

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	cDASY6 Module mmWave V2.4	
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 7.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture	Prad1	Max E-field	Uncertainty	Avg Powe	er Density	Uncertainty
to Measured Plane	(mW)	(V/m)	(k = 2)	Avg (psPDi	n+, psPDtot+,	(k = 2)
				psPD	mod+)	
				(W	/m²)	
				1 cm ²	4 cm ²	
10 mm	86.1	147	1.27 dB	54.4	51.2	1.28 dB

Square Averaging

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg (psPD psPD	er Density n+, psPDtot+, mod+) /m²)	Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	147	1.27 dB	54.5	51.1	1.28 dB

Certificate No: 5G-Veri10-1005_Jan22

Page 3 of 7

¹ Assessed ohmic and mismatch loss plus numerical offset: 0.55 dB

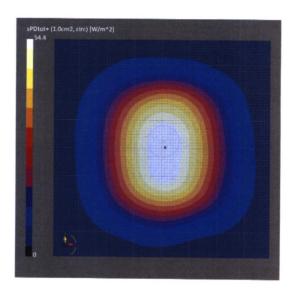
Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device	under	Test	Properti	es

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Typ
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	

Exposure Conditions Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0,	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2021-12-21	DAE4ip Sn1602, 2021-06-25

Scan Setup

	og ocan	
Grid Extents [mm]	120.0 x 120.0	Date
Grid Steps [lambda]	0.25 x 0.25	Avg. Area [cm2]
Sensor Surface [mm]	10.0	psPDn+ [W/m ²]
MAIA	MAIA not used	psPDtot+ [W/m²

Measurement Results

	5G Scan
Date	2022-01-24, 07:50
Avg. Area [cm ²]	1.00
psPDn+ [W/m²]	54.2
psPDtot+ [W/m²]	54.4
psPDmod+ [W/m²]	54.6
E _{max} [V/m]	147
Power Drift [dB]	0.01

Certificate No: 5G-Veri10-1005_Jan22

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

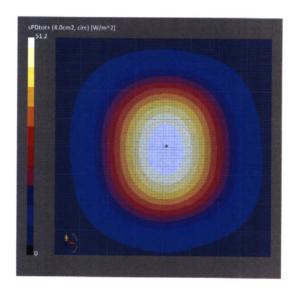
Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	_

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2021-12-21	DAE4ip Sn1602, 2021-06-25

Scan Setup

	5G Scan	
Grid Extents [mm]	120.0 x 120.0	Date
Grid Steps [lambda]	0.25 x 0.25	Avg. Area [cm ²]
Sensor Surface [mm]	10.0	psPDn+ [W/m ²]
MAIA	MAIA not used	psPDtot+ [W/m
		ncDDmad . DA//

Measurement Results

	5G Scan
Date	2022-01-24, 07:50
Avg. Area [cm ²]	4.00
psPDn+ [W/m²]	51.0
psPDtot+ [W/m ²]	51.2
psPDmod+ [W/m²]	51.4
E _{max} [V/m]	147
Power Drift [dB]	0.01

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0,	1.0


Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz,	DAE4ip Sn1602,
		2021-12-21	2021-06-25

Scan Setup

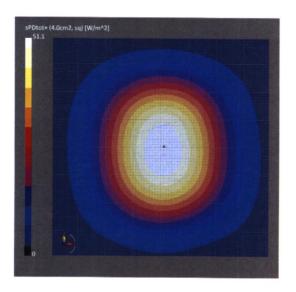
	5G Scan		5G Scan
Grid Extents [mm]	120.0 x 120.0	Date	2022-01-24, 07:50
Grid Steps [lambda]	0.25 x 0.25	Avg. Area [cm ²]	1.00
Sensor Surface [mm]	10.0	psPDn+ [W/m ²]	54.3
MAIA	MAIA not used	psPDtot+ [W/m ²]	54.5
		psPDmod+ [W/m²]	54.6
		E _{max} [V/m]	147
		Power Drift [dB]	0.01

Measurement Results

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device	under	Test P	roperties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100 0 + 100 0 + 172 0	CM: 100F	


Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0,	1.0

Hardware Setup

Phantom mmWave Phantom - 1002	Medium Air	Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, 2021-12-21	DAE, Calibration Date DAE4ip Sn1602, 2021-06-25
Scan Setup	5G Scan	Measurement Results	5G Scan

Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm] MAIA 0.25 x 0.25 10.0 MAIA not used

	Ju Juli
Date	2022-01-24, 07:50
Avg. Area [cm²]	4.00
osPDn+ [W/m²]	50.9
osPDtot+ [W/m²]	51.1
osPDmod+ [W/m²]	51.2
max [V/m]	147
Power Drift [dB]	0.01

ANNEX I Sensor Triggering Data Summary

Antenna number	Sensing surface	Trigger distance N
ANIT1	Back	16mm
ANT1	Тор	16mm
ANITO	Back	16mm
ANT3	Bottom	16mm
ANT5	Back	16mm
ANIS	Left	16mm
ANT7	Back	16mm
ANT/	Right	16mm

Rear, Top, Bottom, Left and Right of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

ANT1

Back

Moving device toward the phantom:

	The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11													
Main antenna Normal Normal Normal Normal Low Low Low Low Low Low													

Moving device away from the phantom:

				T	ne powe	er state					
Distance [mm]											
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Top

Moving device toward the phantom:

	The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11													
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

				Т	he pow	er state					
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

ANT3

Back

Moving device toward the phantom:

				The pow	er state						
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11											
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

				T	ne powe	er state					
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom

Moving device toward the phantom:

	The power state											
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11												
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

	The power state												
Distance [mm]													
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

ANT5

Back

Moving device toward the phantom:

	The power state												
Distance [mm]													
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

				T	he powe	er state					
Distance [mm]											
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Left

Moving device toward the phantom:

	The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11													
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

		•									
				Т	he pow	er state					
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

ANT7 Back

Moving device toward the phantom:

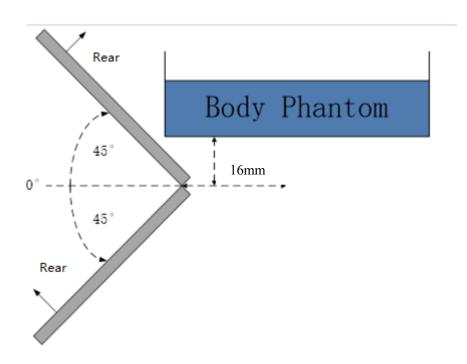
	The power state										
Distance [mm]	Distance [mm] 21 20 19 18 17 16 15 14 13 12 11										
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

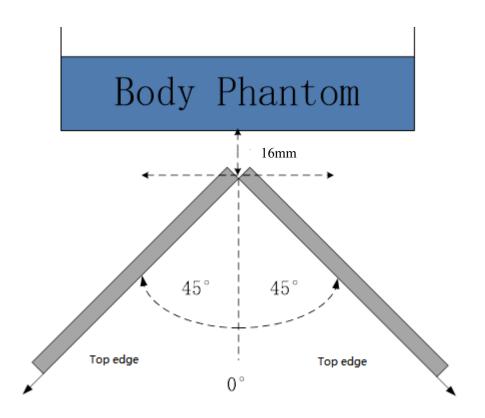
	The power state										
Distance [mm]	Distance [mm]										
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Right

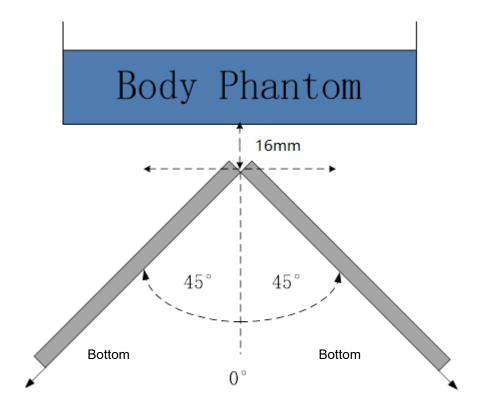
Moving device toward the phantom:


	The power state										
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11											
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

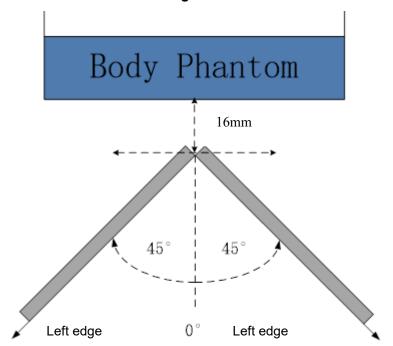
Moving device away from the phantom:


