

2450 MHz Dipole Calibration Certificate

Add: No 51 Vuon		Strict, Beijing, 100191, China	NAS 校准 CALIBRATION
Tel: +86-10-62304 E-mail: cttl @ china	633-2079 Fax: -	+86-10-62304633-2504 /www.chinattl.en	CNAS L0570
	L(South Brand		8-60388
CALIBRATION C	ERTIFICAT	re en	
Object	D2450	V2 - SN: 873	
	02430	v2 - 5N. 675	
Calibration Procedure(s)	FF-Z11	1-003-01	
	Calibra	ation Procedures for dipole validation kits	
Calibration date:	Octobe	er 26, 2018	
neasurements(SI). The me pages and are part of the ce	asurements and ertificate.	the uncertainties with confidence probability a	
numidity<70%. Calibration Equipment used	ID # 102083 100542	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	ID # 102083 100542 SN 7514 SN 1555	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical fo ID # 102083 100542 SN 7514 SN 1555 ID #	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	ID # 102083 100542 SN 7514 SN 1555	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical for ID # 102083 100542 SN 7514 SN 1555 ID # MY49071430	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical fo ID # 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical for ID # 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19
Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	(M&TE critical for ID # 102083 100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Scheduled Calibration Oct-18 Oct-18 Aug-19 Aug-19 Scheduled Calibration Jan-19 Jan-19

Certificate No: Z18-60388

Page 1 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

http://www.chinattl.cn

Glossary: TSL

С

N

SL	tissue simulating liquid
onvF	sensitivity in TSL / NORMx,y,z
I/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60388

Page 2 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.91 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.5 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60388

Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 2.11 jΩ	
Return Loss	- 28.0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3Ω+ 4.51 jΩ	
Return Loss	- 26.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.024 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z18-60388

Page 4 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.en

Date: 10.26.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

DASY5 Validation Report for Head TSL

Date: 10.26.2018

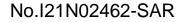
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.802$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m3 Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.0 V/m; Power Drift = 0.09 dB

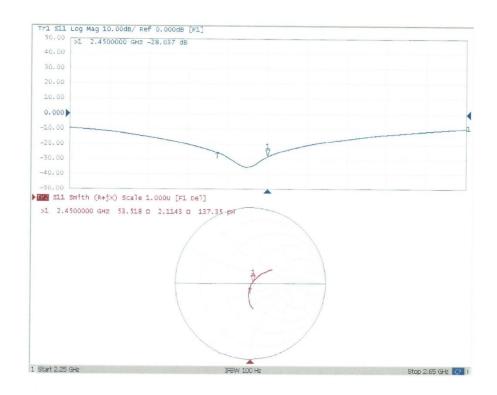
```
Peak SAR (extrapolated) = 26.8 W/kg
```


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 21.8 W/kg

dB 0 -4.35 -8.71 -13.06 -17.42 -21.77

0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: Z18-60388


Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60388

Page 6 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

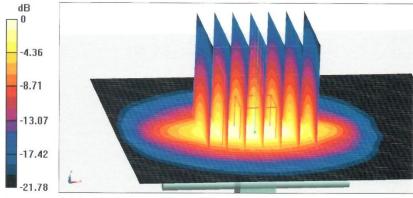
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

Date: 10.26.2018

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.008$ S/m; $\varepsilon_r = 52.76$; $\rho = 1000$ kg/m3 Phantom section: Center Section


DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

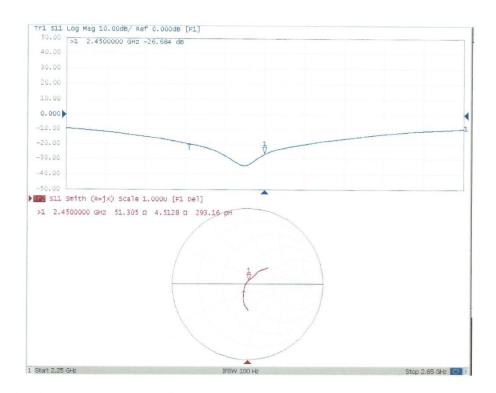
Reference Value = 98.89 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg

Certificate No: Z18-60388

Page 7 of 8



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60388

Page 8 of 8

No.I21N02462-SAR

2550 MHz Dipole Calibration Certificate (2018)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

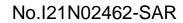
CTTL (Auden)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

S


С

S

Client CTTL (Auden)		Certificate N	lo: D2550V2-1010_Aug18
CALIBRATION C	ERTIFICATI	E	
Object	D2550V2 - SN:1	010	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 24, 2018		
The measurements and the uncert	ainties with confidence p ed in the closed laborato	tional standards, which realize the physical up orobability are given on the following pages a bry facility: environment temperature $(22 \pm 3)^\circ$	nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
eference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
econdary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	Aut
Approved by:	Katja Pokovic	Technical Manager	flett
			Issued: August 24, 2018
his calibration certificate shall not			

Certificate No: D2550V2-1010_Aug18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_Aug18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	1.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.73 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.0 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.22 W/kg

Certificate No: D2550V2-1010_Aug18

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω - 2.3 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω - 2.0 jΩ	
Return Loss	- 33.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 03, 2012

Certificate No: D2550V2-1010_Aug18

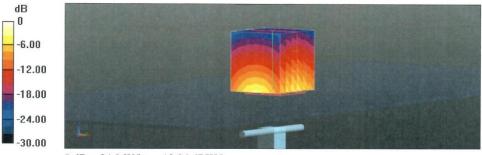
Page 4 of 8

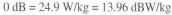
No.I21N02462-SAR

DASY5 Validation Report for Head TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

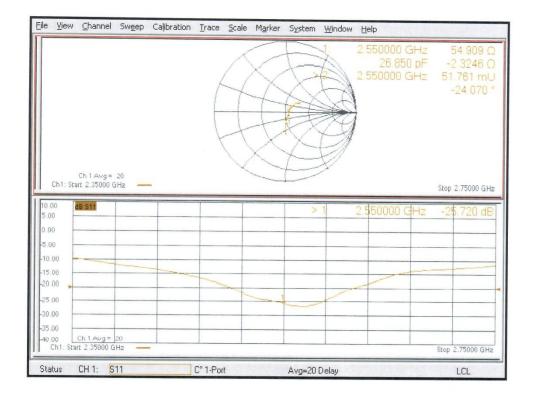

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010


 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 2550 MHz} \\ \mbox{Medium parameters used: } f = 2550 \mbox{ MHz; } \sigma = 1.97 \mbox{ S/m; } \epsilon_r = 37.3; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.43, 7.43, 7.43) @ 2550 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.73 W/kg Maximum value of SAR (measured) = 24.9 W/kg



Certificate No: D2550V2-1010_Aug18

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2550V2-1010_Aug18

Page 6 of 8

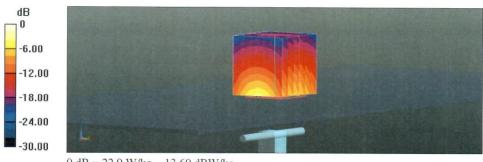
No.I21N02462-SAR

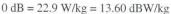
DASY5 Validation Report for Body TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

