

SAR TEST REPORT

No. I22Z60904-SEM01

For

TCL Communication Ltd.

Mobile WiFi

Model Name: MW45AF

With

Hardware Version: V2.0

Software Version: MW45A_ZZ_02.00_01

FCC ID: 2ACCJB132

Issued Date: 2022-5-26

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I22Z60904-SEM01	Rev.0	Rev.0 2022-5-26 Initial creation of test r	

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	5
1.3 Project Data	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 APPLICANT INFORMATION	7
3.2 Manufacturer Information	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 ABOUT EUT	8
4.2 Internal Identification of EUT used during the test	8
4.3 Internal Identification of AE used during the test	8
5 TEST METHODOLOGY	9
5.1 APPLICABLE LIMIT REGULATIONS	9
5.2 APPLICABLE MEASUREMENT STANDARDS	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 Introduction	10
6.2 SAR DEFINITION	10
7 TISSUE SIMULATING LIQUIDS	11
7.1 Targets for tissue simulating liquid	11
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	15
8.1 System Setup	15
8.2 System Verification	16
9 MEASUREMENT PROCEDURES	16
9.1 Tests to be performed	16
9.2 GENERAL MEASUREMENT PROCEDURE	18
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	19
9.4 SAR MEASUREMENT FOR LTE	20
9.5 WI-FI MEASUREMENT PROCEDURES FOR SAR	21
9.6 POWER DRIFT	21
10 AREA SCAN BASED 1-G SAR	22
10.1 REQUIREMENT OF KDB	22
10.2 FAST SAR ALGORITHMS	22

11 CONDUCTED C	OUTPUT POWER	23
11.1 WCDMA MEAS	SUREMENT RESULT	23
11.2 LTE MEASUREM	TENT RESULT	24
11.4 Wi-Fi Measure	EMENT RESULT	33
12 SIMULTANEOU	S TX SAR CONSIDERATIONS	35
12.1 Introduction.		35
	ENNA SEPARATION DISTANCES	
	MENT POSITIONS	
12.4 STANDALONE S.	AR TEST EXCLUSION CONSIDERATIONS	36
13 EVALUATION C	OF SIMULTANEOUS	37
14 SAR TEST RES	ULT	37
14.1 SAR RESULTS FO	OR FAST SAR	38
	OR STANDARD PROCEDURE	
14.3 WLAN EVALUA	TION FOR 2.4G	44
15 SAR MEASURE	MENT VARIABILITY	48
16 MEASUREMEN	T UNCERTAINTY	49
16.1 Measurement	Uncertainty for Normal SAR Tests (300MHz~3GHz)	49
16.2 Measurement	UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	50
	Uncertainty for Fast SAR Tests (300MHz~3GHz)	
16.4 MEASUREMENT	Uncertainty for Fast SAR Tests (3~6GHz)	52
17 MAIN TEST INS	TRUMENTS	53
ANNEX A GRAPH	RESULTS	54
ANNEX B SYSTE	M VERIFICATION RESULTS	68
ANNEX C SAR M	IEASUREMENT SETUP	75
ANNEX D POSIT	ION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	81
ANNEX E EQUIV	ALENT MEDIA RECIPES	84
ANNEX F SYSTE	M VALIDATION	85
ANNEX G PROB	E CALIBRATION CERTIFICATE	86
ANNEX H DIPOL	E CALIBRATION CERTIFICATE	109
ANNEX I SPOT	CHECK AND NEWLY ADD BANDS	157
ANNEX I ACCRE	DITATION CERTIFICATE	204

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)	
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian Distri	
	Beijing, P. R. China100191	

1.2 Testing Environment

Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	July 2, 2020
Testing End Date:	May 11, 2022

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Lu Bingsong

Deputy Director of the laboratory

(Approved this test report)

2 Statement of Compliance

This EUT is variant product and the report of original sample is No. I20Z60996-SEM01. We do the spot check on highest value point for all bands of the original report, and do full test for newly add bands – GSM850, GSM1900, LTE B2 and LTE B12. The results of spot check and newly add bands are presented in the annex I.

The maximum results of SAR found during testing for TCL Communication Ltd. Mobile WiFi MW45AF are as follows:

Table 2.1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/kg)- Body	Equipment Class
	GSM850	0.69	
	GSM1900	0.78	
	WCDMA1900	1.26	
	WCDMA1700	1.22	
	WCDMA850	0.96	
Hotspot	LTE Band 2	0.96	
(Separation	LTE Band 4	0.90	PCE
` '	LTE Band 5	1.02	1 OL
Distance 10mm)	LTE Band 7	1.24	
	LTE Band 12	0.79	
	LTE Band 13	1.21	
	LTE Band 17	0.82	
	WLAN 2.4 GHz Ant0	0.19	DTS
	WLAN 2.4 GHz Ant1	0.31	סום

NOTE: This device does not support next to the ear voice operations, so the head SAR does not need to be tested.

The SAR values found for the MW45AN are below the maximum recommended levels of 1.6 W/kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.26 W/kg(1g)**.

Table 2.2: The sum of reported SAR values for main antenna and WiFi2.4G

	Position	Main antenna	WiFi Ant1	Sum
Highest reported SAR value for Body	Front 10mm	1.26 (WCDMA1900)	0.31	1.57

According to the above tables, the highest sum of reported SAR values is **1.57W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.	
Address/Post:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science	
	Park, Shatin, NT, Hong Kong	
Contact Person:	Peter yang	
Contact Email:	peter.yang@tcl.com	
Telephone:	+86 755 3664 5759	
Fax:	+86 755 3661 2000-81722	

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.	
Address/Post:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science	
	Park, Shatin, NT, Hong Kong	
Contact Person:	Peter yang	
Contact Email:	peter.yang@tcl.com	
Telephone:	+86 755 3664 5759	
Fax:	+86 755 3661 2000-81722	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Mobile WiFi
Model name:	MW45AF
Operating mode(s):	GSM850/900/1800/1900
	UMTS FDD 2/4/5/, Wi-Fi(2.4G)
	LTE Band 1/2/3/4/5/7/8/12/13/17/20/28
	824 – 849 MHz (GSM 850)
	1850 – 1910 MHz (GSM 1900)
	824–849 MHz (WCDMA 850 Band V)
	1710 – 1755 MHz (WCDMA 1700 Band IV)
	1850–1910 MHz (WCDMA1900 Band II)
	1860 – 1900 MHz (LTE Band 2)
Tested Tx Frequency:	1720 – 1745 MHz (LTE Band 4)
	824-849 MHz (LTE Band 5)
	2502.5 – 2567.5 MHz(LTE Band 7)
	699.7 – 715.3 MHz (LTE Band 12)
	779.5 –784.5 MHz (LTE Band 13)
	706.5 – 713.5MHz(LTE Band 17)
	2412 – 2462 MHz (Wi-Fi 2.4G)
Test device Production information:	Production unit
Device type:	MiFi
Antenna type:	Embedded
Hotspot mode:	Support

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW	SW Version
EUT1	351710770000080	V2.0	MW45A_ZZ_02.00_01
EUT2	351710770000049	V2.0	MW45A_ZZ_02.00_01
EUT3	351710770000106	V2.0	MW45A_ZZ_02.00_01

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1~2 and conducted power with the EUT3.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	LI-ION Battery	TLi021F7	VEKEN
AE2	Battery	LI-ION Battery	TLi021FA	TMB

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB941225 D06 Hotspot Mode SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

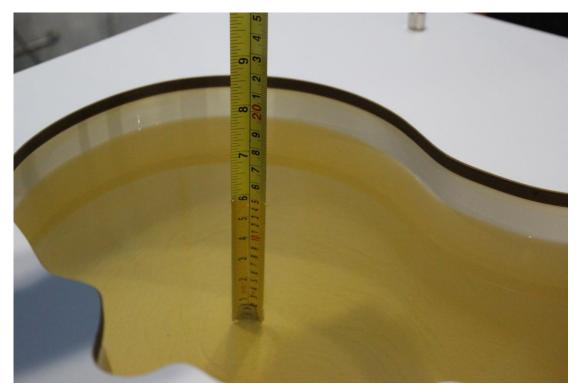
7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

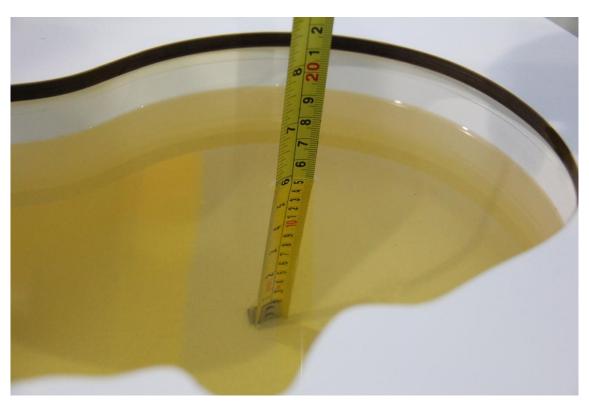
Table 7.1: Targets for tissue simulating liquid

				•	
Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
750	Head	0.89	0.85~0.93	41.94	39.8~44.0
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
1750	Head	1.37	1.30~1.44	40.08	38.1~42.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2600	Head	1.96	1.86~2.06	39.01	37.1~41.0

7.2 Dielectric Performance


Table 7.2: Dielectric Performance of Tissue Simulating Liquid

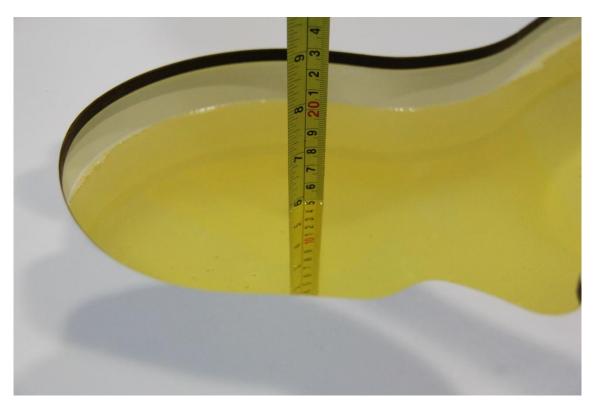
Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2020/7/2	750 MHz	Head	41.35	-1.41	0.888	-0.22
2020/7/3	835 MHz	Head	41.1	-0.96	0.892	-0.89
2020/7/4	1750 MHz	Head	40.82	1.85	1.377	0.51
2020/7/5	1900 MHz	Head	39.99	-0.02	1.428	2.00
2020/7/6	2450 MHz	Head	38.99	-0.54	1.78	-1.11
2020/7/7	2600 MHz	Head	39.06	0.13	1.925	-1.79


