

Fig. 71 Time of Occupancy(Dwell Time) (GFSK, Ch39)

Fig. 72 Time of Occupancy(Dwell Time) ($\pi / 4$ DQPSK, Ch39)

No. I21N00537-BT

Fig. 73 Time of Occupancy(Dwell Time) (T / 4 DQPSK, Ch39)

Fig. 74 Time of Occupancy(Dwell Time) (8DPSK, Ch39)

No. I21N00537-BT

Fig. 75 Time of Occupancy(Dwell Time) (8DPSK, Ch39)

A. 7 Number of Hopping Channels

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)	At least 15 non-overlapping channels

Measurement Results:

Mode	Packet	Number of hopping channels		Test result	Conclusion
GFSK	DH5	Fig.76	Fig.77	79	P
$\pi / 4$ DQPSK	2-DH5	Fig.78	Fig.79	79	P
8DPSK	3-DH5	Fig.80	Fig.81	79	P

See below for test graphs.
Conclusion: Pass

Fig. 76 Hopping channel ch0~39 (GFSK, Ch39)

Fig. 77 Hopping channel ch40~78 (GFSK, Ch39)

Fig. 78 Hopping channel ch0~39 (т /4 DQPSK, Ch39)

Fig. 79 Hopping channel ch40~78 (ד /4 DQPSK, Ch39)

Fig. 80 Hopping channel ch0~39 (8DPSK, Ch39)

Fig. 81 Hopping channel ch40~78 (8DPSK, Ch39)

No. I21N00537-BT

A. 8 Carrier Frequency Separation

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)	By a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

Measurement Results:

Mode	Channel	Packet	Separation of hopping channels	Test result $(\mathbf{M H z})$	Conclusion
GFSK	39	DH5	Fig.82	1.00	P
$\pi / 4$ DQPSK	39	2-DH5	Fig.83	1.01	P
8DPSK	39	3-DH5	Fig.84	1.00	P

See below for test graphs.

Conclusion: Pass

Fig. 82 Carrier Frequency Separation (GFSK, Ch39)

Fig. 83 Carrier Frequency Separation (T/4 DQPSK, Ch39)

Fig. 84 Carrier Frequency Separation (8DPSK, Ch39)

A. 9 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BT (Quasi-peak Limit) - AE2

Frequency range $(\mathbf{M H z})$	Quasi-peak Limit $(\mathbf{d B} \mu \mathbf{V})$	Result (dB $\mu \mathbf{V})$		Conclusion
	66 to 56		Traffic	

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

BT (Average Limit) - AE2

Frequency range (MHz)	Average-peak Limit ($\mathrm{dB} \mu \mathrm{V}$)	Result ($\mathrm{dB} \mu \mathrm{V}$)		Conclusion
		Traffic	IdIe	
0.15 to 0.5	56 to 46	Fig. 85	Fig. 86	P
0.5 to 5	46			
5 to 30	50			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

BT (Quasi-peak Limit) - AE3

Frequency range (MHz)	Quasi-peak Limit ($\mathrm{dB} \mu \mathrm{V}$)	Result ($\mathrm{dB} \mu \mathrm{V}$)		Conclusion
		Traffic	Idle	
0.15 to 0.5	66 to 56	Fig. 87	Fig. 88	P
0.5 to 5	56			
5 to 30	60			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

BT (Average Limit) - AE3

Frequency range (MHz)	Average-peak Limit ($\mathrm{dB} \mu \mathrm{V}$)	Result ($\mathrm{dB} \mu \mathrm{V}$)		Conclusion
		Traffic	Idle	
0.15 to 0.5	56 to 46	Fig. 87	Fig. 88	P
0.5 to 5	46			
5 to 30	50			
Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .				

Note: The measurement results include the L1 and N measurements.