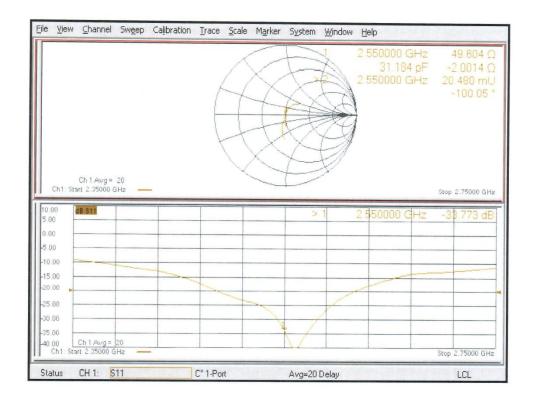

Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; σ = 2.14 S/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.68, 7.68, 7.68) @ 2550 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 109.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.22 W/kg Maximum value of SAR (measured) = 22.9 W/kg



Certificate No: D2550V2-1010_Aug18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_Aug18

Page 8 of 8

No.I21N02462-SAR

2550 MHz Dipole Calibration Certificate (2021)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

S

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TMC-SZ (Auden) Client

Certificate No: D2550V2-1010_May21

Initial Statutions ID # Out Optimized (0) (No. 217-03291/03292) Apr-22 Power sensor NRP-291 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-291 SN: 103244 09-Apr-21 (No. 217-03292) Apr-22 Power sensor NRP-291 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Power sensor NRP-291 SN: 103245 09-Apr-21 (No. 217-03343) Apr-22 Reference 20 dB Attenuator SN: 310382 / 06327 09-Apr-21 (No. 217-03343) Apr-22 Sype-N mismatch combination SN: 310382 / 06327 09-Apr-21 (No. 217-03343) Apr-22 Pare-20 (No. EX30V4 SN: 7349 28-Dec 20 (No. EX3-7349 Dec20) Dec21 OAE4 SN: 601 02-Nov-20 (No. DAE4-601 Nov20) Nov-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-20) <td< th=""><th>bject</th><th>D2550V2 - SN:10</th><th>10</th><th></th></td<>	bject	D2550V2 - SN:10	10	
his calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), he measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. all calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.			dure for SAR Validation Sources	between 0.7-3 GHz
he measurements and the uncertainties with confidence probability are given on the following pages and are part of the confilicate. It calibration Equipment used (M&TE critical for calibration) rimary Standards ID # Cal Date (Certificate No.) Scheduled Calibration rower meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 rower sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 rower sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03343) Apr-22 reference 20 dB Attenuator SN: 310982 / 06327 09-Apr-21 (No. 217-03343) Apr-22 rype-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03343) Apr-22 reference Probe EX3DV4 SN: 601 02-Nov-20 (No. EX3-7349, Dec20) Dec21 reference Probe EX3DV4 SN: 601 02-Nov-20 (No. DAE4-601 Nov20) Nov-21 reference Softwards ID # Check Date (in house) Scheduled Check rower sensor HP 8481A SN: US37282783 07-Oct-15 (in house check Oct-20) In house check: Oct-20) rower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20) rower sensor HP 8481A SN: US41080477	alibration date:	May 21, 2021		
ID # Cal Date (Certificate No.) Scheduled Calibration fower meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 fower sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 fower sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 reference 20 dB Attanuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 generation combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 generation combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Generation combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Generation combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Generation combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Generation combination SN: 310982 / 06327 09-Apr-21 (No. 217-03349) Dec-21 Generation Reference SN: 601 02-Nov-20 (No. DAE4-601 Nov20) Nov-21 Secondary Standards ID # Check Date (in house) Scheduled Check Po	he measurements and the uncerts Il calibrations have been conducte	linties with confidence p d in the closed laborator	robability are given on the following pages an	d are part of the certificate.
Prover meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Rype-N mismatch combination SN: 310862 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 7349 28-Dec 20 (No. EX3-7349, Dec 20) Dec-21 Secondary Standards ID # Check Date (in house) Nov-21 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: W1S37282783 07-Oct-15 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: W193217 07-Oct-15 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: US41080477 31-Mar-14 (in house che	rimary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Ower sensor NRP-291 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Neterence 20 dB Attenuator SN: 310962 / 06327 09-Apr-21 (No. 217-03343) Apr-22 Vpe-N mismatch combination SN: 310962 / 06327 09-Apr-21 (No. 217-03343) Apr-22 Nate SN: 310962 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Vpe-N mismatch combination SN: 310962 / 06327 09-Apr-21 (No. 217-03344) Apr-22 NAE4 SN: 601 02-Nov-20 (No. EX3-7349 Dec20) Dec-21 Secondary Standards ID # Check Date (in house) Scheduled Check Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: 10972 15-Jun-15 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Power sensor HP 8481A SN: US41080477 31-Ma	and the second	ISN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Order Context SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 ype-N mismatch combination (beference 20 dB Attenuator ype-N mismatch combination (afference Probe EX3DV4) SN: 310962 / 06327 09-Apr-21 (No. 217-03343) Apr-22 NAE4 SN: 310962 / 06327 09-Apr-21 (No. 217-03344) Apr-22 NAE4 SN: 310962 / 06327 09-Apr-21 (No. 217-03344) Apr-22 NAE4 SN: 601 02-Nov-20 (No. EX3-7349 Dec20) Dec-21 recondary Standards ID # Check Date (in house) Scheduled Check recondary Standards ID # Check Date (in house) Scheduled Check recondary standards ID # Check Date (in house) Scheduled Check recondary standards ID # Check Date (in house) Scheduled Check recondary standards ID # Check Date (in house) Scheduled Check recondary standards ID # Check Date (in house) Scheduled Check recondary standards SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct- rower sensor HP 8481A SN: W137292783 07-Oct-15 (in house check Oct-20) In house check: Oct- rower sensor HP	ower sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	
Bit Motion and Strandards SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 AE4 SN: 7349 28-Dec-20 (No. EX3-7349_Dec20) Dec-21 AE4 SN: 601 02-Nov-20 (No. DAE4-601_Nov20) Nov-21 econdary Standards ID # Check Date (in house) Scheduled Check ower meter E4419B SN: US37292783 07-Oct-14 (in house check Oct-20) In house check: Oct- ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct- ower sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct- iF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct- Name Function Signature	ower sensor NRP-291	SN: 103245	09-Apr-21 (No. 217-03292)	
Interence Proble EX3DV4 SN: 7349 28-Dec/20 (No. EX3-7349 Dec/20) Dec/21 XE4 SN: 601 02-Nov-20 (No. DAE4-601 Nov20) Nov-21 icondary Standards ID # Check Date (in house) Scheduled Check wer meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-inversions of the sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-inversions of the sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-inversion of the sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-in hous	ference 20 dB Attenuator	SN: BH9394 (20k)		
NE4 SN: 601 02-Nov-20 (No. DAE4-601_Nov20) Nov-21 icondary Standards ID # Check Date (in house) Scheduled Check wer meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-30 wer sensor HP 8481A SN: M337292783 07-Oct-15 (in house check Oct-20) In house check: Oct-30 wer sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-30 generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-30 stwork Analyzor Agilent E8358A SN: U541080477 31-Mar-14 (in house check Oct-20) In house check: Oct-30 Name Function Signature	pe-N mismatch combination	in the second second second second		
And the secondary Standards ID # Check Date (in house) Scheduled Check ower meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-20 ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-20 ower sensor HP 8481A SN: MY41092317 07-Oct-16 (in house check Oct-20) In house check: Oct-20 F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-20 etwork Analyzor Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Name Function Signature				
Normal Formation SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check Oct-20) wer sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct-20) wer sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-20) wer sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-20) generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-20) stwork Analyzar Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Name Function Signature	4E4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
www.rsensor.HP.8481A SN: US37292783 07-Oct-15 (in house check Oct-20) In house check: Oct- ower sensor.HP.8481A ower sensor.HP.8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct- ower sensor.HP.8481A Figenwrator.R&S.SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct- ower sensor.HP.8481A Figenwrator.R&S.SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct- ower sensor.HP.841080477 SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct- In house check: Oct- Name Function	econdary Standards	10 #	Check Date (in house)	Scheduled Check
weer sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct- In house check: Oct- SN: 100972 In house check: Oct- SN: 100972 In house check: Oct- In house check: Oct- SN: US41080477 In house check: Oct- SN: US41080477 In house check: Oct- SN: US41080477 In house check: Oct- SN: US41080477 Name Function Signature	ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Figenarator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-20) In house check Oct-20) In house check Oct-20 etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-20 Name Function Signature	ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct- Name Function Signature	ower sensor HP 8481A			In house check: Oct-22
Name Function Signature				
	etwork Analyzor Agilant E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
alibrated by: Jeffrey Katzman Laboratory Technician		Name	Function	Signature
	Salibrated by:	Jeffrey Katzman	Laboratory Technician	J.ht
Approved by: Katha Pokovic Technicsi Manager		Katja Pokovic	Technical Manager	100

