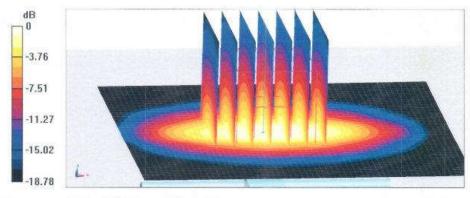


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattLcom http://www.ehinattLcn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 10.18.2021


DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.387$ S/m; $\varepsilon_i = 39.88$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

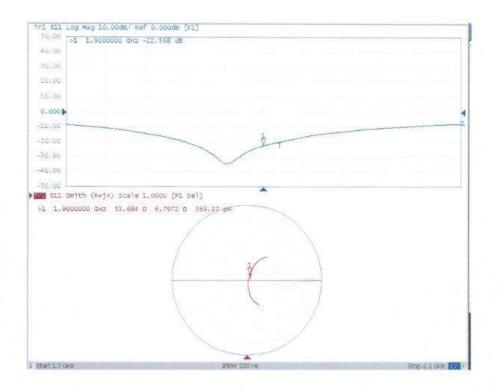
- Probe: EX3DV4 SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4): SEMCAD X Version 14.6.14 (7501)

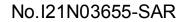
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.1 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52.1%

Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Certificate No: Z21-60357


Page 5 of 6


Add: No.52 HuaYuanBel Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 F-mail: ettl@chinattl.com http://www.ehinattl.en

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60357

Page 6 of 6

2300MHz Dipole Calibration Certificate

Client CT CALIBRATION (Object Calibration Procedure(s) Calibration date:	14633-2079 Fax: hattl.com http: TL(South Brand CERTIFICAT D2300 FF-Z11 Calibra		CALIBRATIOI CNAS L0570 1-60343
CALIBRATION (Object Calibration Procedure(s) Calibration date:	TL(South Brand CERTIFICAT D2300 FF-Z11 Calibra	ch) Certificate No: Z2 E V2 - SN: 1059	1-60343
Object Calibration Procedure(s) Calibration date:	D2300 FF-Z11 Calibra	V2 - SN: 1059	
Calibration Procedure(s) Calibration date:	FF-Z11 Calibra		Ser L
Calibration date:	Calibra	-003-01	
	Calibra		
		tion Procedures for dipole validation kits	
This calibration Certificat	Septen	nber 22, 2021	
		traceability to national standards, which rea the uncertainties with confidence probability	
pages and are part of the		and another termines with considence probability.	are given on the following
numidity<70%. Calibration Equipment us	ed (M&TE critical f	or calibration)	
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
			ochequied Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power Meter NRP2 Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21 Sep-21
Power Meter NRP2	104291		Sep-21
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3D\ DAE4	104291 /4 SN 7517	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Sep-21 Sep-21 Feb-22 Jan-22
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3D\	104291 /4 SN 7517 SN 1556 ID #	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG.No.Z21-60001)	Sep-21 Sep-21 Feb-22
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV DAE4 Secondary Standards	104291 SN 7517 SN 1556 ID# C MY49071430	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG.No.Z21-60001) 15-Jan-21(SPEAG.No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.)	Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV DAE4 Secondary Standards Signal Generator E44386	104291 SN 7517 SN 1556 ID # C MY49071430	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG.No.Z21-60001) 15-Jan-21(SPEAG.No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593)	Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV DAE4 Secondary Standards Signal Generator E4438 NetworkAnalyzer E5071	104291 XA SN 7517 SN 1556 ID # C MY49071430 C MY46110673	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG.No.Z21-60001) 15-Jan-21(SPEAG.No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV DAE4 Secondary Standards Signal Generator E44386	104291 SN 7517 SN 1556 ID # C MY49071430 C MY46110673 Name	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV DAE4 Secondary Standards Signal Generator E4438 NetworkAnalyzer E5071 Calibrated by:	 104291 SN 7517 SN 1556 ID # C MY49071430 C MY46110673 Name Zhao Jing 	23-Sep-20 (CTTL, No.J20X08336) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function SAR Test Engineer	Sep-21 Sep-21 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60343