Note: The liquid temperature is 22.0°C



Picture 7-1 Liquid depth in the Head Phantom (750MHz)

Picture 7-2 Liquid depth in the Head Phantom (835 MHz)



Picture 7-3 Liquid depth in the Head Phantom (1750 MHz)

Picture 7-4 Liquid depth in the Head Phantom (1900 MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)

Picture 7-6 Liquid depth in the Head Phantom (2600 MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement **Target value** Measured value Deviation Date (W/kg) (W/kg) Frequency (yyyy-mm-10 g 10 g 1 g 10 g 1 g 1 g Average Average dd) Average **Average** Average Average 2020/7/2 750 MHz 5.57 8.57 5.68 8.60 1.97% 0.35% 2020/7/3 835 MHz 9.70 6.29 6.32 9.60 0.48% -1.03% 2020/7/4 1750 MHz 19.30 0.22% 36.60 19.32 36.68 0.10% 2020/7/5 1900 MHz 20.80 39.70 21.12 39.68 1.54% -0.05% 2020/7/6 2450 MHz 24.20 51.60 24.48 50.72 1.16% -1.71% 2020/7/7 2600 MHz 25.10 55.80 25.00 54.72 -1.94% -0.40%

Table 8.1: System Verification of Head

9 Measurement Procedures

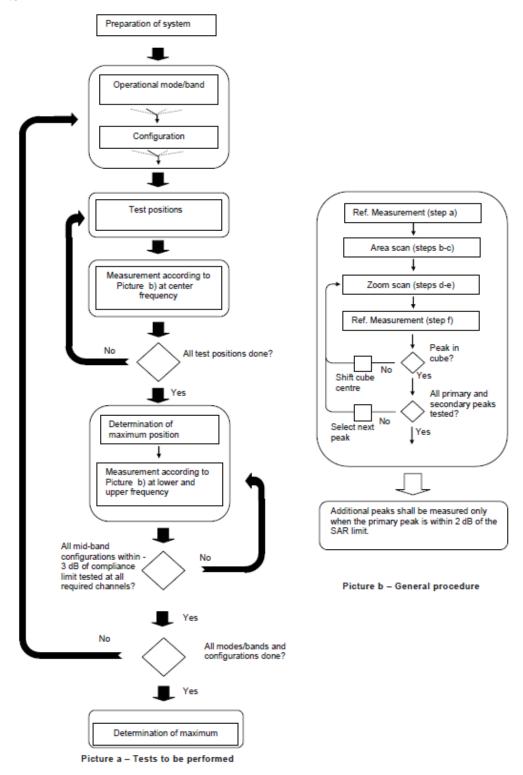
9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.


Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest

frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz
Maximum distance from (geometric center of pro		•	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
	Maximum probe angle from probe axis to phantom surface normal at the measurement location			20° ± 1°
			\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the measurement plane orientation, measurement resolution must be dimension of the test device with point on the test device.	is smaller than the above, the e < the corresponding x or y
Maximum zoom scan sp	atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform g	rid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Zoom(n-1)
Minimum zoom scan volume	x, y, z	l	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	β_d (SF)	eta_c / eta_d	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSPA Data Devices

Sub-	$oldsymbol{eta_c}$	$eta_{\!\scriptscriptstyle d}$	eta_d	$oldsymbol{eta_c}$ / $oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	$oldsymbol{eta_{ed}}$	$oldsymbol{eta_{ed}}$	CM (dB)	MPR (dB)	AG Index	E- TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$eta_{ed1:47/15} \ eta_{ed2:47/15}$	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

Rel.8 DC-HSDPA (Cat 24)

SAR test exclusion for Rel.8 DC-HSDPA must satisfy the SAR test exclusion requirements of Rel.5 HSDPA. SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion.

9.4 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

- 1) QPSK with 1 RB allocation
 - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
- 2) QPSK with 50% RB allocation The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation
 - For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.5 Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.6 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz)and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm mare 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 WCDMA Measurement result

Table 11.1-1: The conducted Power for WCDMA

	band	FDDV result						
Item	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)	Tune up			
WCDMA	1	21.02	21.00	21.01	22.0			
	1	19.79	19.67	19.96	21.5			
	2	19.07	19.01	19.00	21.0			
HSUPA	3	18.77	19.51	18.79	20.5			
	4	19.52	19.68	19.83	21.5			
	5	20.51	20.63	20.51	21.5			
HSPA+		19.71	19.70	19.72	21.5			
	1	20.21	20.19	20.18	21.5			
DC HCDDA	2	20.26	20.29	20.31	21.5			
DC-HSDPA	3	19.78	19.74	19.81	21.5			
	4	19.85	19.80	19.77	21.5			
	band		FDDIV result					
Item	ARFCN	1513 (1752.6MHz)	1412 (1732.4MHz)	1312 (1712.4MHz)	Tun up			
WCDMA	1	20.54	20.55	20.63	21.7			
	1	19.59	19.84	19.53	21.5			
	2	19.01	19.00	19.01	21.0			
HSUPA	3	19.13	18.50	18.51	20.5			
	4	19.22	19.75	19.15	21.5			
	5	20.46	20.30	20.25	21.5			
HSPA+		19.42	19.45	19.37	21.5			
	1	19.83	19.89	19.82	21.5			
DC-HSDPA	2	19.96	19.84	19.81	21.5			
DC-HSDPA	3	19.43	19.42	19.29	21.5			
	4	19.47	19.40	19.36	21.5			
	band		FDDII resul	t				
Item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)	Tun up			
WCDMA	1	21.00	21.08	21.03	21.5			
	1	19.81	19.61	19.67	21.5			
	2	19.43	19.10	19.07	21.0			
HSUPA	3	19.49	19.42	18.73	20.5			
	4	19.50	19.52	19.79	21.5			
	5	20.97	20.98	20.99	21.5			
HSPA+		19.60	19.75	19.73	21.5			
DC-HSDPA	1	20.05	20.09	20.16	21.5			

2	20.07	20.18	20.19	21.50
3	19.66	19.74	19.82	21.50
4	19.63	19.73	19.80	21.50

11.2 LTE Measurement result

Table 11.2-1: Maximum Power Reduction (MPR) for LTE

	Channel b	Channel bandwidth / Transmission bandwidth configuration [RB]						
Modulation	1.4	3	5	10	15	20	MPR (dB)	
	MHz	MHz	MHz	MHz	MHz	MHz		
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1	
16 QAM	≤ 5	≤ 4	≤8	≤ 12	≤ 16	≤ 18	1	
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	2	

Table 11.2-2: The tune up for LTE

Band	Tune up
LTE Band 4	21.9
LTE Band 5	22.5
LTE Band 7	21.7
LTE Band 13	22.5
LTE Band 17	22.5

Table 11.2-3: The conducted Power for LTE

	Band 4								
D 1 : 101	RB allocation		QPSK	16QAM					
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output power (dBm)	Actual output power (dBm)					
		1754.3 (20393)	21.00	19.90					
	1RB-High (5)	1732.5 (20175)	20.86	19.86					
		1710.7 (19957)	20.63	19.64					
		1754.3 (20393)	21.30	20.03					
	1RB-Middle (3)	1732.5 (20175)	21.02	19.87					
		1710.7 (19957)	20.91	19.84					
		1754.3 (20393)	20.85	19.87					
	1RB-Low (0)	1732.5 (20175)	21.01	19.84					
		1710.7 (19957)	20.72	19.48					
1.4MHz		1754.3 (20393)	20.95	19.98					
	3RB-High (3)	1732.5 (20175)	21.08	19.78					
		1710.7 (19957)	21.00	19.62					
		1754.3 (20393)	20.97	19.87					
	3RB-Middle (1)	1732.5 (20175)	21.14	19.84					
		1710.7 (19957)	20.96	19.67					
		1754.3 (20393)	20.79	19.72					
	3RB-Low (0)	1732.5 (20175)	21.06	20.08					
		1710.7 (19957)	21.00	19.72					
	6RB (0)	1754.3 (20393)	19.96	19.05					

		1732.5 (20175)	20.06	19.22
		, ,		
		1710.7 (19957)	19.88	18.54
	4DD Himb (44)	1753.5 (20385)	20.90	20.07
	1RB-High (14)	1732.5 (20175)	21.18	19.66
		1711.5 (19965)	20.74	20.32
	(5)	1753.5 (20385)	20.79	19.85
	1RB-Middle (7)	1732.5 (20175)	21.07	19.94
		1711.5 (19965)	20.69	19.86
	(0)	1753.5 (20385)	20.78	19.80
	1RB-Low (0)	1732.5 (20175)	21.16	20.31
		1711.5 (19965)	20.77	19.53
		1753.5 (20385)	19.79	18.51
3MHz	8RB-High (7)	1732.5 (20175)	19.99	19.15
		1711.5 (19965)	19.76	18.60
		1753.5 (20385)	19.86	18.60
	8RB-Middle (4)	1732.5 (20175)	19.98	19.03
		1711.5 (19965)	19.69	18.76
		1753.5 (20385)	19.80	18.55
	8RB-Low (0)	1732.5 (20175)	19.94	19.02
		1711.5 (19965)	19.81	18.90
	15RB (0)	1753.5 (20385)	19.84	18.70
		1732.5 (20175)	20.03	18.93
		1711.5 (19965)	19.76	18.87
		1752.5 (20375)	20.76	19.78
	1RB-High (24)	1732.5 (20175)	21.05	19.53
		1712.5 (19975)	20.47	19.52
		1752.5 (20375)	20.71	19.56
	1RB-Middle (12)	1732.5 (20175)	21.07	19.48
		1712.5 (19975)	20.60	19.47
		1752.5 (20375)	20.88	19.75
	1RB-Low (0)	1732.5 (20175)	21.16	19.54
		1712.5 (19975)	20.52	19.57
		1752.5 (20375)	19.90	18.80
5MHz	12RB-High (13)	1732.5 (20175)	19.99	18.90
		1712.5 (19975)	19.69	18.57
		1752.5 (20375)	19.86	18.80
	12RB-Middle (6)	1732.5 (20175)	19.87	18.68
		1712.5 (19975)	19.75	18.67
		1752.5 (20375)	19.89	18.83
	12RB-Low (0)	1732.5 (20175)	19.88	18.71
	, ,	1712.5 (19975)	19.72	18.79
		1752.5 (20375)	19.82	18.67
	25RB (0)	1732.5 (20175)	19.95	18.90
		1712.5 (19975)	19.74	18.71
		1750 (20350)	20.84	20.00
	1RB-High (49)	1732.5 (20175)	21.08	19.69
10MHz		1715 (20000)	20.68	19.34
	1RB-Middle (24)	1750 (20350)	21.01	20.15
		55 (2555)		_5.10

