

FCC PART 15C TEST REPORT

No.I21Z60861-IOT03

for

TCL Communication Ltd.

Tablet PC

9198S

With

FCC ID: 2ACCJB155

Hardware Version: 03

Software Version: 2C61

Issued Date: 2021-07-16

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue
			Date
I21Z60861-IOT03	Rev.0	1st edition	2021-07-
			16
I21Z60861-IOT03	Rev.1	1.Change Page.5.Testing	2021-09-
		Location 1.	10
		2.Add KDB-662911 D01 at Page.9	
		3.Add calibration information of	
		VSA,at Page.11	
		4.Add Pic. (ANT10 11n40 MCS0	
		CH6) power of max power.at	
		Page.16	
I21Z60861-IOT03	Rev.2	Add some DG informations.at	2021-09-
		P.17	16

CONTENTS

1. TI	EST LABORATORY	5
1.1.	Introduction & Accreditation	5
1.2.	TESTING LOCATION	5
1.3.	TESTING ENVIRONMENT	6
1.4.	Project date	6
1.5.	Signature	6
2. CI	LIENT INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	Manufacturer Information	7
3. E0	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.		
3.3.	INTERNAL IDENTIFICATION OF AE	8
3.4.	GENERAL DESCRIPTION	9
3.5.	INTERPRETATION OF THE TEST ENVIRONMENT	9
4. RI	EFERENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5. TI	EST RESULTS	9
5.1.	SUMMARY OF TEST RESULTS	10
5.2.		
5.3.		
6. TI	EST FACILITIES UTILIZED	11
7. M	IEASUREMENT UNCERTAINTY	12
7.1.	MAXIMUM OUTPUT POWER	12
7.2.	PEAK POWER SPECTRAL DENSITY	12
7.3.	DTS 6-DB SIGNAL BANDWIDTH	12
7.4.	BAND EDGES COMPLIANCE	12
7.5.	Transmitter Spurious Emission	12
7.6.	AC POWER-LINE CONDUCTED EMISSION	12
ANNE	EX A: DETAILED TEST RESULTS	13
A.1. M	IEASUREMENT METHOD	13
A.2. M	IAXIMUM OUTPUT POWER	14
A.2.	1. PEAK OUTPUT POWER-CONDUCTED	14

A.3. PEAK POWER SPECTRAL DENSITY	19
A.4. DTS 6-DB SIGNAL BANDWIDTH	39
A.5. BAND EDGES COMPLIANCE	46
A.6. TRANSMITTER SPURIOUS EMISSION	51
A.6.1 Transmitter Spurious Emission – Conducted	
A.6.2 Transmitter Spurious Emission - Radiated	104
A.7. AC POWER-LINE CONDUCTED EMISSION	118
ANNEX B: EUT PARAMETERS	123
ANNEX C: ACCREDITATION CERTIFICATE	124

1. Test Laboratory

1.1.Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (ISED#: 24849). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1:CTTL(Huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

1.3. Testing Environment

Normal Temperature:

15-35°C

Relative Humidity:

20-75%

1.4. Project date

Testing Start Date: 2021-05-17

Testing End Date:

2021-07-16

1.5. Signature

谢为药

Xie Xiuzhen

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Hu Xiaoyu

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Address:

Park, Shatin, NT, Hong Kong

City: Hong Kong

Postal Code: /

Country: China

Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd

5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Address: Park, Shatin, NT, Hong Kong

City: Hong Kong

Postal Code: /

Country: China

Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Tablet PC Model name 9198S

FCC ID 2ACCJB155

With WLAN Function

Frequency Band ISM 2400MHz~2483.5MHz

Yes

Type of Modulation DSSS/CCK/OFDM

Number of Channels 11

Antenna Integral Antenna

MAX Conducted Power 29.06dBm Power Supply 3.85V

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT45	358861400001957	03	2C61
EUT2	358861400001775	03	2C61

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN	Remarks
AE1	Charger	1	1
AE2	Cable	1	1
AE1			
Model		QC13US	
Manufacturer		BYD	
Length of cable		1	
AE2			
Туре		1	
Manufacturer		1	
Length o	of cable	0.8 meter	

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Tablet PC with integrated antenna and inbuilt battery. It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty	
temperature	0.48°C	
humidity	2 %	
DC voltages	0.003V	

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version	
	FCC CFR 47, Part 15, Subpart C:		
	15.205 Restricted bands of operation;		
FCC Part15	15.209 Radiated emission limits, general requirements;	2018	
	15.247 Operation within the bands 902-928MHz, 2400-		
	2483.5 MHz, and 5725-5850 MHz.		
ANSI C63.10	American National Standard of Procedures for Compliance	2013	
ANSI C03.10	Testing of Unlicensed Wireless Devices	2013	
	Federal Communications Commission Office of		
	Engineering and Technology Laboratory Division		
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON		
KDB 558074 D01	DIGITAL TRANSMISSION SYSTEM, FREQUENCY	2019	
	HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID		
	SYSTEM DEVICES OPERATING UNDER SECTION		
	15.247 OF THE FCC RULES		
KDB-662911 D01	Emissions Testing of Transmitters with Multiple Outputs in	outs in 2013	
	the Same Band (e.g. MIMO Smart Antenna etc)		

5. Test Results

5.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247 (b)	1	Р
Peak Power Spectral Density	15.247 (e)	1	Р
Occupied 6dB Bandwidth	15.247 (a)	1	Р
Band Edges Compliance	15.247 (d)	1	Р
Transmitter Spurious Emission - Conducted	15.247 (d)	1	Р
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	1	Р
AC Powerline Conducted Emission	15.107, 15.207	1	Р

Please refer to **ANNEX A** for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.
NP	Not Perform, The test was not performed by CTTL
NA	Not Applicable, The test was not applicable
F	Fail, The EUT does not comply with the essential requirements in the
	standard

5.2. Statements

The test cases as listed in section 5.1 of this report for the EUT specified in section 3 was performed by CTTL and according to the standards or reference documents listed in section 4.2

The EUT met all requirements of the standards or reference documents, and only the WLAN function was tested in this report.

5.3. Test Conditions

T nom	Normal Temperature	
T min	Low Temperature	
T max	High Temperature	
V nom	Normal Voltage	

For this report, if the test cases listed above are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature	T nom	26℃	
Voltage	V nom	3.85V(By battery)	
Humidity	H nom	20-75%	

6. <u>Test Facilities Utilized</u>

Conducted test system

No. Equipment		Model	Serial	Serial Manufacturer	Calibration	Calibration
140.	Equipment	Wiodei	Number	Manufacturer	Period	Due date
0	Vector Signal	FSQ40	200089	Rohde &	1 year	2021-05-23
	Analyzer FSQ40 200089	200069	Schwarz	1 year	2021-05-23	
1	Vector Signal	FSQ40	200089	Rohde &	1 voor	2022-05-24
1	Analyzer	F3Q40	200069	Schwarz	1 year	2022-05-24
2	LISN	ENV216	101200	Rohde &	1 year	2021-10-15
	LION	ENVZIO	101200	Schwarz	1 year	2021-10-15
3	Test Receiver	ESCI	10034	Rohde &	1 year	2022-02-23
3	rest Receiver	ESCI	10034	Schwarz	1 year	2022-02-23
4	Shielding Room	S81	1	ETS-Lindgren	/	/

Radiated emission test system

NI.	F	Madal	Serial	Manufacture	Calibration	Calibration
No.	Equipment	Model	Number	Manufacturer	Period	Due date
1	Test Receiver	ESU26	100235	Rohde &	1 year	2022-02-23
	iest Neceivei	E3020	Schwarz		i yeai	2022-02-23
2	BiLog Antenna	VULB9163	9163-483	Schwarzbeck	1 year	2021-08-27
3	Antenna	3115	6914	ETS-Lindgren	1 year	2022-02-03
4	LISN	ESH3-E5	825562/028	Rohde &	1 year	2021-10-15
				Schwarz		
5	Test Receiver	ESCI	100344	Rohde &	1 year	2022-02-23
				Schwarz		

7. Measurement Uncertainty

7.1. Maximum Output Power

Measurement Uncertainty: 0.387dB,k=1.96

7.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dB,k=1.96

7.3. DTS 6-dB Signal Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

7.4. Band Edges Compliance

Measurement Uncertainty: 0.62dB,k=1.96

7.5. Transmitter Spurious Emission

Conducted (k=1.96)

· /	
Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dB)				
9kHz-30MHz	/				
30MHz ≤ f ≤ 1GHz	5.16				
1GHz ≤ f ≤18GHz	5.44				
18GHz ≤ f ≤40GHz	5.28				

7.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.08dB,k=2

ANNEX A: Detailed Test Results

A.1. Measurement Method

A.1.1. Conducted Measurements

Connect the EUT to the test system as Fig.A.1.1.1 shows.

Set the EUT to the required work mode.

Set the EUT to the required channel.

Set the Vector Signal Analyzer and start measurement.

Record the values. Vector Signal Analyzer

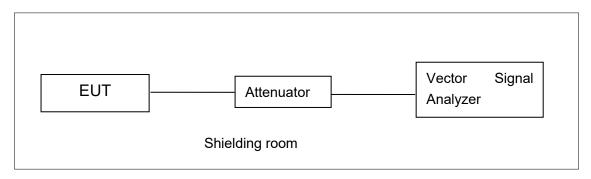


Fig.A.1.1.1: Test Setup Diagram for Conducted Measurements

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

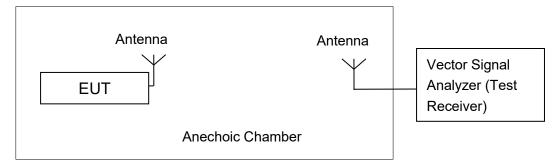


Fig.A.1.2.1: Test Setup Diagram for Radiated Measurements

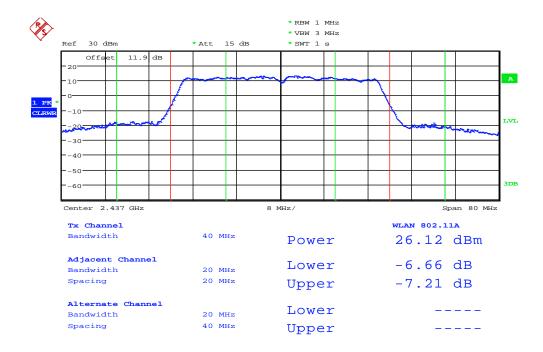
A.2. Maximum Output Power

Method of Measurement: See ANSI C63.10-2013-clause 11.9.1.2

- a) Set the RBW = 1 MHz.
- b) Set the VBW = 3 MHz.
- c) Set the span \geq [1.5 \times DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector).

Measurement Limit:

Standard	Limit (dBm)	
FCC CRF Part 15.247(b)	< 30	


EUT ID: EUT2

A.2.1. Peak Output Power-conducted

Measurement Results:

Date: 10.SEP.2021 02:05:05

PIC. ANT10 11n40 MCS0 CH6 power

ANT9

802.11b/g mode

	Data Bata	Test Result (dBm)		
Mode	Data Rate (Mbps)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
802.11b	1	22.42	22.75	22.71
802.11g	6	24.31	24.89	24.54

The data rate 1Mbps and 6Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

••=···································					
	Doto Boto	Test Result (dBm)			
Mode	Data Rate (Index)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)	
		(9111)	(3113)	(31111)	
802.11n(20MHz)	MCS0	24.34	24.96	24.54	

The data rate MCS0 is selected as worse condition, and the following cases are performed with

©Copyright. All rights reserved by CTTL.

Page 15 of 124

this condition.