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl.achinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60343

Page 2 of 6

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Iel: +86-10-62304633-2079
 Fax: +86-10-62304633-2564

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

he following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.68 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60343

Page 3 of 6

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl/a chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6Ω- 4.46jΩ
Return Loss	- 26.5dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.077 ns
	1

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by			SPEAG	
ertificate No: Z21-60343	Page 4	- <i>4</i> /		
	r age 4 i	01.0		

No.I21N03655-SAR

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

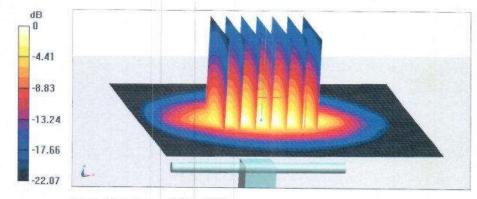
 Tel: =86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl @ chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 09.22.2021

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1059 Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2300 MHz; $\sigma = 1.683$ S/m; $\varepsilon_r = 39.91$; $\rho = 1000$ kg/m³ Phantom section: Right Section


DASY5 Configuration:

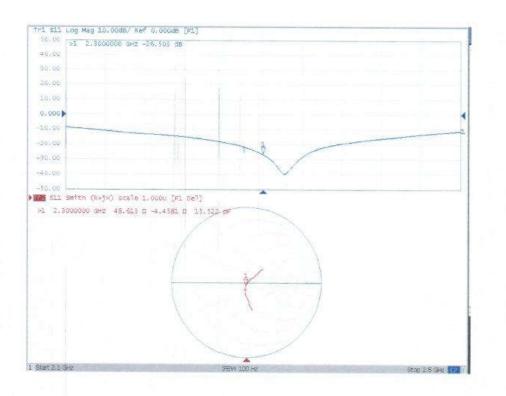
- Probe: EX3DV4 SN7517; ConvF(7.58, 7.58, 7.58) <u>a</u> 2300 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4): SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

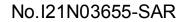
Reference Value = 104.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 25.1 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.67 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mmRatio of SAR at M2 to SAR at M1 = 48.1%Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg


Certificate No: Z21-60343

Page 5 of 6



Impedance Measurement Plot for Head TSL

Certificate No: Z21-60343

Page 6 of 6

2450MHz Dipole Calibration Certificate

Tel: +86-10-623046 E-mail: ettl a chinat		86-10-62304633-2504		CNAS L0570
Client SAIC	A CONSTRUCTION OF THE OWNER	Certificate No:	Z21-6035	8
CALIBRATION CE	ERTIFICAT	E		
Object	D2450	√2 - SN: 873	ALC: NO	ii.
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kits		
Calibration date:	Octobe	r 21, 2021		
pages and are part of the ce	ertificate.	the uncertainties with confidence probat he closed laboratory facility: environm		ture (22±3)°C and
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used	conducted in t (M&TE critical fi	he closed laboratory facility: environm or calibration)	ent temperat	
pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	Matte conducted in t (M&TE critical find)	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No	ent temperat	duled Calibration
Dages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	M&TE critical fr (M&TE critical fr ID # 106277	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326)	ent temperat	duled Calibration Sep-22
Pages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	M&TE critical fr (M&TE critical fr ID # 106277 104291	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	ent temperat	duled Calibration Sep-22 Sep-22
Dages and are part of the ce All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	M&TE critical fr (M&TE critical fr ID # 106277 104291	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326)	ent temperat	duled Calibration Sep-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	ID # 106277 104291 SN 7517	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by. Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-6000	ent temperat	duled Calibration Sep-22 Sep-22 Feb-22 Jan-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	M&TE critical fo (M&TE critical fo ID # 106277 104291 SN 7517 SN 1556	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-6000 15-Jan-21(SPEAG,No.DAE4-1556_Jar	ent temperat	duled Calibration Sep-22 Sep-22 Feb-22 Jan-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in t (M&TE critical for ID # 106277 104291 SN 7517 SN 1556 ID #	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-6000 15-Jan-21(SPEAG,No.DAE4-1556_Jar Cal Date (Calibrated by, Certificate No.	ent temperat	duled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Juled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in t (M&TE critical fr ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-6000 15-Jan-21(SPEAG,No.DAE4-1556_Jar Cal Date (Calibrated by, Certificate No. 01-Feb-21 (CTTL, No.J21X00593)	ent temperat	duled Calibration Sep-22 Sep-22 Feb-22 Jan-22 duled Calibration Jan-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ertificate. conducted in t (M&TE critical fi ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-6000 15-Jan-21(SPEAG,No.DAE4-1556_Jar Cal Date (Calibrated by, Certificate No. 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	ent temperat	duled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Juled Calibration Jan-22 Jan-22
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. conducted in t (M&TE critical fill) ID# 106277 104291 SN 7517 SN 1556 ID# MY49071430 MY46110673 Name	he closed laboratory facility: environm or calibration) Cal Date (Calibrated by, Certificate No 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.DAE4-1556_Jar Cal Date (Calibrated by, Certificate No. 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232) Function	ent temperat	duled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Juled Calibration Jan-22 Jan-22