		1732.5 (20175)	21.14	19.69
		1715 (20000)	20.86	19.68
		1750 (20350)	21.06	19.76
	1RB-Low (0)	1732.5 (20175)	20.99	19.56
		1715 (20000)	20.78	19.55
		1750 (20350)	19.75	18.80
	25RB-High (25)	1732.5 (20175)	19.97	18.95
		1715 (20000)	19.70	18.73
	25RB-Middle	1750 (20350)	19.83	18.95
	(12)	1732.5 (20175)	19.89	18.89
	(12)	1715 (20000)	19.80	18.84
		1750 (20350)	19.91	19.09
	25RB-Low (0)	1732.5 (20175)	19.93	18.82
		1715 (20000)	19.82	18.74
		1750 (20350)	19.81	18.84
	50RB (0)	1732.5 (20175)	20.00	18.88
		1715 (20000)	19.71	18.61
		1747.5 (20325)	20.69	20.61
	1RB-High (74)	1732.5 (20175)	21.14	20.24
		1717.5 (20025)	20.83	19.78
	1RB-Middle (37)	1747.5 (20325)	20.77	21.05
		1732.5 (20175)	21.07	19.82
		1717.5 (20025)	20.66	19.57
		1747.5 (20325)	20.84	20.53
	1RB-Low (0)	1732.5 (20175)	21.11	19.87
		1717.5 (20025)	20.79	19.80
		1747.5 (20325)	19.79	18.71
15MHz	36RB-High (38)	1732.5 (20175)	20.01	18.98
		1717.5 (20025)	19.82	18.77
	26DD Middle	1747.5 (20325)	19.85	18.80
	36RB-Middle (19)	1732.5 (20175)	19.88	18.90
	(10)	1717.5 (20025)	19.70	18.81
		1747.5 (20325)	19.77	18.70
	36RB-Low (0)	1732.5 (20175)	19.87	18.88
		1717.5 (20025)	19.83	18.89
		1747.5 (20325)	19.76	18.80
	75RB (0)	1732.5 (20175)	19.98	19.00
		1717.5 (20025)	19.76	18.78
		1745 (20300)	20.59	19.61
	1RB-High (99)	1732.5 (20175)	20.49	19.23
		1720 (20050)	19.99	19.13
		1745 (20300)	20.60	20.04
20MHz	1RB-Middle (50)	1732.5 (20175)	20.11	19.47
ZUIVITZ		1720 (20050)	20.54	19.81
		1745 (20300)	20.42	19.03
	1RB-Low (0)	1732.5 (20175)	20.35	19.46
		1720 (20050)	20.02	19.58
	50RB-High (50)	1745 (20300)	19.48	18.44

	1732.5 (20175)	19.72	18.59
	1720 (20050)	19.67	18.76
50DD M	1745 (20300)	19.49	18.54
50RB-Mid (25)	1732.5 (20175)	19.61	18.47
(23)	1720 (20050)	19.51	18.57
	1745 (20300)	19.51	18.41
50RB-Lov	v (0) 1732.5 (20175)	19.59	18.57
	1720 (20050)	19.38	18.58
	1745 (20300)	19.52	18.48
100RB ((0) 1732.5 (20175)	19.75	18.62
	1720 (20050)	19.49	18.50

		Band 5		
D - 4 -	RB allocation		QPSK	16QAM
Bandwidth (MHz)	RB offset (Start	Frequency (MHz)	Actual output	Actual output
(IVIITZ)	RB)		power (dBm)	power (dBm)
	1RB	848.3	20.90	19.81
	High (5)	836.5	21.22	20.01
	111911 (0)	824.7	20.99	20.34
	1RB	848.3	21.26	19.71
	Middle (3)	836.5	21.30	19.99
	Wildale (0)	824.7	21.51	20.56
	4DD	848.3	21.25	19.64
	1RB Low (0)	836.5	21.12	19.93
	LOW (U)	824.7	21.13	20.49
	6DD	848.3	21.21	19.87
1.4 MHz	3RB	836.5	21.36	19.74
	High (3)	824.7	21.27	20.33
	3RB Middle (1)	848.3	21.27	19.88
		836.5	21.32	19.73
		824.7	21.19	20.36
	3RB Low (0)	848.3	21.25	19.86
		836.5	21.26	20.24
		824.7	21.15	20.28
	6RB	848.3	20.27	19.19
		836.5	20.33	19.29
	(0)	824.7	20.31	18.99
	400	847.5	20.93	19.76
	1RB	836.5	21.35	20.29
	High (14)	825.5	21.30	20.20
	400	847.5	21.23	19.88
	1RB Middle (7)	836.5	21.44	19.70
3 MHz	iviluale (1)	825.5	21.63	20.49
	455	847.5	21.17	20.30
	1RB	836.5	21.52	19.75
	Low (0)	825.5	21.28	20.31
	8RB	847.5	20.21	19.16
	High (7)	836.5	20.27	19.01

		825.5	20.41	19.23
-				
	8RB	847.5	20.35	19.24
	Middle (4)	836.5	20.27	19.09
-		825.5	20.45	19.30
	8RB	847.5	20.29	19.26
	Low (0)	836.5	20.25	18.99
-	()	825.5	20.42	19.25
	15RB	847.5	20.25	19.05
	(0)	836.5	20.33	19.24
	(-)	825.5	20.40	19.36
	1RB	846.5	20.91	20.02
	High (24)	836.5	21.04	20.04
_	9 (= .)	826.5	20.84	20.25
	1RB	846.5	21.40	20.19
	Middle (12)	836.5	21.11	19.85
	Wildale (12)	826.5	21.35	20.10
	4DD	846.5	21.31	20.20
	1RB Low (0)	836.5	21.13	19.76
	LOW (O)	826.5	21.12	20.24
	4000	846.5	20.10	19.02
5 MHz	12RB	836.5	20.27	19.28
	High (13)	826.5	20.33	19.17
	12RB Middle (6)	846.5	20.17	19.28
		836.5	20.22	19.33
		826.5	20.30	19.45
-		846.5	20.19	19.29
	12RB	836.5	20.20	19.18
	Low (0)	826.5	20.40	19.24
		846.5	20.11	19.12
	25RB	836.5	20.32	19.38
	(0)	826.5	20.38	19.32
		844	20.59	19.59
	1RB	836.5	20.91	19.73
	High (49)	829	20.74	19.74
-		844	21.06	19.71
	1RB	836.5	20.84	20.11
	Middle (24)	829	21.26	20.28
-		844	20.57	19.58
	1RB	836.5	20.76	19.86
10 MHz	Low (0)	829	21.14	20.38
I V IVII IZ		844	19.90	18.89
	25RB	836.5	19.94	19.02
	High (25)	829	19.91	18.91
		844	19.92	18.96
	25RB	836.5	19.88	18.97
	Middle (12)			
<u> </u>	OCDD	829	20.02	19.03
	25RB	844	19.85	18.86
	Low (0)	836.5	19.88	18.96

	829	20.07	19.07
SODD	844	19.82	18.81
50RB (0)	836.5	19.99	18.94
	829	19.99	18.93

		Band 7		
Bandwidth	RB allocation	Frequency	QPSK	16QAM
(MHz)	RB offset (Start RB)	(MHz)	Actual output power (dBm)	Actual output powe (dBm)
	400	2567.5	20.77	19.54
	1RB High (24)	2535	20.99	19.67
	1 ligi1 (24)	2502.5	20.87	19.85
	400	2567.5	21.09	19.83
	1RB	2535	21.17	19.75
	Middle (12)	2502.5	20.88	19.76
Ī	455	2567.5	20.97	19.82
	1RB	2535	21.14	19.48
	Low (0)	2502.5	21.18	19.62
Ī	4000	2567.5	19.92	18.84
5 MHz	12RB	2535	20.16	19.02
	High (13)	2502.5	20.04	18.79
=		2567.5	20.04	19.15
	12RB Middle (6)	2535	20.14	18.84
		2502.5	20.11	18.86
	12RB Low (0)	2567.5	20.03	18.87
		2535	20.13	18.85
		2502.5	20.03	19.07
	25RB (0)	2567.5	19.94	18.85
		2535	20.14	19.00
		2502.5	20.14	19.27
	1RB High (49)	2565	21.02	19.84
		2535	20.97	19.94
		2505	21.14	19.77
ļ l		2565	21.35	19.84
	1RB	2535	21.14	20.17
	Middle (24)	2505	21.45	20.39
-		2565	21.14	19.88
	1RB	2535	21.25	20.15
10 MHz	Low (0)	2505	21.13	20.38
		2565	20.27	19.01
	25RB	2535	20.37	19.32
	High (25)	2505	20.38	19.04
-		2565	20.21	19.04
	25RB	2535	20.31	19.12
	Middle (12)	2505	20.30	19.12
-	25RB	2565	20.15	19.13
	25RB Low (0)	2535	20.13	19.07
	2311 (3)	2000	20.22	10.17

