of calibration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Certificate No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D2550V2-1010_May21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ALIBRATION CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dbject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D2550V2 - SN:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Calibration procedure(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QA CAL-05.v11<br>Calibration Proce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dure for SAR Validation Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | between 0.7-3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 01 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| This calibration certificate documer<br>The measurements and the uncert                                                                                                                                                                                                                                                                                                                                                                                                                                        | nts the traceability to nati<br>ainties with confidence p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onal standards, which realize the physical un<br>robability are given on the following pages an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | its of measurements (SI),<br>id are part of the contilicate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conduct<br>Calibration Equipment used (M&TE                                                                                                                                                                                                                                                                                                                                                             | Its the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>critical for calibration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onal standards, which realize the physical un<br>cobability are given on the following pages an<br>y facility: environment temperature (22 ± 3)*0<br>Cal Data (Dettilizate Nic.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | its of measurements (SI),<br>of are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards                                                                                                                                                                                                                                                                                                                                       | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>critical for calibration)<br>ID #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cal Date (Certificate No.)<br>09-Apr 21 (No. 217-03291/03292)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | its of measurements (SI),<br>of are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power sensor NRP<br>Power sensor NRP-291                                                                                                                                                                                                                                                                                           | nts the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 104244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP-<br>Power sensor NRP-291<br>Power sensor NRP-291                                                                                                                                                                                                                                                                   | nts the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03292)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used IM&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator                                                                                                                                                                                                                                      | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: BH9394 (20k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03392)<br>09-Apr-21 (No. 217-03392)<br>09-Apr-21 (No. 217-03392)<br>09-Apr-21 (No. 217-03393)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power sensor NRP<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                                                                                                                                                                                              | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 919294 (20k)<br>SN: 310962 / 06327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03344)<br>09-Apr-21 (No. 217-03344)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| This calibration certificate document<br>The measurements and the uncert<br>All catibrations have been conductor<br>Calibration Equipment used IM&TE<br>Primary Standards<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4                                                                                                                                                                                               | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 103245<br>SN: 8H9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-0334)<br>09-Apr-21 (No. 217-0334)                                                                                                                                                                                                                                                                                                                                                                                                                         | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP-<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4                                                                                                                                                                    | Its the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 103245<br>SN: 8H9394 (20k)<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onal standards, which realize the physical un<br>cobability are given on the following pages an<br>y facility: environment temperature (22 ± 3)*1           Cal Date (Certificate No.)           09-Apr-21 (No. 217-03291)           09-Apr-21 (No. 217-03292)           09-Apr-21 (No. 217-03292)           09-Apr-21 (No. 217-03343)           09-Apr-21 (No. 217-03344)           28-Dec-20 (No. EX3-7349. Dec20)           02-Nov-26 (No. DAE4-601. Nov20)                                                                                                                                                                                                                     | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| This calibration certificate document<br>the measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                                                                                                                                      | Its the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 104244<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | conal standards, which realize the physical un<br>cobability are given on the following pages an<br>y facility: environment temperature (22 ± 3)*4           Cal Date (Certificate No.)           09-Apr-21 (No. 217-03291/03292)           09-Apr-21 (No. 217-03291)           09-Apr-21 (No. 217-03292)           09-Apr-21 (No. 217-03343)           09-Apr-21 (No. 217-03344)           28-Dec-20 (No. EX3-7349 Dec20)           02-Nov-26 (No. DAE4-601 Nov20)           Check Date (in house)                                | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| This calibration certificate document<br>The measurements and the uncerti-<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B                                                                                                                                         | Inter the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 104245<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | conal standards, which realize the physical un<br>cobability are given on the following pages an<br>y facility: environment temperature (22 ± 3)*1<br>Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. DAE-4-601 Nov20)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-20)                                                                                                                                                                                 | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check<br>In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A                                                                                               | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 103245<br>SN: 014778<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 10982 / 06327<br>SN: 7348<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | conal standards, which realize the physical un<br>robability are given on the following pages an<br>y facility: environment temperature (22 ± 3)*1<br>Og-Apr-21 (No. 217-03291/03292)<br>Og-Apr-21 (No. 217-03292)<br>Og-Apr-21 (No. 217-03292)<br>Og-Apr-21 (No. 217-03343)<br>Og-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. DAE4-601 Nov20)<br>O2-Nov-26 (No. DAE4-601 Nov20)<br>Check Date (In house)<br>30-Oct-14 (In house check Oct-20)<br>07-Oct-15 (In house check Oct-20)                                                                                                            | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check<br>In house check: Oct-22<br>In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used IM&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power sensor NP 8481A<br>Power sensor NP 8481A                                                                                            | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 310982 / 06327<br>SN: 7349<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cal Date (Certificate No.)<br>Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. EX3-7349, Dec20)<br>02-Nov-20 (No. DAE-4-601, Nov20)<br>Check Date (in house)<br>30-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)                                                                                                                                                                                                                                                             | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                                                                    | Its the traceability to nati<br>ainties with confidence p<br>ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 103244<br>SN: 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cal Date (Certificate No.)<br>Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. EX3-7349, Dec20)<br>02-Nov-20 (No. DAE4-601, Nov20)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)                                                                                                                                         | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>C and humidity < 70%.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Neiv-21<br>Scheduled Check<br>In house check: Oct-22<br>In h |
| This calibration certificate document<br>The measurements and the uncerti-<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzor Agilent E8358A                                                    | the traceability to nati<br>anties with confidence p<br>ed in the closed laborator<br>E critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103245<br>SN: 103244<br>SN: 103245<br>SN: 310982 / 06327<br>SN: 7348<br>SN: 601<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: 100972<br>SN: US41080477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cal Date (Certificate No.)<br>Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. 217-03344)<br>28-Dec-20 (No. DAE4-801 Nov20)<br>Check Date (In house)<br>30-Oct-14 (In house check Oct-20)<br>07-Oct-15 (In house check Oct-20)<br>07-Oct-15 (In house check Oct-20)<br>15-Jun-15 (In house check Oct-20)<br>31-Mar-14 (In house check Oct-20)                                                               | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-21<br>In house check: Oct-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| This calibration certificate document<br>the measurements and the uncerti-<br>All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Power ensor NRP-291<br>Power eensor NRP-291<br>Power eensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power meter E44198<br>Power sensor HP 8481A<br>Priver sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzar Agilent E8358A | Inter the traceability to nati-<br>anties with confidence p<br>ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 104778<br>SN: 104244<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 06327<br>SN: 7349<br>SN: 061<br>ID #<br>SN: GB39512475<br>SN: US37292783<br>SN: WY41092317<br>SN: US41080477<br>Native                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cal Date (Certificate No.)<br>Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291/03292)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dac-20 (No. EX3-7349 Dec20)<br>02-Nov-20 (No. DAE4-601 Nov20)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>15-Jun-14 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>Function                                                             | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check<br>In house check: Oct-22<br>In house check: Oct-21<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| This calibration certificate document<br>The measurements and the uncert<br>All calibrations have been conducts<br>Calibration Equipment used IM&TE<br>Primary Standards<br>Power meter NRP<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzor Agilent E8358A<br>Celibrated by:            | Inter the traceability to nati<br>ainties with confidence p<br>ed in the closed laborator<br>critical for calibration)<br>ID #<br>SN: 104778<br>SN: 103244<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103245<br>SN: 103247<br>SN: 10341080477<br>SN: 10341080477<br>SN: 10341080477<br>SN: 10341080477 | Cal Date (Certificate No.)<br>Cal Date (Certificate No.)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03291)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03292)<br>09-Apr-21 (No. 217-03343)<br>09-Apr-21 (No. 217-03344)<br>28-Dec-20 (No. EX3-7349, Dec20)<br>02-Nov-20 (No. DAE4-801, Nov20)<br>Check Date (in house)<br>30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)<br>Function<br>Laboratory Technician | its of measurements (SI),<br>id are part of the contilicate.<br>C and humidity < 70%.<br>C and humidity < 70%.<br>Scheduled Calibration<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Apr-22<br>Dec-21<br>Nov-21<br>Scheduled Check<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-21<br>Signature<br>MMMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Certificate No: D2550V2-1010\_May21

