DASY5 Validation Report for Body TSL
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 750 MHz ; Type: D750V3; Serial: D750V3-SN: 1163
Communication System: UID 0, CW; Frequency: 750 MHz ; Duty Cycle: $1: 1$
Medium parameters used: $\mathrm{f}=750 \mathrm{MHz} ; \sigma=0.942 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=55.87 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Center Section
DASY5 Configuration:

- Probe: EX3DV4-SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz ; Calibrated: 1/31/2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=52.88 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=3.20 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 1 6} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.45 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=2.85 \mathrm{~W} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

835 MHz Dipole Calibration Certificate

[^0]Page 1 of 8

In Collaboration with
S \quad e a g
CALIBRATION LABORATORY

$$
\begin{array}{ll}
\text { Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, Chins } \\
\text { Tel: }+86-10-62304633-2079 & \text { Fax: }+86-10-62304633-2504 \\
\text { E-mail: cttl } a \text { chinattl.com } & \text { http://www.chinattl.cn }
\end{array}
$$

Glossary
TSL
tissue simulating liquid
ConvF
sensitivity in TSL / NORMx,y,z
N/A
not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300 MHz to 6GHz)", July 2016
c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10 .1 .1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.90 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$42.2 \pm 6 \%$	$0.91 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(\mathbf{1} \mathbf{g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.42 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$9.62 \mathrm{~mW} / \mathrm{g} \pm 18.8 \%(\mathbf{k}=\mathbf{2})$
SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$1.58 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$6.29 \mathrm{~mW} / \mathrm{g} \pm 18.7 \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	55.2	$0.97 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$55.9 \pm 6 \%$	$0.99 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	----	----

SAR result with Body TSL

$|$| SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$ | Condition | |
| :--- | :---: | :---: |
| SAR measured | 250 mW input power | $2.51 \mathrm{~mW} / \mathrm{g}$ |
| SAR for nominal Body TSL parameters | normalized to 1 W | $9.90 \mathrm{~mW} / \mathrm{g} \pm \mathbf{1 8 . 8} \%(\mathbf{k}=\mathbf{2})$ |
| SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL | Condition | |
| SAR measured | 250 mW input power | $1.66 \mathrm{~mW} / \mathrm{g}$ |
| SAR for nominal Body TSL parameters | normalized to 1 W | $6.56 \mathrm{~mW} / \mathrm{g} \pm 18.7 \%(\mathbf{k}=\mathbf{2})$ |

Certificate No: Z18-60385

Page 3 of 8

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.6 \Omega-4.08 \mathrm{j} \Omega$
Return Loss	-27.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.8 \Omega-4.96 \mathrm{j} \Omega$
Return Loss	-24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.260 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, Chin
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL
Date: 10.08 .2018
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057
Communication System: UID 0, CW; Frequency: 835 MHz ; Duty Cycle: $1: 1$
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.912 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=42.22 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Center Section
DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz ; Calibrated: 8/27/2018
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=55.57 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=3.61 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{2 . 4 2} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{1 . 5 8} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=3.22 \mathrm{~W} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No. 51 Xueyuan Road, Haidian District, Beijing. 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttla chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 835 MHz ; Type: D835V2; Serial: D835V2 - SN: 4d057
Communication System: UID 0, CW; Frequency: 835 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=835 \mathrm{MHz} ; \sigma=0.992 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=55.93 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Right Section
DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz ; Calibrated: 8/27/2018
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=56.64 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=3.83 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=2.51 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=1.66 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=3.36 \mathrm{~W} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing. 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttla chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

1750 MHz Dipole Calibration Certificate

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300 MHz to 6GHz)", July 2016
c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1750 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.1	$1.37 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$39.9 \pm 6 \%$	$1.36 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	---	---

SAR result with Head TSL

SAR averaged over $\mathbf{1 ~ \mathrm { cm } ^ { 3 } (1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$9.05 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{3 6 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 8 . 8} \%(\mathbf{k}=\mathbf{2})$
SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$4.80 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$19.3 \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 8 . 7} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.4	$1.49 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$53.1 \pm 6 \%$	$1.52 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL

SAR averaged over $\mathbf{1 ~ c m}$		
$\mathbf{3}(\mathbf{1} \mathbf{g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$9.45 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{3 7 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 8 . 8} \%(\mathbf{k}=\mathbf{2})$
SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$5.05 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 0 . 0} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 8 . 7} \%(\mathbf{k}=\mathbf{2})$