		2505	20.30	19.13
<u> </u>		2565	20.22	19.03
	50RB	2535	20.26	19.08
	(0)	2505	20.27	18.99
		2562.5	20.96	20.61
	1RB	2535	20.92	20.03
	High (74)	2507.5	21.05	20.26
		2562.5	21.13	20.72
	1RB	2535	20.97	20.00
	Middle (37)	2507.5	21.15	20.28
		2562.5	21.12	20.66
	1RB	2535	20.93	19.93
	Low (0)	2507.5	21.29	20.35
	0000	2562.5	20.07	19.03
15 MHz	36RB	2535	20.19	19.11
	High (38)	2507.5	20.15	19.01
	0000	2562.5	19.95	19.06
	36RB Middle (19)	2535	20.14	19.09
	Middle (19)	2507.5	20.17	19.04
	0000	2562.5	19.91	19.07
	36RB	2535	20.08	19.05
	Low (0)	2507.5	20.17	19.06
		2562.5	19.95	19.10
	75RB	2535	20.11	18.97
	(0)	2507.5	20.10	19.02
		2560	20.81	19.92
	1RB	2535	21.26	20.33
	High (99)	2510	20.88	19.79
		2560	21.18	20.20
	1RB	2535	21.32	20.38
	Middle (50)	2510	21.44	20.56
		2560	20.89	20.00
	1RB	2535	20.94	20.12
	Low (0)	2510	21.11	20.42
	5000	2560	20.26	19.16
20 MHz	50RB High (50)	2535	20.31	19.34
	rigii (50)	2510	20.06	19.12
	5000	2560	20.17	19.12
	50RB	2535	20.28	19.31
	Middle (25)	2510	20.21	19.19
	5000	2560	20.13	19.05
	50RB	2535	20.21	19.25
	Low (0)	2510	20.16	19.15
	40055	2560	20.19	19.15
	100RB	2535	20.24	19.21
	(0)	2510	20.15	19.13

Band 13				
D 1 : 111	RB allocation		QPSK	16QAM
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output power (dBm)	Actual output power (dBm)
		784.4	20.81	19.88
	1RB High (24)	782	21.31	19.73
		799.5	20.92	20.01
		784.4	21.40	19.83
	1RB Middle (12)	782	21.22	19.62
		799.5	21.24	19.78
		784.4	21.20	19.93
	1RB Low (0)	782	21.34	19.54
	()	799.5	20.93	19.65
	12RB High (13)	784.4	19.99	18.82
5 MHz		782	20.12	19.00
		799.5	20.17	18.94
	12RB Middle (6)	784.4	20.05	18.88
		782	20.10	18.90
		799.5	20.06	19.09
	12RB Low (0)	784.4	20.12	18.99
		782	20.10	19.00
		799.5	20.07	19.35
		784.4	19.94	18.92
	25RB (0)	782	20.08	19.00
		799.5	20.19	19.16
	1RB High (49)	782	20.87	19.78
	1RB Middle (24)	782	21.13	20.43
	1RB Low (0)	782	20.94	20.16
10 MHz	25RB High (25)	782	20.01	19.29
	25RB Middle (12)	782	20.08	19.27
	25RB Low (0)	782	20.06	19.26
	50RB (0)	782	20.04	19.09

Band 17					
	RB allocation		QPSK	16QAM	
Bandwidth (MHz)	RB offset (Start RB)	Frequency (MHz)	Actual output power (dBm)	Actual output power (dBm)	
		713.5 (23825)	20.98	19.97	
	1RB-High (24)	710 (23790)	20.89	20.09	
		706.5 (23755)	20.81	20.12	
5MHz	4DD M: 1 !!	713.5 (23825)	21.09	19.98	
	1RB-Middle (12)	710 (23790)	21.04	20.20	
	(12)	706.5 (23755)	21.06	20.05	
	1RB-Low (0)	713.5 (23825)	21.05	19.93	

		710 (23790)	21.07	20.15
		706.5 (23755)	21.12	19.82
		713.5 (23825)	20.02	18.93
	12RB-High (13)	710 (23790)	20.01	19.09
	12RB-High (13)	706.5 (23755)	20.10	19.03
		713.5 (23825)	20.04	19.07
	12RB-Middle	710 (23790)	20.07	19.14
	(6)	706.5 (23755)	20.18	19.08
		713.5 (23825)	20.05	19.09
	12RB-Low (0)	710.0 (23790)	20.00	19.06
		706.5 (23755)	20.07	19.12
		713.5 (23825)	20.03	19.08
	25RB (0)	710 (23790)	20.02	19.07
	20113 (0)	706.5 (23755)	20.14	19.10
		711 (23800)	20.85	19.82
	1RB-High (49)	,	21.01	19.83
		710 (23790)	20.91	19.83
		709 (23780)	21.08	19.63
	1RB-Middle	711 (23800)	21.06	
(24)	(24)	710 (23790)		20.29
		709 (23780)	21.11	19.99
	1DD L ov. (0)	711 (23800)	20.85	19.74
	1RB-Low (0)	710 (23790)	21.07	19.90
		709 (23780)	21.13	19.57
401411		711 (23800)	20.06	19.02
10MHz	25RB-High (25)	710 (23790)	20.12	18.97
		709 (23780)	20.18	19.04
	25RB-Middle	711 (23800)	20.14	19.10
	(12)	710 (23790)	20.17	19.00
	(/	709 (23780)	20.15	19.07
		711 (23800)	20.13	19.00
	25RB-Low (0)	710 (23790)	20.06	18.92
		709 (23780)	20.18	19.08
		711 (23800)	20.08	18.94
	50RB (0)	710 (23790)	20.09	18.98
		709 (23780)	20.27	19.06

11.4 Wi-Fi Measurement result

The average conducted power for Wi-Fi is as following:

2.4GHz ANT1			
802.11b	Channel\data	1Mbps	
	11(2462MHz)	16.62	
WLAN2450	6(2437(MHz)	16.98	
	1(2412MHz)	16.59	
	Tune up	17.00	
802.11g	Channel\data	6Mbps	
	11(2462MHz)	14.46	
WLAN2450	6(2437(MHz)	14.76	
	1(2412MHz)	14.88	
	Tune up	15.00	
802.11n-20MHz	Channel\data	MCS0	
	11(2462MHz)	12.78	
WLAN2450	6(2437(MHz)	12.56	
	1(2412MHz)	12.74	
	Tune up	13.00	
802.11n-40MHz	Channel\data	MCS0	
	9(2452MHz)	12.75	
WLAN2450	6(2437MHz)	12.77	
	3(2422MHz)	12.56	
	Tune up	13.00	

2.4GHz ANT0			
802.11b	Channel\data	1Mbps	
	11(2462MHz)	16.65	
WLAN2450	6(2437(MHz)	16.67	
	1(2412MHz)	16.50	
	Tune up	17.00	
802.11g	Channel\data	6Mbps	
	11(2462MHz)	14.54	
WLAN2450	6(2437(MHz)	14.71	
	1(2412MHz)	14.56	
	Tune up	15.00	
802.11n-20MHz	Channel\data	MCS0	
	11(2462MHz)	12.76	
WLAN2450	6(2437(MHz)	12.44	
	1(2412MHz)	12.65	
	Tune up	13.00	
802.11n-40MHz	Channel\data	MCS0	
	9(2452MHz)	12.44	
WLAN2450	6(2437MHz)	12.66	
	3(2422MHz)	12.79	
	Tune up	13.00	

2.4G MIMO(ANT0+ANT1)					
	Channel\data	MCS0			
802.11n-20MHz	rate				
WLAN2450	11(2462MHz)	15.67			
	6(2437(MHz)	15.87			
	1(2412MHz)	15.75			
	Tune up	16.00			
802.11n-40MHz	Channel\data	MCS0			
	rate				
WLAN2450	9(2452MHz)	15.70			
	6(2437MHz)	15.79			
	3(2422MHz)	15.75			
	Tune up	16.00			

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g devices which may simultaneously transmit with the licensed transmitter.

For this device, the Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

MW45AF			
1.1-LENG-ALM	LTE: Band 1/2/3/4/5/7/8/12/13/17/20/28		
Main antenna	WCDMA: Band 1, 2, 4, 5, 8		
	GSM: 850/900/1800/1900MHz		
Diversity antenna	LTE: Band 1/2/3/4/5/7/8/12/13/17/20/28		
	WCDMA: Band 1, 2, 4, 5, 8		
WIFI-0			
WIFI-1	WIFI2.4G		

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions							
Mode	Front	Rear	Left edge	Right edge	Top edge	Bottom edge	
Main antenna	Yes	Yes	Yes	No	Yes	Yes	
WLAN Ant1	Yes	Yes	Yes	No	Yes	No	
WLAN Ant0	Yes	Yes	Yes	No	No	Yes	

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz)	Position	SAR test exclusion	RF output power		SAR test exclusion
			threshold(mW)	dBm	mW	
2.4GHz WLAN	2.45	Body	19.17	17	50.12	No

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi2.4G-Ant0

	Position	Main antenna	WiFi	Sum
Highest reported SAR value for Body	Front 10mm	1.26 (WCDMA1900)	0.19	1.45

Table 13.2: The sum of reported SAR values for main antenna and WiFi2.4G-Ant1

	Position	Main antenna	WiFi	Sum
Highest reported SAR value for Body	Front 10mm	1.26 (WCDMA1900)	0.31	1.57

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10 mm applied to the condition of body test.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-gSAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR
$$\times 10^{(P_{Target}-P_{Measured})/10}$$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
WCDMA<E FDD	1:1

14.1 SAR results for Fast SAR

Table 14.1-1: SAR Values (WCDMA1900 MHz Band - Body)

			Am	bient Temperat	ure: 22.9 °C	Liquid Tempe	rature: 22.5°C			
Fred	quency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power Drift
Ch.	MHz	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	(dB)
9538	1907.6	Front	/	21.00	21.5	0.589	0.66	1.05	1.18	0.05
9400	1880	Front	Fig.1	21.08	21.5	0.718	0.79	1.14	1.26	0.718
9262	1852.4	Front	/	21.03	21.5	0.709	0.79	1.12	1.25	-0.11
9538	1907.6	Rear	1	21	21.5	0.547	0.61	0.899	1.01	-0.12
9400	1880	Rear	1	21.08	21.5	0.585	0.64	0.945	1.04	-0.07
9262	1852.4	Rear	/	21.03	21.5	0.546	0.61	0.843	0.94	0.05
9400	1880	Left	1	21.08	21.5	0.345	0.38	0.614	0.68	0.01
9400	1880	Bottom	/	21.08	21.5	0.424	0.47	0.722	0.80	0.06
9400	1880	Тор	/	21.08	21.5	0.362	0.40	0.576	0.63	0.01

Note1: The distance between the EUT and the phantom bottom is 10mm

Table 14.1-2: SAR Values (WCDMA1700 MHz Band - Body)

