

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

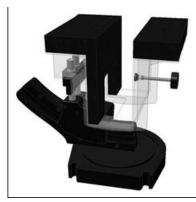
The DASY device holder is constructed of low-loss


POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material

has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>


The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7-1: Device Holder

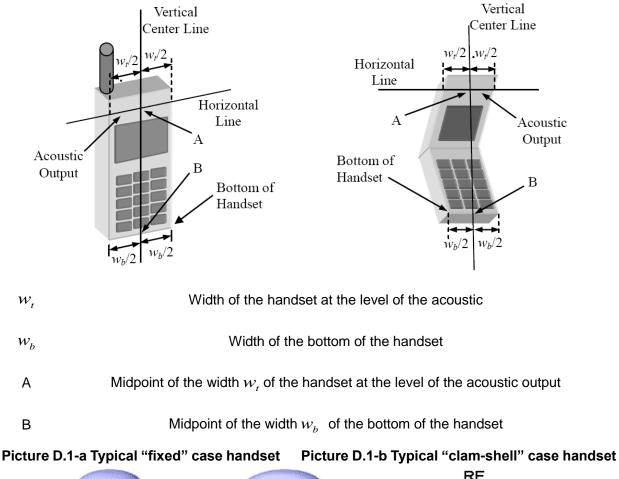
Picture C.7-2: Laptop Extension Kit

C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

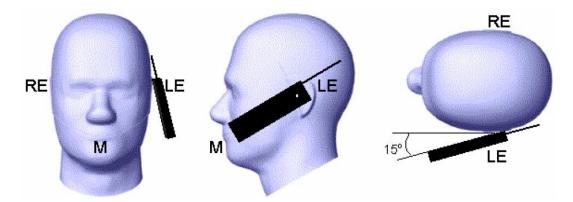
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

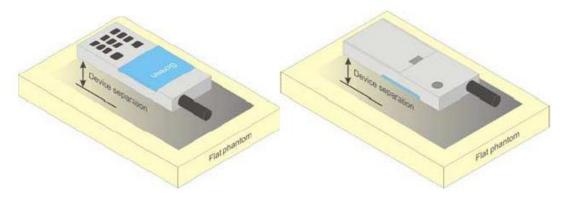

Picture C.8: SAM Twin Phantom

ANNEX D: Position of the wireless device in relation to the phantom

D.1. General considerations


This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

Picture D.2 Cheek position of the wireless device on the left side of SAM

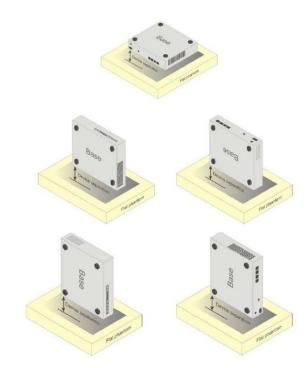


Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4 Test positions for body-worn devices


D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4. DUT Setup Photos

Picture D.6

ANNEX E: Equivalent Media Recipes

The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table L.T. Composition of the Tissue Equivalent Matter									
Frequency	835	835	1900	1900	2450	2450	5800	5800	
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body	
Ingredients (% by	/ weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53	
Sugar	56.0	45.0	١	\	١	١	١	/	
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	\	
Preventol	0.1	0.1	١	\	١	١	١	/	
Cellulose	1.0	1.0	١	١	١	١	١	/	
Glycol	1	N	44.452	29.96	41.15	27.22			
Monobutyl	Ň	Ň	44.452	29.90	41.15	21.22	١	\	
Diethylenglycol	1	N	N	N	N	N			
monohexylether	۱.	Ň	١	1	١	1	17.24	17.24	
Triton X-100	١	١	١	١	١	١	17.24	17.24	
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7			
Parameters							ε=35.3	ε=48.2	
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00	
. . .					1000.000				

Note: There is a little adjustment respectively for 750, 1800, 2600, 5200, 5300, and 5600, based on the recipe of closest frequency in table E.1