Page 1 of 8



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



- Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

S

C

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate
- b) TEC 62209-1, "Measurement procedure for the assessment of Specific Absorption nate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The Impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010\_May21

Page 2 of 8



### Measurement Conditions

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz $= 5 mm$    |             |
| Frequency                    | 2550 MHz ± 1 MHz       |             |

Frequency

Head TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.1         | 1.91 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) "C | 37.4 ± 6 %   | 1.99 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 74420        | 1000             |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>2</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 14.4 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 55.9 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 6.42 W/kg                |

Body TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.6         | 2.09 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) "C | 50.8 ± 6 %   | 2.16 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              | 1.000            |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 13.4 W/kg                |
| SAR for nominal Body TSL parameters                                     | normalized to 1W                | 52.4 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL<br>SAR measured | condition<br>250 mW input power | 6.04 W/kg                |

Certificate No: D2550V2-1010\_May21

Page 3 of 8



# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.8 Ω - 3.8 μΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26,8 dB       |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.3 Ω - 1.8 ΙΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 34.3 dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.153 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid creaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Gertificate No: D2550V2-1010\_May21

Page 4 of 8



#### DASY5 Validation Report for Head TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW: Frequency: 2550 MHz Medium parameters used: f = 2550 MHz;  $\sigma$  = 1.99 S/m;  $\varepsilon_r$  = 37.4;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 48.2% Maximum value of SAR (measured) = 24.3 W/kg



0 dB = 24.3 W/kg = 13.86 dBW/kg

Certificate No: D2550V2-1010\_May21

Page 5 of 8



# Impedance Measurement Plot for Head TSL



Certificate No: D2550V2-1010\_May21

Page 6 of 8



### DASY5 Validation Report for Body TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz;  $\sigma$  = 2.16 S/m;  $\epsilon_r$  = 50.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527): SEMCAD X 14.6.14(7483)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 22.1 W/kg



Certificate No: D2550V2-1010\_May21

Page 7 of 8



# Impedance Measurement Plot for Body TSL



Certificate No: D2550V2-1010\_May21

Page 8 of 8



# 5GHz Dipole (2019)

| Add: No.51 Xueyu                                                                                   | uan Road, Haidian D                                                     | TION LABORATORY<br>Strict, Beijing, 100191, China                                                                                                                  | 中国认可<br>国际互认<br>校准<br>CALIBRATION                      |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| E-mail: ettl@china                                                                                 | 1633-2512 Fax:<br>attl.com http:                                        | +86-10-62304633-2504                                                                                                                                               | CNAS L0570                                             |
| Client CT                                                                                          | TL(South Bra                                                            | nch) Certificate No: Z                                                                                                                                             | 19-60293                                               |
| CALIBRATION C                                                                                      | ERTIFICA                                                                | TE                                                                                                                                                                 |                                                        |
|                                                                                                    |                                                                         |                                                                                                                                                                    |                                                        |
| Object                                                                                             | D5GH                                                                    | zV2 - SN: 1238                                                                                                                                                     |                                                        |
|                                                                                                    |                                                                         |                                                                                                                                                                    |                                                        |
| Calibration Procedure(s)                                                                           | FF-Z1                                                                   | 1-003-01                                                                                                                                                           |                                                        |
|                                                                                                    | Calibra                                                                 | ation Procedures for dipole validation kits                                                                                                                        |                                                        |
| Calibration date:                                                                                  |                                                                         |                                                                                                                                                                    |                                                        |
| Gailbration date.                                                                                  | Augus                                                                   | t 29, 2019                                                                                                                                                         |                                                        |
| All calibrations have been humidity<70%.                                                           | ertificate.<br>n conducted in<br>d (M&TE critical :                     | the closed laboratory facility: environment                                                                                                                        | t temperature(22±3)℃ and                               |
| Primary Standards                                                                                  | ID #                                                                    | Cal Data(Calibrated by Cadifects No.)                                                                                                                              |                                                        |
| Power Meter NRP2                                                                                   | 106276                                                                  | 11-Apr-19 (CTTL No. 119(02605)                                                                                                                                     | Scheduled Calibration                                  |
| Power sensor NRP6A                                                                                 | 101369                                                                  | 11-Apr-19 (CTTL No.119X02605)                                                                                                                                      | Apr-20                                                 |
| ReferenceProbe EX3DV4                                                                              | SN 3617                                                                 | 31-Jan-19(SPEAG No EX3-3617 Jan19)                                                                                                                                 | .lan-20                                                |
| DAE4                                                                                               | SN 1555                                                                 | 22-Aug-19(CTTL-SPEAG.No.Z19-60295)                                                                                                                                 | Aug-20                                                 |
|                                                                                                    |                                                                         | <b>2</b> (                                                                                                                                                         |                                                        |
| Secondary Standards                                                                                | ID #                                                                    |                                                                                                                                                                    |                                                        |
| Classel Company E 11000                                                                            |                                                                         | Cal Date(Calibrated by, Certificate No.)                                                                                                                           | Scheduled Calibration                                  |
| Signal Generator E4438C                                                                            | MY49071430                                                              | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)                                                                                         | Scheduled Calibration<br>Jan-20                        |
| NetworkAnalyzerE5071C                                                                              | MY49071430<br>MY46110673                                                | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)                                                       | Scheduled Calibration<br>Jan-20<br>Jan-20              |
| NetworkAnalyzerE5071C                                                                              | MY49071430<br>MY46110673                                                | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)                                                       | Scheduled Calibration<br>Jan-20<br>Jan-20              |
| Signal Generator E4438C<br>NetworkAnalyzerE5071C                                                   | MY49071430<br>MY46110673<br>Name                                        | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function                                           | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |
| Signal Generator E4438C<br>NetworkAnalyzerE5071C                                                   | MY49071430<br>MY46110673<br>Name<br>Zhao Jing                           | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function<br>SAR Test Engineer                      | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |
| NetworkAnalyzerE5071C                                                                              | MY49071430<br>MY46110673<br>Name<br>Zhao Jing                           | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function<br>SAR Test Engineer                      | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |
| Signal Generator E4438C<br>NetworkAnalyzerE5071C<br>Calibrated by:<br>Reviewed by:                 | MY49071430<br>MY46110673<br>Name<br>Zhao Jing<br>Lin Hao                | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |
| Signal Generator E4438C<br>NetworkAnalyzerE5071C<br>Calibrated by:<br>Reviewed by:                 | MY49071430<br>MY46110673<br>Name<br>Zhao Jing<br>Lin Hao                | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |
| Signal Generator E4438C<br>NetworkAnalyzerE5071C<br>Calibrated by:<br>Reviewed by:<br>Approved by: | MY49071430<br>MY46110673<br>Name<br>Zhao Jing<br>Lin Hao<br>Qi Dianyuan | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |
| Calibrated by:<br>Reviewed by:<br>Approved by:                                                     | MY49071430<br>MY46110673<br>Name<br>Zhao Jing<br>Lin Hao<br>Qi Dianyuan | Cal Date(Calibrated by, Certificate No.)<br>23-Jan-19 (CTTL, No.J19X00336)<br>24-Jan-19 (CTTL, No.J19X00547)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer | Scheduled Calibration<br>Jan-20<br>Jan-20<br>Signature |