Certificate No: D2550V2-1010_May21

Page 1 of 9

No.I21N02462-SAR

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- C s s
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage
 - Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_May21

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	$37.4\pm6~\%$	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	2000	10000

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 m) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.42 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) "C	50.8 ± 6 %	2.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 ⁺ C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW Input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.04 W/kg

Certificate No: D2550V2-1010_May21

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 3.8 jΩ	
Return Loss	- 26,8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.3 Ω - 1.8 jΩ
Return Loss	- 34,3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Gertificate No: D2550V2-1010_May21

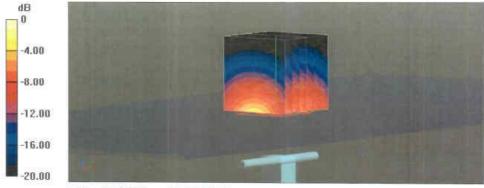
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

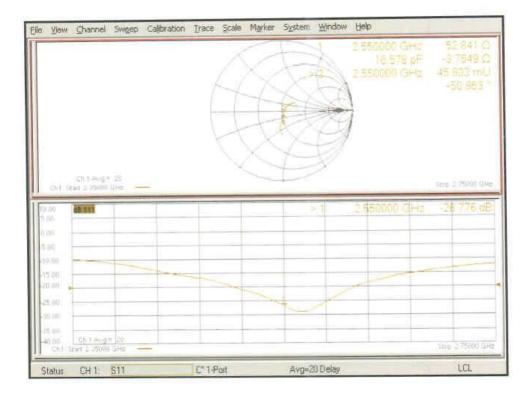

Communication System: UID 0 - CW: Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 37.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 48.2% Maximum value of SAR (measured) = 24.3 W/kg


0 dB = 24.3 W/kg = 13.86 dBW/kg

Certificate No: D2550V2-1010_May21

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2550V2-1010_May21

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

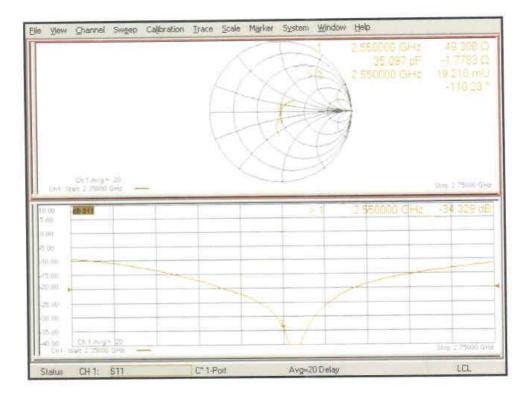
Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 2.16$ S/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 22.1 W/kg


0 dB = 22.1 W/kg = 13.44 dBW/kg

Certificate No: D2550V2-1010_May21

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_May21

Page 8 of 8

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D750V3– serial no.1163

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2019-09-03	-26.9	/	50.5	/	-4.53	/
2020-09-01	-25.8	4.1	51.2	0.7	-4.29	0.24

Justification of Extended Calibration SAR Dipole D835V2– serial no.4d057

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-09	-27.7	/	49.6	/	-4.08	/
2019-10-06	-26.9	2.9	50.1	0.5	-3.95	0.13
2020-10-05	-25.4	8.3	56.7	1.8	-2.15	0.15

Justification of Extended Calibration SAR Dipole D1750V2– serial no. 1152

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2019-08-30	-38.1	/	49.1	/	-0.84	/
2020-08-28	-36.5	4.2	50.2	1.1	-0.49	0.35

Justification of Extended Calibration SAR Dipole D1900V2- serial no. 5d088

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-24	-23.2	/	52.7	/	6.63	/
2019-10-22	-22.9	1.3	53.5	0.8	6.86	0.23
2020-10-20	-20.7	10.8	54.4	1.7	6.95	0.32

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-26	-28.0	/	53.5	/	2.11	/
2019-10-22	-27.3	2.5	54.4	0.9	2.29	0.18
2020-10-20	-24.9	11.1	55.1	1.6	2.46	0.35

Justification of Extended Calibration SAR Dipole D2450V2– serial no. 873

Justification of Extended Calibration SAR Dipole D2550V2– serial no.1010

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-08-24	-25.7	/	54.9	/	-2.30	/
2019-08-22	-24.8	3.5	55.8	0.9	-2.22	0.08
2020-08-20	-23.2	9.7	56.4	1.5	-2.13	0.17

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Spot Check Test

As the test lab for 4065F from TCL Communication Ltd., we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

EUT ID*	IMEI	HW Version	SW Version	Receipt Date
UT03aa	355246690000617	Proto	V1.0	2021-08-11
UT05aa	355246690000609	Proto	V1.0	2021-08-11
UT06aa	355246690000591	Proto	V1.0	2021-08-11
UT07aa	355246690001664	Proto	V1.0	2021-08-11

K.1. Internal Identification of EUT used during the spot check test

K.2. Measurement results

Note:

B1: Battery (VEKEN) B2: Battery (BYD)

GSM850 SAR Values

	Frequ	uency			Conducted	Max.	SAR(1g) (W/kg)			
Note			Тос	st Position	Power	tune-up	Spot check data		Original	
Ch. MHz	MHz	163	511 0311011	(dBm)	Power	Measured	Reported	data		
					(ubiii)	(dBm)	SAR	SAR	uald	
B1	190	836.6	Head	Right Cheek	33.30	33.5	0.245	0.26	0.32	
B2	190	836.6	Head	Right Cheek	33.30	33.5	0.250	0.26	0.32	
B1	190	836.6	Body	Rear	31.33	32.0	0.325	0.38	0.64	
B2	190	836.6	Body	Rear	31.33	32.0	0.425	0.50	0.61	