	The power state										
Distance [mm]	Distance [mm]										
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

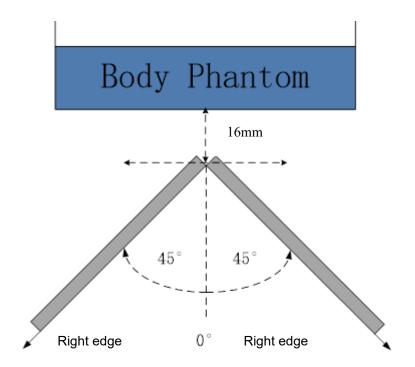
Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° .



The Back evaluation for ANT1/3/5/7



The Top edge evaluation for ANT1



The Bottom edge evaluation for ANT3

The Left edge evaluation for ANT5

The Right edge evaluation for ANT7

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J SPOT CHECK

J.1 Dielectric Performance and System Validation

Table J.1-1: Dielectric Performance of Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Type	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2024/3/5	Head	3500 MHz	38.7	2.03	2.85	-2.06

Table J.1-2: System Validation of Head

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2024/3/5	3500 MHz	25.2	66.90	25.3	66.7	0.40%	-0.30%

J.2 Measurement result

	RF Exposure Conditions	Frequency Band	Channel Number	Frequency (MHz)	Mode/RB	Test setup	Distance	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Calculated SAR 10g (W/kg)	Power Drift	
7	Body	N77-L	633334	3500.01	DFT-QPSK 30K 10M 12_6	Rear	15mm	24.14	25.00	0.618	0.75	0.302	0.37	-0.19	

J.3 Reported SAR Comparison

			Highest Reported	Highest Reported	
	Mode	Antenna	SAR (1g)	SAR (1g)	
			Original	Spot check	
	LTE Band 2	ANT1	1.17	1	
	LTE Band 2	ANT3	1.19	1	
	LTE Band 5	ANT1	0.73	1	
	LTE Band 7	ANT1	1.10	1	
LTE	LTE Band 12	ANT1	0.52	1	
	LTE Band 13	ANT1	0.74	1	
	LTE Band 48	ANT5	0.61	1	
	LTE Band 66	ANT1	0.99	1	
	LTE Band 66	ANT3	0.63	1	
	N2	ANT1	0.86	1	
	N2	ANT3	0.90	1	
	N5	ANT1	0.64	1	
	N48	ANT5	0.56	1	
NR	N66	ANT1	0.75	1	
INIT	N66	ANT3	1.07	1	
	n77-L	ANT5	0.87	1	
	n77-H	ANT5	1.13	1	
	n77-L	ANT7	1.36	0.75	
	n77-H	ANT7	1.35	1	

©Copyright. All rights reserved by CTTL.

WLAN 2.4 GHz		0.08	1
WLAN 5 GHz	ANT9	0.36	1
WLAN 6 GHz		<0.01	1
WLAN 2.4 GHz		0.06	1
WLAN 5 GHz	ANT10	0.66	1
WLAN 6 GHz		0.17	1
WLAN 2.4 GHz		0.02	1
WLAN 5 GHz	MIMO	0.24	1
WLAN 6 GHz		0.11	1

J.4 Main Test Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	N5239A	MY55491241	June 5, 2023	One year	
02	Power sensor	NRP50S	101488	luno 14, 2022	One year	
03	Power sensor	NRP50S	101489	June 14, 2023	One year	
04	Signal Generator	MG3700A	6201052605	June 12 2023	One Year	
05	Amplifier	60S1G4	0331848	No Calibration R	equested	
06	DAE	SPEAG DAE4	1525	September 14,2023	One year	
07	E-field Probe	SPEAG EX3DV4	7600	December 19, 2023	One year	
08	Dipole Validation Kit	SPEAG D3500V2	1016	June 21,2023	One year	