Certificate No: Z19-60293

Page 1 of 14







Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl a chinattl.com http://www.chinattl.en

#### Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx.v.z |
| N/A   | not applicable or not measured |

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60293

Page 2 of 14





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl/a/chinattl.com
 http://www.chinattl.cn

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                                                   | V52.10.2                         |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Triple Flat Phantom 5.1C                                 |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm                               | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.7 ± 6 %   | 4.69 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              | 192110           |

### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 7.81 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 78.0 W/kg ± 24.4 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 100 mW input power | 2.23 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.3 W/kg ± 24.2 % (k=2) |

Certificate No: Z19-60293

Page 3 of 14





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.99 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL at 5600 MHz

| Condition          |                                                                                                            |
|--------------------|------------------------------------------------------------------------------------------------------------|
| 100 mW input power | 7.96 W/kg                                                                                                  |
| normalized to 1W   | 79.5 W/kg ± 24.4 % (k=2)                                                                                   |
| Condition          |                                                                                                            |
| 100 mW input power | 2.27 W/kg                                                                                                  |
| normalized to 1W   | 22.7 W/kg ± 24.2 % (k=2)                                                                                   |
|                    | Condition<br>100 mW input power<br>normalized to 1W<br>Condition<br>100 mW input power<br>normalized to 1W |

### Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.1 ± 6 %   | 5.10 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         | -            | N <u>erver</u>   |

### SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 7.86 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 78.4 W/kg ± 24.4 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 100 mW input power | 2.23 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.2 W/kg ± 24.2 % (k=2) |

Certificate No: Z19-60293

Page 4 of 14





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

### Body TSL parameters at 5250 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 48.1 ± 6 %   | 5.40 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 7.17 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 71.5 W/kg ± 24.4 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 100 mW input power | 2.04 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 24.2 % (k=2) |

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.6 ± 6 %   | 5.70 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 7.62 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 75.9 W/kg ± 24.4 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 100 mW input power | 2.18 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.7 W/kg ± 24.2 % (k=2) |

Certificate No: Z19-60293

Page 5 of 14





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

### Body TSL parameters at 5750 MHz

The following parameters and calculations were applied. Temperature Permittivity Conductivity Nominal Body TSL parameters 22.0 °C 48.3 5.94 mho/m Measured Body TSL parameters 47.5±6% (22.0 ± 0.2) °C 5.78 mho/m ± 6 % Body TSL temperature change during test <1.0 °C

### SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 7.39 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 73.6 W/kg ± 24.4 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 100 mW input power | 2.10 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 24.2 % (k=2) |

Certificate No: Z19-60293

Page 6 of 14





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

# Appendix (Additional assessments outside the scope of CNAS L0570)

### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 48.8Ω - 4.65jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 26.2dB       |  |

### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 49.2Ω + 0.58jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 40.0dB       |  |

### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 50.3Ω + 1.08jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 39.0dB       |  |

### Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 48.8Ω - 2.02jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 32.5dB       |  |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 51.3Ω + 3.94jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 27.8dB       |  |

### Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 52.2Ω + 4.77jΩ |  |  |
|--------------------------------------|----------------|--|--|
| Return Loss                          | - 25.8dB       |  |  |

Certificate No: Z19-60293

Page 7 of 14





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.059 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: Z19-60293

Page 8 of 14

Date: 08.28.2019





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl @chinattl.com
 http://www.chinattl.cn

### DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.692 S/m;  $\epsilon_r$  = 35.71;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.992 S/m;  $\epsilon_r$  = 35.42;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5750 MHz;  $\sigma$  = 5.096 S/m;  $\epsilon_r$  = 35.13;  $\rho$  = 1000 kg/m3,

Phantom section: Center Section

- DASY5 Configuration:
  - Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(5.06, 5.06, 5.06) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 1/31/2019
  - Sensor-Surface: 1.4mm (Mechanical Surface Detection)
  - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
  - Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
  - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

### Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.41 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.02 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.55 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: Z19-60293

Page 9 of 14





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn



Certificate No: Z19-60293

Page 10 of 14





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL



Certificate No: Z19-60293

Page 11 of 14





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl a chinattl.com

# http://www.chinattl.cn

### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 08.29.2019

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz;  $\sigma$  = 5.402 S/m;  $\epsilon_r$  = 48.05;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.703 S/m;  $\epsilon_r$  = 47.61;  $\rho$  = 1000 kg/m3, Medium parameters used: f = 5750 MHz;  $\sigma$  = 5.782 S/m;  $\epsilon_r$  = 47.49;  $\rho$ = 1000 kg/m3,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(4.76, 4.76, 4.76) @ 5250 MHz; ConvF(4.23. 4.23, 4.23) @ 5600 MHz; ConvF(4.36, 4.36, 4.36) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.85 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.17 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 16.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.17 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.47 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 18.1 W/kg