802.11n-HT40 mode

	Data Rate	Test Result (dBm)		
Mode		2422MHz	2437MHz	2452 MHz
	(Index)	(Ch3)	(Ch6)	(Ch9)
802.11n(40MHz)	MCS0	25.61	25.86	26.05

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

ANT10

802.11b/g mode

	Data Bata	Test Result (dBm)			
Mode	Data Rate (Mbps)	2412MHz	2437MHz	2462 MHz	
		(Ch1)	(Ch6)	(Ch11)	
802.11b	1	22.58	22.34	22.54	
802.11g	6	24.90	25.86	24.78	

The data rate 1Mbps and 6Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate (Index)	Test Result (dBm)		
Mode		2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
802.11n(20MHz)	MCS0	24.82	25.79	24.73

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

	Doto Boto	Test Result (dBm)		
Mode	Data Rate (Index)	2422MHz	2437MHz	2452 MHz
		(Ch3)	(Ch6)	(Ch9)
802.11n(40MHz)	MCS0	25.83	26.12	25.79

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

MIMO&CDD

MINIOGODE						
Ant9	0.79dBi					
Ant10	0.29dBi					
	For CDD: Directional Gain=3.55 dBi					
	The Test Result = the Total value of (ant9+ant10)+DG					
	• Directional Gain = $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$ where Each antenna is driven by no more than one spatial stream; N_{SS} = the number of independent spatial streams of data; N_{ANT} = the total number of antennas $g_{j,k} = 10^{G_k/20}$ if the k th antenna is being fed by spatial stream j , or zero if it is not; G_k is the gain in dBi of the k th antenna.					
	The antenna gain is provided by the manufacturer。					

802.11b/g mode

	Data Bata	Test Result (dBm)		
Mode	Data Rate (Mbps)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)
802.11b	1	25.67	25.74	25.58
802.11g	6	27.99	28.13	28.11

The data rate 1Mbps and 6Mbps are selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Bata	Test Result (dBm)					
Mode	Data Rate (Index)	2412MHz (Ch1)	2437MHz (Ch6)	2462 MHz (Ch11)			
802.11n(20MHz)	MCS0	27.99	28.06	27.96			

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

Mode	Data Rate	Test Result (dBm)				
		2422MHz	2437MHz	2452 MHz		
	(Index)	(Ch3)	(Ch6)	(Ch9)		

802.11n(40MHz) MCS0 28.58 29.06 29.05

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: Pass

A.3. Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-2013-clause 11.10.2

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

SISO-ANT10

The measurements were performed separately in Chain 1, Chain 2, and MIMO (Chain 1+2), and only the worst cases are shown in this report.

802.11b/g mode

Mode	Channel		ctral Density /3 kHz)	Conclusion
	1	Fig.A.3.1	-4.71	Р
802.11b	6	Fig.A.3.2	-3.78	Р
	11	Fig.A.3.3	-4.88	Р
	1	Fig.A.3.4	-9.64	Р
802.11g	6	Fig.A.3.5	-9.42	Р
	11	Fig.A.3.6	-9.94	Р

802.11n-HT20 mode

Mode	Channel	-	ctral Density /3 kHz)	Conclusion
000 44=	1	Fig.A.3.7	-9.54	Р
802.11n	6	Fig.A.3.8	-8.60	Р
(HT20)	11	Fig.A.3.9	-10.52	Р

802.11n-HT40 mode

Mode	Channel	-	ctral Density /3 kHz)	Conclusion
802.11n (HT40)	3	Fig.A.3.10	-10.36	Р
	6	Fig.A.3.11	-11.64	Р
	9	Fig.A.3.12	-11.57	Р

Conclusion: Pass

MIMO&CDD

802.11b/g mode

Mode	Channel	Power Sp Dens (dBm/3 ANT	ity kHz)	Power Spectral Density (dBm/3 kHz) ANT10		Power Spectral Density (dBm/3 kHz)	Conclusion
	1	Fig.A.3.13	-5.34	Fig.A.3.25	-4.84	-2.07	Р
802.11b	6	Fig.A.3.14	-5.53	Fig.A.3.26	-4.50	-1.97	Р
	11	Fig.A.3.15	-4.77	Fig.A.3.27	-5.69	-2.20	Р
	1	Fig.A.3.16	-9.16	Fig.A.3.28	-8.84	-5.99	Р
802.11g	6	Fig.A.3.17	-10.70	Fig.A.3.29	-8.85	-6.67	Р
	11	Fig.A.3.18	-10.02	Fig.A.3.30	-10.19	-7.09	Р

802.11n-HT20 mode

Mode	Channel	Dens	Power Spectral Power Spectral Power Density Density Spectral (dBm/3 kHz) (dBm/3 kHz) Density (dBm/3 kHz)		Spectral Density (dBm/3	Conclusion	
000 115	1	Fig.A.3.19	-10.24	Fig.A.3.31	-9.45	-6.82	Р
802.11n	6	Fig.A.3.20	-10.25	Fig.A.3.32	-9.15	-6.65	Р
(HT20)	11	Fig.A.3.21	-9.81	Fig.A.3.33	-10.20	-6.99	Р

802.11n-HT40 mode

Mode	Channel	Power Sp Densi (dBm/3	•		sity	Power Spectral Density (dBm/3 kHz)	Conclusion
802.11n	3	Fig.A.3.22	-13.66	Fig.A.3.34	-12.57	-10.07	Р
(HT40)	6	Fig.A.3.23	-12.88	Fig.A.3.35	-10.90	-8.77	Р
(1140)	9	Fig.A.3.24	-13.16	Fig.A.3.36	-10.22	-8.44	Р

Conclusion: Pass

Test graphs as below:

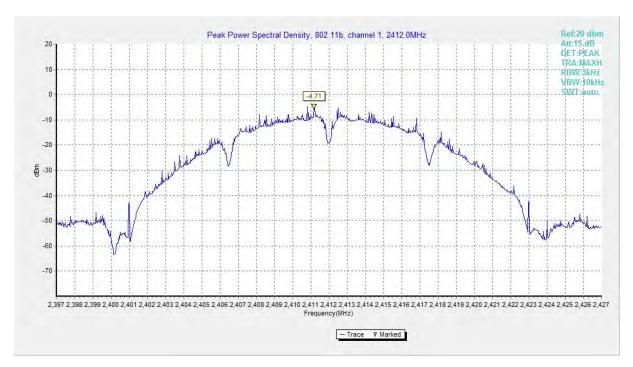


Fig.A.3.1 Power Spectral Density(802.11b,Ch1)

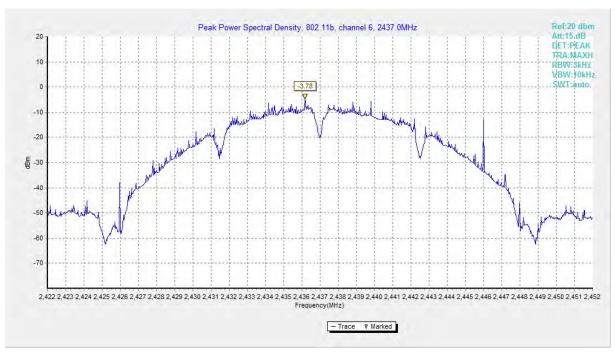


Fig.A.3.2 Power Spectral Density (802.11b, Ch 6)

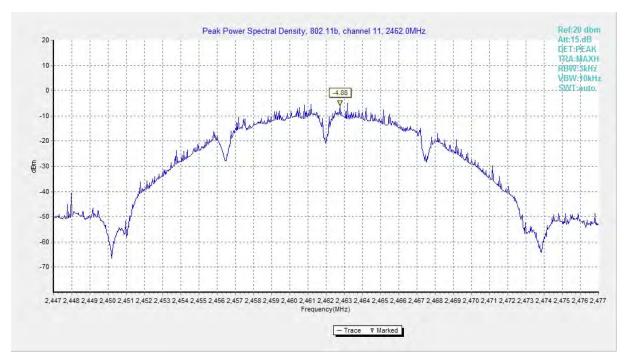


Fig.A.3.3 Power Spectral Density (802.11b, Ch 11)

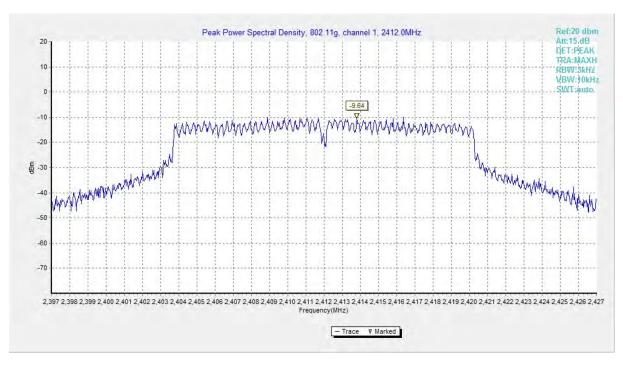


Fig.A.3.4 Power Spectral Density (802.11g, Ch 1)

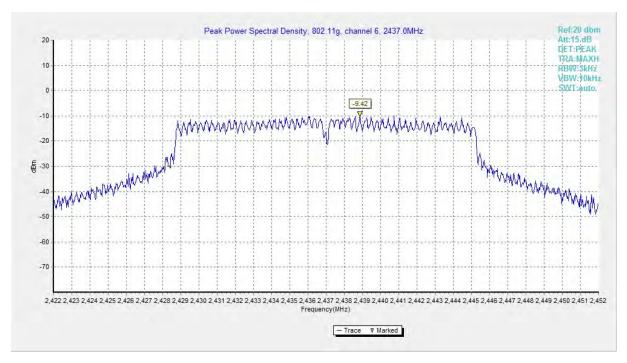


Fig.A.3.5 Power Spectral Density (802.11g, Ch 6)

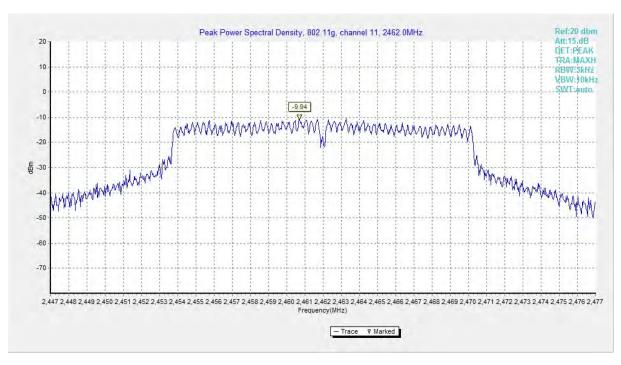


Fig.A.3.6 Power Spectral Density (802.11g, Ch 11)

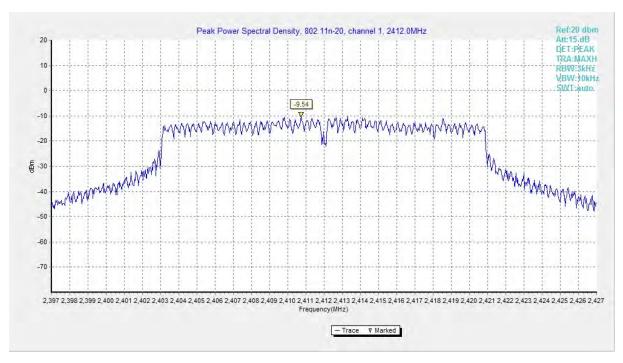


Fig.A.3.7 Power Spectral Density (802.11n-HT20, Ch 1)

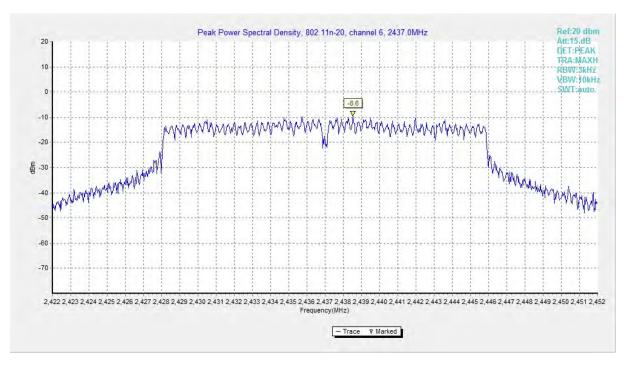


Fig.A.3.8 Power Spectral Density (802.11n-HT20, Ch 6)

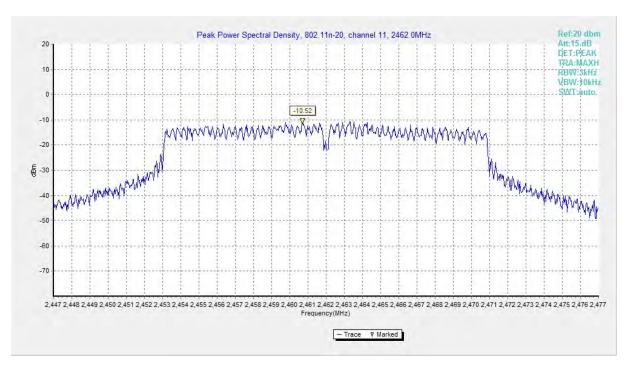


Fig.A.3.9 Power Spectral Density (802.11n-HT20, Ch 11)

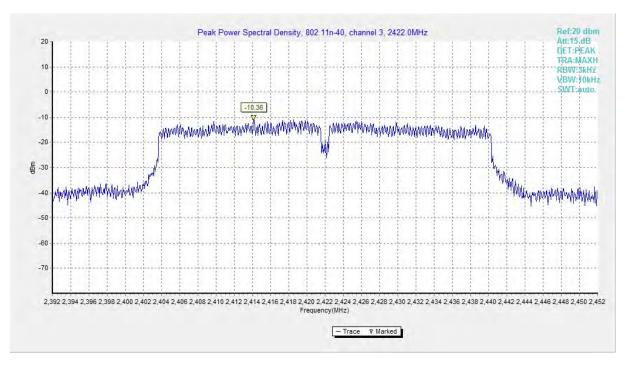


Fig.A.3.10 Power Spectral Density (802.11n-HT40, Ch 3)