	Table 14.1-2. SAIT values (WCDMAT/00 MITZ Balla - Body)													
			Am	bient Temperat	ure: 22.9 °C	Liquid Tempe	rature: 22.5°C							
Fred	quency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power				
Ch.	MHz	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)				
1513	1752.6	Front	Fig.2	20.54	21.7	0.555	0.72	0.934	1.22	0.01				
1412	1732.5	Front	/	20.55	21.7	0.536	0.70	0.898	1.17	0.07				
1312	1712.4	Front	/	20.63	21.7	0.513	0.66	0.865	1.11	-0.15				
1513	1752.6	Rear	/	20.54	21.7	0.412	0.54	0.672	0.88	-0.13				
1412	1732.5	Rear	/	20.55	21.7	0.449	0.59	0.703	0.92	-0.04				
1312	1712.4	Rear	/	20.63	21.7	0.436	0.56	0.672	0.86	-0.09				
1513	1752.6	Left	/	20.54	21.7	0.432	0.56	0.778	1.02	-0.08				
1412	1732.5	Left	/	20.55	21.7	0.413	0.54	0.745	0.97	-0.03				
1312	1712.4	Left	/	20.63	21.7	0.428	0.55	0.768	0.98	-0.05				
1412	1732.5	Bottom	/	20.55	21.7	0.118	0.15	0.193	0.25	-0.16				
1412	1732.5	Тор	/	20.55	21.7	0.322	0.42	0.532	0.69	0.17				

Note1: The distance between the EUT and the phantom bottom is 10mm

Table 14.1-3: SAR Values (WCDMA 850 MHz Band - Body)

			Am	bient Temperat	ure: 22.9 °C	Liquid Temperature: 22.5°C					
Frequency		Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)(Measured SAR(1g)	Reported SAR(1g)	Power Drift	
Ch.	MHz	Position	No.	(dBm)	Power (dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)	
4183	836.6	Front	/	21.00	22	0.454	0.57	0.609	0.77	-0.06	
4233	846.6	Rear	/	21.02	22	0.507	0.64	0.685	0.86	-0.12	
4183	836.6	Rear	/	21.00	22	0.469	0.59	0.639	0.80	-0.18	
4132	826.4	Rear	Fig.3	21.01	22	0.55	0.69	0.763	0.96	0.55	

4183	836.6	Left	/	21.00	22	0.065	0.08	0.118	0.15	0.09
4183	836.6	Bottom	/	21.00	22	0.231	0.29	0.32	0.40	0.02
4183	836.6	Тор	/	21.00	22	0.261	0.33	0.374	0.47	0.15

Note1: The distance between the EUT and the phantom bottom is 10mm

Table 14.1-5: SAR Values (LTE Band4 - Body)

			Amb	ient Tempera		C Liquid	Temperature	: 22.5°C			
Frequ	uency		Test	Figure	Conduct ed	Max. tune-	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Positio n	No.	Power (dBm)	up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20300	1745	1RB-Mid	Front	/	20.6	21.9	0.413	0.56	0.64	0.86	0.01
20175	1732.5	1RB-High	Front	/	20.11	21.9	0.369	0.56	0.591	0.89	0.01
20050	1720	1RB-Mid	Front	/	20.54	21.9	0.416	0.57	0.654	0.89	0.12
20300	1745	1RB-Mid	Rear	/	20.6	21.9	0.36	0.49	0.585	0.79	-0.1
20300	1745	1RB-Mid	Left	Fig.5	20.6	21.9	0.372	0.50	0.669	0.90	0.372
20175	1732.5	1RB-High	Left	1	20.11	21.9	0.349	0.53	0.591	0.89	0.02
20050	1720	1RB-Mid	Left	/	20.54	21.9	0.353	0.48	0.634	0.87	-0.02
20300	1745	1RB-Mid	Bottom	/	20.6	21.9	0.177	0.24	0.301	0.41	-0.04
20300	1745	1RB-Mid	Тор	/	20.6	21.9	0.256	0.35	0.422	0.57	-0.17
20175	1732.5	50RB-High	Front	/	19.72	20.9	0.256	0.34	0.408	0.54	0.12
20175	1732.5	50RB-High	Rear	/	19.72	20.9	0.335	0.44	0.559	0.73	-0.14
20175	1732.5	50RB-High	Left	1	19.72	20.9	0.329	0.43	0.608	0.80	-0.01
20175	1732.5	50RB-High	Bottom	1	19.72	20.9	0.153	0.20	0.258	0.34	-0.01
20175	1732.5	50RB-High	Тор	/	19.72	20.9	0.197	0.26	0.324	0.43	0.12
20175	1732.5	100RB	Front	/	19.75	20.9	0.378	0.49	0.651	0.85	-0.15
20175	1732.5	100RB	Left	/	19.75	20.9	0.314	0.41	0.558	0.73	-0.18

Note1: The LTE mode is QPSK_20MHz.

Table 14.1-6: SAR Values (LTE Band5- Body)

			Ambient T	emperature	e: 22.9 °C	°C Liquid Temperature: 22.5°C					
Fred	quency		Test	Figure	Conduc ted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Positio n	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20450	829	1RB-Middle	Front	/	21.26	22.5	0.458	0.61	0.677	0.90	0.15
20600	844	1RB-Middle	Rear	Fig.6	21.06	22.5	0.493	0.69	0.731	1.02	-0.08
20525	836.5	1RB-Middle	Rear	1	20.84	22.5	0.474	0.69	0.658	0.96	-0.08
20450	829	1RB-Middle	Rear	/	21.26	22.5	0.486	0.65	0.725	0.96	-0.08
20450	829	1RB-Middle	Left	/	21.26	22.5	0.089	0.12	0.18	0.24	-0.08
20450	829	1RB-Middle	Bottom	/	21.26	22.5	0.209	0.28	0.323	0.43	0.14
20450	829	1RB-Middle	Тор	/	21.26	22.5	0.2	0.27	0.299	0.40	0.02
20450	829	25RB-Low	Front	/	20.07	21.5	0.373	0.52	0.545	0.76	0.08

©Copyright. All rights reserved by CTTL.

Page 39 of 204

20600	844	25RB-Low	Front	/	19.85	21.5	0.39	0.57	0.565	0.83	0.08
20525	836.5	25RB-Low	Front	1	19.88	21.5	0.409	0.59	0.6	0.87	0.08
20450	829	25RB-Low	Rear	1	20.07	21.5	0.365	0.51	0.541	0.75	-0.18
20450	829	25RB-Low	Left	1	20.07	21.5	0.058	0.08	0.109	0.15	-0.03
20450	829	25RB-Low	Bottom	1	20.07	21.5	0.162	0.23	0.242	0.34	-0.13
20450	829	25RB-Low	Тор	1	20.07	21.5	0.151	0.21	0.225	0.31	0.1
20450	829	50RB	Rear	1	20.07	21.5	0.397	0.55	0.588	0.82	-0.18
20600	844	50RB	Front	1	19.85	21.5	0.392	0.57	0.575	0.84	0.08

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is $\ensuremath{\mathsf{QPSK_20MHz}}.$

Table 14.1-7: SAR Values (LTE Band7 - Body)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C													
Frequ	ency		Test	Figure	Conduct ed	Max. tune-	Measured	Reported	Measured	Reported	Power			
		Mode	Position	No.	Power	up Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
Ch.	MHz		7 00141011	110.	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
21350	2560	1RB-Mid	Front	Fig.7	21.18	21.7	0.588	0.66	1.1	1.24	0.07			
21100	2535	1RB-Mid	Front	1	21.32	21.7	0.578	0.63	1.05	1.15	-0.17			
20850	2510	1RB-Mid	Front	1	21.44	21.7	0.565	0.60	1.03	1.09	-0.13			
21350	2560	1RB-Mid	Rear	1	21.18	21.7	0.494	0.56	0.997	1.12	-0.13			
21100	2535	1RB-Mid	Rear	/	21.32	21.7	0.494	0.54	0.969	1.06	0.1			
20850	2510	1RB-Mid	Rear	1	21.44	21.7	0.457	0.49	0.908	0.96	0.16			
20850	2510	1RB-Mid	Left	1	21.44	21.7	0.191	0.20	0.332	0.35	-0.14			
20850	2510	1RB-Mid	Bottom	1	21.44	21.7	0.106	0.11	0.192	0.20	-0.17			
20850	2510	1RB-Mid	Тор	1	21.44	21.7	0.129	0.14	0.244	0.26	0.02			
21350	2560	50RB-High	Front	1	20.26	20.7	0.493	0.55	0.917	1.01	0.13			
21100	2535	50RB-High	Front	1	20.31	20.7	0.461	0.50	0.852	0.93	0.09			
20850	2510	50RB-Mid	Front	1	20.06	20.7	0.41	0.48	0.742	0.86	-0.13			
21350	2560	50RB-High	Rear	1	20.26	20.7	0.402	0.44	0.807	0.89	-0.18			
21100	2535	50RB-High	Rear	1	20.31	20.7	0.399	0.44	0.799	0.87	0.11			
20850	2510	50RB-Mid	Rear	1	20.06	20.7	0.362	0.42	0.728	0.84	-0.04			
21100	2535	50RB-High	Left	1	20.31	20.7	0.146	0.16	0.255	0.28	0.16			
21100	2535	50RB-High	Bottom	1	20.31	20.7	0.084	0.09	0.152	0.17	-0.04			
21100	2535	50RB-High	Тор	1	20.31	20.7	0.108	0.12	0.204	0.22	-0.17			
21100	2535	100RB	Front	1	20.24	20.7	0.451	0.50	0.842	0.94	0.07			
21100	2535	100RB	Rear		20.24	21	0.4	0.48	0.802	0.96	0.11			

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK_20MHz.