GSM1900 SAR Values

	Freq	uency			Conducted	Max.	SA	R(1g) (W/kg	1)
Note			Тос	st Position	Power	tune-up	Spot che	Spot check data	
Ch. Mł	MHz	163	St F USILION	Power	Measured	Reported	Original data		
					(ubiii)	(dBm)	SAR	SAR	uala
B1	661	1880.0	Head	Right Cheek	26.76	27.5	0.382	0.45	0.69
B2	661	1880.0	Head	Right Cheek	26.76	27.5	0.368	0.44	0.09
B1	810	1909.8	Body	Rear	26.26	28.0	0.442	0.66	1.07
B2	810	1909.8	Body	Rear	26.26	28.0	0.587	0.88	1.07

WCDMA Band 2 SAR Values

	Freq	uency			Conducted	Max.	SA	R(1g) (W/kg	1)
Note			Tor	st Position	sition Power Pow	tune-up	Spot che	eck data	Original
NOLE	Ch. MHz	MHz	163	St F USILION		Power (dBm)	Measured	Reported	data
					(ubiii)		SAR	SAR	uald
B1	9262	1852.4	Head	Right Cheek	18.40	19.5	0.256	0.33	0.97
B2	9262	1852.4	Head	Right Cheek	18.40	19.5	0.923	1.19	0.97
B1	9538	1907.6	Body	Rear	22.60	23.5	0.735	0.90	0.98
B2	9538	1907.6	Body	Rear	22.60	23.5	0.566	0.70	0.90

WCDMA Band 4 SAR Values

	Freq	uency			Conducted	Max.	SAR(1g) (W/kg)		
Note			Test Position		Power	tune-up	Spot che	eck data	Original
Ch. MHz	MHz	163		(dBm)	Power	Measured	Reported	data	
					(ubiii)	(dBm)	SAR	SAR	uala
B1	1413	1732.6	Head	Right Cheek	18.50	19.5	0.492	0.62	1.06
B2	1413	1732.6	Head	Right Cheek	18.50	19.5	0.710	0.89	1.00
B1	1413	1732.6	Body	Rear	23.50	24.0	0.470	0.53	1.07
B2	1413	1732.6	Body	Rear	23.50	24.0	0.596	0.67	1.07

WCDMA Band 5 SAR Values

	Freq	uency			Conducted	Max.	SA	R(1g) (W/kg)
Note			Tor	st Position		tune-up	Spot che	eck data	Original
Ch. MHz	MHz	163	SI FUSILION	(dBm)	Power	Measured	Reported	data	
					(ubiii)	(dBm)	SAR	SAR	uala
B1	4182	836.4	Head	Right Cheek	23.20	24.0	0.184	0.22	0.29
B2	4182	836.4	Head	Right Cheek	23.20	24.0	0.155	0.19	0.29
B1	4182	836.4	Body	Rear	23.20	24.0	0.214	0.26	0.43
B2	4182	836.4	Body	Rear	23.20	24.0	0.267	0.32	0.43

LTE Band 2 SAR Values

	Freq	uency			Conducted	Max.	SA	R(1g) (W/kg	1)
Note			Tor	st Position	Power	tune-up	Spot che	Spot check data	
Ch. MHz	MHz	Tes	SI FUSILION	Power	Measured	Reported	Original data		
					(ubiii)	(dBm)	SAR	SAR	uala
B1	19100	1900.0	Head	Right Cheek	19.37	20.5	0.898	1.16	1.20
B2	19100	1900.0	Head	Right Cheek	19.37	20.5	0.882	1.14	1.20
B1	19100	1900.0	Body	Rear	22.06	23.0	0.735	0.91	0.89
B2	19100	1900.0	Body	Rear	22.06	23.0	0.613	0.76	0.69

LTE Band 5 SAR Values

	Frequ	Jency			Conducted	Max.	SAR(1g) (W/kg)			
Note			Test Position		Power	tune-up	Spot che	Spot check data		
NOLE	Ch. MHz	MHz	163	St F USILION	(dBm)	Power	Measured	Reported	Original data	
					(ubiii)	(dBm)	SAR	SAR	uala	
B1	20450	829.0	Head	Right Cheek	23.12	24.0	0.166	0.20	0.26	
B2	20450	829.0	Head	Right Cheek	23.12	24.0	0.168	0.21	0.20	
B1	20450	829.0	Body	Rear	23.12	24.0	0.264	0.32	0.45	
B2	20450	829.0	Body	Rear	23.12	24.0	0.259	0.32	0.45	

LTE Band 7 SAR Values

	Frequ	uency			Conducted	Max.	SAR(1g) (W/kg)			
Note			Тос	st Position	Power	tune-up	Spot che	eck data	Original	
Ch. MHz	MHz	Tes	SI FUSILION	(dBm)	Power	Measured	Reported	data		
					(ubili)	(dBm)	SAR	SAR	uald	
B1	20850	2510.0	Head	Right Cheek	22.14	22.5	0.079	0.09	0.08	
B2	20850	2510.0	Head	Right Cheek	22.14	22.5	0.077	0.08	0.00	
B1	21100	2535.0	Body	Bottom	22.04	22.5	1.090	1.21	1.26	
B2	21100	2535.0	Body	Bottom	22.04	22.5	1.030	1.15	1.20	

LTE Band 12 SAR Values

	Frequ	lency			Conducted	Max.	SA	R(1g) (W/kg	1)
Note			Tor	st Position	Power	tune-up	Spot che	Spot check data	
Ch. MHz	MHz	16311 0311011		(dBm)	Power	Measured	Reported	Original data	
					(ubiii)	(dBm)	SAR	SAR	uala
B1	23060	704.0	Head	Right Cheek	22.97	24.0	0.138	0.17	0.22
B2	23060	704.0	Head	Right Cheek	22.97	24.0	0.135	0.17	0.22
B1	23060	704.0	Body	Rear	22.97	24.0	0.258	0.33	0.49
B2	23060	704.0	Body	Rear	22.97	24.0	0.172	0.22	0.49

LTE Band 66 SAR Values

Note	Frequency				Conducted Power (dBm)	Max.	SAR(1g) (W/kg)			
	Ch.	MHz	Test Position			tune-up	. Measured	eck data	Original	
			Test Fosition	Power		Reported		data		
			(dE		(ubiii)	(dBm)	SAR		SAR	
B1	132322	1745.0	Head	Right Cheek	19.26	20.0	0.950	1.13	1.26	
B2	132322	1745.0	Head	Right Cheek	19.26	20.0	0.985	1.17	1.20	
B1	132572	1770.0	Body	Rear	23.59	24.0	0.577	0.63	1.16	
B2	132572	1770.0	Body	Rear	23.59	24.0	0.615	0.68	1.10	

WLAN 2.4G SAR Values

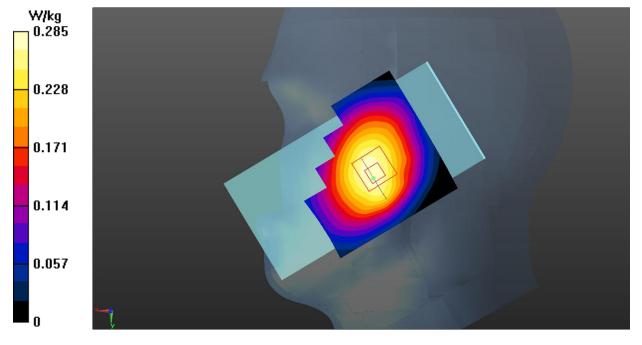
Note	Frequency				Conducted	Max.	SAR(1g) (W/kg)		
	Ch.	MHz	Test Position		Power (dBm)	tune-up	Spot che Measured	eck data	Original
				Power		Reported		data	
					(ubiii)	(dBm)	SAR	SAR	uald
B1	6	2437.0	Head	Left Cheek	18.37	19.5	0.280	0.36	0.44
B2	6	2437.0	Head	Left Cheek	18.37	19.5	0.341	0.44	0.44
B1	6	2437.0	Body	Rear	18.37	19.5	0.070	0.09	0.22
B2	6	2437.0	Body	Rear	18.37	19.5	0.079	0.10	