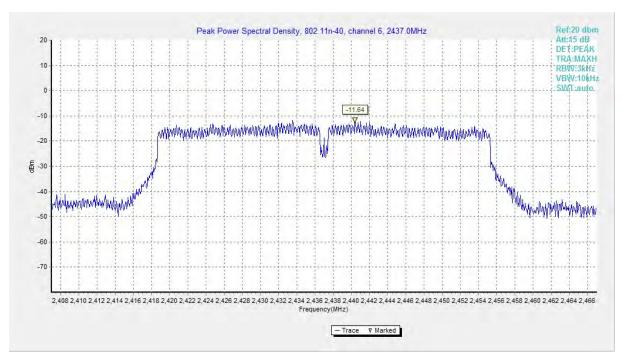


Fig.A.3.11 Power Spectral Density (802.11n-HT40, Ch 6)

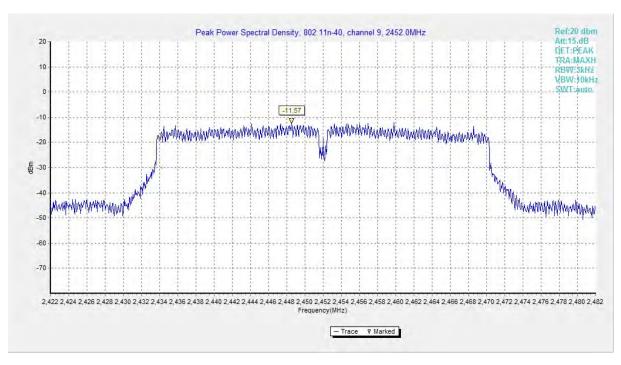


Fig.A.3.12 Power Spectral Density (802.11n-HT40, Ch 9)

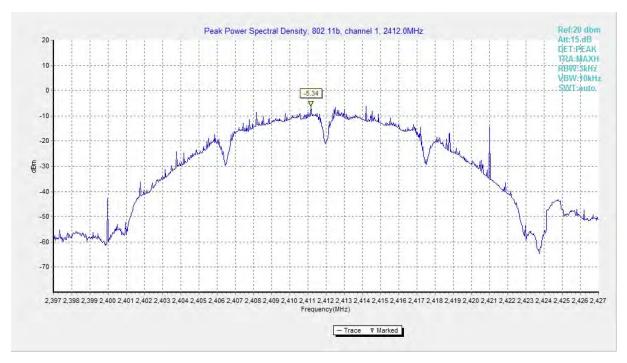


Fig.A.3.13 Power Spectral Density(802.11b,Ch1 ANT9)

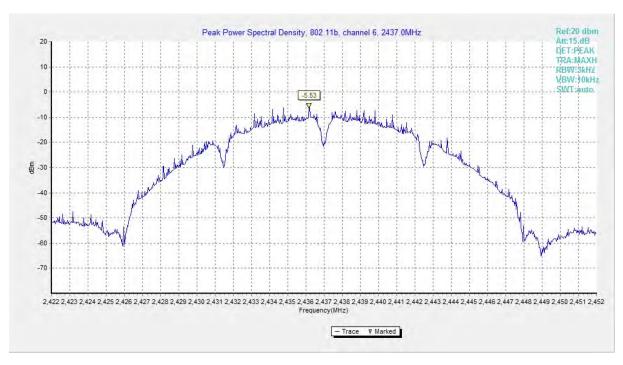


Fig.A.3.14 Power Spectral Density (802.11b, Ch 6 ANT9)

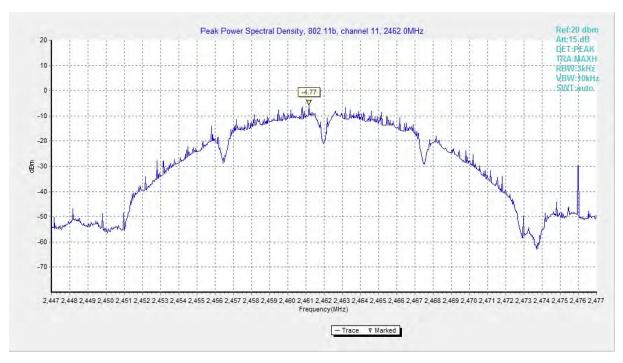


Fig.A.3.15 Power Spectral Density (802.11b, Ch 11 ANT9)

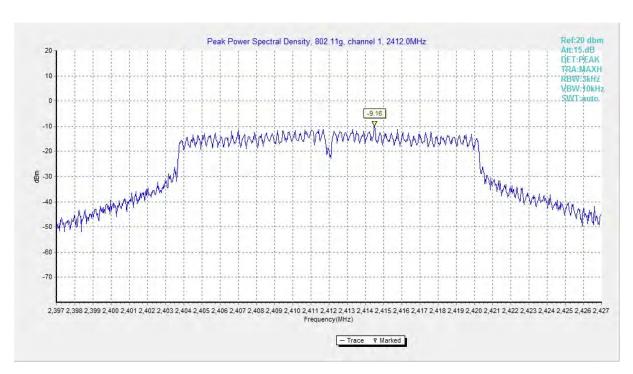


Fig.A.3.16 Power Spectral Density (802.11g, Ch 1 ANT9)

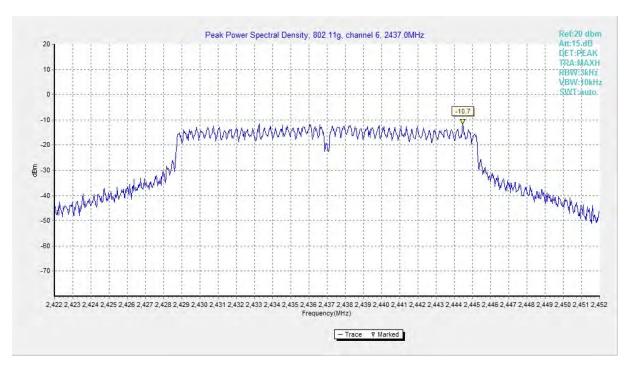


Fig.A.3.17 Power Spectral Density (802.11g, Ch 6 ANT9)

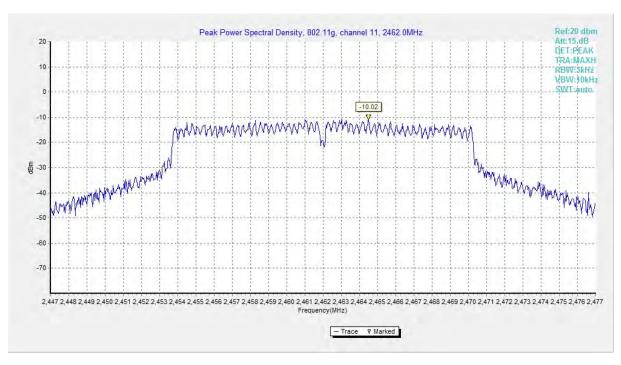


Fig.A.3.18 Power Spectral Density (802.11g, Ch 11 ANT9)

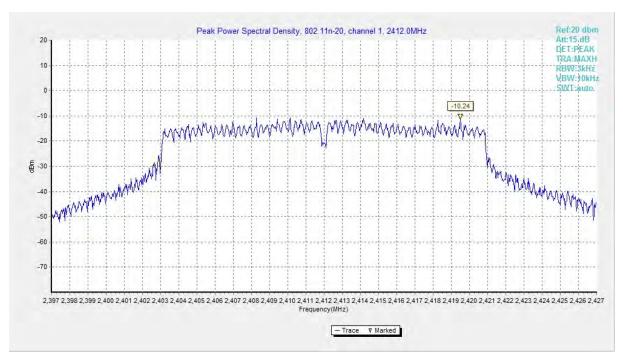


Fig.A.3.19 Power Spectral Density (802.11n-HT20, Ch 1 ANT9)

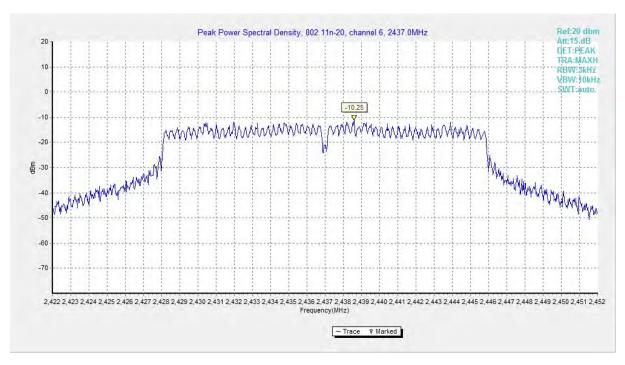


Fig.A.3.20 Power Spectral Density (802.11n-HT20, Ch 6 ANT9)

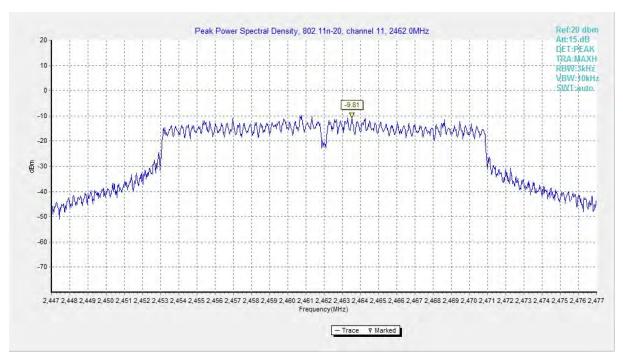


Fig.A.3.21 Power Spectral Density (802.11n-HT20, Ch 11 ANT9)

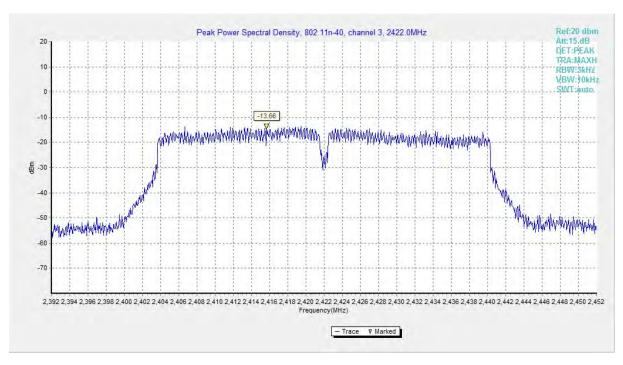


Fig.A.3.22 Power Spectral Density (802.11n-HT40, Ch 3 ANT9)

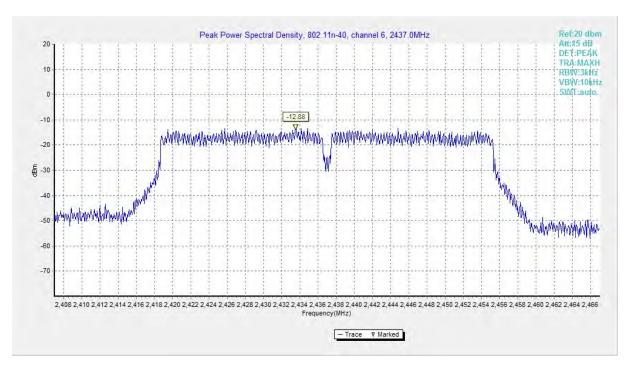


Fig.A.3.23 Power Spectral Density (802.11n-HT40, Ch 6 ANT9)

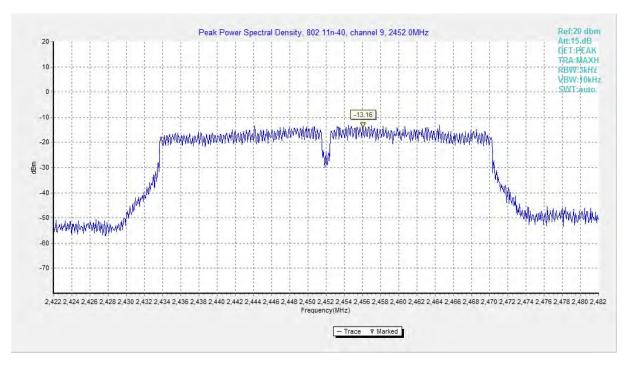


Fig.A.3.24 Power Spectral Density (802.11n-HT40, Ch 9 ANT9)

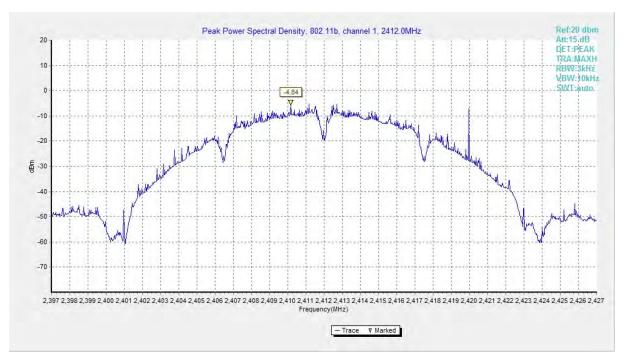


Fig.A.3.25 Power Spectral Density(802.11b,Ch1 ANT10)