Certificate No: Z21-60358

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: -86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60358

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304653-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5±6%	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 Cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60358

Page 3 of 6

 Add: No.52 HuaYuanBei Road. Haidian District. Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl a chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6Ω+ 1.26jΩ
Return Loss	- 28.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.066 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z21-60358

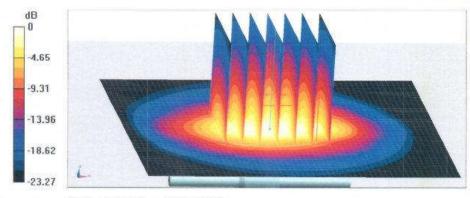
Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 10.21.2021

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 39.51$; $\rho = 1000$ kg/m³


Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt): Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

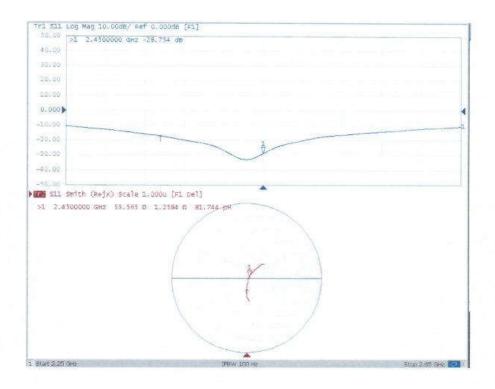
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 108.0 V/m; Power Drift = -0.03 dB
Peak SAR (extrapolated) = 28.0 W/kg
SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.05 W/kg
Smallest distance from peaks to all points 3 dB below = 9.2 mm
Ratio of SAR at M2 to SAR at M1 = 46.9%
Maximum value of SAR (measured) = 22.6 W/kg
```


0 dB = 22.6 W/kg = 13.54 dBW/kg

Certificate No: Z21-60358

Page 5 of 6



 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl a chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60358

Page 6 of 6

No.I21N03655-SAR

2550MHz Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TMC-SZ (Auden)

Certificate No: D2550V2-1010_May21

Accreditation No.: SCS 0108

S

C

S

iject	D2550V2 - SN:10	10	
	QA CAL-05.v11 Calibration Proces	dure for SAR Validation Sources	between 0.7-3 GHz
alibration date:	May 21, 2021		
nis calibration certificate documen ne measurements and the uncerta	ts the traceability to natio ainties with confidence pr	onal standards, which realize the physical uni obability are given on the following pages an	its of measurements (SI), d are part of the cortificate.
I calibrations have been conducte	d in the closed laborator	y facility: environment temperature $(22 \pm 3)^{\circ}$	$\rm C$ and humidity < 70%.
alibration Equipment used (M&TE	critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
ower sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
wer sensor NRP-291	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
elerence 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
pe-N mismatch combination	SN: 310982 / 06227	09-Apr-21 (No. 217-03544)	Apr-22
	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
ference Probe EX3DV4			
	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
AE4	SN: 601		Nov-21 Scheduled Check
AE4 econdary Standards	Naw second	02-Nov-20 (No. DAE4-601_Nov20)	
AE4 econdary Standards ower meter E4419B	ID#	02-Nov-26 (No. DAE4-601_Nov20) Check Date (in house)	Scheduled Check In house check: Oct-22 In house check: Oct-22
eterence Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	ID # SN: GB39512475	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20)	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A lower sensor HP 8481A IF generator R&S SMT-06	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
AE4 econdary Standards ower meter E4419B rower sensor HP 8481A	ID# SN: GB39512475 SN: US37292783 SN: MY41092317	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A lower sensor HP 8481A IF generator R&S SMT-06	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
AE4 econdary Standards ower meter E4419B ower sensor HP 8481A lower sensor HP 8481A IF generator R&S SMT-06	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21
AE4 econdary Standards ower meter E44198 ower sensor HP 8481A fower sensor HP 8481A iF generator R&S SMT-06 letwork Analyzar Agilent E8358A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21