J.5 Graph Results

N77-L Body

Date: 3/5/2024

Electronics: DAE4 Sn1525 Medium: H700-6000M

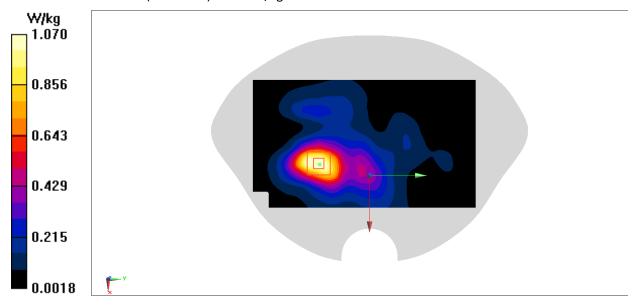
Medium parameters used (interpolated): f = 3500.01 MHz; $\sigma = 2.85 \text{ S/m}$; $\epsilon r = 38.686$; $\rho = 1000 \text{ kg/m}$ 3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: UID 0, 5g n77 (0) Frequency: 3500.01 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.29, 7.29, 7.29);

Area Scan (121x211x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.11 W/kg

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.837 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.618 W/kg; SAR(10 g) = 0.302 W/kgMaximum value of SAR (measured) = 1.07 W/kg

J.6 System Validation Results

3500MHz

Date: 3/5/2024

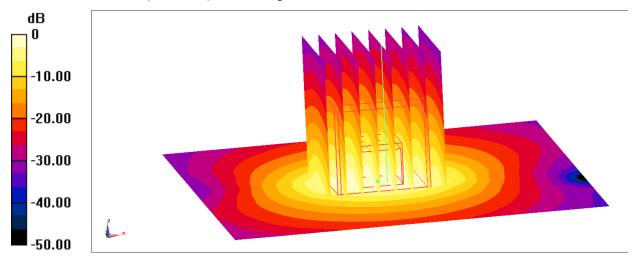
Electronics: DAE4 Sn1525 Medium: H700-6000M

Medium parameters used: f = 3500 MHz; $\sigma = 2.85$ S/m; $\epsilon r = 38.7$; $\rho = 1000$ kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3500 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.29, 7.29, 7.29);

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 12.8 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 79.86 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.53 W/kgMaximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

J.7 Probe Calibration Certificate

Probe 7600 Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

中国认可 CAICT 国际互认 CAICT 国际互认 CAICT NAS LOS70

Client CTTL Certificate No: 23J02Z80177

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 7600

Calibration Procedure(s)

Calibration Procedures for Dosimetric E-field Probes

Calibration date: December 19, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

FF-Z11-004-02

Calibration Equipment used (M&TE critical for calibration)

Name

Primary Standards	ID# Cal	Date(Calibrated by, Certificate No.) Scheduled C	Calibration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 1555	24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Aug-24
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan2	23) Jan-24

Calibrated by:

Yu Zongying SAR Test Engineer

Reviewed by:

Lin Hao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Function

Issued: December 21, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 23J02Z80177 Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:23J02Z80177

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.67	0.65	0.67	±10.0%
DCP(mV) ^B	111.0	110.7	109.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	cw	Х	0.0	0.0	1.0	0.00	210.1	±2.1%
		Υ	0.0	0.0	1.0		204.2	
		Z	0.0	0.0	1.0		209.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:23J02Z80177

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7600

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.95	10.95	10.95	0.13	1.42	±12.7%
900	41.5	0.97	10.47	10.47	10.47	0.14	1.45	±12.7%
1450	40.5	1.20	9.28	9.28	9.28	0.19	1.05	±12.7%
1750	40.1	1.37	8.98	8.98	8.98	0.24	1.05	±12.7%
1900	40.0	1.40	8.63	8.63	8.63	0.27	1.00	±12.7%
2000	40.0	1.40	8.55	8.55	8.55	0.24	1.08	±12.7%
2300	39.5	1.67	8.34	8.34	8.34	0.55	0.75	±12.7%
2450	39.2	1.80	8.08	8.08	8.08	0.55	0.76	±12.7%
2600	39.0	1.96	7.89	7.89	7.89	0.62	0.69	±12.7%
3300	38.2	2.71	7.45	7.45	7.45	0.40	0.98	±13.9%
3500	37.9	2.91	7.29	7.29	7.29	0.40	1.03	±13.9%
3700	37.7	3.12	7.12	7.12	7.12	0.40	1.06	±13.9%
3900	37.5	3.32	6.94	6.94	6.94	0.35	1.35	±13.9%
4100	37.2	3.53	6.85	6.85	6.85	0.35	1.28	±13.9%
4200	37.1	3.63	6.75	6.75	6.75	0.35	1.35	±13.9%
4400	36.9	3.84	6.64	6.64	6.64	0.35	1.35	±13.9%
4600	36.7	4.04	6.54	6.54	6.54	0.35	1.40	±13.9%
4800	36.4	4.25	6.49	6.49	6.49	0.35	1.48	±13.9%
4950	36.3	4.40	6.22	6.22	6.22	0.35	1.50	±13.9%
5250	35.9	4.71	5.65	5.65	5.65	0.40	1.52	±13.9%
5600	35.5	5.07	5.00	5.00	5.00	0.45	1.48	±13.9%
5750	35.4	5.22	5.11	5.11	5.11	0.40	1.58	±13.9%