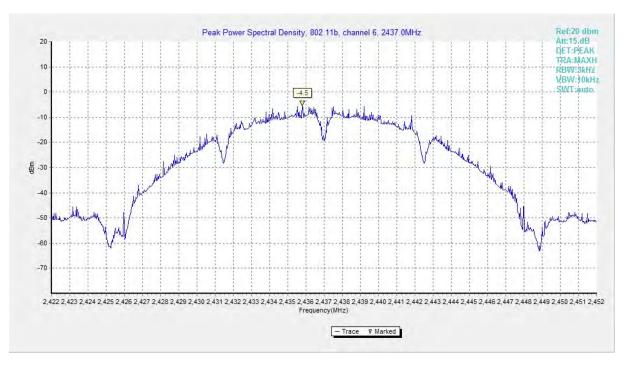


Fig.A.3.26 Power Spectral Density (802.11b, Ch 6 ANT10)

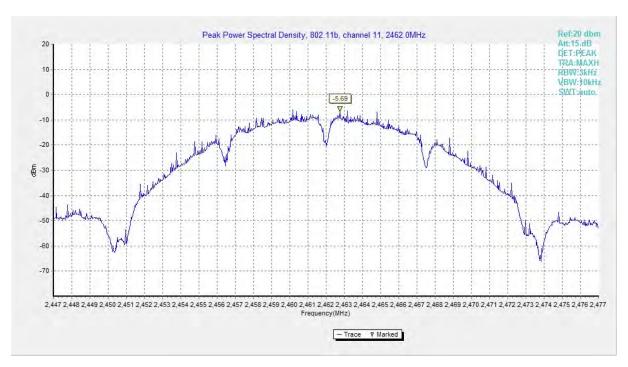


Fig.A.3.27 Power Spectral Density (802.11b, Ch 11 ANT10)

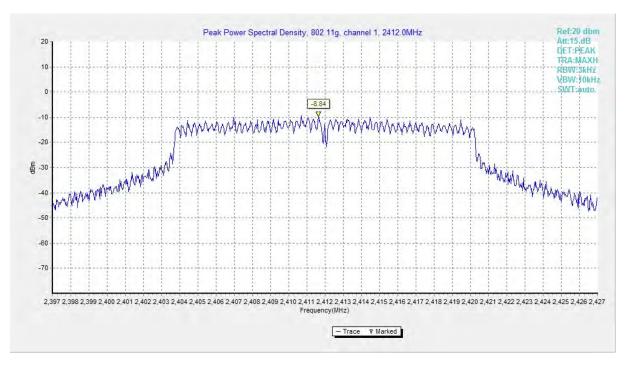


Fig.A.3.28 Power Spectral Density (802.11g, Ch 1 ANT10)

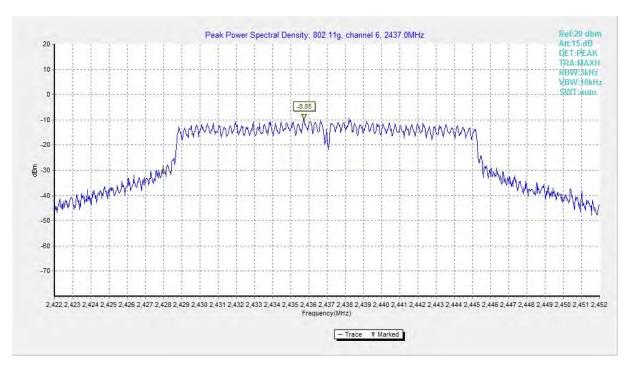


Fig.A.3.29 Power Spectral Density (802.11g, Ch 6 ANT10)

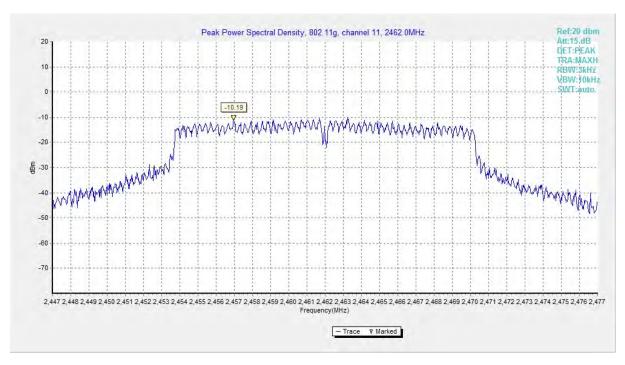


Fig.A.3.30 Power Spectral Density (802.11g, Ch 11 ANT10)

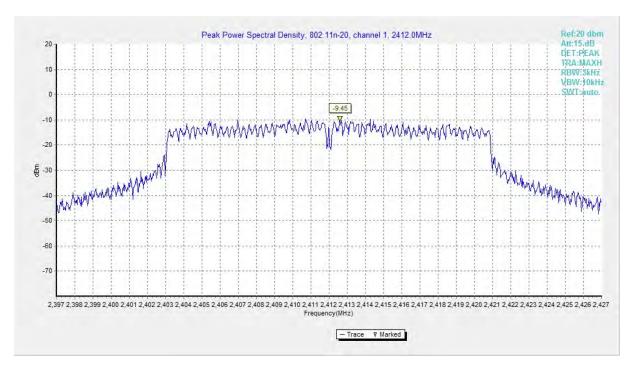


Fig.A.3.31 Power Spectral Density (802.11n-HT20, Ch 1 ANT10)

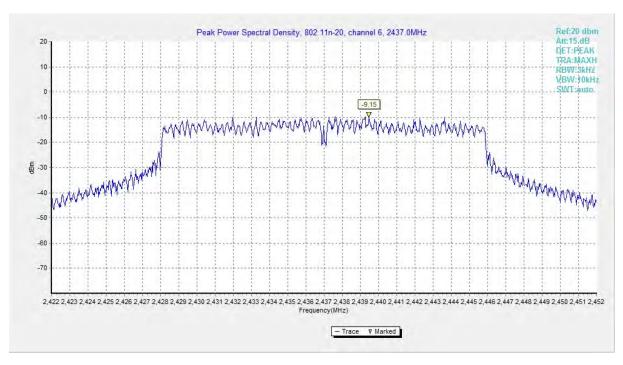


Fig.A.3.32 Power Spectral Density (802.11n-HT20, Ch 6 ANT10)

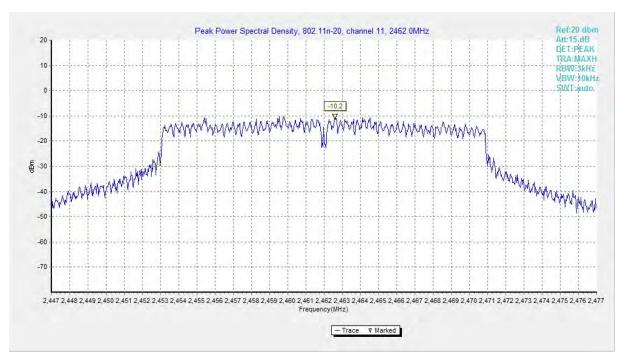


Fig.A.3.33 Power Spectral Density (802.11n-HT20, Ch 11 ANT10)

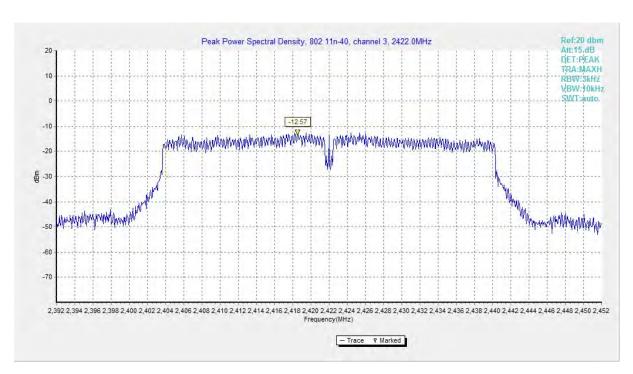


Fig.A.3.34 Power Spectral Density (802.11n-HT40, Ch 3 ANT10)

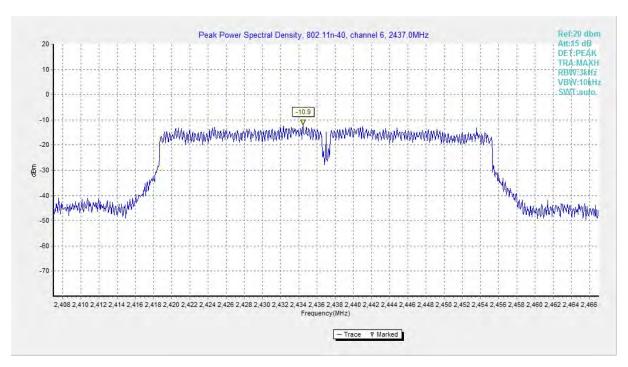


Fig.A.3.35 Power Spectral Density (802.11n-HT40, Ch 6 ANT10)

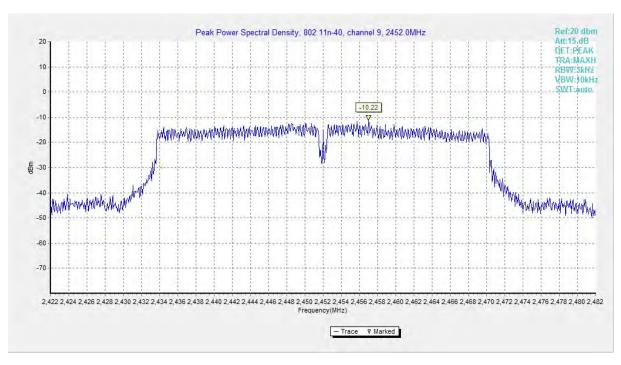


Fig.A.3.36 Power Spectral Density (802.11n-HT40, Ch 9 ANT10)

A.4. DTS 6-dB Signal Bandwidth

Method of Measurement: See ANSI C63.10-2013 section 11.8.1.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) = 300 kHz.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

EUT ID: EUT2

Measurement Result:

The measurements were performed separately in Chain 1, Chain 2, and MIMO (Chain 1+2), and only the worst cases are shown in this report.

802.11b/a mode

ouz. Tra/g illouc				
Mode	Channel	_	Occupied 6dB Bandwidth (MHz)	
	1	Fig.A.4.1	8.05	Р
802.11b	6	Fig.A.4.2	8.05	Р
	11	Fig.A.4.3	8.10	Р
	1	Fig.A.4.4	15.05	Р
802.11g	6	Fig.A.4.5	15.10	Р
	11	Fig.A.4.6	15.25	Р

802.11n-HT20 mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
000 11n	1	Fig.A.4.7	15.05	Р
802.11n	6	Fig.A.4.8	16.55	Р
(HT20)	11	Fig.A.4.9	15.95	Р

802.11n-HT40 mode

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
802.11n	3	Fig.A.4.10	35.12	Р
(HT40)	6	Fig.A.4.11	35.68	Р

	9	Fig.A.4.12	35.12	Р
--	---	------------	-------	---

Conclusion: Pass

Test graphs as below:

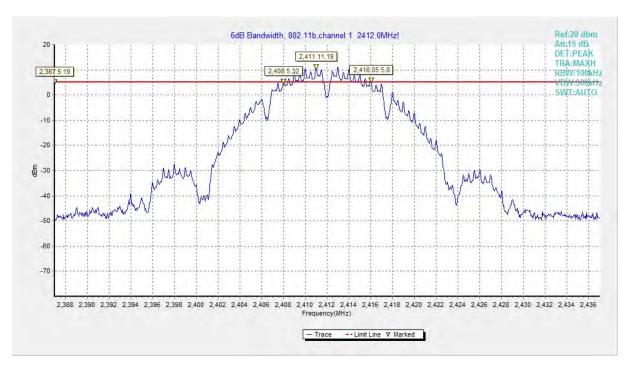


Fig.A.4.1 Occupied 6dB Bandwidth(802.11b,Ch 1)

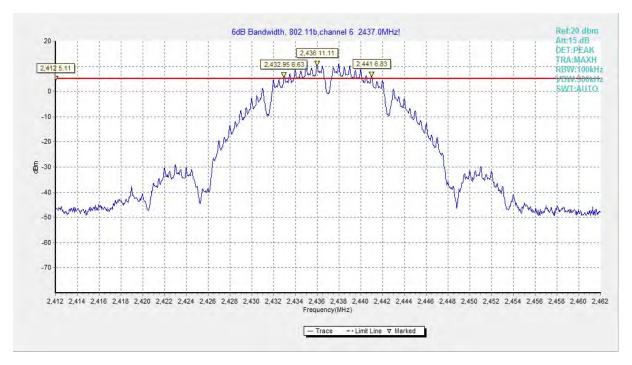


Fig.A.4.2 Occupied 6dB Bandwidth (802.11b, Ch 6)