AE4 econdary Standards ower meter E44198 rower sensor HP 8481A rower sensor HP 8481A iF generator R&S SMT-06 letwork Analyzer Agilent E8358A calibrated by:	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Juri-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21
AE4 econdary Standards ower meter E44198 rower sensor HP 8481A rower sensor HP 8481A iF generator R&S SMT-06 letwork Analyzer Agilent E8358A calibrated by:	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 In house check: Oct-21
AE4 econdary Standards ower meter E44198 ower sensor HP 8481A fower sensor HP 8481A iF generator R&S SMT-06 letwork Analyzar Agilent E8358A	ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Juri-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function Laboratory Technician	Scheduled Check In house check: Oct-2 In house check: Oct-2 In house check: Oct-2 In house check: Oct-2 In house check: Oct-2

Certificate No: D2550V2-1010_May21

Page 1 of 9

No.I21N03655-SAR

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_May21

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	37.4 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	and the	1922

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW Input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
CAD averaged even 10 am ² (10 a) of Hand TCI	condition	
SAR averaged over 10 cm ² (10 g) of Head TSL	condition	R 49 W/No
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR for nominal Head TSL parameters	condition 250 mW input power normalized to 1W	6.42 W/kg 25.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	50.8 ± 6 %	2.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		1

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.04 W/kg

Certificate No: D2550V2-1010_May21

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 3.8 jΩ	
Return Loss	- 26,8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49,3 Ω - 1,8 jΩ
Return Loss	- 34,3 dB

General Antenna Parameters and Design

Etherican Delay (and direction)	1.153 ns
Electrical Delay (one direction)	1.10010

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Gertificate No: D2550V2-1010_May21

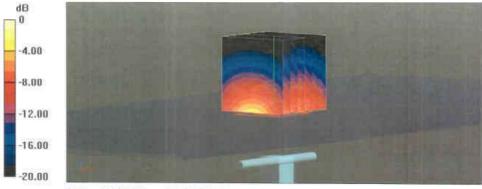
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

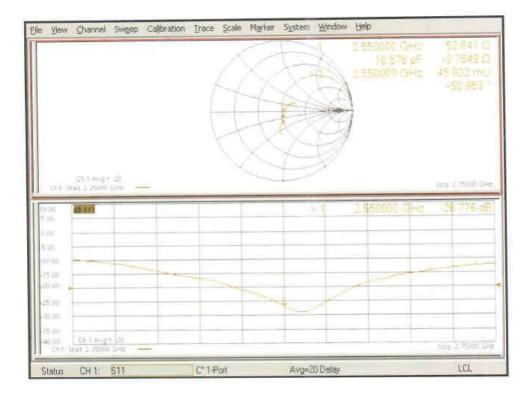

Communication System: UID 0 - CW: Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; σ = 1.99 S/m; ϵ_r = 37.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 48.2% Maximum value of SAR (measured) = 24.3 W/kg


0 dB = 24.3 W/kg = 13.86 dBW/kg

Certificate No: D2550V2-1010_May21

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2550V2-1010_May21

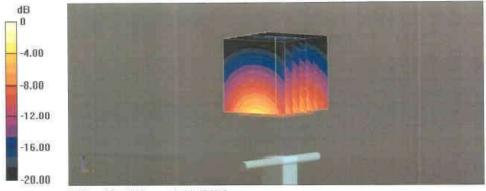
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

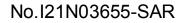
DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010


Communication System: UID 0 – CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 2.16$ S/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

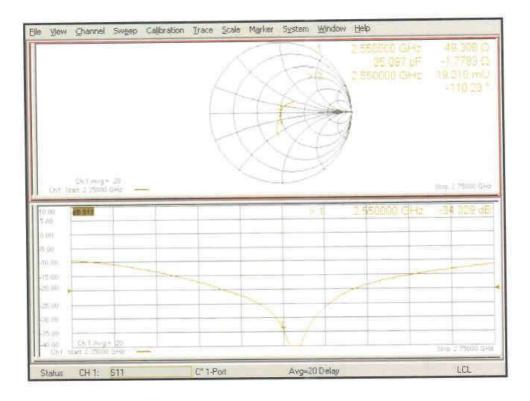
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg


Certificate No: D2550V2-1010_May21

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_May21

Page 8 of 8

5GHz Dipole Calibration Certificate

Add: No.51 Xueyu Tel: +86-10-62304	an Road, Haidian Di	tration with e a g ION LABORATORY strict, Beijing, 100191, China +86-10-62304633-2504	中国认可 国际互认 校准 CALIBRATION CNAS L0570
E-mail: ettl@china	ttl.com http:	//www.chinattl.en	UNAS LUSTU
Client CT	FL(South Bra	nch) Certificate No:	Z19-60293
CALIBRATION C	ERTIFICA	TE	
Object	D5GH	zV2 - SN: 1238	
Calibration Procedure(s)	FF-Z1	1-003-01	
		ation Procedures for dipole validation kits	
Calibration date:	Augus	t 29, 2019	
pages and are part of the co	ertificate.	the uncertainties with confidence probabili the closed laboratory facility: environme	
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A ReferenceProbe EX3DV4	101369 SN 3617	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
DAE4	and the second second second second	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzerE5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	The second
Reviewed by:	Lin Hao	SAR Test Engineer	二林光
Approved by:	Qi Dianyuan	SAR Project Leader	Soon