Product specific 10g SAR for LTE Band 7

Note	Frequency				Conducted	Max.	SAR(10g) (W/kg)		
	Ch.	MHz	Test Position		Power (dBm)	tune-up	Spot che Measured SAR	eck data	Original data
			Test Position	Power		Reported			
				(dBm)		SAR			
B1	21100	2535.0	Body	Bottom	22.04	22.5	2.750	3.06	2 59
B2	21100	2535.0	Body	Bottom	22.04	22.5	2.620	2.91	3.58

K.3. Graph Results for Spot Check

GSM850 Head


Date: 2021-8-22 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.932 S/m; ϵ_r = 40.848; ρ = 1000 kg/m³ Communication System: UID 0, GSM (0) Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);

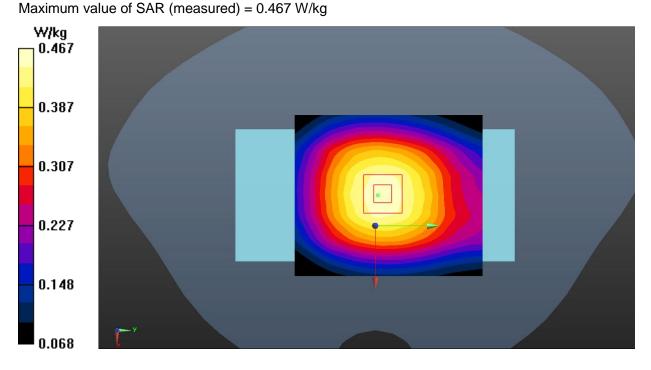
Right Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.309 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.058 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.336 W/kg SAR(1 g) = 0.250 W/kg; SAR(10 g) = 0.172 W/kg

Maximum value of SAR (measured) = 0.285 W/kg

GSM850 Body


Date: 2021-8-22 Electronics: DAE4 Sn1527

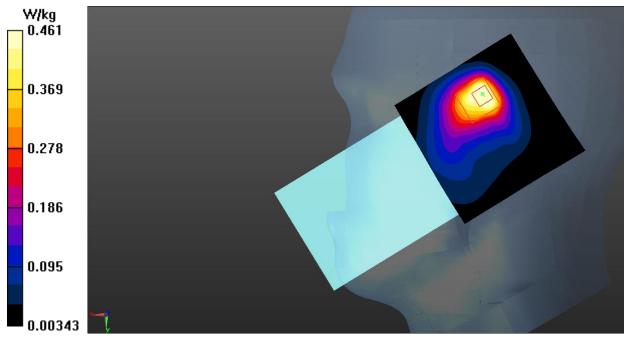
Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.932 S/m; ϵ_r = 40.848; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 2Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);

Rear Side Middle/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.476 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.21 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.558 W/kg SAR(1 g) = 0.425 W/kg; SAR(10 g) = 0.317 W/kg Maximum value of SAB (measured) = 0.467 W/kg

GSM1900 Head

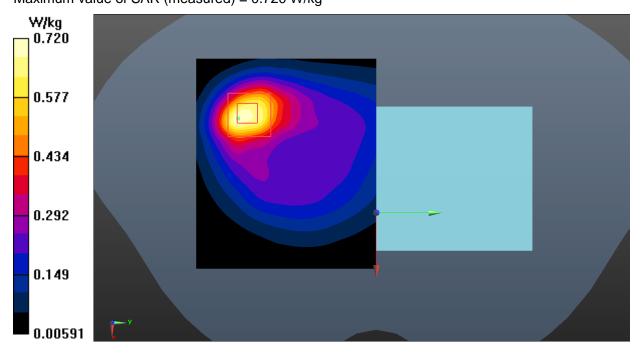

Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1880 MHz; σ = 1.37 S/m; ϵ_r = 40.312; ρ = 1000 kg/m³ Communication System: UID 0, GSM (0) Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: EX3DV4 – SN7621 ConvF (8.77, 8.77, 8.77);

Right Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.571 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.23 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.708 W/kg SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.210 W/kg

Maximum value of SAR (measured) = 0.461 W/kg

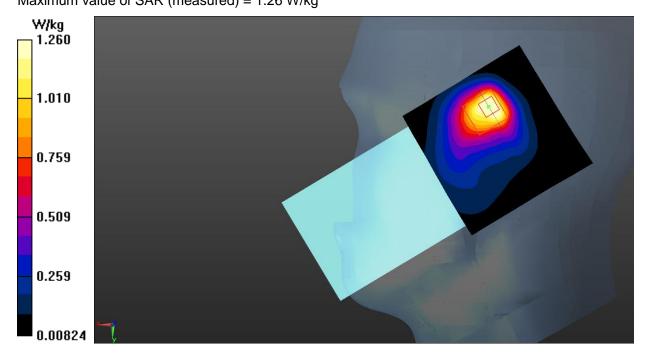


GSM1900 Body

Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1910 MHz; σ = 1.397 S/m; ϵ_r = 40.195; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 3Txslot (0) Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: EX3DV4 – SN7621 ConvF (8.77, 8.77, 8.77);

Rear Side High/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.717 W/kg

Rear Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.116 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.587 W/kg; SAR(10 g) = 0.301 W/kg Maximum value of SAR (measured) = 0.720 W/kg

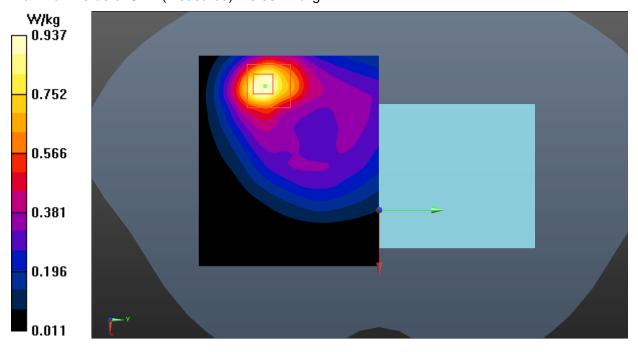

WCDMA Band 2 Head

Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.346 S/m; ϵ_r = 40.42; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7621 ConvF (8.77, 8.77, 8.77);

Right Cheek Low/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.397 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 0.923 W/kg; SAR(10 g) = 0.505 W/kg Maximum value of SAR (measured) = 1.26 W/kg