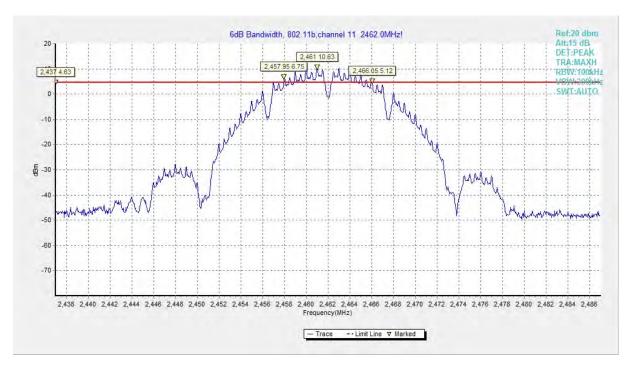


Fig.A.4.3 Occupied 6dB Bandwidth (802.11b, Ch 11)

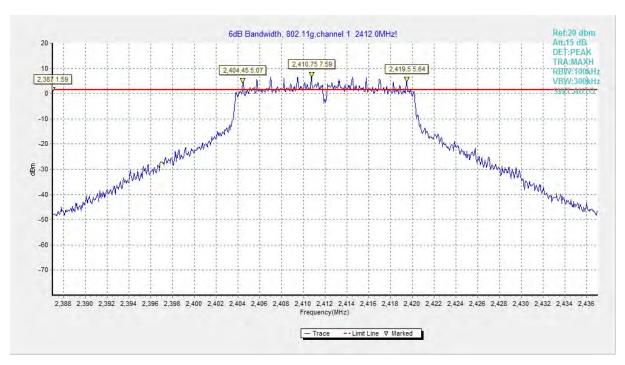


Fig.A.4.4 Occupied 6dB Bandwidth (802.11g, Ch 1)

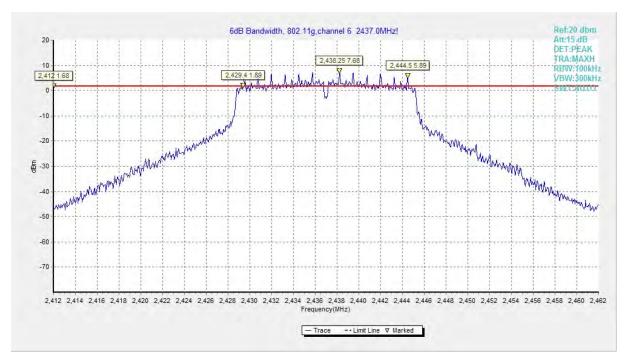


Fig.A.4.5 Occupied 6dB Bandwidth (802.11g, Ch 6)

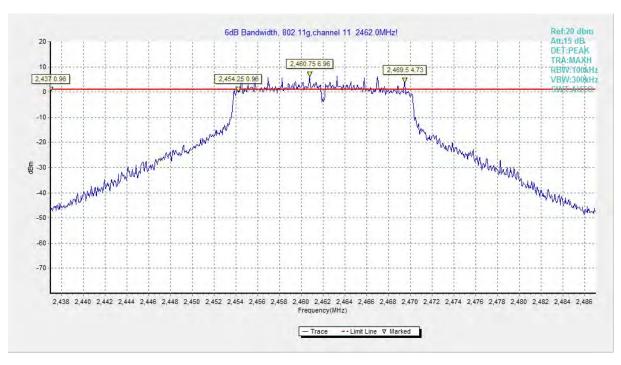


Fig.A.4.6 Occupied 6dB Bandwidth (802.11g, Ch 11)

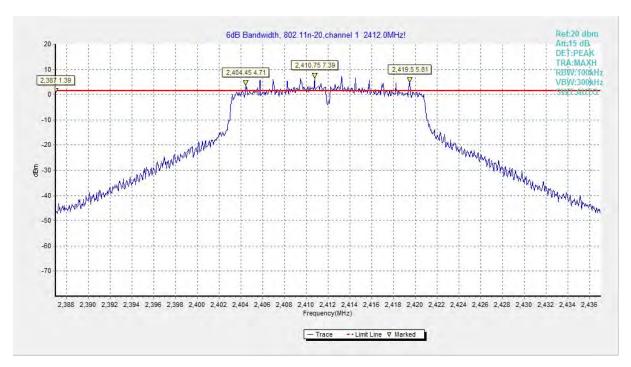


Fig.A.4.7 Occupied 6dB Bandwidth (802.11n-20MHz, Ch 1)

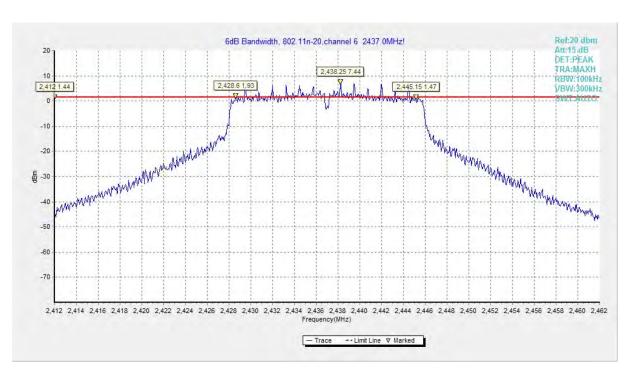


Fig.A.4.8 Occupied 6dB Bandwidth (802.11n-HT20, Ch 6)

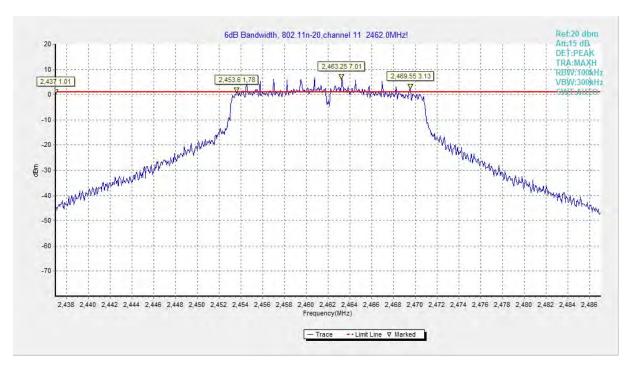


Fig.A.4.9 Occupied 6dB Bandwidth (802.11n-HT20, Ch 11)

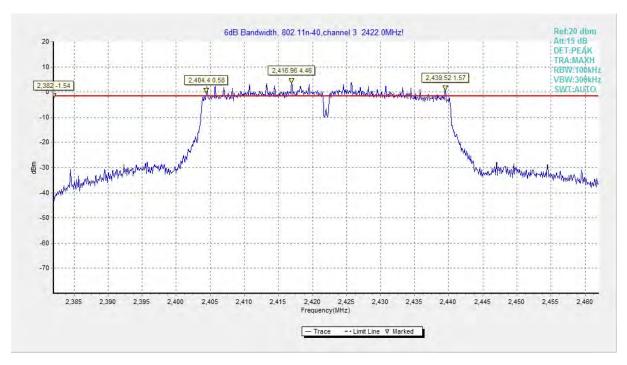


Fig.A.4.10 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 3)

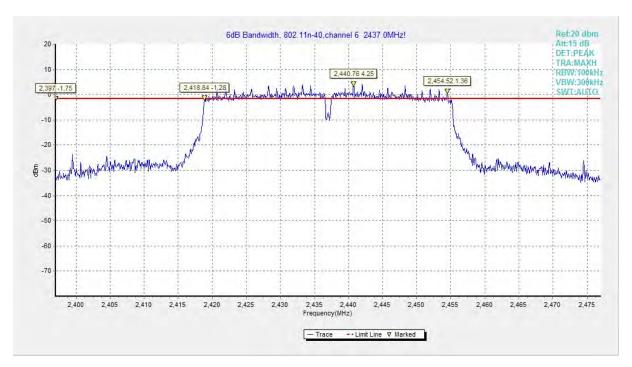


Fig.A.4.11 Occupied 6dB Bandwidth (802.11n-HT40, Ch 6)

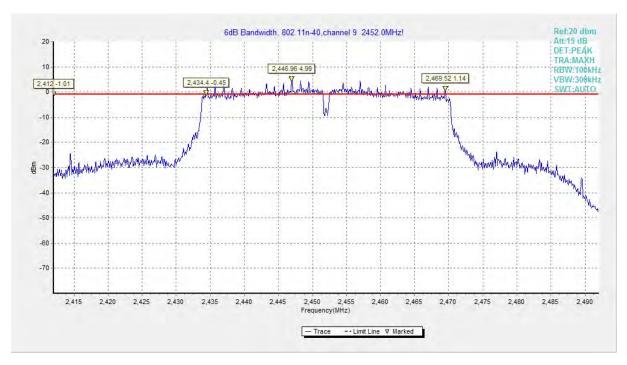


Fig.A.4.12 Occupied 6dB Bandwidth (802.11n-HT40, Ch 9)

A.5. Band Edges Compliance

Method of Measurement: See ANSI C63.10-2013-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 100MHzb) Sweep Time: coupledc) Set the RBW= 100 kHzc) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

EUT ID: EUT2

Measurement Result:

The measurements were performed separately in Chain 1, Chain 2, and MIMO (Chain 1+2), and only the worst cases are shown in this report.

802.11b/g mode

Mode	Channel	Test Results	Conclusion
902 11h	1	Fig.A.5.1	Р
802.11b	11	Fig.A.5.2	Р
902 11 a	1	Fig.A.5.3	Р
802.11g	11	Fig.A.5.4	Р

802.11n-HT20 mode

Mode	Channel	Test Results	Conclusion
802.11n	1	Fig.A.5.5	Р
(HT20)	11	Fig.A.5.6	Р

802.11n-HT40 mode

Mode	Channel	Test Results	Conclusion
802.11n	3	Fig.A.5.7	Р
(HT40)	9	Fig.A.5.8	Р

Conclusion: Pass
Test graphs as below:

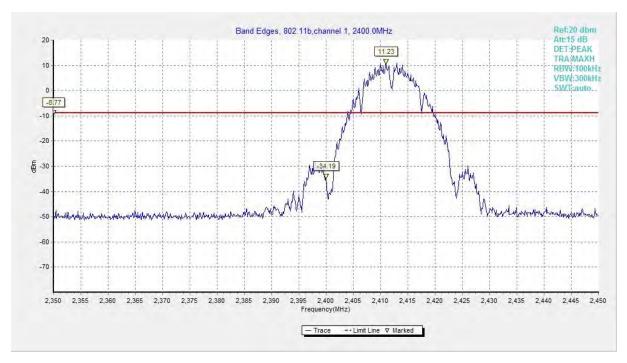


Fig.A.5.1 Band Edges (802.11b, Ch 1)

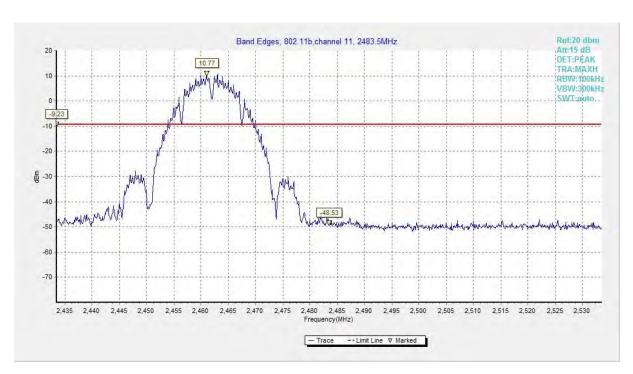


Fig.A.5.2 Band Edges (802.11b, Ch 11)

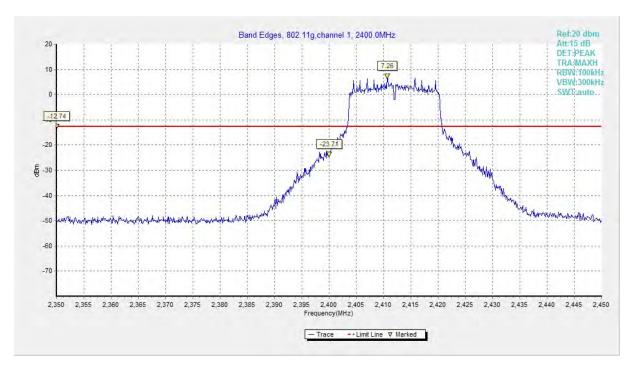


Fig.A.5.3 Band Edges (802.11g, Ch 1)