No. I21N00537-BT

See below for test graphs.
Conclusion: Pass

Fig. 85 AC Powerline Conducted Emission (Traffic, AE2, 120V)

Measurement Results: Quasi Peak

Frequency $(\mathbf{M H z})$	Quasi Peak $(\mathbf{d B} \mu \mathbf{V})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.186000	49.99	64.21	14.22	N	ON	10
0.302000	39.85	60.19	20.34	N	ON	10
0.466000	37.03	56.59	19.55	N	ON	10
1.054000	37.37	56.00	18.63	L 1	ON	10
1.338000	36.34	56.00	19.66	L 1	ON	10
3.062000	30.43	56.00	25.57	L 1	ON	10

Measurement Results: Average

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \mu \mathrm{V})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.178000	43.31	54.58	11.26	N	ON	10
0.306000	30.36	50.08	19.71	N	ON	10
0.482000	31.04	46.31	15.26	L 1	ON	10
0.914000	27.96	46.00	18.04	L 1	ON	10
1.338000	26.05	46.00	19.95	L 1	ON	10
2.462000	22.34	46.00	23.66	L 1	ON	10

Fig. 86 AC Power line Conducted Emission (Idle, AE2, 120V)

Measurement Results: Quasi Peak

Frequency $(\mathbf{M H z})$	Quasi Peak $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.178000	46.45	64.58	18.12	N	ON	10
0.366000	37.22	58.59	21.37	L 1	ON	10
0.598000	36.70	56.00	19.30	L 1	ON	10
0.846000	37.86	56.00	18.14	L 1	ON	10
1.382000	34.80	56.00	21.20	L 1	ON	10
2.486000	31.53	56.00	24.47	L 1	ON	10

Measurement Results: Average

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.182000	35.40	54.39	19.00	L 1	ON	10
0.366000	28.34	48.59	20.25	L 1	ON	10
0.486000	31.15	46.24	15.09	L 1	ON	10
0.914000	28.41	46.00	17.59	L 1	ON	10
1.298000	26.59	46.00	19.41	L 1	ON	10
2.310000	22.62	46.00	23.38	L 1	ON	10

Fig. 87 AC Powerline Conducted Emission (Traffic, AE3, 120V)

Measurement Results: Quasi Peak

Frequency $(\mathbf{M H z})$	Quasi Peak $(\mathbf{d B \mu} \boldsymbol{\mathrm { V }})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.418000	41.19	57.49	16.30	N	ON	10
0.490000	37.22	56.17	18.95	L 1	ON	10
0.950000	31.84	56.00	24.16	L 1	ON	10
1.598000	28.99	56.00	27.01	L 1	ON	10
2.270000	26.93	56.00	29.07	L 1	ON	10
3.802000	24.86	56.00	31.14	L 1	ON	10

Measurement Results: Average

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B \mu V})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.418000	34.02	47.49	13.47	N	ON	10
0.502000	37.96	46.00	8.04	N	ON	10
0.962000	26.62	46.00	19.38	N	ON	10
1.458000	25.56	46.00	20.44	N	ON	10
2.294000	22.51	46.00	23.49	N	ON	10
4.210000	21.83	46.00	24.17	N	ON	10

Fig. 88 AC Power line Conducted Emission (Idle, AE3, 120V)

Measurement Results: Quasi Peak

Frequency $(\mathbf{M H z})$	Quasi Peak $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.422000	40.96	57.41	16.45	N	ON	10
0.494000	39.76	56.10	16.34	L 1	ON	10
0.770000	30.31	56.00	25.69	L 1	ON	10
1.406000	30.83	56.00	25.17	L 1	ON	10
2.198000	26.86	56.00	29.14	L 1	ON	10
3.682000	24.38	56.00	31.62	L 1	ON	10

Measurement Results: Average

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.418000	33.97	47.49	13.52	N	ON	10
0.502000	37.73	46.00	8.27	N	ON	10
0.870000	27.39	46.00	18.61	N	ON	10
1.362000	25.68	46.00	20.32	N	ON	10
2.282000	22.93	46.00	23.07	N	ON	10
3.950000	22.06	46.00	23.94	N	ON	10