Certificate No: Z19-60293

Page 12 of 14





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en



Certificate No: Z19-60293

Page 13 of 14







 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl/g/chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL



Certificate No: Z19-60293

Page 14 of 14



# 5GHz Dipole (2022)

| Client SAIC<br>CALIBRATION C<br>Object<br>Calibration Procedure(s)<br>Calibration date:                                                                                                 | http://www.caid<br>ERTIFICAT<br>D5GHz<br>FF-Z11<br>Calibra                                                                | Certificate No: Z2<br>E<br>W2 - SN: 1238                                                                                                                                                                                                                                                                                                  | 2-60336                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Client SAIC<br>CALIBRATION C<br>Object<br>Calibration Procedure(s)<br>Calibration date:                                                                                                 | ERTIFICAT<br>D5GHz<br>FF-Z11<br>Calibra                                                                                   | Certificate No: Z2<br>E<br>V2 - SN: 1238                                                                                                                                                                                                                                                                                                  | 2-60336                                                                                        |
| CALIBRATION C<br>Object<br>Calibration Procedure(s)<br>Calibration date:                                                                                                                | D5GHz<br>FF-Z11<br>Calibra                                                                                                | ΥΖ - SN: 1238                                                                                                                                                                                                                                                                                                                             |                                                                                                |
| Object<br>Calibration Procedure(s)<br>Calibration date:                                                                                                                                 | D5GHz<br>FF-Z11<br>Calibra                                                                                                | W2 - SN: 1238                                                                                                                                                                                                                                                                                                                             |                                                                                                |
| Calibration Procedure(s)<br>Calibration date:                                                                                                                                           | FF-Z11<br>Calibra                                                                                                         |                                                                                                                                                                                                                                                                                                                                           |                                                                                                |
| Calibration date:                                                                                                                                                                       | Calibra                                                                                                                   | -003-01                                                                                                                                                                                                                                                                                                                                   |                                                                                                |
| Calibration date:                                                                                                                                                                       |                                                                                                                           | tion Procedures for dipole validation kits                                                                                                                                                                                                                                                                                                |                                                                                                |
|                                                                                                                                                                                         | August                                                                                                                    | 17, 2022                                                                                                                                                                                                                                                                                                                                  |                                                                                                |
| pages and are part of the ca<br>All calibrations have been<br>humidity<70%.                                                                                                             | ertificate.<br>conducted in t                                                                                             | he closed laboratory facility: environment t                                                                                                                                                                                                                                                                                              | temperature (22±3)°C and                                                                       |
| Calibration Equipment used                                                                                                                                                              | (M&TE critical fo                                                                                                         | or calibration)                                                                                                                                                                                                                                                                                                                           | Sale data da Manufacilia                                                                       |
| -minary standards                                                                                                                                                                       | 106277                                                                                                                    | Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                                 | Scheduled Calibration                                                                          |
| Power Meter NRP2                                                                                                                                                                        | 100211                                                                                                                    | 24-SeD-21 (CTTL, NG, J21X08326)                                                                                                                                                                                                                                                                                                           | Sep-22                                                                                         |
| Power Meter NRP2<br>Power sensor NRP8S                                                                                                                                                  | 104291                                                                                                                    | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)                                                                                                                                                                                                                                                                          | Sep-22<br>Sep-22                                                                               |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4                                                                                                                        | 104291<br>SN 7464                                                                                                         | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)                                                                                                                                                                                                                                    | Sep-22<br>Sep-22<br>Jan-23                                                                     |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4                                                                                                                | 104291<br>SN 7464<br>SN 1556                                                                                              | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7484_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)                                                                                                                                                                                              | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23                                                           |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                                                         | 100277<br>104291<br>SN 7464<br>SN 1556                                                                                    | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by Certificate No.)                                                                                                                                                  | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration                                  |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                                                              | 100277<br>104291<br>SN 7464<br>SN 1556<br>ID #                                                                            | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No. J22X00409)                                                                                                              | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23                        |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C                                   | 100277<br>104291<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673                                                | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No. J22X00409)<br>14-Jan-22 (CTTL, No.J22X00406)                                                                            | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23<br>Jan-23              |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C                                   | 100277<br>104291<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673<br>Name                                        | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No.J22X00409)<br>14-Jan-22 (CTTL, No.J22X00406)                                                                             | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23<br>Jan-23<br>Signature |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C                                   | 100217<br>104291<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673<br>Name<br>Zhao Jing                           | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No. J22X00409)<br>14-Jan-22 (CTTL, No.J22X00406)<br>Function<br>SAB Test Engineer                                           | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23<br>Jan-23<br>Signature |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C                                   | 100277<br>104291<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673<br>Name<br>Zhao Jing                           | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No. J22X00409)<br>14-Jan-22 (CTTL, No.J22X00406)<br>Function<br>SAR Test Engineer                                           | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23<br>Jan-23<br>Signature |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C<br>Calibrated by:<br>Reviewed by: | 100277<br>104291<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673<br>Name<br>Zhao Jing<br>Lin Hao                | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No. J22X00409)<br>14-Jan-22 (CTTL, No.J22X00406)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer                      | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23<br>Jan-23<br>Signature |
| Power Meter NRP2<br>Power sensor NRP8S<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C<br>Calibrated by:<br>Reviewed by: | 100277<br>104291<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673<br>Name<br>Zhao Jing<br>Lin Hao<br>Qi Dianyuan | 24-Sep-21 (CTTL, No.J21X08326)<br>24-Sep-21 (CTTL, No.J21X08326)<br>26-Jan-22(SPEAG,No.EX3-7464_Jan22)<br>12-Jan-22(CTTL-SPEAG,No.Z22-60007)<br>Cal Date (Calibrated by, Certificate No.)<br>13-Jan-22 (CTTL, No.J22X00409)<br>14-Jan-22 (CTTL, No.J22X00406)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer<br>SAR Project Leader | Sep-22<br>Sep-22<br>Jan-23<br>Jan-23<br>Scheduled Calibration<br>Jan-23<br>Jan-23<br>Signature |

Certificate No: Z22-60336

Page 1 of 8







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emt@caict.ac.cn http://www.caic.ac.cn

### Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

c) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60336

Page 2 of 8







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                                                | 52.10.4                          |
|------------------------------|-------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                |                                  |
| Phantom                      | Triple Flat Phantom 5.1C                              |                                  |
| Distance Dipole Center - TSL | 10 mm                                                 | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm                            | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ±1 MHz<br>5600 MHz ±1 MHz<br>5750 MHz ±1 MHz |                                  |

Head TSL parameters at 5250MHz The following parameters and calculations were applied.

|                                         | Temperature    | Permittivity | Conductivity    |
|-----------------------------------------|----------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 °C        | 35.9         | 4.71 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) °C | 36.3 ±6 %    | 4.64 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 °C        |              | 2 <u></u> 2     |

### SAR result with Head TSL at 5250MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 7.95 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.7 W/kg ±24.4 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL        | Condition          |                         |
| SAR measured                                          | 100 mW input power | 2.27 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 22.8 W/kg ±24.2 % (k=2) |

Certificate No: Z22-60336

Page 3 of 8







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@cnict.ac.en http://www.caic.ac.en

### Head TSL parameters at 5600MHz

The following parameters and calculations were applied.

|                                         | Temperature    | Permittivity | Conductivity    |
|-----------------------------------------|----------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 °C        | 35.5         | 5.07 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) °C | 35.2 ±6 %    | 5.01 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 °C        |              | 2000            |

### SAR result with Head TSL at 5600MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                         |
|---------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                            | 100 mW input power | 8.28 W/kg               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 82.6 W/kg ±24.4 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                         |
| SAR measured                                            | 100 mW input power | 2.37 W/kg               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.6 W/kg ±24.2 % (k=2) |

### Head TSL parameters at 5750MHz

The following parameters and calculations were applied.

|                                         | Temperature    | Permittivity | Conductivity    |
|-----------------------------------------|----------------|--------------|-----------------|
| Nominal Head TSL parameters             | 22.0 °C        | 35.4         | 5.22 mho/m      |
| Measured Head TSL parameters            | (22.0 ±0.2) 'C | 35.0 ±6 %    | 5.18 mho/m ±6 % |
| Head TSL temperature change during test | <1.0 °C        | -            | 1000            |

#### SAR result with Head TSL at 5750MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                         |
|-------------------------------------------------------|--------------------|-------------------------|
| SAR measured                                          | 100 mW input power | 7.87 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 78.5 W/kg ±24.4 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL        | Condition          |                         |
| SAR measured                                          | 100 mW input power | 2.22 W/kg               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 22.1 W/kg ±24.2 % (k=2) |

Certificate No: Z22-60336

Page 4 of 8







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

### Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL at 5250MHz

| Impedance, transformed to feed point | 48.4Ω- 3.36jΩ |  |  |  |
|--------------------------------------|---------------|--|--|--|
| Return Loss                          | - 28.5dB      |  |  |  |

### Antenna Parameters with Head TSL at 5600MHz

| Impedance, transformed to feed point | 50.8Ω+ 2.69jΩ |  |  |
|--------------------------------------|---------------|--|--|
| Return Loss                          | - 31.1dB      |  |  |

### Antenna Parameters with Head TSL at 5750MHz

| Impedance, transformed to feed point | 53.5Ω+ 2.34jΩ |  |  |
|--------------------------------------|---------------|--|--|
| Return Loss                          | - 27.9dB      |  |  |

#### General Antenna Parameters and Design

|  | Electrical Delay (one direction) | 1.098 ns |
|--|----------------------------------|----------|
|--|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

| Manufactured by | SPEAG |  |
|-----------------|-------|--|
|                 |       |  |
|                 |       |  |
|                 |       |  |









Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

#### DASY5 Validation Report for Head TSL Test Laboratory: CTTL Beijing, China

Date: 2022-08-17

Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.643 S/m;  $\epsilon$ r = 36.34;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.006 S/m;  $\epsilon$ r = 35.17;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5750 MHz;  $\sigma$  = 5.18 S/m;  $\epsilon$ r = 34.96;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: Probe: EX3DV4 - SN7464; ConvF(5.43, 5.43, 5.43) @ 5250 MHz; ConvF(4.91, 4.91, 4.91) @ 5600 MHz; ConvF(4.85, 4.85, 4.85) @ 5750 MHz; Calibrated: 2022-01-26 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.66 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 18.8 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.44 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: Z22-60336

Page 6 of 8







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.eaic.ac.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.17 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 35.8 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.3% Maximum value of SAR (measured) = 19.4 W/kg



0 dB = 19.4 W/kg = 12.88 dBW/kg

Certificate No: Z22-60336

Page 7 of 8



Impedance Measurement Plot for Head TSL



Certificate No: Z22-60336

Page 8 of 8



# ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

# Justification of Extended Calibration SAR Dipole D750V3– serial no.1163 (2019)

| Head                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | lmaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2019-09-03             | -26.9               | /         | 50.5                       | /              | -4.53                            | /               |  |
| 2020-09-01             | -25.8               | 4.1       | 51.2                       | 0.7            | -4.29                            | 0.24            |  |
| 2021-08-30             | -25.2               | 6.3       | 51.7                       | 1.2            | -4.16                            | 0.37            |  |

Justification of Extended Calibration SAR Dipole D835V2 - serial no. 4d057

| Head                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | lmaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2021-10-18             | -27.5               | /         | 49.8                       | /              | -4.19                            | /               |  |
| 2022-10-18             | -26.8               | 2.5       | 51.4                       | 1.6            | -3.97                            | 0.22            |  |

Justification of Extended Calibration SAR Dipole D1750V2- serial no.1152 (2019)

| Head                   |                     |           |                            |                |                                  |                 |  |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | lmaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2019-08-30             | -38.1               | /         | 49.1                       | /              | -0.84                            | /               |  |
| 2020-08-28             | -36.5               | 4.2       | 50.2                       | 1.1            | -0.49                            | 0.35            |  |
| 2021-08-26             | -35.7               | 6.3       | 50.8                       | 1.7            | -0.42                            | 0.42            |  |

Justification of Extended Calibration SAR Dipole D1900V2 - serial no. 5d088

| Head                   |                     |           |                            |                |                                  |                 |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | lmaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
| 2021-10-18             | -22.6               | /         | 53.7                       | /              | 6.80                             | /               |
| 2022-10-18             | -22.2               | 1.8       | 54.6                       | 0.9            | 6.93                             | 0.13            |



| Head                   |                     |           |                            |                |                                  |                 |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | lmaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
| 2021-10-21             | -28.8               | /         | 53.6                       | /              | 1.26                             | /               |
| 2022-10-20             | -28.1               | 2.4       | 54.9                       | 1.3            | 1.43                             | 0.17            |