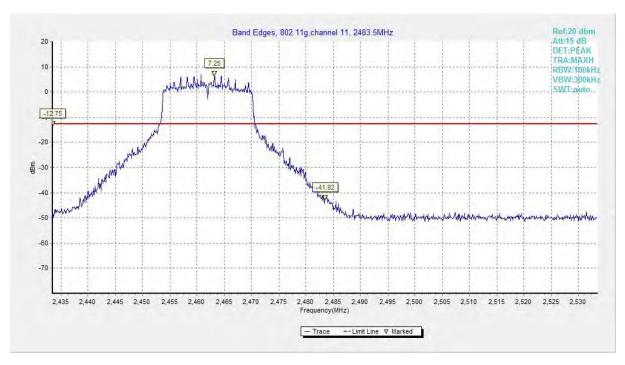


Fig.A.5.4 Band Edges (802.11g, Ch 11)

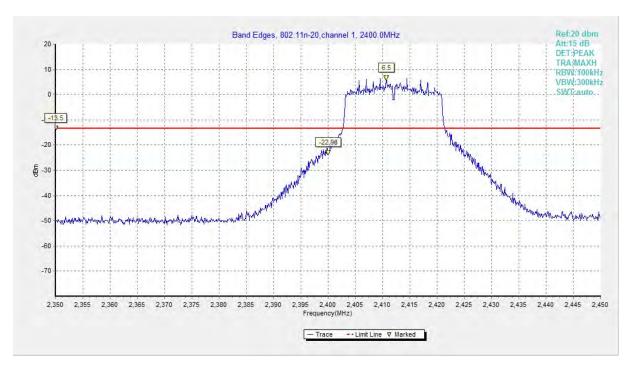


Fig.A.5.5 Band Edges (802.11n-HT20, Ch 1)

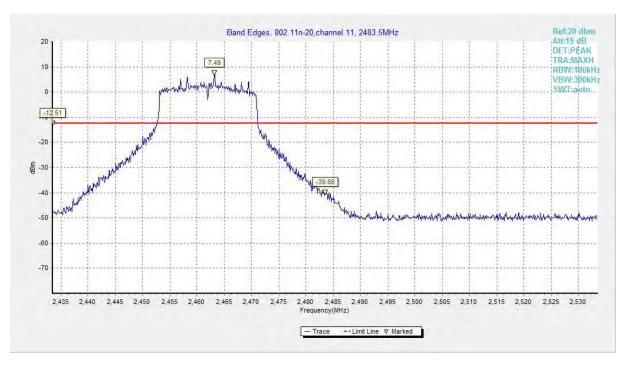


Fig.A.5.6 Band Edges (802.11n-HT20, Ch 11)

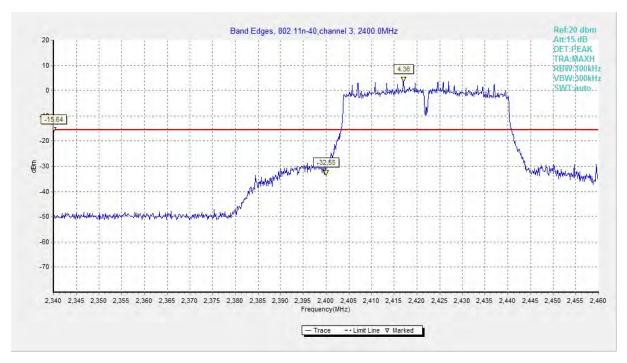


Fig.A.5.7 Band Edges (802.11n-HT40, Ch 3)

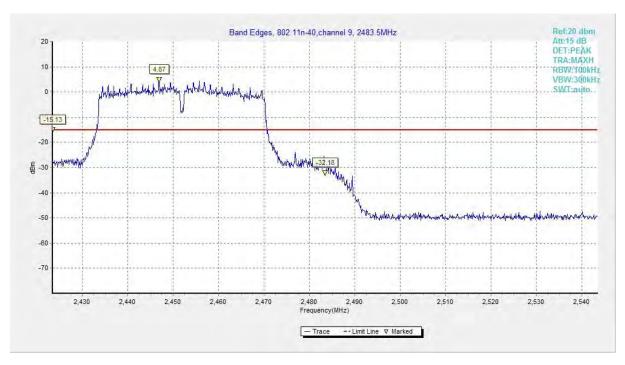


Fig.A.5.8 Band Edges (802.11n-HT40, Ch 9)

A.6. Transmitter Spurious Emission

A.6.1 Transmitter Spurious Emission – Conducted

Method of Measurement: See ANSI C63.10-2013-clause 11.11

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency
- b) Set the span to ≥ 1.5 times the DTS bandwidth
- c) Set the RBW= 100 kHz
- d) Set the VBW= 300 kHz
- e) Detector = Peak
- f) Sweep time = auto couple
- g) Trace mode = max hold
- h) Allow trace to fully stabilize
- i) Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW = 300 kHz.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz bandwidth	

EUT ID: EUT2

Measurement Results:

The measurements were performed separately in Chain 1, Chain 2, and MIMO (Chain 1+2), and only the worst cases are shown in this report.

802.11b mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.1	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.2	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.3	Р
	1	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.4	Р
	'	7.5 GHz ~ 10 GHz	Fig.A.6.1.5	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.6	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.7	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.8	Р
		2.437 GHz	Fig.A.6.1.9	Р
	6	30 MHz ~ 1 GHz	Fig.A.6.1.10	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.11	Р
802.11b		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.12	Р
002.110		7.5 GHz ~ 10 GHz	Fig.A.6.1.13	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.14	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.15	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.16	Р
		2.462 GHz	Fig.A.6.1.17	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.18	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.19	Р
	11	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.20	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.21	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.22	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.23	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.24	Р

802.11g mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.412 GHz	Fig.A.6.1.25	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.26	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.27	Р
	1	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.28	Р
	'	7.5 GHz ~ 10 GHz	Fig.A.6.1.29	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.30	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.31	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.32	Р
		2.437 GHz	Fig.A.6.1.33	Р
	6	30 MHz ~ 1 GHz	Fig.A.6.1.34	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.35	Р
000 11a		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.36	Р
802.11g		7.5 GHz ~ 10 GHz	Fig.A.6.1.37	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.38	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.39	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.40	Р
		2.462 GHz	Fig.A.6.1.41	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.42	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.43	Р
	11	2.5 GHz ~ 7.5 GHz	Fig.A.6.1.44	Р
	"	7.5 GHz ~ 10 GHz	Fig.A.6.1.45	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.46	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.47	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.48	Р

802.11n-HT20 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n (HT20)	1	2.412 GHz	Fig.A.6.1.49	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.50	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.51	Р
		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.52	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.53	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.54	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.55	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.56	Р
	6	2.437 GHz	Fig.A.6.1.57	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.58	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.59	Р
		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.60	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.61	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.62	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.63	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.64	Р
	11	2.462 GHz	Fig.A.6.1.65	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.66	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.67	Р
		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.68	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.69	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.70	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.71	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.72	Р

802.11n-HT40 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n (HT40)	3	2.422 GHz	Fig.A.6.1.73	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.74	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.75	Р
		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.76	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.77	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.78	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.79	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.80	Р
	6	2.437 GHz	Fig.A.6.1.81	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.82	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.83	Р
		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.84	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.85	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.86	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.87	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.88	Р
	9	2.452 GHz	Fig.A.6.1.89	Р
		30 MHz ~ 1 GHz	Fig.A.6.1.90	Р
		1 GHz ~ 2.5 GHz	Fig.A.6.1.91	Р
		2.5 GHz ~ 7.5 GHz	Fig.A.6.1.92	Р
		7.5 GHz ~ 10 GHz	Fig.A.6.1.93	Р
		10 GHz ~ 15 GHz	Fig.A.6.1.94	Р
		15 GHz ~ 20 GHz	Fig.A.6.1.95	Р
		20 GHz ~ 26 GHz	Fig.A.6.1.96	Р

Conclusion: Pass Test graphs as below:

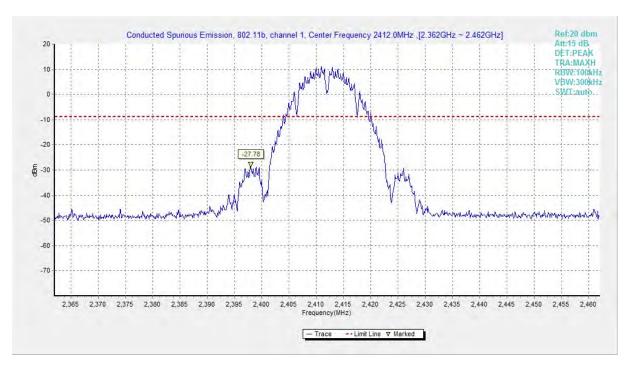


Fig.A.6.1.1 Transmitter Spurious Emission - Conducted (802.11b, Ch1, Center Frequency)

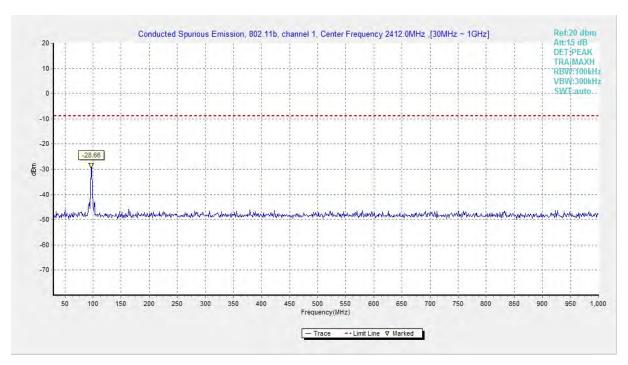


Fig.A.6.1.2 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 30 MHz-1 GHz)

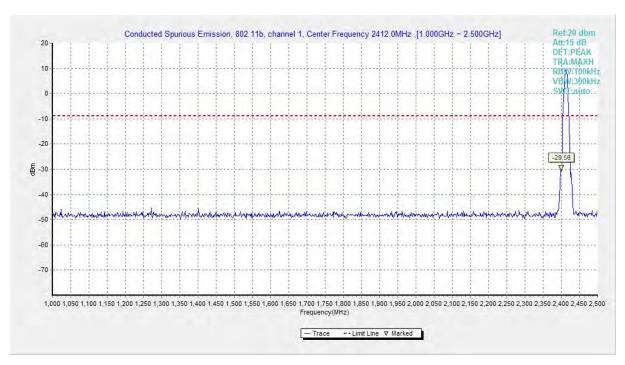


Fig.A.6.1.3 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 1 GHz-2.5 GHz)

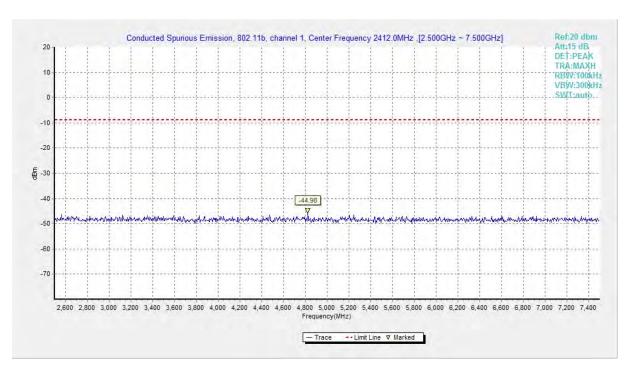


Fig.A.6.1.4 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 2.5 GHz-7.5 GHz)

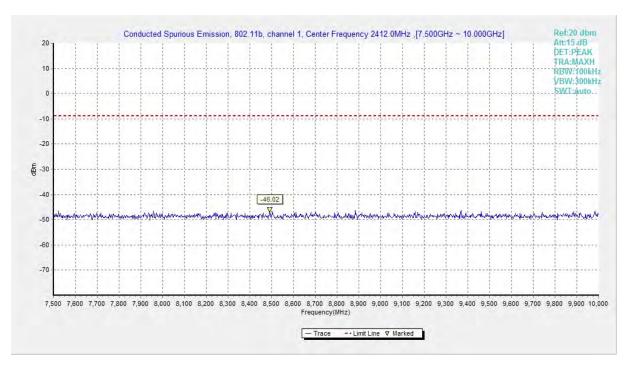


Fig.A.6.1.5 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 7.5 GHz-10 GHz)

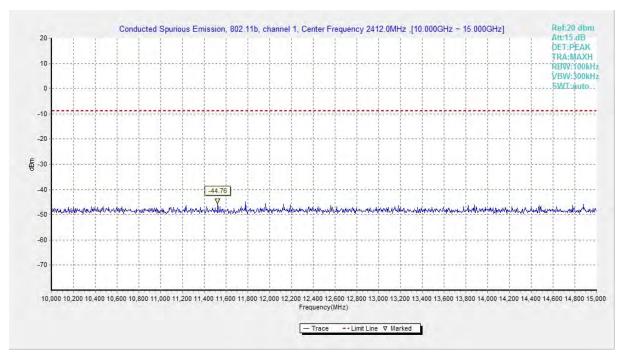


Fig.A.6.1.6 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 10 GHz-15 GHz)