Table 14.1-8: SAR Values (LTE Band13 - Body)

			Ambien	t Tempera	ature: 22.9 °C	Liquid	Temperature	22.5°C			
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23230	782	1RB-Mid	Front	/	21.13	22.5	0.535	0.73	0.751	1.03	-0.17
23230	782	1RB-Mid	Rear	Fig.8	21.13	22.5	0.623	0.85	0.881	1.21	0.623
23230	782	1RB-Mid	Left	/	21.13	22.5	0.061	0.08	0.104	0.14	-0.17
23230	782	1RB-Mid	Bottom	/	21.13	22.5	0.277	0.38	0.394	0.54	0.18
23230	782	1RB-Mid	Тор	/	21.13	22.5	0.307	0.42	0.441	0.60	-0.02
23230	782	25RB-Mid	Front	/	20.08	21.5	0.409	0.57	0.574	0.80	-0.01
23230	782	25RB-Mid	Rear	/	20.08	21.5	0.464	0.64	0.657	0.91	-0.12
23230	782	25RB-Mid	Left	/	20.08	21.5	0.046	0.06	0.077	0.11	0.12
23230	782	25RB-Mid	Bottom	/	20.08	21.5	0.217	0.30	0.309	0.43	0.14
23230	782	25RB-Mid	Тор	/	20.08	21.5	0.231	0.32	0.329	0.46	-0.14
23230	782	50RB	Front	/	20.04	21.5	0.469	0.66	0.657	0.92	0.16
23230	782	50RB	Rear	/	20.04	21.5	0.447	0.63	0.625	0.87	0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.1-9: SAR Values (LTE Band17 - Body)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C										
			Ambien	t Tempera	ature: 22.9 °C	Liquid	Temperature	: 22.5°C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23780	709	1RB-Low	Front	/	21.13	22.5	0.4	0.55	0.576	0.79	-0.05
23780	709	1RB-Low	Rear	Fig.9	21.13	22.5	0.417	0.57	0.596	0.82	0.417
23780	709	1RB-Low	Left	/	21.13	22.5	0.053	0.07	0.09	0.12	0.02
23780	709	1RB-Low	Bottom	/	21.13	22.5	0.206	0.28	0.292	0.40	0.12
23780	709	1RB-Low	Тор	/	21.13	22.5	0.147	0.20	0.215	0.29	0.02
23780	709	25RB-Low	Front	/	20.18	21.5	0.312	0.42	0.448	0.61	-0.06
23780	709	25RB-Low	Rear	/	20.18	21.5	0.304	0.41	0.434	0.59	0.14
23780	709	25RB-Low	Left	/	20.18	21.5	0.039	0.05	0.068	0.09	0.09
23780	709	25RB-Low	Bottom	/	20.18	21.5	0.169	0.23	0.243	0.33	0.15
23780	709	25RB-Low	Тор	/	20.18	21.5	0.123	0.17	0.178	0.24	-0.05

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK_10MHz.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.2-1: SAR Values (WCDMA1900 MHz Band - Body)

			Am	bient Temperat	ure: 22.9 °C	Liquid Tempe	rature: 22.5°C			
Fred	quency	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)(Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz	Position	No.	(dBm)	Power (dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
9400	1880	Front	Fig.1	21.08	21.5	0.718	0.79	1.14	1.26	0.718

Note1: The distance between the EUT and the phantom bottom is 10mm

Table 14.2-2: SAR Values (WCDMA1700 MHz Band - Body)

			Am	bient Temperat	ure: 22.9 °C	Liquid Tempe	rature: 22.5°C			
Fred	guency	Toot	Ciguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	1	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	No.	(dBm)	Power (dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
1513	1752.6	Front	Fig.2	20.54	21.7	0.555	0.72	0.934	1.22	0.01

Note1: The distance between the EUT and the phantom bottom is 10mm

Table 14.2-3: SAR Values (WCDMA 850 MHz Band - Body)

			Am	bient Temperat	ure: 22.9 °C	Liquid Tempe	rature: 22.5°C			
Fred	uency	T4	F:	Conducted	May tura un	Measured	Reported	Measured	Reported	Power
	14.0	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)(SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	No.	(dBm)	Power (dBm)	(W/kg)	W/kg)	(W/kg)	(W/kg)	(dB)
4132	826.4	Rear	Fig.3	21.01	22	0.55	0.69	0.763	0.96	0.55

Note1: The distance between the EUT and the phantom bottom is 10mm

Table 14.2-5: SAR Values (LTE Band4 - Body)

	idado i indexinado (di dana di dana)											
			Amb	ient Tempera	ture: 22.9 °(C Liquid	Temperature	22.5°C				
Frequ	ency		Test	Figure	Conduct ed	Max. tune-	Measured	Reported	Measured	Reported	Power	
Ch.	MHz	Mode	Positio n	No.	Power (dBm)	up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
20300	1745	1RB-Mid	Left	Fig.5	20.6	21.9	0.372	0.50	0.669	0.90	0.372	

Table 14.2-6: SAR Values (LTE Band5- Body)

_									• /			
				Ambient 7	emperatur	e: 22.9 °C	Liquid	Temperature	: 22.5°C			
	Fred Ch.	quency MHz	Mode	Test Positio n	Figure No.	Conduc ted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
	20600	844	1RB-Middle	Rear	Fig.6	21.06	22.5	0.493	0.69	0.731	1.02	-0.08

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK 20MHz.

Table 14.2-7: SAR Values (LTE Band7 - Body)

			Amb	ient Tempera	ature: 22.9 °	C Liquid	Temperature	: 22.5°C			
Frequ	ency		Test	Figure	Conduct ed	Max. tune-	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
21350	2560	1RB-Mid	Front	Fig.7	21.18	21.7	0.588	0.66	1.1	1.24	0.07

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK 20MHz.

Table 14.2-8: SAR Values (LTE Band13 - Body)

						•					
			Ambien	t Tempera	ature: 22.9 °C	Liquid	Temperature	: 22.5°C			
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23230	782	1RB-Mid	Rear	Fig.8	21.13	22.5	0.623	0.85	0.881	1.21	0.623

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-9: SAR Values (LTE Band17 - Body)

				Ambien	t Tempera	ature: 22.9 °C	Liquid	Temperature	: 22.5°C			
	Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
ſ	23780	709	1RB-Low	Rear	Fig.9	21.13	22.5	0.417	0.57	0.596	0.82	0.417

Note1: The distance between the EUT and the phantom bottom is 10mm

Note2: The LTE mode is QPSK 10MHz.

14.3 WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial</u> test position procedure.

Body Evaluation

Table 14.3-1: SAR Values (WLAN - Body)- 802.11b (Fast SAR)-Ant0

		Α	mbient T	emperature:	22.9°C	Liquid Tem	perature: 2	22.5°C		
Freque	ency	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Front	1	16.67	17	0.089	0.10	0.158	0.17	-0.15
2437	6	Rear	/	16.67	17	0.065	0.07	0.121	0.13	0.03
2437	6	Left	/	16.67	17	0.011	0.01	0.02	0.02	-0.17
2437	6	Bottom	/	16.67	17	0.059	0.06	0.109	0.12	0.11

As shown above table, the <u>initial test position</u> for body is "Front". So the body SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Body)- 802.11b (Full SAR)-Ant0

		Α	mbient T	emperature:	22.9°C	Liquid Tem	nperature: 2	22.5°C		
Frequency Test Conducted Max. tune-						Measured	Reported	Measured	Reported	Power
	····,	Positio		Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	n	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Front	Fig.10	16.67	17	0.096	0.10	0.172	0.19	-0.12

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Body) - 802.11b (Scaled Reported SAR)-Ant0

		Ambient Ten	nperature: 22.9)°C Liqui	d Temperature: 22	2.5°C
Freque	ency	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)
2437	6	Front	100%	100%	0.19	0.19

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

Table 14.3-4: SAR Values (WLAN - Body)- 802.11b (Fast SAR)-Ant1

		Α	mbient T	emperature	22.9 °C	Liquid Temperature: 22.5°C						
Freque	ency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
'	Position		No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift		
MHz	Ch.	Position	INO.	(dBm)	Power (dbiii)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)		
2437	6	Front	/	16.98	17	0.152	0.15	0.309	0.31	-0.19		
2437	6	Rear	/	16.98	17	0.041	0.04	0.077	0.08	-0.04		
2437	6	Left	/	16.98	17	0.014	0.01	0.024	0.02	-0.15		
2437	6	Тор	/	16.98	17	0.057	0.06	0.107	0.11	-0.03		

As shown above table, the <u>initial test position</u> for body is "Front". So the body SAR of WLAN is presented as below:

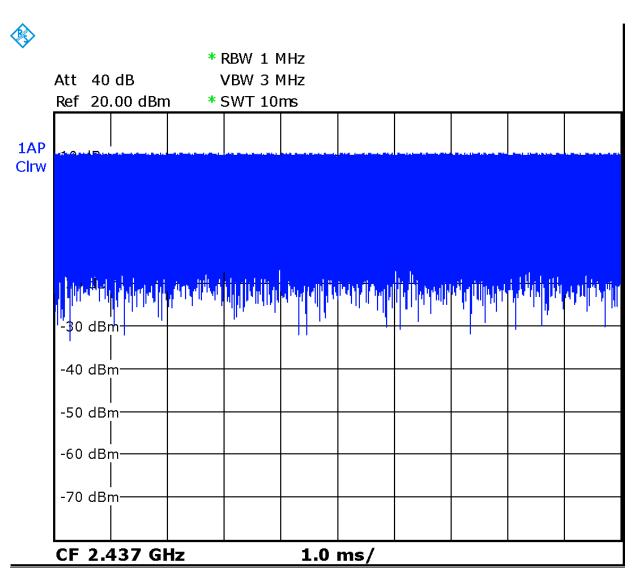
Table 14.3-5: SAR Values (WLAN - Body) - 802.11b (Full SAR)-Ant1

		A	mbient T	emperature:	22.9°C	Liquid Temperature: 22.5°C				
Freque	encv	Test	Figure	Conducted	May tune un	Measured	Reported	Measured	Reported	Power
	Positio		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	n	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	2437 6 Front Fig.11 16.98			17	0.148	0.15	0.31	0.31	-0.19	

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is \leq 0.8 W/kg.

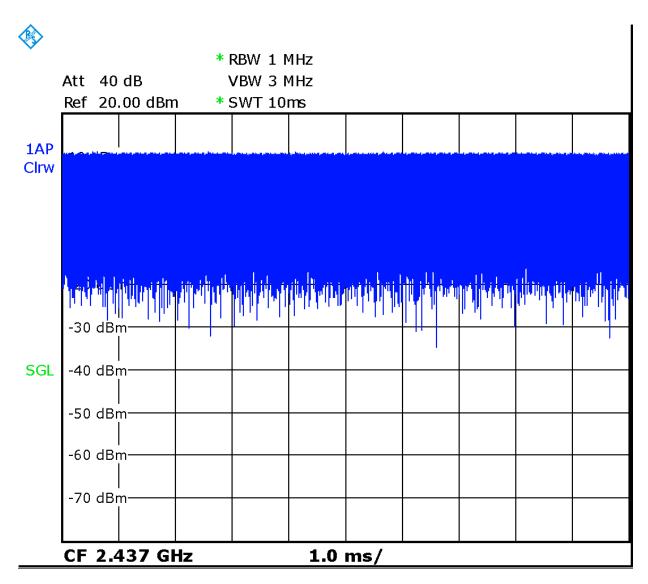
Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.