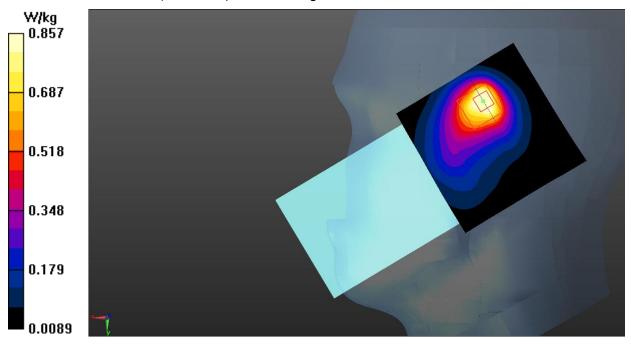


WCDMA Band 2 Body

Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1908 MHz; σ = 1.395 S/m; ϵ_r = 40.203; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1907.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.77, 8.77, 8.77);

Rear Side High/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Rear Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.95 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.43 W/kg SAR(1 g) = 0.735 W/kg; SAR(10 g) = 0.381 W/kg Maximum value of SAR (measured) = 0.937 W/kg

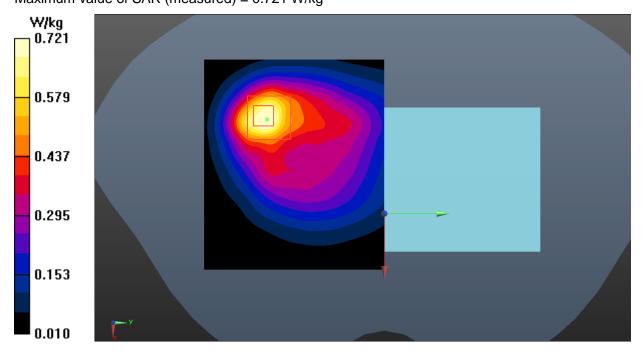

WCDMA Band 4 Head

Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1733 MHz; σ = 1.348 S/m; ϵ_r = 40.451; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1732.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (9.14, 9.14, 9.14);

Right Cheek Middle 1RB99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Right Cheek Middle 1RB99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.84 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.710 W/kg; SAR(10 g) = 0.396 W/kg Maximum value of SAR (measured) = 0.857 W/kg



WCDMA Band 4 Body

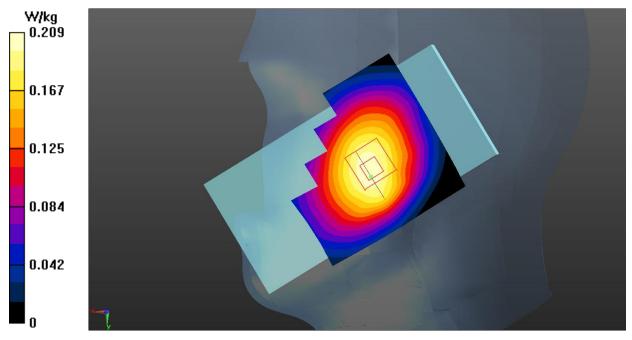
Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1733 MHz; σ = 1.348 S/m; ϵ_r = 40.451; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1732.6 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (9.14, 9.14, 9.14);

Rear Side Middle/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.749 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.458 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.596 W/kg; SAR(10 g) = 0.316 W/kg Maximum value of SAR (measured) = 0.721 W/kg

WCDMA Band 5 Head

Date: 2021-8-22 Electronics: DAE4 Sn1527 Medium: Head 835MHz

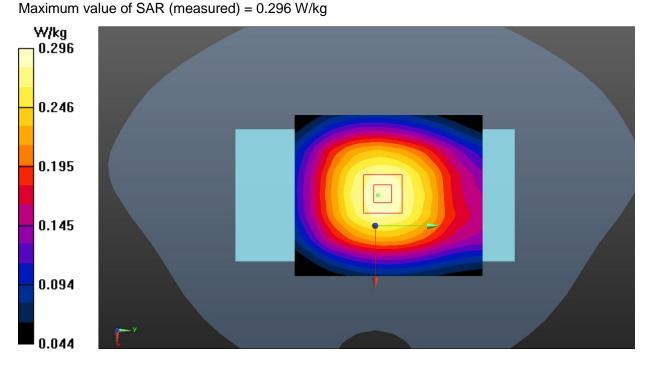

Medium parameters used (interpolated): f = 836.4 MHz; σ = 0.932 S/m; ϵ_r = 40.85; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);

Right Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.186 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.528 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.264 W/kg SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.127 W/kg

Maximum value of SAR (measured) = 0.209 W/kg

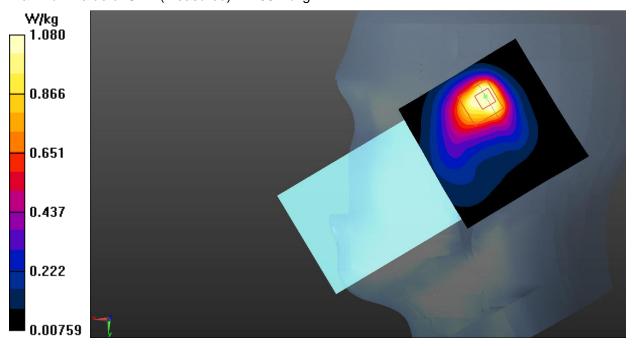

WCDMA Band 5 Body

Date: 2021-8-22 Electronics: DAE4 Sn1527 Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.4 MHz; σ = 0.932 S/m; ϵ_r = 40.85; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);

Rear Side Middle/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.298 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.346 W/kg SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.201 W/kg Maximum value of SAR (measured) = 0.206 W/kg


LTE Band 2 Head

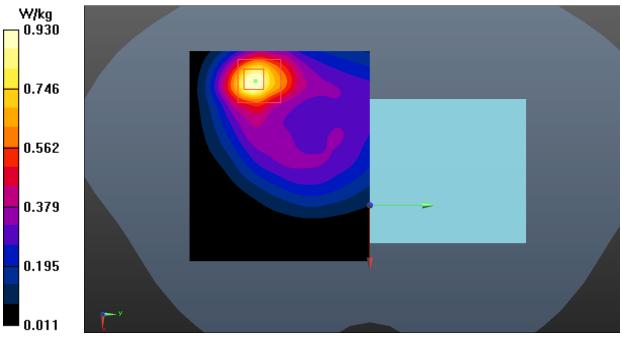
Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.388 S/m; ϵ_r = 40.234; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.77, 8.77, 8.77);

Right Cheek High 1RB0/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.40 W/kg

Right Cheek High 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.08 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.66 W/kg SAR(1 g) = 0.898 W/kg; SAR(10 g) = 0.500 W/kg Maximum value of SAR (measured) = 1.08 W/kg

LTE Band 2 Body


Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.388 S/m; ϵ_r = 40.234; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.77, 8.77, 8.77);

Rear Side High 1RB50/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.981 W/kg

Rear Side High 1RB50/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

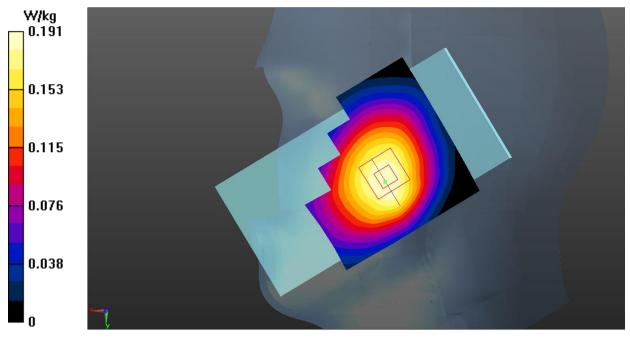
Reference Value = 11.20 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.42 W/kg SAR(1 g) = 0.735 W/kg; SAR(10 g) = 0.381 W/kg