### Justification of Extended Calibration SAR Dipole D2450V2 - serial no. 873

Justification of Extended Calibration SAR Dipole D2550V2- serial no.1010

|                        |                     |           | Head                       |                |                                  |                 |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
| 2021-05-21             | -26.8               | /         | 52.8                       | /              | -3.80                            | /               |
| 2022-05-20             | -26.3               | 1.9       | 53.6                       | 0.8            | -3.64                            | 0.16            |

Justification of Extended Calibration SAR Dipole D5GHzV2- serial no.1238 (2019)

|                        |                     |           | Head                       |                |                                  |                 |
|------------------------|---------------------|-----------|----------------------------|----------------|----------------------------------|-----------------|
| Date of<br>Measurement | Return-Loss<br>(dB) | Delta (%) | Real<br>Impedance<br>(ohm) | Delta<br>(ohm) | lmaginary<br>Impedance<br>(johm) | Delta<br>(johm) |
|                        |                     |           | 5250MHz                    |                |                                  |                 |
| 2019-08-29             | -26.2               | /         | 48.8                       | /              | -4.65                            | /               |
| 2020-08-28             | -25.1               | 4.2       | 49.7                       | 0.9            | -4.26                            | 0.39            |
| 2021-08-26             | -24.7               | 5.7       | 50.2                       | 1.4            | -4.01                            | 0.64            |
| 5600MHz                |                     |           |                            |                |                                  |                 |
| 2019-08-29             | -40.0               | /         | 49.2                       | /              | 0.58                             | /               |
| 2020-08-28             | -38.1               | 4.8       | 50.3                       | 1.1            | 0.85                             | 0.27            |
| 2021-08-26             | -37.7               | 5.7       | 50.8                       | 1.6            | 0.92                             | 0.34            |
| 5750MHz                |                     |           |                            |                |                                  |                 |
| 2019-08-29             | -39.0               | /         | 50.3                       | /              | 1.08                             | /               |
| 2020-08-28             | -37.7               | 3.3       | 51.1                       | 0.8            | 1.44                             | 0.36            |
| 2021-08-26             | -37.2               | 4.6       | 51.6                       | 1.3            | 1.53                             | 0.45            |

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.



# ANNEX K: Spot Check Test

As the test lab for T507J from TCL Communication Ltd., we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

# K.1. Internal Identification of EUT used during the spot check test

| EUT ID* | IMEI            | HW Version | SW Version | Receipt Date |
|---------|-----------------|------------|------------|--------------|
| UT02aa  | 354419230000386 | V01        | vVK54      | 2022-12-19   |

## K.2. Measurement results

### GSM part (GSM850 - Head)

| Freq | luency |      |             | Conducted | Max     | SA       | R(1g) (W/kg | )        |
|------|--------|------|-------------|-----------|---------|----------|-------------|----------|
|      |        | То   | et Position | Power     | tune-up | Spot che | eck data    | Original |
| Ch.  | MHz    | 16.  | SUFUSICION  | (dBm)     | Power   | Measured | Reported    | data     |
|      |        |      |             | (dBiii)   | (abm)   | SAR      | SAR         | uala     |
| 251  | 848.8  | Head | Right Cheek | 32.45     | 34.0    | 0.673    | 0.96        | 1.23     |

### GSM part (GSM1900 - Body)

| Frequency |        |             |        | Conducted | Max      | SA                | R(1g) (W/kg | )    |
|-----------|--------|-------------|--------|-----------|----------|-------------------|-------------|------|
| Ch. MHz   | Te     | et Position | Power  | tune-up   | Spot che | eck data          | Original    |      |
|           | MHz    | 10.         |        | (dBm)     | Power    | Measured Reported |             | data |
|           |        |             |        | (dbiii)   | (автт)   | SAR               | SAR         | uala |
| 810       | 1909.8 | Body        | Bottom | 30.27     | 31.5     | 0.487             | 0.65        | 0.98 |

### WCDMA part (WCDMA Band 5 - Head)

| Frequency |       |             |             | Conducted | Max      | SA                                           | R(1g) (W/kg | )    |
|-----------|-------|-------------|-------------|-----------|----------|----------------------------------------------|-------------|------|
| Ch. MHz   | То    | et Position | Power       | tune-up   | Spot che | d Reported<br>SAR<br>SAR<br>Criginal<br>data |             |      |
|           | MHz   | 100         | 51 0311011  | (dBm)     | Power    | Measured                                     | Reported    | data |
|           |       |             |             | (dbiii)   | (автт)   | SAR                                          | SAR         | uala |
| 4132      | 826.4 | Head        | Right Cheek | 23.30     | 24.0     | 0.638                                        | 0.75        | 1.08 |

### WCDMA part (WCDMA Band 2 - Body)

| Frequency |        |             |        | Conducted | Max            | SA       | R(1g) (W/kg | )    |
|-----------|--------|-------------|--------|-----------|----------------|----------|-------------|------|
| Ch. MHz   | Te     | st Position | Power  | tune-up   | Spot che       | eck data | Original    |      |
|           | MHz    | 10          |        | (dBm)     | Power<br>(dBm) | Measured | Reported    | data |
|           |        |             |        | (dBiii)   | (ubiii)        | SAR      | SAR         | Gala |
| 9262      | 1852.4 | Body        | Bottom | 22.20     | 22.5           | 1.070    | 1.15        | 1.19 |



# LTE part (LTE Band 13 - Head)

| Frequ | lency |      |              | Conducted | Max     | SA          | R(1g) (W/kg | )        |                                                                |
|-------|-------|------|--------------|-----------|---------|-------------|-------------|----------|----------------------------------------------------------------|
| Ch.   |       | т    | est Position | Power     | tune-up | Spot che    | eck data    | Original |                                                                |
|       | MHz   |      |              | (dPm)     | (dBm)   | (dBm) (dBm) | Power       | Measured | SAR(1g) (W/kg)<br>heck data Ori<br>Reported d<br>SAR<br>1.04 1 |
|       |       |      |              | (ubiii)   | (автт)  | SAR         | SAR         | uala     |                                                                |
| 23230 | 782.0 | Head | Right Cheek  | 23.38     | 24.5    | 0.801       | 1.04        | 1.17     |                                                                |