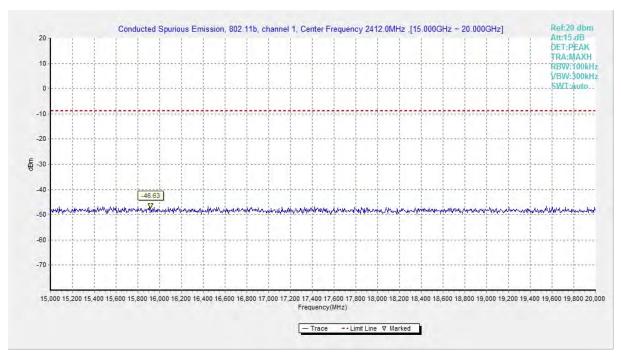


Fig.A.6.1.7 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 15 GHz-20 GHz)

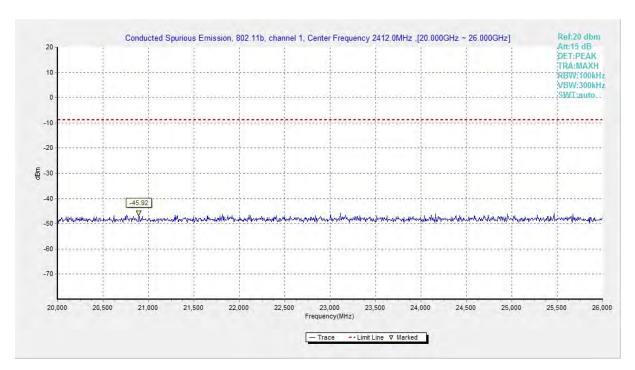


Fig.A.6.1.8 Transmitter Spurious Emission - Conducted (802.11b, Ch1, 20 GHz-26 GHz)

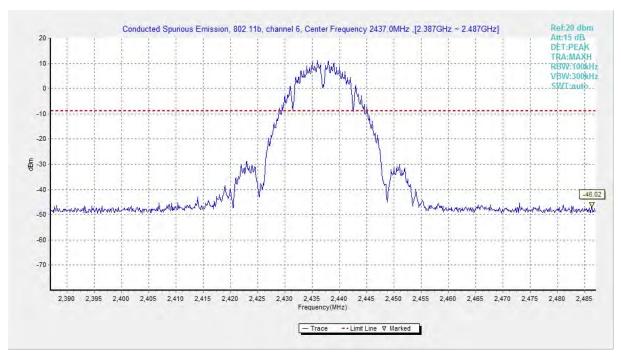


Fig.A.6.1.9 Transmitter Spurious Emission - Conducted (802.11b, Ch6, Center Frequency)

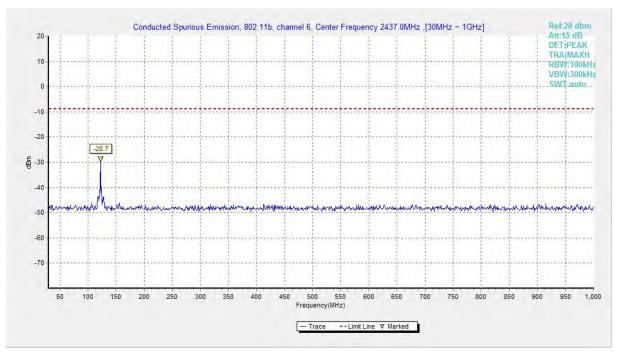


Fig.A.6.1.10 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 30 MHz-1 GHz)

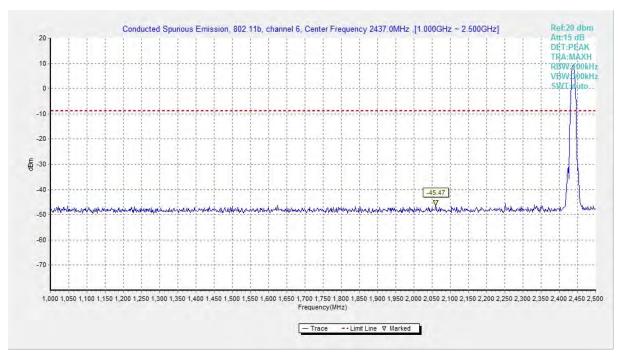


Fig.A.6.1.11 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 1 GHz-2.5 GHz)

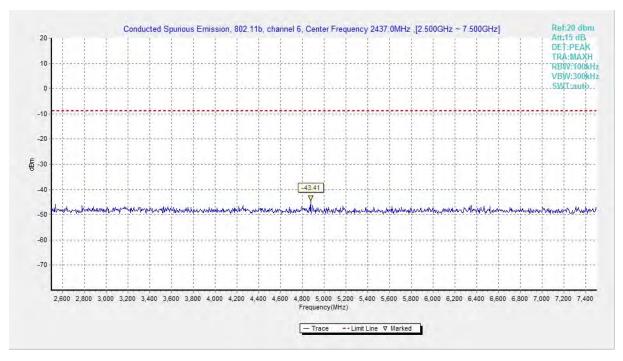


Fig.A.6.1.12 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 2.5 GHz-7.5 GHz)

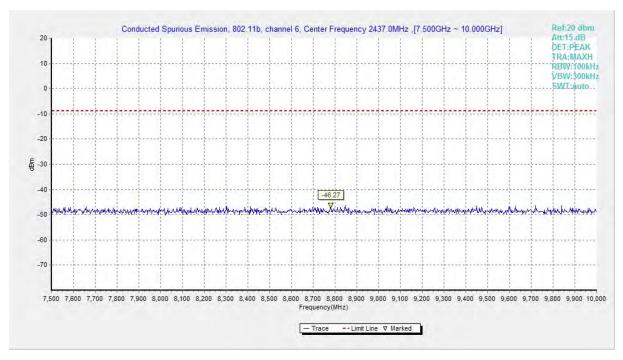


Fig.A.6.1.13 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 7.5 GHz-10 GHz)

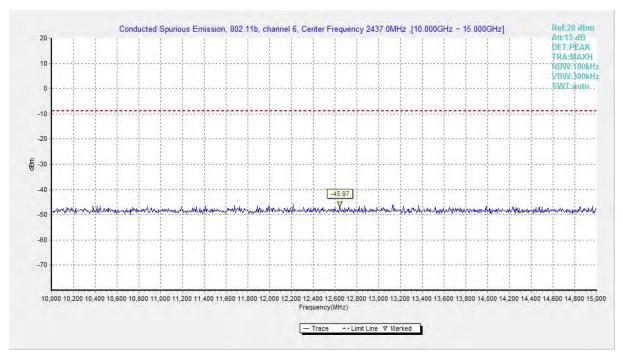


Fig.A.6.1.14 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 10 GHz-15 GHz)

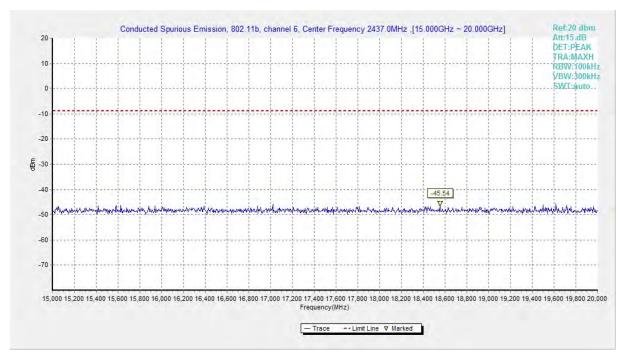


Fig.A.6.1.15 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 15 GHz-20 GHz)

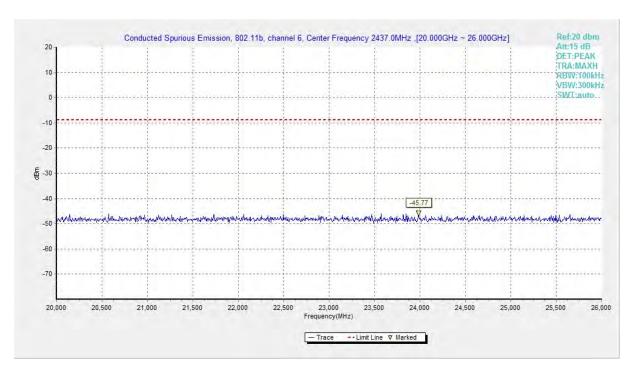


Fig.A.6.1.16 Transmitter Spurious Emission - Conducted (802.11b, Ch6, 20 GHz-26 GHz)

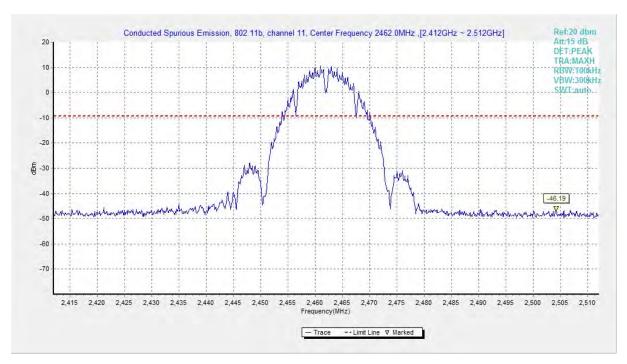


Fig.A.6.1.17 Transmitter Spurious Emission - Conducted (802.11b, Ch11, Center Frequency)

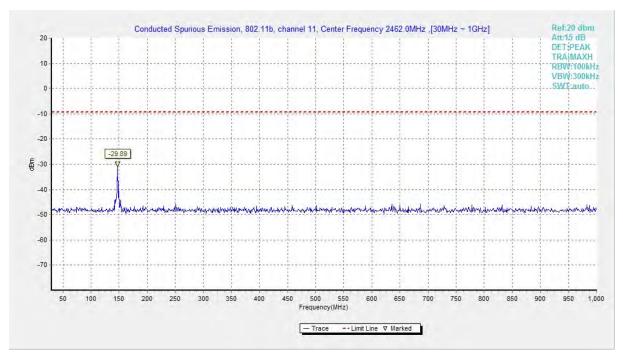


Fig.A.6.1.18 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 30 MHz-1 GHz)

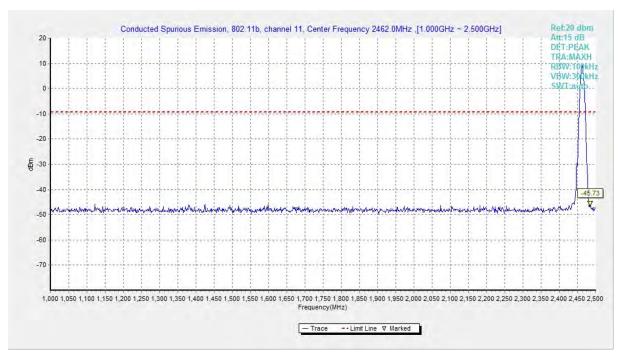


Fig.A.6.1.19 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 1 GHz-2.5 GHz)

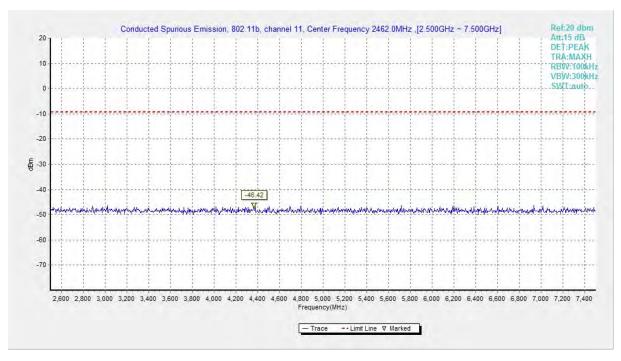


Fig.A.6.1.20 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 2.5 GHz-7.5 GHz)

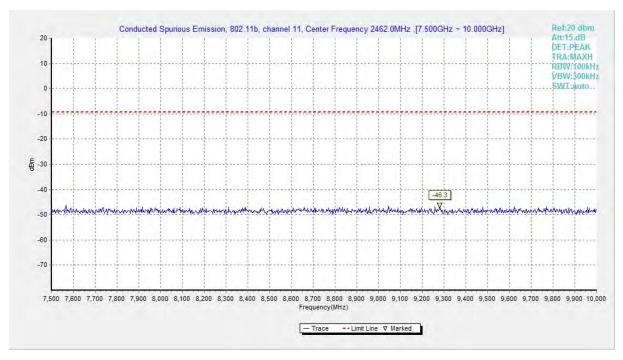


Fig.A.6.1.21 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 7.5 GHz-10 GHz)