ANNEX F: System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)				
3633	Head 750MHz	2020-04-03	750 MHz	OK				
3633	Head 900MHz	2020-04-03	900 MHz	OK				
3633	Head 1750MHz	2020-04-03	1750 MHz	OK				
3633	Head 1900MHz	2020-04-03	1900 MHz	OK				
3633	Head 2300MHz	2020-04-04	2300 MHz	OK				
3633	Head 2450MHz	2020-04-04	2450 MHz	OK				
3633	Head 2550MHz	2020-04-04	2550 MHz	OK				
3633	Head 5200MHz	2020-04-05	5250 MHz	OK				
3633	Head 5600MHz	2020-04-05	5600 MHz	OK				
3633	Head 5750MHz	2020-04-05	5750 MHz	OK				

ANNEX G: DAE Calibration Certificate

DAE4 SN: 1527 Calibration Certificate

T		e a g	Hac-MR	CNAS	中国认可 国际互认 校准 CALIBRATION
Add: No.51 Xue Tel: +86-10-623 E-mail: cttl@ch	04633-2512 Fax: +8	ct, Beijing, 100191, China 6-10-62304633-2504 www.chinattl.cn	Mahahahah		CNAS L0570
Client : CTT	L(South Branch)	Certificate N	lo: Z20-60433	
CALIBRATION	CERTIFICATI	E			
Object	DAE4 - S	SN: 1527			
Calibration Procedure(s)	FF-Z11- Calibrati (DAEx)	002-01 on Procedure for the	Data Acquisit	ion Electronics	
Calibration date:	Novemb	er 06, 2020			
This calibration Certifica measurements(SI). The p pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	measurements and t e certificate. een conducted in th	he uncertainties with co	onfidence proba	bility are given on t	he following
Primary Standards		, Date(Calibrated by, Ce	ertificate No.)	Scheduled Calib	ration
Process Calibrator 753	1971018 1	6-Jun-20 (CTTL, No.J	20X04342)	Jun-21	
	Name	Function		Signature	
Calibrated by:	Yu Zongying	SAR Test Enginee	er	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.5%
Reviewed by:	Lin Hao	SAR Test Enginee	r	林动	The state
Approved by:	Qi Dianyuan	SAR Project Lead	er	An	12.2
This calibration certificat	e shall not be reprod	uced except in full with		sued: November 0 oval of the laborate	

Certificate No: Z20-60433

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.en

Glossary:

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z20-60433

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV

Calibration Factors	X	Y	Z
High Range	403.863 ± 0.15% (k=2)	403.582 ± 0.15% (k=2)	403.801 ± 0.15% (k=2)
Low Range	3.95875 ± 0.7% (k=2)	3.98892 ± 0.7% (k=2)	3.96720 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	223.5°±1°
---	-----------