Certificate No: Z19-60292
Page 3 of 8

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Ad. No.510-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com \quad http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.1 \Omega-0.84 \mathrm{j} \Omega$
Return Loss	-38.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$45.2 \Omega-1.37 \mathrm{j} \Omega$
Return Loss	-25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.084 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel. +86 -10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttla chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 1750 MHz ; Type: D1750V2; Serial: D1750V2 - SN: 1152
Communication System: UID 0, CW; Frequency: 1750 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.358 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.91 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Right Section
DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(8.38, 8.38, 8.38)@ 1750 MHz ; Calibrated: 1/31/2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7)(7x7x7)/Cube 0: Measurement grid:
$\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=97.38 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=16.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.05 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=4.8 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=13.9 \mathrm{~W} / \mathrm{kg}$

TTI s p e a g
 CALIBRATION LABORATORY

Add: No. 51 Xueyuan Road. Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com
http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No. 51 Xueyuan Road. Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China
DUT: Dipole 1750 MHz ; Type: D1750V2; Serial: D1750V2-SN: 1152
Communication System: UID 0, CW; Frequency: 1750 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=1750 \mathrm{MHz} ; \sigma=1.516 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=53.05 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Center Section
DASY5 Configuration:

- Probe: EX3DV4-SN3617; ConvF(8.03, 8.03, 8.03)@ 1750 MHz ; Calibrated: 1/31/2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=87.16 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.45 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.05 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=14.4 \mathrm{~W} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing. 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-250
E-mail: cttl a chinattl.com http://www.chinattl.cn
Impedance Measurement Plot for Body TSL

1900 MHz Dipole Calibration Certificate

CALIBRATION CERTIFICATE			
Object	D1900V2-SN: 5d088		
Calibration Procedure(s)	FF-Z11-003-01		
Calibration date:	October 24, 2018		
This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$. Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
	SN 1555	20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Aug-19
Secondary Standards	ID \#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C NetworkAnalyzer E5071C	MY49071430 MY46110673	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
		24-Jan-18 (CTTL, No.J18X00561)	Jan-19
Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	+ 4
Approved by:	Qi Dianyuan	SAR Project Leader	eros
Issued: October 28, 2018			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

> Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
> Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
> E-mail: cttl a chinattl.com http://www.chinattl.cn

lossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300 MHz to 6GHz)", July 2016
c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime}$, March 2010
d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point No uncertainty required
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
CALIBRATION LABORATORY
Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.10 .2 .1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$41.1 \pm 6 \%$	$1.37 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	250 mW input power	$9.92 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{4 0 . 5 \mathrm { mW } / \mathrm { g } \pm 1 8 . 8 \% (\mathbf { k } = \mathbf { 2 })}$
SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$5.17 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 1 . 0} \mathrm{~mW} / \mathrm{g} \pm \mathbf{1 8 . 7} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.3	$1.52 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$52.6 \pm 6 \%$	$1.55 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<1.0{ }^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL

SAR averaged over $1 \mathrm{~cm}^{3}(\mathbf{1})$ of Body TSL	Condition	
SAR measured	250 mW input power	$10.3 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{4 0 . 6 \mathrm { mW } / \mathrm { g } \pm 1 8 . 8 \% (\mathbf { k } = \mathbf { 2 })}$
SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$5.41 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 1 . 4 \mathrm { mW } / \mathrm { g } \pm 1 8 . 7 \% (\mathbf { k } = \mathbf { 2 })}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttlachinattl.com http://www.chinattl.cn
Appendix (Additional assessments outside the scope of CNAS LO570)
Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.7 \Omega+6.63 \mathrm{j} \Omega$
Return Loss	-23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.5 \Omega+7.40 \mathrm{j} \Omega$
Return Loss	-22.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.058 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

$1 \Gamma \frac{s p l}{\text { CALIBRATION LABORATORY }}$

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl a chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China
DUT: Dipole 1900 MHz ; Type: D1900V2; Serial: D1900V2 - SN: 5 d 088
Communication System: UID 0, CW; Frequency: 1900 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.367 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Center Section
DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(7.73, 7.73, 7.73)@ 1900 MHz ; Calibrated 8/27/2018
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP V5.1C ; Type: QD 000 P51CA: Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=102.2 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.92 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{5 . 1 7} \mathrm{W} / \mathrm{kg}$
Maximum value of SAR (measured) $=15.7 \mathrm{~W} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: -86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl a chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 1900 MHz ; Type: D1900V2; Serial: D1900V2-SN: 5 d 088
Communication System: UID 0, CW; Frequency: 1900 MHz ; Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.551 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.63 ; \rho=1000 \mathrm{~kg} / \mathrm{m} 3$
Phantom section: Right Section
DASY5 Configuration:

- Probe: EX3DV4 - SN7514; ConvF(7.53, 7.53, 7.53)@ 1900 MHz ; Calibrated: 8/27/2018
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6 .12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=97.60 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=19.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=10.3 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.41 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=15.9 \mathrm{~W} / \mathrm{kg}$

[^0]: Certificate No: Z18-60385