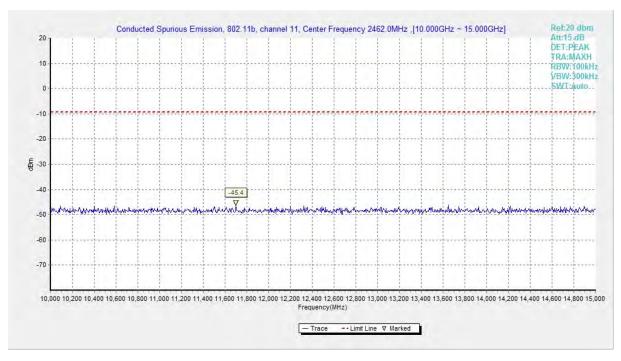


Fig.A.6.1.22 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 10 GHz-15 GHz)

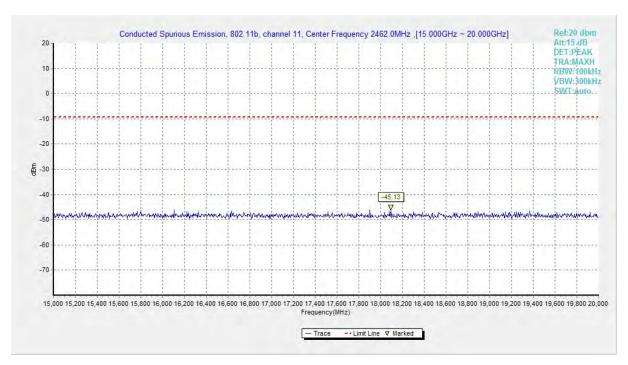


Fig.A.6.1.23 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 15 GHz-20 GHz)

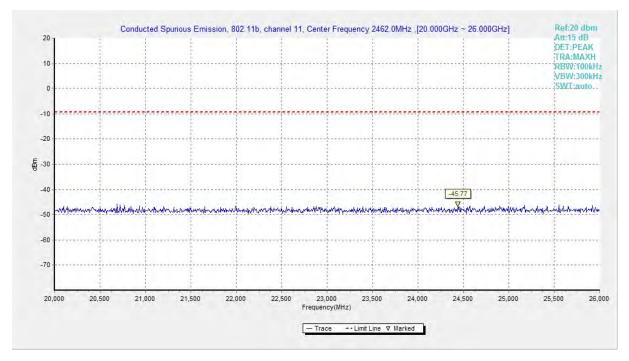


Fig.A.6.1.24 Transmitter Spurious Emission - Conducted (802.11b, Ch11, 20 GHz-26 GHz)

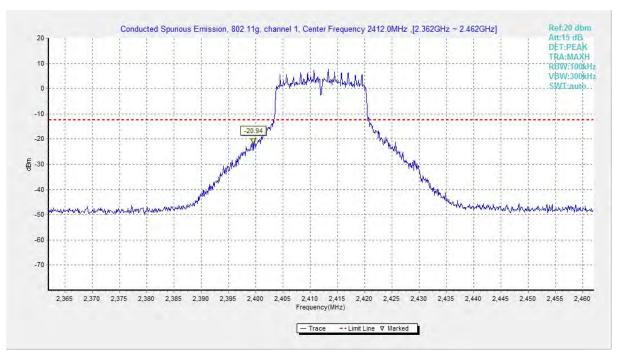


Fig.A.6.1.25 Transmitter Spurious Emission - Conducted (802.11g, Ch1, Center Frequency)

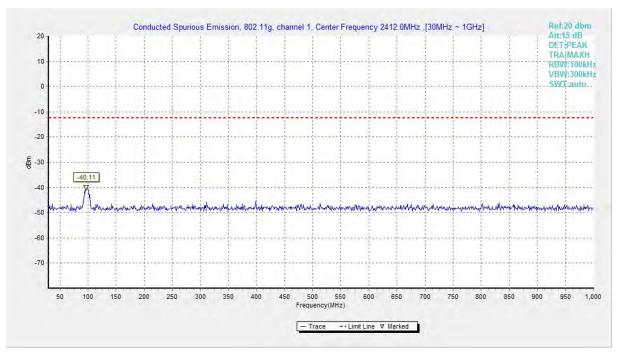


Fig.A.6.1.26 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 30 MHz-1 GHz)

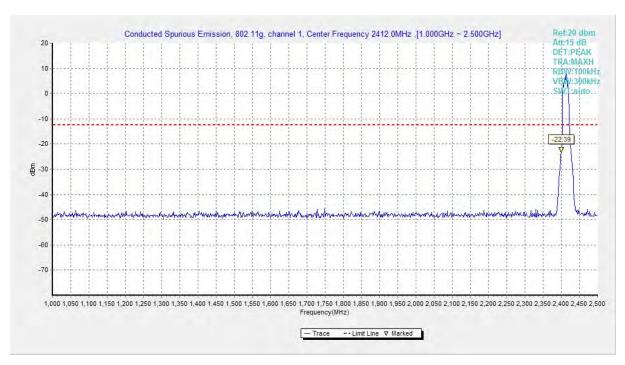


Fig.A.6.1.27 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 1 GHz-2.5 GHz)

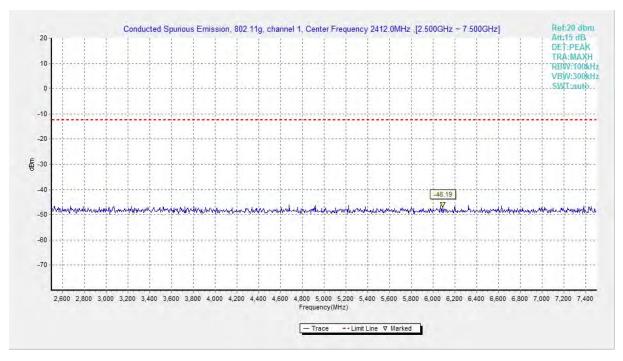


Fig.A.6.1.28 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 2.5 GHz-7.5 GHz)

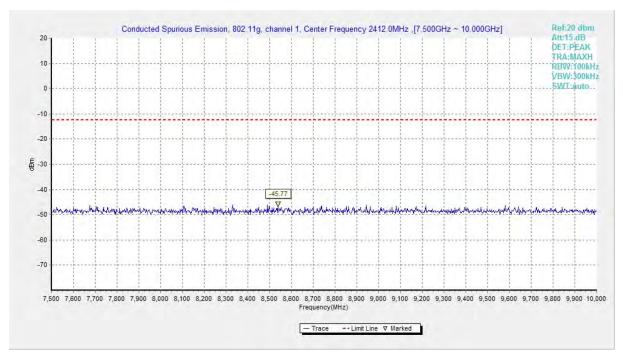


Fig.A.6.1.29 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 7.5 GHz-10 GHz)

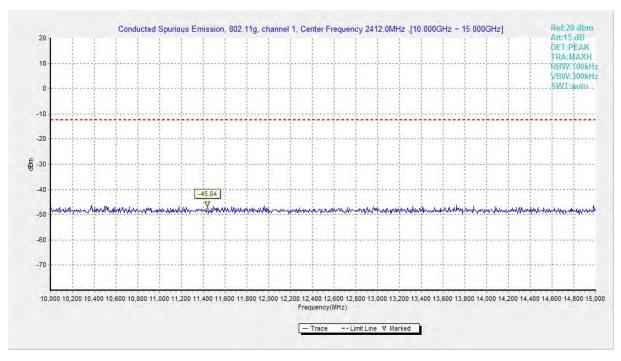


Fig.A.6.1.30 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 10 GHz-15 GHz)

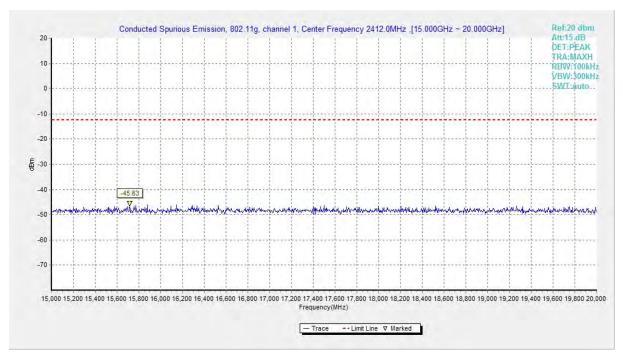


Fig.A.6.1.31 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 15 GHz-20 GHz)

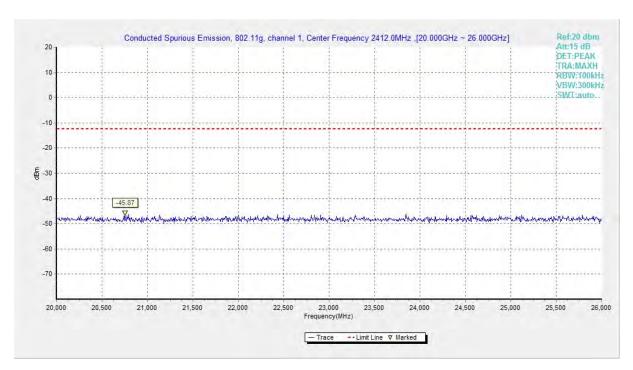


Fig.A.6.1.32 Transmitter Spurious Emission - Conducted (802.11g, Ch1, 20 GHz-26 GHz)

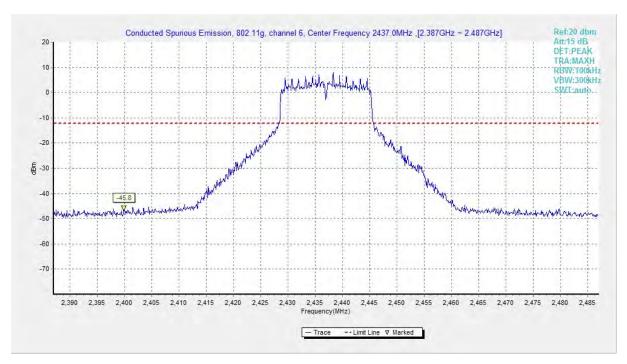


Fig.A.6.1.33 Transmitter Spurious Emission - Conducted (802.11g, Ch6, Center Frequency)

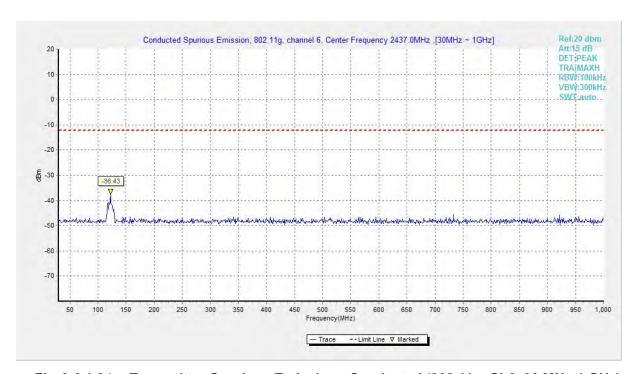


Fig.A.6.1.34 Transmitter Spurious Emission - Conducted (802.11g, Ch6, 30 MHz-1 GHz)

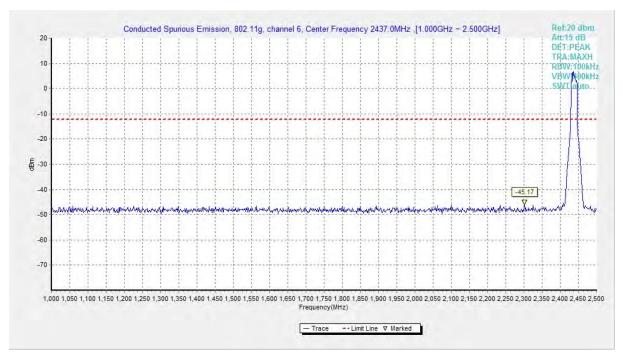


Fig.A.6.1.35 Transmitter Spurious Emission - Conducted (802.11g, Ch6, 1 GHz-2.5 GHz)

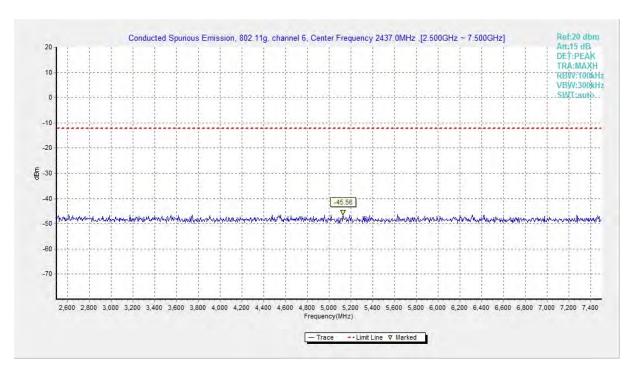


Fig.A.6.1.36 Transmitter Spurious Emission - Conducted (802.11g, Ch6, 2.5 GHz-7.5 GHz)