Maximum value of SAR (measured) = 0.930 W/kg

LTE Band 5 Head

Date: 2021-8-22 Electronics: DAE4 Sn1527

Medium: Head 835MHz


Medium parameters used (interpolated): f = 829 MHz; σ = 0.926 S/m; ϵ_r = 40.939; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);

Right Cheek Low 1RB0/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.187 W/kg

Right Cheek Low 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

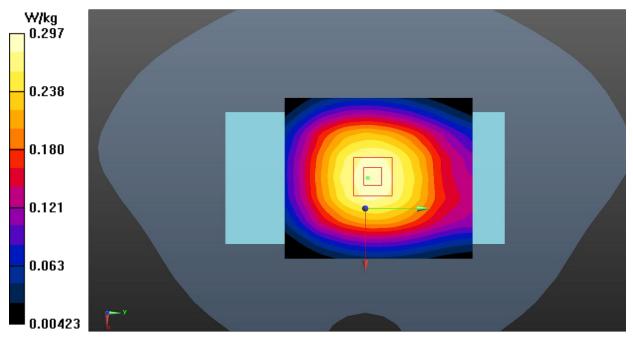
Reference Value = 2.169 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.246 W/kg SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.116 W/kg

Maximum value of SAR (measured) = 0.191 W/kg

LTE Band 5 Body

Date: 2021-8-22 Electronics: DAE4 Sn1527

Medium: Head 835MHz

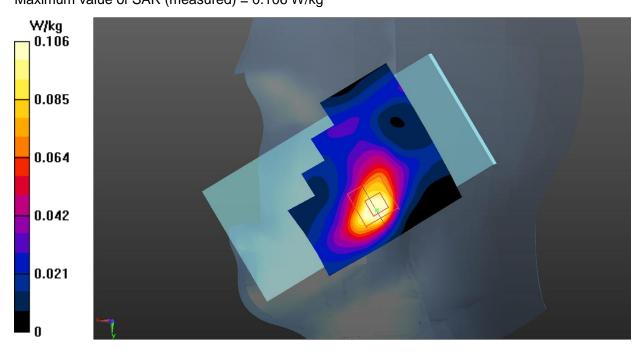

Medium parameters used (interpolated): f = 829 MHz; σ = 0.926 S/m; ϵ_r = 40.939; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);

Rear Side Low 1RB0/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.284 W/kg

Rear Side Low 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.91 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.399 W/kg SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.186 W/kg

Maximum value of SAR (measured) = 0.297 W/kg


LTE Band 7 Head

Date: 2021-8-15 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2510 MHz; σ = 1.891 S/m; ϵ_r = 38.258; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2510 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.01, 8.01, 8.01);

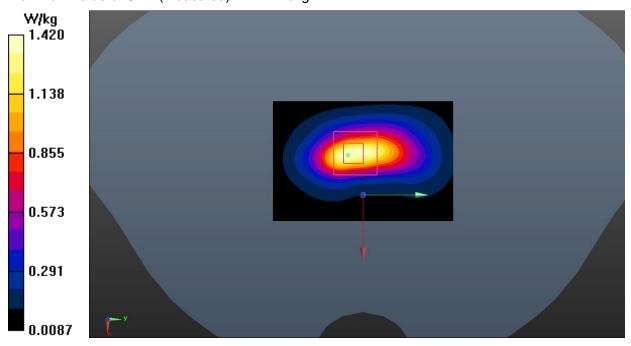
Right Cheek Low 1RB99/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.099 W/kg

Right Cheek Low 1RB99/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.859 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.155 W/kg SAR(1 g) = 0.079 W/kg; SAR(10 g) = 0.038 W/kg Maximum value of SAR (measured) = 0.106 W/kg

LTE Band 7 Body

Date: 2021-8-15 Electronics: DAE4 Sn1527

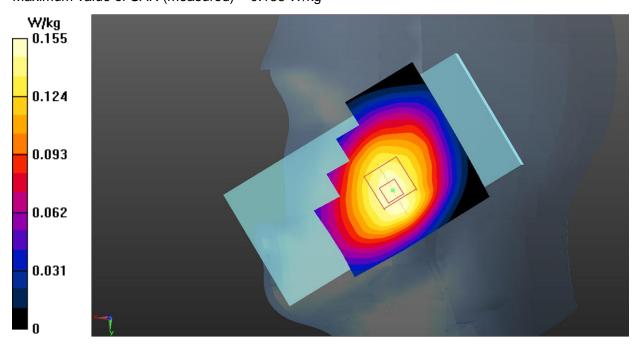

Medium: Head 2550MHz

Medium parameters used (interpolated): f = 2535 MHz; σ = 1.92 S/m; ϵ_r = 38.176; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.01, 8.01, 8.01);

Bottom Side Middle 1RB99/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.43 W/kg

Bottom Side Middle 1RB99/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.67 V/m; Power Drift = 0.21 dB Peak SAR (extrapolated) = 2.21 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.524 W/kg Maximum value of SAR (measured) = 1.42 W/kg


LTE Band 12 Head

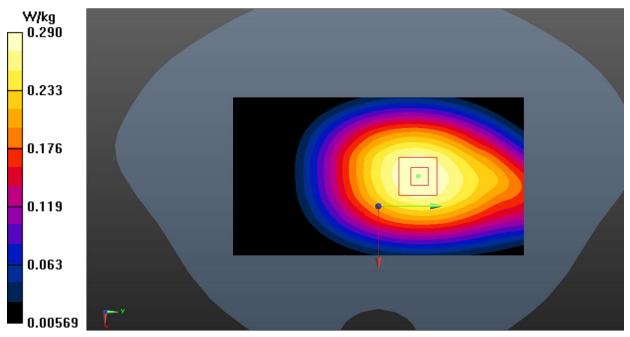
Date: 2021-8-20 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 704 MHz; σ = 0.896 S/m; ϵ_r = 41.883; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.88, 10.88, 10.88);

Right Cheek Low 1RB0/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.137 W/kg

Right Cheek Low 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.845 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.186 W/kg SAR(1 g) = 0.138 W/kg; SAR(10 g) = 0.097 W/kg Maximum value of SAR (measured) = 0.155 W/kg

LTE Band 12 Body


Date: 2021-8-20 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 704 MHz; σ = 0.896 S/m; ϵ_r = 41.883; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 704 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.88, 10.88, 10.88);

Rear Side Low 1RB0/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.308 W/kg

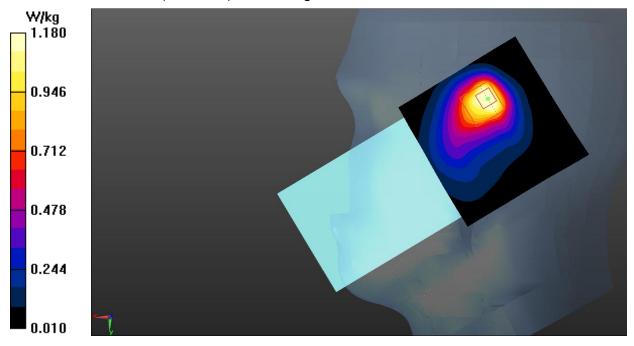
Rear Side Low 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.88 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.345 W/kg SAR(1 g) = 0.258 W/kg; SAR(10 g) = 0.185 W/kg