# LTE part (LTE Band 66 - Body)

| Frequ   | iency  |      |              | Conducted | Max     | SA       | R(1g) (W/kg                                                                         | )        |
|---------|--------|------|--------------|-----------|---------|----------|-------------------------------------------------------------------------------------|----------|
| Ch. MHz |        | т    | est Desition | Bower     | tune-up | Spot che | eck data                                                                            | Original |
|         | MHz    |      |              | (dBm)     | Power   | Measured | Indext (19) (1003)       Indext data       Reported       SAR       1.09       1.32 |          |
|         |        |      |              | (ubiii)   | (автт)  | SAR      | SAR                                                                                 | uala     |
| 132572  | 1770.0 | Body | Bottom       | 20.48     | 21.5    | 0.858    | 1.09                                                                                | 1.32     |

### Bluetooth part (Bluetooth - Head)

| Frequ  | Frequency |      |              | Conducted | Max     | SA       | R(1g) (W/kg                               | )        |
|--------|-----------|------|--------------|-----------|---------|----------|-------------------------------------------|----------|
| Ch. MH |           | т    | est Position | Power     | tune-up | Spot che | eck data                                  | Original |
|        | MHz       |      |              | (dBm)     | Power   | Measured | heck data<br>Reported<br>SAR<br>0.01 0.11 | data     |
|        |           |      |              | (ubiii)   | (abm)   | SAR      | SAR                                       | uala     |
| 0      | 2402.0    | Head | Left Cheek   | 10.08     | 11.0    | 0.008    | 0.01                                      | 0.10     |

## Bluetooth part (Bluetooth - Body)

| Frequ   | iency  |      |              | Conducted | Max     | SA       | R(1g) (W/kg                                                       | )        |
|---------|--------|------|--------------|-----------|---------|----------|-------------------------------------------------------------------|----------|
| Ch. MHz |        | т    | est Position | Dower     | tune-up | Spot che | eck data                                                          | Original |
|         | MHz    |      |              | (dBm)     | Power   | Measured | AR(1g) (W/kg)       ieck data       Reported       SAR       0.01 |          |
|         |        |      |              | (ubiii)   | (автт)  | SAR      | SAR                                                               | uala     |
| 0       | 2402.0 | Body | Rear         | 10.08     | 11.0    | 0.005    | 0.01                                                              | 0.04     |

## WLAN 2.4GHz part (WLAN 2.4GHz - Head)

| Frequ   | lency  |              |            | Conducted | Max      | SA       | R(1g) (W/kg                                                             | )    |
|---------|--------|--------------|------------|-----------|----------|----------|-------------------------------------------------------------------------|------|
| Ch. MHz | т      | est Position | Power      | tune-up   | Spot che | eck data | Original                                                                |      |
|         | MHz    |              |            | (dBm)     | Power    | Measured | AR(1g) (W/kg)<br>heck data<br>Criginal<br>AReported<br>SAR<br>0.45 0.48 | data |
|         |        |              |            | (ubiii)   | (автт)   | SAR      | SAR                                                                     | uala |
| 6       | 2437.0 | Head         | Left Cheek | 15.92     | 17.0     | 0.354    | 0.45                                                                    | 0.48 |

# WLAN 2.4GHz part (WLAN 2.4GHz - Body)

| Frequ   | lency  |      |              | Conducted | Max     | SA       | R(1g) (W/kg | )        |
|---------|--------|------|--------------|-----------|---------|----------|-------------|----------|
| Ch. MHz |        | т    | est Desition | Bower     | tune-up | Spot che | eck data    | Original |
|         | MHz    |      |              | (dBm)     | Power   | Measured | Reported    | doto     |
|         |        |      |              | (ubiii)   | (abm)   | SAR      | SAR         | uala     |
| 6       | 2437.0 | Body | Rear         | 15.92     | 17.0    | 0.129    | 0.17        | 0.17     |



## WLAN 2.4GHz part (WLAN 5GHz - Head)

| Frequ | lency  |              |            | Conducted | Max      | SA       | R(1g) (W/kg | )    |
|-------|--------|--------------|------------|-----------|----------|----------|-------------|------|
|       | т      | est Position | Power      | tune-up   | Spot che | eck data | Original    |      |
| Ch.   | MHz    | 10           |            | (dBm)     | Power    | Measured | Reported    | data |
|       |        |              |            | (ubiii)   | (автт)   | SAR      | SAR         | uala |
| 165   | 5825.0 | Head         | Left Cheek | 14.72     | 15.5     | 0.292    | 0.35        | 0.35 |

# WLAN 2.4GHz part (WLAN 5GHz - Body)

| Frequency |        |               |      | Conducted      | Max                       | SAR(1g) (W/kg)  |          |          |
|-----------|--------|---------------|------|----------------|---------------------------|-----------------|----------|----------|
| Ch.       | MHz    | Test Position |      | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | Spot check data |          | Original |
|           |        |               |      |                |                           | Measured        | Reported | data     |
|           |        |               |      |                |                           | SAR             | SAR      |          |
| 48        | 5280.0 | Body          | Rear | 14.42          | 15.5                      | 0.128           | 0.16     | 0.17     |





# K.3. Graph Results for Spot Check

### GSM850 Head

Date: 2022-12-25 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma$  = 0.93 S/m;  $\epsilon_r$  = 40.319;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, GSM (0) Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

**Right Cheek High/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.00 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.25 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.673 W/kg; SAR(10 g) = 0.440 W/kg Maximum value of SAR (measured) = 0.909 W/kg





### GSM1900 Body

Date: 2022-12-26 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1910 MHz;  $\sigma$  = 1.432 S/m;  $\epsilon_r$  = 38.658;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, 1 slot GPRS (0) Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

**Bottom Side High/Area Scan (41x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.693 W/kg

Bottom Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.72 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.838 W/kg SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.268 W/kg Maximum value of SAR (measured) = 0.669 W/kg





# WCDMA Band 5 Head

Date: 2022-12-25 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 826.4 MHz;  $\sigma$  = 0.909 S/m;  $\epsilon_r$  = 40.588;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, WCDMA (0) Frequency: 826.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

**Right Cheek Low/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.942 W/kg

Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.37 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.638 W/kg; SAR(10 g) = 0.416 W/kg Maximum value of SAR (measured) = 0.872 W/kg





# WCDMA Band 2 Body

Date: 2022-12-26 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used (interpolated): f = 1852.4 MHz;  $\sigma$  = 1.383 S/m;  $\epsilon_r$  = 38.875;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, WCDMA (0) Frequency: 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

**Bottom Side Low/Area Scan (41x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.49 W/kg

Bottom Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.07 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.589 W/kg Maximum value of SAR (measured) = 1.48 W/kg





LTE Band 13 Head

Date: 2022-12-25 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 782 MHz;  $\sigma$  = 0.894 S/m;  $\epsilon_r$  = 42.394;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, LTE\_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