Certificate No: Z20-60433

Page 3 of 3

ANNEX H: Probe Calibration Certificate

Probe EX3DV4-SN: 3633 Calibration Certificate

	CALIBRATION L	ABORATORY	Hac-MRA	CNAS	国际互认 校准 CALIBRATIC
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: cttl@chinatt		-62304633-2504	Mahahahaha		CNAS L057
Client CTTL	(South Branch)		Certificate No:	Z20-60108	
CALIBRATION CE	ERTIFICAT			and the second	
Object	EX3DV4 - S	N : 3633			
Calibration Procedure(s)					
Calibration Procedure(s)	FF-Z11-004	-01			
	Calibration F	Procedures for Dosime	etric E-field Probes		
Calibration date:	April 01, 202	20			
measurements(SI). The mea pages and are part of the ce		incertainties with conf	idence probability a	are given on the	following
All calibrations have been humidity<70%.	conducted in the	closed laboratory fac	ility: environment	temperature(22:	±3)℃ and
humidity<70%. Calibration Equipment used	(M&TE critical for ca	libration)			
humidity<70%.		libration) Cal Date(Calibrated	by, Certificate No.)	Scheduled C	alibration
humidity<70%. Calibration Equipment used Primary Standards	(M&TE critical for ca	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No	by, Certificate No.) 5.J19X05125)	Scheduled C Jun-20	alibration 0
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical for ca ID # 101919	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No	by, Certificate No.) 5.J19X05125) 5.J19X05125)	Scheduled C	alibration 0
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No	by, Certificate No.) 5.J19X05125) 5.J19X05125) 5.J19X05125)	Scheduled C Jun-20 Jun-20	alibration 0 0
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No	by, Certificate No.) b.J19X05125) b.J19X05125) b.J19X05125) b.J20X00525)	Scheduled C Jun-20 Jun-20 Jun-20	alibration 0 0 0 2
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No	by, Certificate No.) 0.J19X05125) 0.J19X05125) 0.J19X05125) 0.J20X00525) 0.J20X00526)	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 Feb-2	alibration 0 0 0 2 2
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 10-Feb-20(CTTL, No	by, Certificate No.) 0.J19X05125) 0.J19X05125) 0.J19X05125) 0.J20X00525) 0.J20X00526) No.EX3-7307_May	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 Feb-2 y19/2) May-2	alibration 0 0 2 2 2 20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307	libration) Cal Date(Calibrated 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG,	by, Certificate No.) b.J19X05125) b.J19X05125) b.J19X05125) b.J20X00525) b.J20X00526) No.EX3-7307_May No.DAE4-1525_Au	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 y19/2) May-2	alibration 0 0 2 2 2 0 0
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV- DAE4	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID #	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG, 26-Aug-19(SPEAG,	by, Certificate No.) b.J19X05125) b.J19X05125) b.J19X05125) b.J20X00525) b.J20X00526) No.EX3-7307_May No.DAE4-1525_Au Certificate No.)	Scheduled C Jun-20 Jun-20 Jun-20 Feb-2 Feb-2 (19/2) May-2 ug19) Aug-2	alibration 0 0 2 2 2 0 0 1ibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV- DAE4 Secondary Standards	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # 0A 6201052605	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG, 26-Aug-19(SPEAG, Cal Date(Calibrated by,	by, Certificate No.) 0.J19X05125) 0.J19X05125) 0.J20X00525) 0.J20X00526) No.EX3-7307_May No.DAE4-1525_Au Certificate No.) 0.J19X05127)	Scheduled C Jun-20 Jun-20 Jun-20 Feb-2 Feb-2 y19/2) May-2 ug19) Aug-2 Scheduled Cal	alibration 0 0 2 2 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # 0A 6201052605	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG, 26-Aug-19(SPEAG, Cal Date(Calibrated by, 18-Jun-19(CTTL, No	by, Certificate No.) 0.J19X05125) 0.J19X05125) 0.J20X00525) 0.J20X00526) No.EX3-7307_May No.DAE4-1525_Au Certificate No.) 0.J19X05127)	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 y19/2) May-2 y19/2) May-2 y19) Aug-2 Scheduled Cal Jun-20	alibration 0 0 2 2 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # DA 6201052605 C MY46110673	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG, 26-Aug-19(SPEAG, Cal Date(Calibrated by, 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No	by, Certificate No.) 5.J19X05125) 5.J19X05125) 5.J19X05125) 5.J20X00525) 5.J20X00526) No.EX3-7307_May No.DAE4-1525_Au Certificate No.) 5.J19X05127) 5.J20X00515)	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 (19/2) May-2 (19/2) May-2 (19/2) Aug-2 Scheduled Cal Jun-20 Feb-2	alibration 0 0 2 2 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV/ DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB or 18N50W-20dB 4 SN 7307 SN 1525 ID # 0A 6201052605 C MY46110673 Name	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG, 26-Aug-19(SPEAG, Cal Date(Calibrated by, 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 10-Feb-20(CTTL, No	by, Certificate No.) b.J19X05125) b.J19X05125) b.J19X05125) b.J20X00525) b.J20X00526) No.EX3-7307_May No.DAE4-1525_Au Certificate No.) b.J19X05127) b.J20X00515)	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 (19/2) May-2 (19/2) May-2 (19/2) Aug-2 Scheduled Cal Jun-20 Feb-2	alibration 0 0 2 2 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710 Calibrated by:	(M&TE critical for ca ID # 101919 101547 101548 or 18N50W-10dB 18N50W-20dB 4 SN 7307 SN 1525 ID # DA 6201052605 C MY46110673 Name Yu Zongying	libration) Cal Date(Calibrated I 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 24-May-19(SPEAG, 26-Aug-19(SPEAG, Cal Date(Calibrated by, 18-Jun-19(CTTL, No 10-Feb-20(CTTL, No 10-Feb-20(CTTL, No Function SAR Test Engineer	by, Certificate No.) b.J19X05125) b.J19X05125) b.J19X05125) b.J20X00525) b.J20X00526) No.EX3-7307_May No.DAE4-1525_Au Certificate No.) b.J19X05127) b.J20X00515)	Scheduled C Jun-20 Jun-20 Feb-2 Feb-2 (19/2) May-2 (19/2) May-2 (19/2) Aug-2 Scheduled Cal Jun-20 Feb-2	alibration 0 0 2 2 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10