Table 14.3-6: SAR Values (WLAN - Body) - 802.11b (Scaled Reported SAR)-Ant1

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C											
Frequ	ency	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR						
MHz	Ch.	Position	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)						
2437	6	Front	100%	100%	0.31	0.31						

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.



Picture 14.1 Duty factor plot Ant0

Picture 14.2 Duty factor plot Ant1

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	СН	Freq	Test Poisition	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
WCDMA1700	1513	1752.6MHz	Front 10mm	0.934	0.929	1.01
WCDMA1900	9400	1880 MHz	Front 10mm	1.14	1.09	1.05
LTE Band2	18700	1860 MHz	Front 10mm	1.01	0.98	1.03
LTE Band7	21350	2560 MHz	Front 10mm	1.10	1.07	1.03
LTE Band13	23230	782 MHz	Front 10mm	0.881	0.863	1.02

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

No.	Measurement Un Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
110.	Error Description	Турс	value	Distribution	DIV.	1g	10g	Unc.	Unc.	of
			varue	Distribution		18	10g	(1g)	(10g)	freedom
Mea	surement system							(18)	(10g)	necdom
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	1		•			
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

			ı		1		1	1	
Combined standard uncertainty	$u_c^{'} =$	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
inded uncertainty fidence interval of	i	$u_e = 2u_c$					19.1	18.9	
Measurement Un	certai	nty for Nor	mal SAR To	ests (3~6G	Hz)			
Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g	Unc.	Unc.	of
							(1g)	(10g)	freedon
surement system									
Probe calibration	В	6.55	N	1	1	1	6.55	6.55	8
Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
	-	Test	sample related	i	•	-	•	•	
Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
	uncertainty Inded uncertainty Idence interval of Measurement Uncertainty Error Description Surement system Probe calibration Isotropy Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF ambient conditions-noise RFambient conditions-reflection Probe positioned mech. restrictions Probe positioning with respect to phantom shell Post-processing Test sample positioning Device holder uncertainty	uncertaintyInded uncertaintyMeasurement UncertaiError DescriptionTypeSurement systemProbe calibrationBIsotropyBBoundary effectBLinearityBDetection limitBReadout electronicsBResponse timeBIntegration timeBRFambient conditions-noiseBRFambient conditions-reflectionBProbe positioned mech. restrictionsBProbe phantom shellBPost-processingBTest sample positioningADevice holder uncertaintyA	uncertaintyInded uncertainty idence interval of one $u_e = 2u_e$ Measurement Uncertainty for NoreError DescriptionTypeUncertainty valueProbe calibrationB6.55IsotropyB4.7Boundary effectB2.0LinearityB4.7Detection limitB1.0Readout electronicsB0.3Response timeB0.8Integration timeB2.6RFambient conditions-noiseB0RFambient conditions-reflectionB0Probe positioned mech. restrictionsB0.8Probe positioning with respect to phantom shellB6.7Post-processingB4.0Test sample positioningA3.3Device holder uncertaintyA3.4	uncertaintyInded uncertainty idence interval of or interval of or interval of original $u_e = 2u_e$ Measurement Uncertainty for Normal SAR To Error DescriptionTypeUncertainty Probably ValueProbably valueDistributionSurement systemB6.55NProbe calibrationB6.55NIsotropyB4.7RBoundary effectB2.0RLinearityB4.7RDetection limitB1.0RReadout electronicsB0.3RResponse timeB0.8RIntegration timeB2.6RRFambient conditions-noiseB0RRFambient conditions-reflectionB0RProbe positioned mech. restrictionsB0.8RProbe positioning with respect to phantom shellB6.7RPost-processingB4.0RTest sample positioningA3.3NDevice holder uncertaintyA3.4N	uncertainty inded uncertainty $u_e = 2u_e$ idence interval of of or interval	uncertainty inded uncertainty idence interval of positioning Measurement Uncertainty for Normal SAR Tests (3~6G) Error Description Type Uncertainty Probably value Uncertainty Distribution Type Uncertainty Probably position of the positioning Normal SAR Tests (3~6G) Type Uncertainty Probably position of the probably value Uncertainty Probably position of the probably value Uncertainty Probably position of the probably position of the probably position of the probably value Uncertainty Probably Distribution Type Uncertainty Probably point (Ci) 1g Uncertainty Probably point (Ci) 1g Uncertainty Probably point (Ci) 1g Normal SAR Tests (3~6G) Normal SaR	uncertainty $u_e = \sqrt{\sum_{i=1}^{c} c_i^* u_i^*}$ Image: square conditions of interval interval of interval of interval of interval of interval interval of interval interval of interval interval of interval interval interval of interval in	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	uncertainty $u_c = \sqrt{\sum_{i=1}^{c} C_i^{T} u_i^{-}}$ Image: Second conditions replication of the phantom shall of the conditions replication. $u_c = 2u_c$ Image: Second condition of the phantom shall of the phantom shell of the positioning with respect to plant of the positioning of the positioning with respect to positioning with respect to positioning procession. $u_c = 2u_c$

Phantom and set-up

					_					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞

(target)

21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	1	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

	Measurement on				- (
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system						•		•	
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
			Test	sample related	1					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p	•				-
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞

20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8
			Test	sample related	i					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5

17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		1	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5239A	MY46110673	January 24, 2020	One year
02	Power meter	NRP2	106277	September 4, 2019	One year
03	Power sensor	NRP8S	104291		
04	Signal Generator	E4438C	MY49070393	January 4, 2020	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	CMW500	129942	February 10, 2020	One year
07	E-field Probe	SPEAG EX3DV4	3617	Jan 30, 2020	One year
80	DAE	SPEAG DAE4	777	Jan 8, 2020	One year
09	Dipole Validation Kit	SPEAG D750V3	1017	July 18,2019	One year
10	Dipole Validation Kit	SPEAG D835V2	4d069	July 18,2019	One year
11	Dipole Validation Kit	SPEAG D1750V2	1003	July 16,2019	One year
12	Dipole Validation Kit	SPEAG D1900V2	5d101	July 17,2019	One year
13	Dipole Validation Kit	SPEAG D2450V2	853	July 17,2019	One year
14	Dipole Validation Kit	SPEAG D2600V2	1012	July 17,2019	One year

END OF REPORT BODY

ANNEX A Graph Results

WCDMA1900 CH9400 Front

Date: 7/5/2020

Electronics: DAE4 Sn777 Medium: body 1900 MHz

Medium parameters used: f = 1880MHz; $\sigma = 1.363 \text{ mho/m}$; $\epsilon r = 39.35$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA1900-BII 1880 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.63 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.26 V/m; Power Drift = 0.718 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.718 W/kg Maximum value of SAR (measured) = 1.53 W/kg

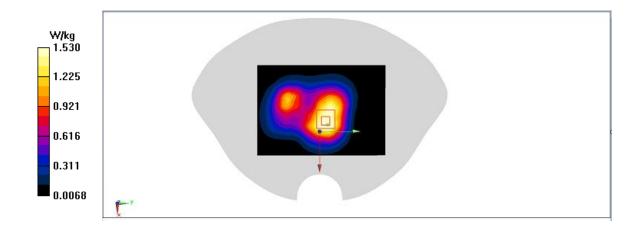


Fig.1

WCDMA1700 CH1513 Front

Date: 7/4/2020

Electronics: DAE4 Sn777 Medium: body 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.377 mho/m$; $\epsilon r = 39.44$; $\rho = 1000 kg/m^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 Duty Cycle: 1:1

Probe: EX3DV4 – SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.37 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.28 V/m; Power Drift = 0.555 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 0.934 W/kg; SAR(10 g) = 0.555 W/kg Maximum value of SAR (measured) = 1.37W/kg

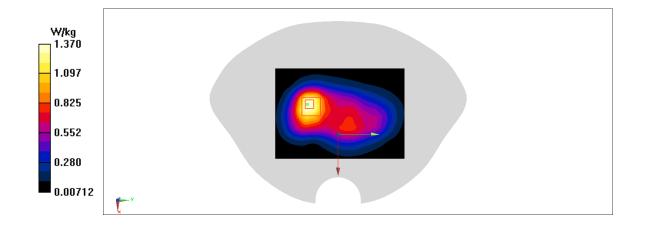


Fig.2

WCDMA850 CH4132 Rear

Date: 7/3/2020

Electronics: DAE4 Sn777 Medium: body 835 MHz

Medium parameters used: f = 826.4 MHz; $\sigma = 0.875 \text{ mho/m}$; $\epsilon r = 41.46$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WCDMA850-BV 826.4 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.974 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.16 V/m; Power Drift = 0.55 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.763 W/kg; SAR(10 g) = 0.55 W/kg Maximum value of SAR (measured) = 0.978 W/kg

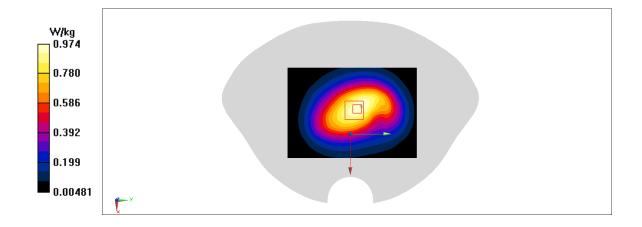


Fig.3

LTE1700-FDD4_CH20300 1RB-Middle Left Edge

Date: 7/4/2020

Electronics: DAE4 Sn777 Medium: body 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.369$ mho/m; $\epsilon r = 39.45$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.69 V/m; Power Drift = 0.372 dB

Peak SAR (extrapolated) = 1.2 W/kg

SAR(1 g) = 0.669 W/kg; SAR(10 g) = 0.372 W/kg Maximum value of SAR (measured) = 0.989 W/kg

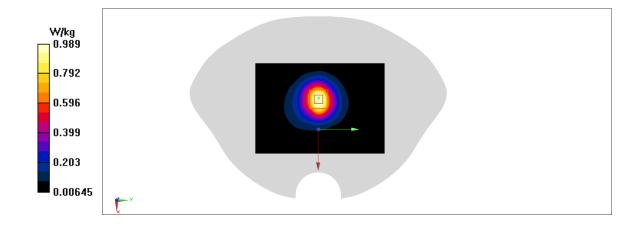


Fig.5

LTE850-FDD5_CH20600 1RB-Middle Rear

Date: 7/3/2020

Electronics: DAE4 Sn777 Medium: body 835 MHz

Medium parameters used: f = 844 MHz; $\sigma = 0.893$ mho/m; $\epsilon r = 41.44$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.973 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.32 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.731 W/kg; SAR(10 g) = 0.493 W/kg Maximum value of SAR (measured) = 0.995 W/kg