**Right Cheek Middle 1RB24/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.34 W/kg

**Right Cheek Middle 1RB24/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.61 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.61 W/kg **SAR(1 g) = 0.801 W/kg; SAR(10 g) = 0.516 W/kg** Maximum value of SAR (measured) = 1.12 W/kg





## LTE Band 66 Body

Date: 2022-12-26 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1770 MHz;  $\sigma$  = 1.404 S/m;  $\epsilon_r$  = 39.364;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, LTE\_FDD (0) Frequency: 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

**Bottom Side Middle 1RB50/Area Scan (41x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.21 W/kg

**Bottom Side Middle 1RB50/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.67 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.48 W/kg **SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.470 W/kg** Maximum value of SAR (measured) = 1.19 W/kg





### **Bluetooth Head**

Date: 2022-12-22 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2402 MHz;  $\sigma$  = 1.77 S/m;  $\epsilon_r$  = 38.107;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

**Left Cheek Ch.0/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0127 W/kg

Left Cheek Ch.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.033 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.0190 W/kg SAR(1 g) = 0.00815 W/kg; SAR(10 g) = 0.0026 W/kg Maximum value of SAR (measured) = 0.0133 W/kg





## **Bluetooth Body**

Date: 2022-12-22 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2402 MHz;  $\sigma$  = 1.77 S/m;  $\epsilon_r$  = 38.107;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

**Rear Side Ch.0/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0140 W/kg

Rear Side Ch.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.6570 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.0220 W/kg SAR(1 g) = 0.00516 W/kg; SAR(10 g) = 0.00127 W/kg Maximum value of SAR (measured) = 0.0125 W/kg





## WLAN 2.4GHz Head

Date: 2022-12-22 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used (interpolated): f = 2437 MHz;  $\sigma$  = 1.812 S/m;  $\epsilon_r$  = 37.992;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, WLAN (0) Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

**Left Cheek Ch.6/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.593 W/kg

Left Cheek Ch.6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.294 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.722 W/kg SAR(1 g) = 0.354 W/kg; SAR(10 g) = 0.167 W/kg Maximum value of SAR (measured) = 0.467 W/kg





# WLAN 2.4GHz Body

Date: 2022-12-22 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used (interpolated): f = 2437 MHz;  $\sigma$  = 1.812 S/m;  $\epsilon_r$  = 37.992;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, WLAN (0) Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

**Rear Side Ch.6/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.208 W/kg

Rear Side Ch.6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.029 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.285 W/kg SAR(1 g) = 0.129 W/kg; SAR(10 g) = 0.063 W/kg Maximum value of SAR (measured) = 0.207 W/kg





### WLAN 5GHz Head

Date: 2022-12-21 Electronics: DAE4 Sn1527 Medium: Head 5750MHz Medium parameters used (interpolated): f = 5825 MHz;  $\sigma$  = 5.414 S/m;  $\epsilon_r$  = 34.482;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, WLAN 5G (0) Frequency: 5825 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

**Left Cheek Ch.165/Area Scan (81x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.805 W/kg

**Left Cheek Ch.165/Zoom Scan (8x8x21)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.194 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 1.25 W/kg **SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.092 W/kg** Maximum value of SAR (measured) = 0.748 W/kg





### WLAN 5GHz Body

Date: 2022-12-21 Electronics: DAE4 Sn1527 Medium: Head 5250MHz Medium parameters used: f = 5240 MHz;  $\sigma$  = 4.623 S/m;  $\epsilon_r$  = 36.445;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: UID 0, WLAN 5G (0) Frequency: 5240 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.98, 5.98, 5.98)

**Rear Side Ch.48/Area Scan (101x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.285 W/kg

Rear Side Ch.48/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.7140 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.490 W/kg SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.042 W/kg Maximum value of SAR (measured) = 0.293 W/kg





# K.4. System Verification Results for Spot Check

## 750MHz

Date: 2022-12-25 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 750 MHz;  $\sigma$  = 0.874 S/m;  $\epsilon_r$  = 42.778;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.064 V/m; Power Drift = -0.12 dB SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (interpolated) = 2.84 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.064 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.80 W/kg



0 dB = 2.80 W/kg = 4.47 dB W/kg





**835MHz** Date: 2022-12-25 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used: f = 835 MHz;  $\sigma$  = 0.917 S/m;  $\epsilon$ r = 40.485;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.849 V/m; Power Drift = 0.09 dB SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (interpolated) = 3.65 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.849 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 4.33 W/kg SAR(1 g) = 2.50 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.69 W/kg



0 dB = 3.69 W/kg = 5.67 dB W/kg



**1750MHz** Date: 2022-12-26 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz;  $\sigma$  = 1.386 S/m;  $\epsilon_r$  = 39.442;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 81.056 V/m; Power Drift = 0.03 dB SAR(1 g) = 9.16 W/kg; SAR(10 g) = 4.90 W/kg Maximum value of SAR (interpolated) = 11.1 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 81.056 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 23.7 W/kg SAR(1 g) = 9.35 W/kg; SAR(10 g) = 4.97 W/kg Maximum value of SAR (measured) = 11.3 W/kg



0 dB = 11.3 W/kg = 10.53 dB W/kg



**1900MHz** Date: 2022-12-26 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.425 S/m;  $\epsilon_r$  = 38.689;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 84.582 V/m; Power Drift = 0.13 dB SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (interpolated) = 12.4 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.582 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 12.7 W/kg



0 dB = 12.7 W/kg = 11.04 dB W/kg



2450MHz Date: 2022-12-22 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.827 S/m;  $\epsilon_r$  = 37.949;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 91.786 V/m; Power Drift = 0.13 dB SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (interpolated) = 15.3 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.786 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 38.1 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dB W/kg



**5250MHz** Date: 2022-12-21 Electronics: DAE4 Sn1527 Medium: Head 5250MHz Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.636 S/m;  $\epsilon_r$  = 36.418;  $\rho$  = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.98, 5.98, 5.98)

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 65.456 V/m; Power Drift = -0.06 dB SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (interpolated) = 9.89 W/kg

**System Validation/Zoom Scan (8x8x21)/Cube0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.456 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 7.70 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 9.84 W/kg





**5750MHz** Date: 2022-12-21 Electronics: DAE4 Sn1527 Medium: Head 5750MHz Medium parameters used: f = 5750 MHz; σ = 5.313 S/m;  $ε_r$  = 34.685; ρ = 1000 kg/m<sup>3</sup> Communication System: CW\_TMC Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 67.514 V/m; Power Drift = 0.05 dB SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (interpolated) = 10.0 W/kg

**System Validation/Zoom Scan (8x8x21)/Cube0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.514 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 10.2 W/kg



\*\*\*END OF REPORT\*\*\*