Certificate No: Z20-60108

Page 1 of 10

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSI tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E² -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60108

Page 2 of 10

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.37	0.37	0.39	±10.0%
DCP(mV) ^B	98.2	98.8	98.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	0 CW	Х	0.0	0.0	1.0	0.00	141.5	±2.3%
		Υ	0.0	0.0	1.0		141.5	
		Z	0.0	0.0	1.0		141.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4 and Page 5). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60108

Page 3 of 10

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.59	9.59	9.59	0.40	0.75	±12.1%
900	41.5	0.97	9.33	9.33	9.33	0.21	1.14	±12.1%
1640	40.3	1.29	8.17	8.17	8.17	0.16	1.22	±12.1%
1750	40.1	1.37	8.09	8.09	8.09	0.15	1.42	±12.1%
1900	40.0	1.40	7.76	7.76	7.76	0.19	1.14	±12.1%
2100	39.8	1.49	7.73	7.73	7.73	0.18	1.26	±12.1%
2300	39.5	1.67	7.69	7.69	7.69	0.48	0.78	±12.1%
2450	39.2	1.80	7.43	7.43	7.43	0.50	0.77	±12.1%
2600	39.0	1.96	7.20	7.20	7.20	0.58	0.72	±12.1%
3500	37.9	2.91	6.88	6.88	6.88	0.35	1.23	±13.3%
3700	37.7	3.12	6.57	6.57	6.57	0.44	0.98	±13.3%
3900	37.5	3.32	6.51	6.51	6.51	0.35	1.40	±13.3%
4100	37.2	3.53	6.44	6.44	6.44	0.40	1.20	±13.3%
4400	36.9	3.84	6.30	6.30	6.30	0.35	1.35	±13.3%
4600	36.7	4.04	6.10	6.10	6.10	0.45	1.40	±13.3%
4800	36.4	4.25	5.98	5.98	5.98	0.45	1.60	±13.3%
4950	36.3	4.40	5.80	5.80	5.80	0.45	1.45	±13.3%
5250	35.9	4.71	5.47	5.47	5.47	0.45	1.25	±13.3%
5600	35.5	5.07	4.72	4.72	4.72	0.45	1.50	±13.3%
5750	35.4	5.22	4.73	4.73	4.73	0.45	1.50	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

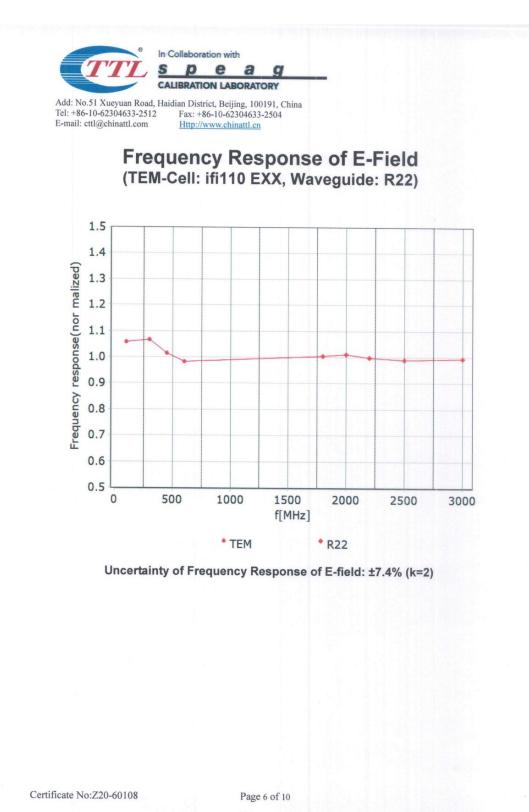
^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60108