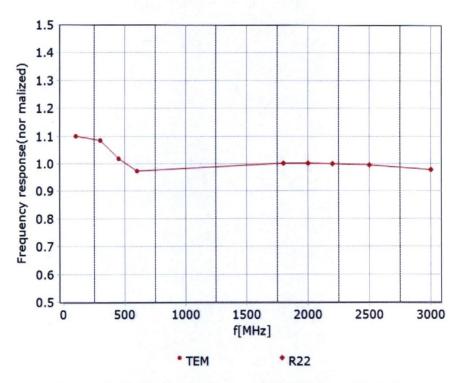
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:23J02Z80177

Page 4 of 9

F At frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



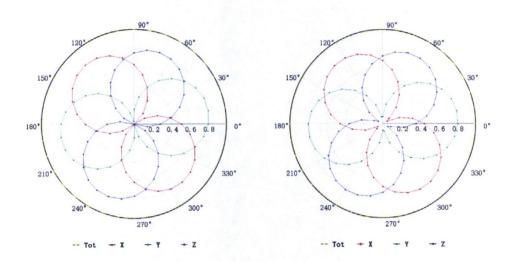
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

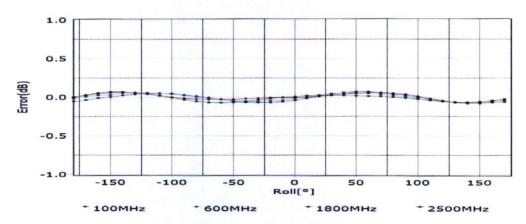
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:23J02Z80177

Page 5 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Receiving Pattern (Φ), θ=0°

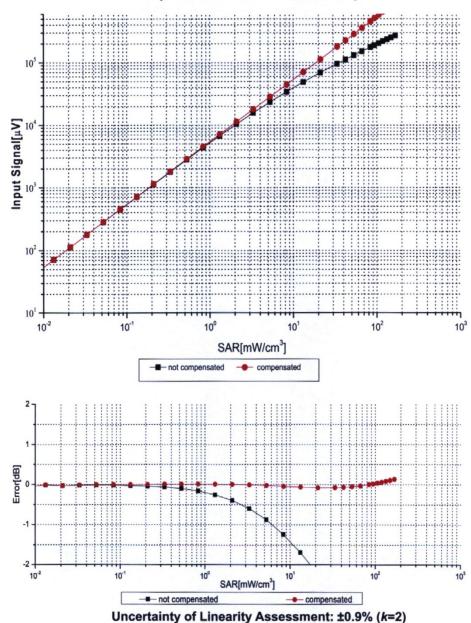
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:23J02Z80177

Page 6 of 9



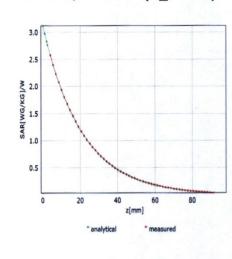
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

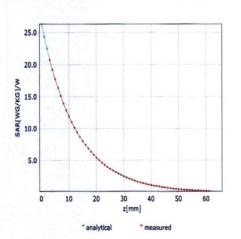
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

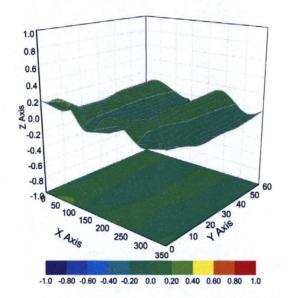
Certificate No:23J02Z80177

Page 7 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:23J02Z80177

Page 8 of 9