This calibration partificate at	oll not k		otember 2, 2019
rino cambration certificate sr	an not be repro	duced except in full without written approval	of the laboratory.

Certificate No: Z19-60293

Page 1 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl @chinattl.com
 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60293

Page 2 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.69 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

are applied

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60293

Page 3 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 24.2 % (k=2)
SAR measured	100 mW input power	2.27 W/kg
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	79.5 W/kg ± 24.4 % (k=2)
SAR measured	100 mW input power	7.96 W/kg
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60293

Page 4 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	71.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.70 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60293

Page 5 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.78 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5750 MHz

SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 24.2 % (k=2)
SAR measured	100 mW input power	2.10 W/kg
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 24.4 % (k=2)
SAR measured	100 mW input power	7.39 W/kg
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	

Certificate No: Z19-60293

Page 6 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.8Ω - 4.65jΩ	
Return Loss	- 26.2dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	49.2Ω + 0.58jΩ
Return Loss	- 40.0dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.3Ω + 1.08jΩ
Return Loss	- 39.0dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.8Ω - 2.02jΩ	
Return Loss	- 32.5dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	51.3Ω + 3.94jΩ	
Return Loss	- 27.8dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.2Ω + 4.77jΩ
Return Loss	- 25.8dB

Certificate No: Z19-60293

Page 7 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

General Antenna Parameters and Design

Electrical Delay (one direction)	1.059 ns
	1.000 113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z19-60293

Page 8 of 14

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 08.28.2019

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.692 S/m; ϵ_r = 35.71; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.992 S/m; ϵ_r = 35.42; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.096 S/m; ϵ_r = 35.13; ρ = 1000 kg/m3,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz; ConvF(5.06, 5.06, 5.06) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

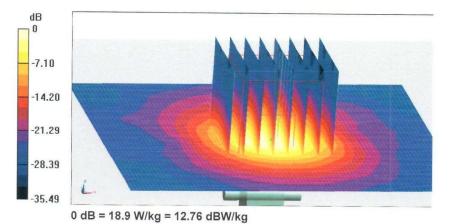
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.41 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.02 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 35.7 W/kg SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.55 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: Z19-60293

Page 9 of 14



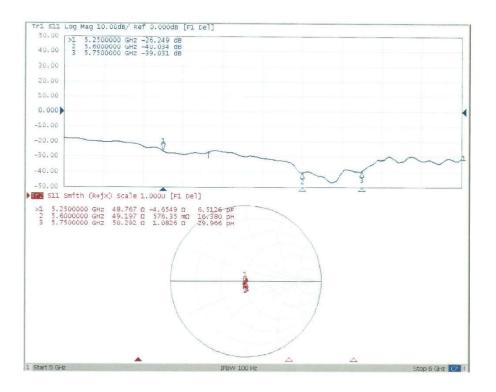
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Certificate No: Z19-60293

Page 10 of 14



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60293

Page 11 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl a chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Date: 08.29.2019

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.402 S/m; ϵ_r = 48.05; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.703 S/m; ϵ_r = 47.61; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.782 S/m; ϵ_r = 47.49; ρ = 1000 kg/m3,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(4.76, 4.76, 4.76) @ 5250 MHz; ConvF(4.23, 4.23, 4.23) @ 5600 MHz; ConvF(4.36, 4.36, 4.36) @ 5750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

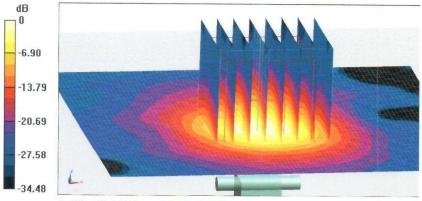
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.85 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.17 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 16.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.17 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.4 W/kg