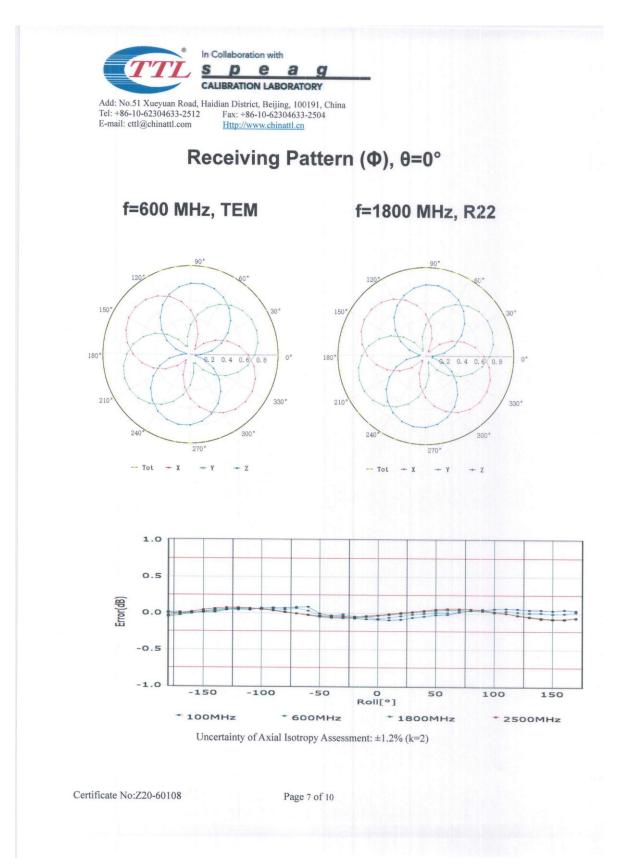
Page 4 of 10

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.57	9.57	9.57	0.40	0.80	±12.1%
900	55.0	1.05	9.34	9.34	9.34	0.25	1.11	±12.1%
1640	53.8	1.40	8.05	8.05	8.05	0.22	1.19	±12.1%
1750	53.4	1.49	7.85	7.85	7.85	0.16	1.35	±12.1%
1900	53.3	1.52	7.66	7.66	7.66	0.17	1.32	±12.1%
2100	53.2	1.62	7.69	7.69	7.69	0.21	1.30	±12.1%
2300	52.9	1.81	7.61	7.61	7.61	0.50	0.86	±12.1%
2450	52.7	1.95	7.56	7.56	7.56	0.50	0.83	±12.1%
2600	52.5	2.16	7.33	7.33	7.33	0.59	0.74	±12.1%
3500	52.3	3.31	6.28	6.28	6.28	0.40	1.30	±13.3%
3700	52.1	3.55	6.14	6.14	6.14	0.40	1.35	±13.3%
3900	50.8	3.78	6.13	6.13	6.13	0.40	1.45	±13.3%
4100	50.5	4.01	6.12	6.12	6.12	0.35	1.40	±13.3%
4400	50.1	4.37	5.93	5.93	5.93	0.35	1.70	±13.3%
4600	49.8	4.60	5.60	5.60	5.60	0.45	1.50	±13.3%
4800	49.6	4.83	5.42	5.42	5.42	0.45	1.60	±13.3%
4950	49.4	5.01	5.22	5.22	5.22	0.45	1.70	±13.3%
5250	48.9	5.36	5.04	5.04	5.04	0.50	1.45	±13.3%
5600	48.5	5.77	4.16	4.16	4.16	0.55	1.50	±13.3%
5750	48.3	5.94	4.26	4.26	4.26	0.55	1.60	±13.3%