Maximum value of SAR (measured) = 0.290 W/kg

LTE Band 66 Head

Date: 2021-8-18 Electronics: DAE4 Sn1527


Medium: Head 1750MHz

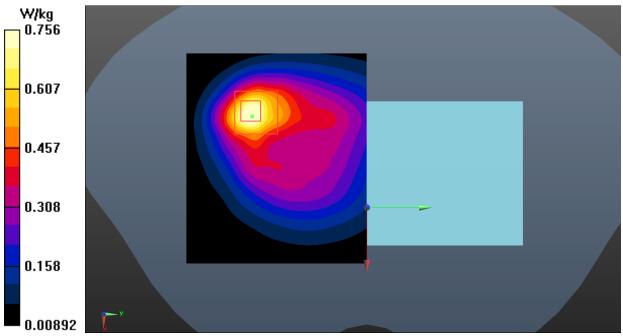
Medium parameters used (interpolated): f = 1745 MHz; σ = 1.359 S/m; ϵ_r = 40.405; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (9.14, 9.14, 9.14);

Right Cheek Middle 1RB99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.41 W/kg

Right Cheek Middle 1RB99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.19 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 0.985 W/kg; SAR(10 g) = 0.550 W/kg Maximum value of SAR (measured) = 1.18 W/kg

LTE Band 66 Body

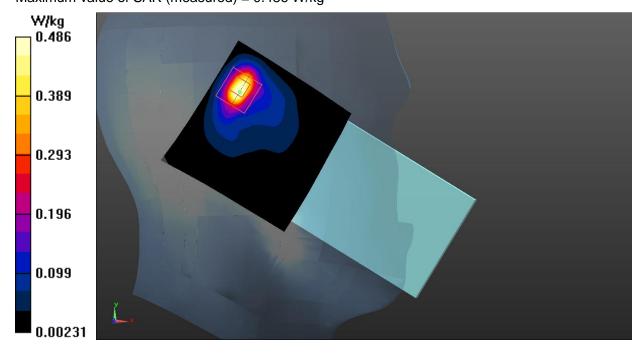

Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1770 MHz; σ = 1.382 S/m; ϵ_r = 40.306; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (9.14, 9.14, 9.14);

Rear Side High 1RB0/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.820 W/kg

Rear Side High 1RB0/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.57 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.324 W/kg

Maximum value of SAR (measured) = 0.756 W/kg

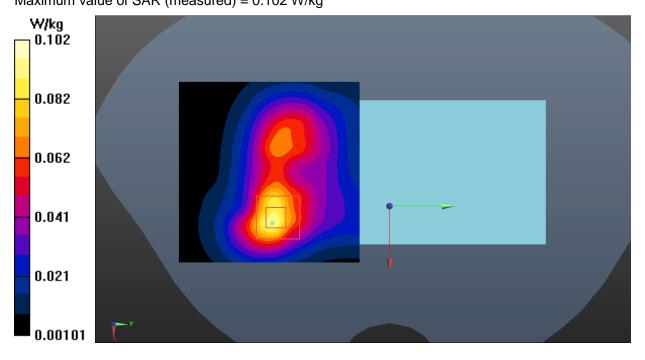

WLAN 2.4G Head

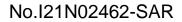
Date: 2021-8-13 Electronics: DAE4 Sn1527 Medium: Head 2450MHz

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.841 S/m; ϵ_r = 38.325; ρ = 1000 kg/m³ Communication System: UID 0, WiFi (0) Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.01, 8.01, 8.01);

Left Cheek Middle/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.525 W/kg

Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.336 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.849 W/kg SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.138 W/kg Maximum value of SAR (measured) = 0.486 W/kg

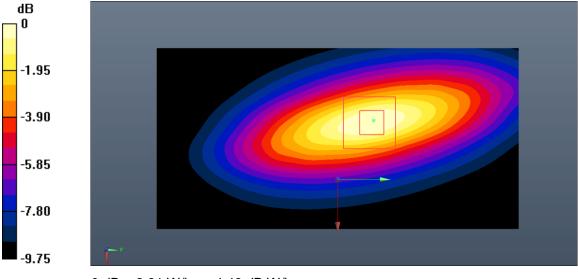

WLAN 2.4G Body


Date: 2021-8-13 Electronics: DAE4 Sn1527 Medium: Head 2450MHz

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.841 S/m; ϵ_r = 38.325; ρ = 1000 kg/m³ Communication System: UID 0, WiFi (0) Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (8.01, 8.01, 8.01);

Rear Side Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0956 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.879 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.169 W/kg SAR(1 g) = 0.079 W/kg; SAR(10 g) = 0.038 W/kg Maximum value of SAR (measured) = 0.102 W/kg


K.4. System Verification Results for Spot Check

750MHz

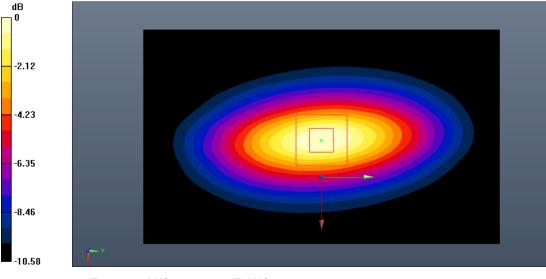
Date: 2021-8-20 Electronics: DAE4 Sn1527 Medium: Head 750MHz Medium parameters used: f = 750 MHz; σ = 0.925 S/m; ϵ_r = 41.331; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.88, 10.88, 10.88);

System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 60.528 V/m; Power Drift = 0.12 dB SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (interpolated) = 2.77 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.528 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.81 W/kg

0 dB = 2.81 W/kg = 4.49 dB W/kg

835MHz Date: 2021-8-22 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ = 0.931 S/m; ϵ r = 40.867; ρ = 1000 kg/m³ Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (10.35, 10.35, 10.35);


System Validation /Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 65.029 V/m; Power Drift = 0.13 dB SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (interpolated) = 3.42 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 65.029 V/m; Power Drift = 0.13 dB

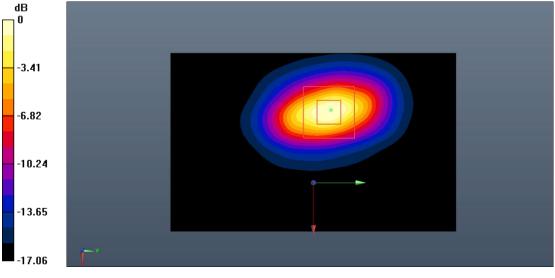
Peak SAR (extrapolated) = 4.15 W/kg

SAR(1 g) = 2.50 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 3.47 W/kg

0 dB = 3.47 W/kg = 5.40 dB W/kg

1750MHz Date: 2021-8-18 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz; σ = 1.363 S/m; ϵ_r = 40.385; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7621 ConvF (9.14, 9.14, 9.14);


System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 77.654 V/m; Power Drift = -0.05 dB SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.84 W/kg Maximum value of SAR (interpolated) = 10.9 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.654 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 20.9 W/kg

Peak SAR (exitapolated) = 20.9 W/kg

SAR(1 g) = 8.73 W/kg; SAR(10 g) = 4.71 W/kg

Maximum value of SAR (measured) = 10.7 W/kg

0 dB = 10.7 W/kg = 10.29 dB W/kg