```
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan.
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 55.47 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 33.2 W/kg
SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.1 W/kg
Maximum value of SAR (measured) = 18.1 W/kg
```

Certificate No: Z19-60293

Page 12 of 14



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

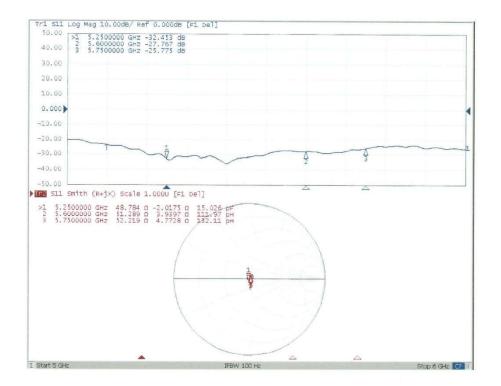
 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

0 dB = 18.1 W/kg = 12.58 dBW/kg

Certificate No: Z19-60293

Page 13 of 14



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60293

Page 14 of 14

(johm)

-4.53

-4.29

-4.16

Delta

(johm)

1

0.24

0.37

Measurement

2019-09-03

2020-09-01

2021-08-30

ANNEX J: Extended Calibration SAR Dipole

(dB)

-26.9

-25.8

-25.2

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

(ohm)

50.5

51.2

51.7

(ohm)

1

0.7

1.2

Justification of Extended Calibration SAR Dipole D750V3– serial no.1163
Head
Date of Return-Loss Delta (%) Impedance Imaginary
Impedance

Justification of Extended Calibration SAR Dipole D1750V2– serial no.1152

1

4.1

6.3

	Head												
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	lmaginary Impedance (johm)	Delta (johm)							
2019-08-30	-38.1	/	49.1	1	-0.84	/							
2020-08-28	-36.5	4.2	50.2	1.1	-0.49	0.35							
2021-08-26	-35.7	6.3	50.8	1.7	-0.42	0.42							

Justification of Extended Calibration SAR Dipole D5GHzV2– serial no.1238

	Head												
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)							
			5250MHz										
2019-08-29	-26.2	/	48.8	/	-4.65	/							
2020-08-28	-25.1	4.2	49.7	0.9	-4.26	0.39							
2021-08-26	-24.7	5.7	50.2	1.4	-4.01	0.64							
			5600MHz										
2019-08-29	-40.0	/	49.2	/	0.58	/							
2020-08-28	-38.1	4.8	50.3	1.1	0.85	0.27							
2021-08-26	-37.7	5.7	50.8	1.6	0.92	0.34							
			5750MHz										
2019-08-29	-39.0	/	50.3	/	1.08	/							
2020-08-28	-37.7	3.3	51.1	0.8	1.44	0.36							
2021-08-26	-37.2	4.6	51.6	1.3	1.53	0.45							

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04, this device was tested by the manufacturer to determine the proximity sensor triggering distances for all applicable sides and edges of the device. The measured output power at distances within \pm 5 mm of the triggering points (or until touching the phantom) is included for back side and each applicable edge per Step i) in Section 6.2 of the KDB. The technical descriptions in the filing contain the complete set of triggering data required by Section 6 of FCC KDB Publication 616217 D04.

To ensure all production units are compliant, it is necessary to test SAR at a distance 1 mm less than the smallest distance between the device and SAR phantom with the device at the maximum output power (without power reduction). These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom (at the reduced output power level).