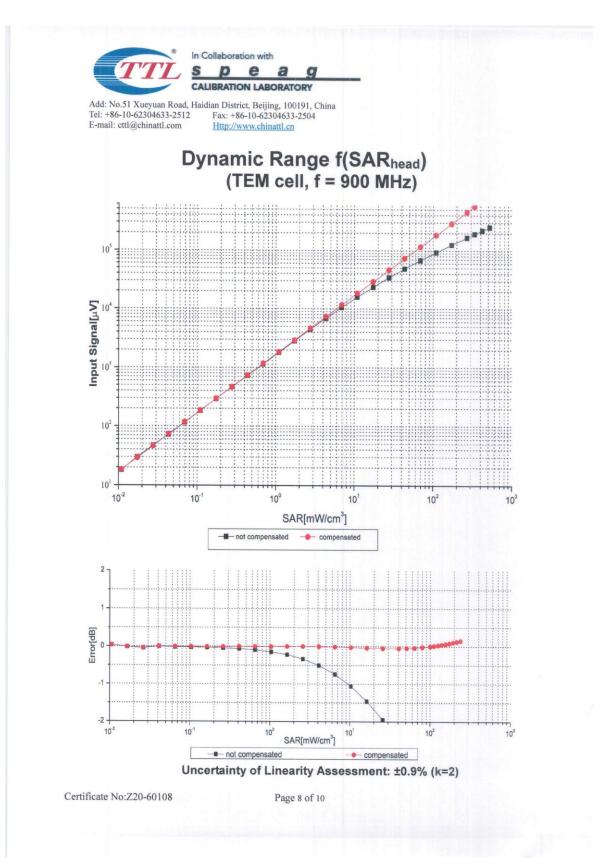
Calibration Parameter Determined in Body Tissue Simulating Media

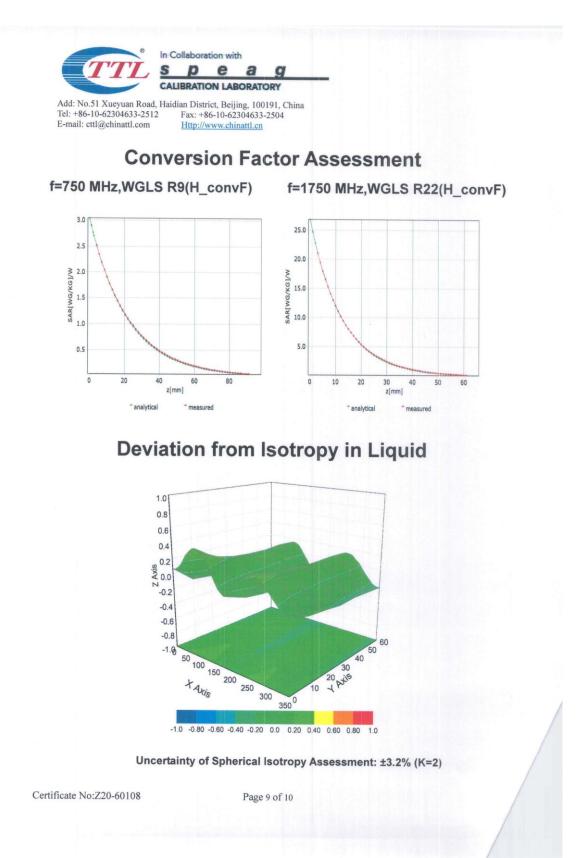

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No:Z20-60108

Page 5 of 10





Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	71.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60108