The operational description contains information explaining how this device remains compliant in the event of a sensor malfunction.

WWAN Antenna

Rear Side

Moving device toward the phantom:

Sensor triggered (YES or NO)												
Distance(mm)	18	17	16	15	14	13	12	11	10	9	8	
Main Antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES	

Moving device away from the phantom:

	Sensor triggered (YES or NO)												
Distance(mm) 8 9 10 11 12 13 14 15 16 17 18										18			
Main Antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO		

Based on the most conservative measured triggering distance of 13 mm, additional SAR measurements were required at 12 mm from the rear side for the above modes.

Top Side

Moving device toward the phantom:

	Sensor triggered (YES or NO)												
Distance(mm)	20	19	18	17	16	15	14	13	12	11	10		
Main Antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES		
	Nacionale inclusione france the scherele set												

Moving device away from the phantom:

	Sensor triggered (YES or NO)												
Distance(mm)	20	19	18	17	16	15	14	13	12	11	10		
Main Antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO		

Based on the most conservative measured triggering distance of 15 mm, additional SAR measurements were required at 14 mm from the top side for the above modes.

Left Side

Moving device toward the phantom:

Sensor triggered (YES or NO)												
Distance(mm)	10	9	8	7	6	5	4	3	2	1	0	
Main Antenna	NO	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	

Moving device away from the phantom:

	Sensor triggered (YES or NO)												
Distance(mm) 0 1 2 3 4 5 6 7 8 9 10										10			
Main Antenna	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO	NO		

Based on the most conservative measured triggering distance of 4 mm, additional SAR measurements were required at 3 mm from the left side for the above modes.

Right Side

Moving device toward the phantom:

Sensor triggered (YES or NO)												
Distance(mm)	12	11	10	9	8	7	6	5	4	3	2	
Main Antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES	
	Naving device even from the phoneters											

Moving device away from the phantom:

	Sensor triggered (YES or NO)												
Distance(mm) 2 3 4 5 6 7 8 9 10 11 12													
Main Antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO		

Based on the most conservative measured triggering distance of 7 mm, additional SAR measurements were required at 6 mm from the right side for the above modes.

WLAN Antenna

Rear Side

Moving device toward the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	16	15	14	13	12	11	10	9	8	7	6
Main Antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	6	7	8	9	10	11	12	13	14	15	16
Main Antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Based on the most conservative measured triggering distance of 11 mm, additional SAR measurements were required at 10 mm from the rear side for the above modes.

Top Side

Moving device toward the phantom:

Distance(mm) 18 17 16 15 14 13 12 11 10 9 8 Main Antenna NO NO NO NO YES YES	Sensor triggered (YES or NO)											
Main Antenna NO NO NO NO NO YES YES YES YES YES YES	Distance(mm)	18	17	16	15	14	13	12	11	10	9	8
	Main Antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	8	9	10	11	12	13	14	15	16	17	18
Main Antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Based on the most conservative measured triggering distance of 13 mm, additional SAR measurements were required at 12 mm from the top side for the above modes.

Left Side

Moving device toward the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	10	9	8	7	6	5	4	3	2	1	0
Main Antenna NO NO NO NO NO NO NO YES YES YES YES											
Martine de l'acteur de la characteur											

Moving device away from the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	0	1	2	3	4	5	6	7	8	9	10
Main Antenna	YES	YES	YES	YES	NO						

Based on the most conservative measured triggering distance of 3 mm, additional SAR measurements were required at 2 mm from the left side for the above modes.

Right Side

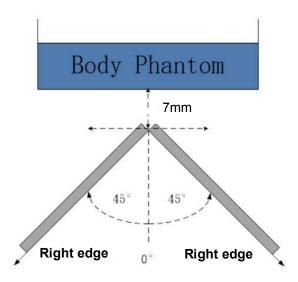
Moving device toward the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	12	11	10	9	8	7	6	5	4	3	2
Main Antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

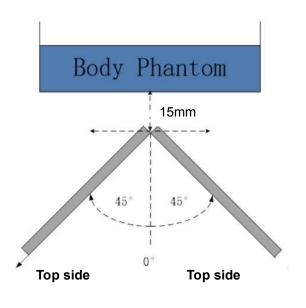
Moving device away from the phantom:

Sensor triggered (YES or NO)											
Distance(mm)	2	3	4	5	6	7	8	9	10	11	12
Main Antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Based on the most conservative measured triggering distance of 7 mm, additional SAR measurements were required at 6 mm from the right side for the above modes.



The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is ±45° or more from the vertical position at 0°.



The Left side evaluation

The Right side evaluation

The Top side evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX L: LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. When ULCA is active, the device does not supports Power Class 2. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g and < 3.5 W/kg for 10g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

/	LTE Band 41 PC3	LTE Band 41 PC2						
Maximum Tune up Power (dBm)	16.0	19.0						
Reported 1g SAR (W/kg)	0.990	1.220						
Duty Cycle	63.30%	43.30%						
Frame Averaged (mW)	25.20	34.39						
Linearity SAR (W/kg)	1.351	1						
% deviation from expected linearity	1	-9.71%						

Table L.1: LTE Band 41 Single Carrier Linearity Data - 0mm Test Data

Table I 2. I TE Band 41	Single Carrier Linearity F	Data - Sensor off Test Data
	Single Carrier Linearity L	

1	LTE Band 41 PC3	LTE Band 41 PC2
Maximum Tune up Power (dBm)	24.0	27.0
Reported 1g SAR (W/kg)	0.910	1.230
Duty Cycle	63.30%	43.30%
Frame Averaged (mW)	159.00	217.01
Linearity SAR (W/kg)	1.242	/
% deviation from expected linearity	1	-0.97%

END OF REPORT