Page 10 of 10

ANNEX I: Dipole Calibration Certificate

750MHz Dipole Calibration Certificate

TT	<u>Ż</u> sp	ration with e a g ION LABORATORY	中国认可国际互认
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: ettl@chinati	33-2079 Fax: +	riet, Beijing, 100191, China 86-10-62304633-2504 www.chinattl.en	CALIBRATION CNAS L0570
Client CTT	L(South Bran	ch) Certificate No:	Z19-60291
CALIBRATION CE	RTIFICAT	F	
CALIBITATION OF			A REAL PROPERTY AND A REAL
Object	D750V	3 - SN: 1163	
Calibration Procedure(s)	FF-Z11 Calibra	-003-01 tion Procedures for dipole validation kits	
Calibration date:	Septer	iber 3, 2019	
pages and are part of the ce	rtificate.	the uncertainties with confidence probabi the closed laboratory facility: environm	
Calibration Equipment used			
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	
Power Meter NRP2	106276	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Power sensor NRP6A	101369	11-Apr-19 (CTTL, No.J19X02605)	Apr-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19	
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295	5) Aug-20
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	A AL
Reviewed by:	Lin Hao	SAR Test Engineer	- #76-
Approved by:	Qi Dianyuan	SAR Project Leader	The a
This calibration certificate sh	nall not be reproc	Issued: S luced except in full without written approv	eptember 6, 2019 /al of the laboratory.

Certificate No: Z19-60291

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60291

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.en E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.53 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.70 W/kg ± 18.7 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.9 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 Cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.78 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.87 W/kg ±18.7 % (k=2)

Certificate No: Z19-60291

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω- 4.53jΩ
Return Loss	- 26.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5Ω- 3.38jΩ	
Return Loss	- 28.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.900 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z19-60291

Page 4 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

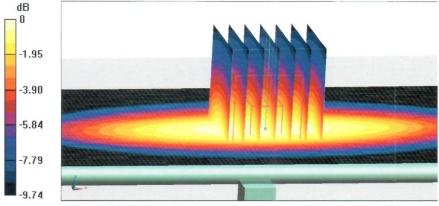
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 09.03.2019

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1


Medium parameters used: f = 750 MHz; σ = 0.904 S/m; ϵ_r = 41.62; ρ = 1000 kg/m3 Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

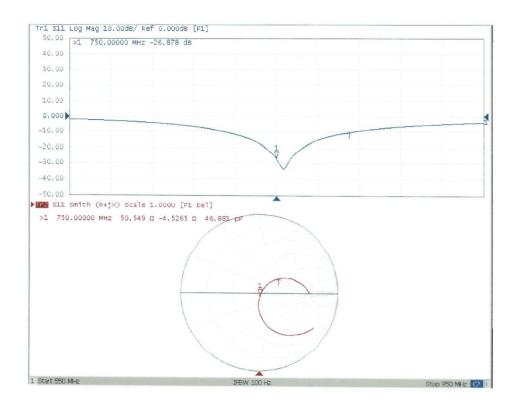
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


```
Reference Value = 55.16 V/m; Power Drift = -0.02 dB
Peak SAR (extrapolated) = 3.11 W/kg
SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.44 W/kg
Maximum value of SAR (measured) = 2.81 W/kg
```


0 dB = 2.81 W/kg = 4.49 dBW/kg

Certificate No: Z19-60291

Page 5 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60291

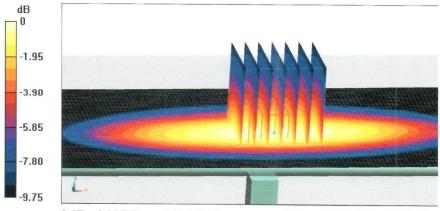
Page 6 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163


Date: 09.03.2019

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.942$ S/m; $\epsilon_r = 55.87$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

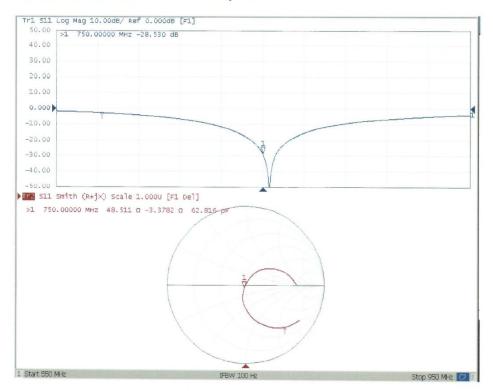
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 52.88 V/m; Power Drift = 0.03 dBPeak SAR (extrapolated) = 3.20 W/kgSAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.45 W/kgMaximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Certificate No: Z19-60291

Page 7 of 8



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.ehinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60291

Page 8 of 8