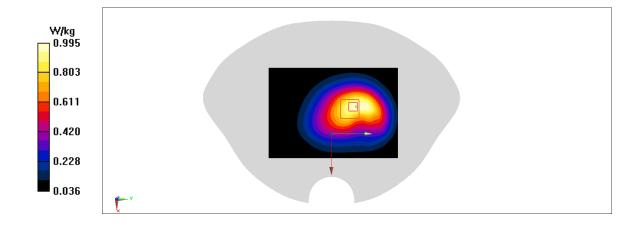


Fig.6

LTE2500-FDD7_CH21350 1RB-Middle Front

Date: 7/7/2020

Electronics: DAE4 Sn777 Medium: body 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.918 \text{ mho/m}$; $\epsilon r = 38.51$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.78 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.82 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 2.22 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.588 W/kg Maximum value of SAR (measured) =1.78 W/kg

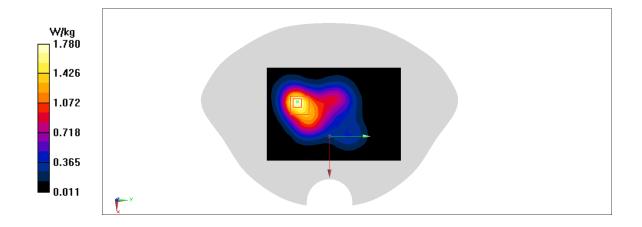


Fig.7

LTE750-FDD13_CH23230 1RB-Middle Rear

Date: 7/2/2020

Electronics: DAE4 Sn777 Medium: body 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.927$ mho/m; $\epsilon r = 42.03$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.86 V/m; Power Drift = 0.623 dB

Peak SAR (extrapolated) = 1.3 W/kg

SAR(1 g) = 0.881 W/kg; SAR(10 g) = 0.623 W/kg Maximum value of SAR (measured) = 1.14 W/kg

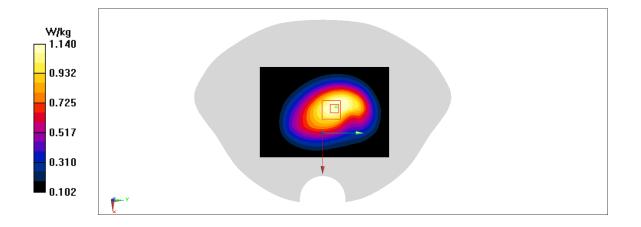


Fig.8

LTE700-FDD17_CH23780 1RB-Low Rear

Date: 7/2/2020

Electronics: DAE4 Sn777 Medium: body 750 MHz

Medium parameters used: f = 709 MHz; $\sigma = 0.858$ mho/m; $\epsilon r = 42.12$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD17 709 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(10.07,10.07,10.07)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.782 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.94 V/m; Power Drift = 0.417 dB

Peak SAR (extrapolated) = 0.888 W/kg

SAR(1 g) = 0.596 W/kg; SAR(10 g) = 0.417 W/kg Maximum value of SAR (measured) = 0.770W/kg

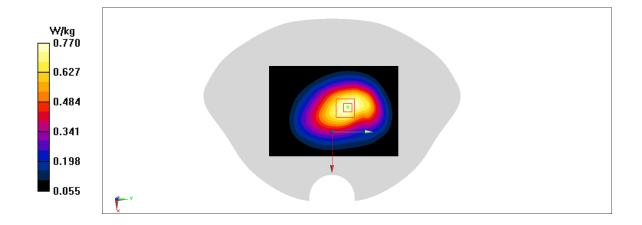


Fig.9

WLAN2450_CH6 Ant0 Front

Date: 7/6/2020

Electronics: DAE4 Sn777 Medium: body 2450 MHz

Medium parameters used: f = 2437MHz; $\sigma = 1.788$ mho/m; $\epsilon r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.259 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.526 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.096 W/kg Maximum value of SAR (measured) = 0.257 W/kg

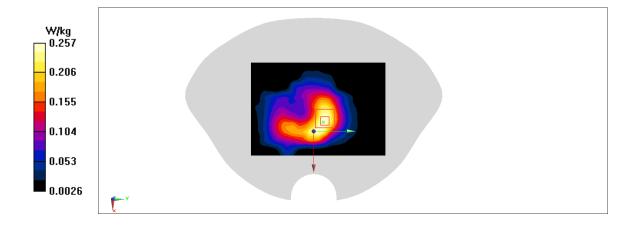


Fig.10

WLAN2450_CH6 Ant1 Front

Date: 7/6/2020

Electronics: DAE4 Sn777 Medium: body 2450 MHz

Medium parameters used: f = 2437MHz; $\sigma = 1.788$ mho/m; $\epsilon r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.52 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.29 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.639 W/kg

SAR(1 g) = 0.31 W/kg; SAR(10 g) = 0.148 W/kg Maximum value of SAR (measured) = 0.512 W/kg

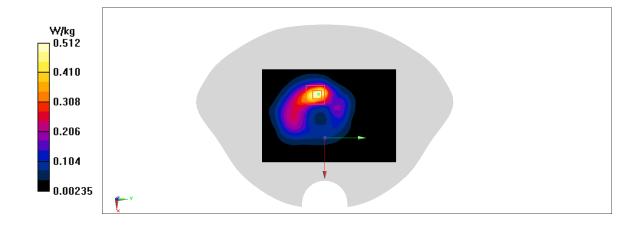


Fig.11

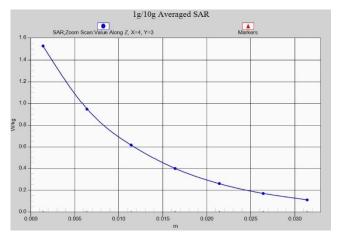


Fig. 1-1 Z-Scan at power reference point (WCDMA1900)

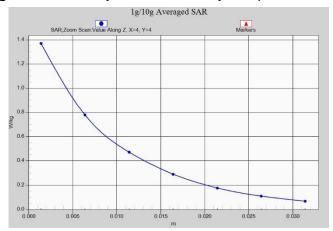


Fig. 1-2 Z-Scan at power reference point (WCDMA1700)

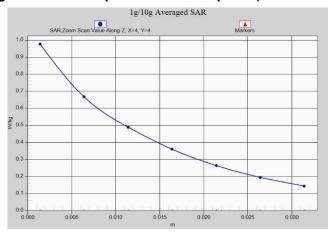


Fig. 1-3 Z-Scan at power reference point (WCDMA850)

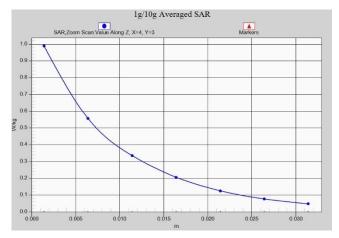


Fig. 1-5 Z-Scan at power reference point (LTE Band 4)

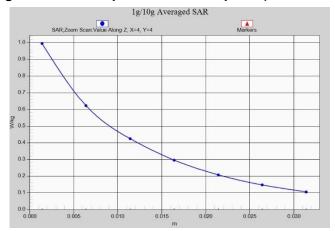


Fig. 1-6 Z-Scan at power reference point (LTE Band 5)

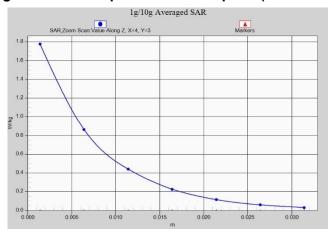


Fig. 1-7 Z-Scan at power reference point (LTE Band 7)

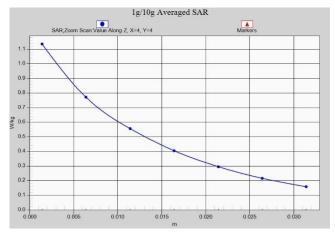


Fig. 1-8 Z-Scan at power reference point (LTE Band 13)

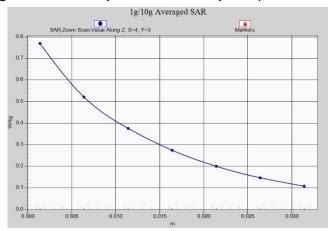


Fig. 1-9 Z-Scan at power reference point (LTE Band 17)

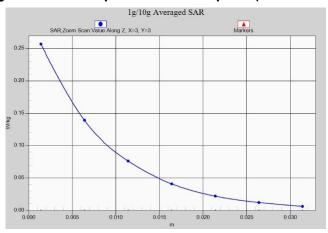


Fig. 1-10 Z-Scan at power reference point (2450 MHz)-Ant0

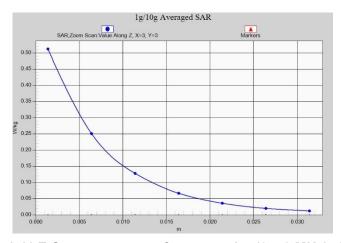


Fig. 1-11 Z-Scan at power reference point (2450 MHz)- Ant1

ANNEX B System Verification Results

750 MHz

Date: 7/2/2020

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz; σ =0.888 mho/m; ε_r = 41.35; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

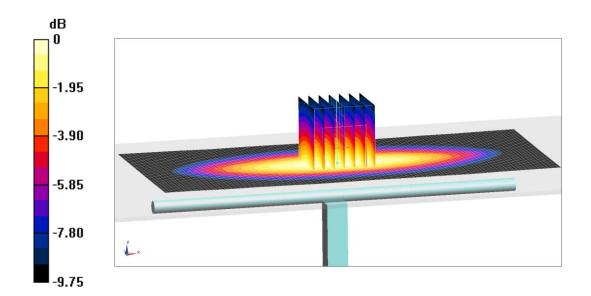
Probe: EX3DV4 – SN3617 ConvF(10.07,10.07,10.07)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.74 V/m; Power Drift = -0.08

Fast SAR: SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (interpolated) = 2.82 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =60.74 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.2 W/kg

SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dB W/kg

Fig.B.1 validation 750 MHz 250mW

Date: 7/3/2020

Electronics: DAE4 Sn777 Medium: Head 835 MHz

Medium parameters used: f = 835 MHz; σ =0.892 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

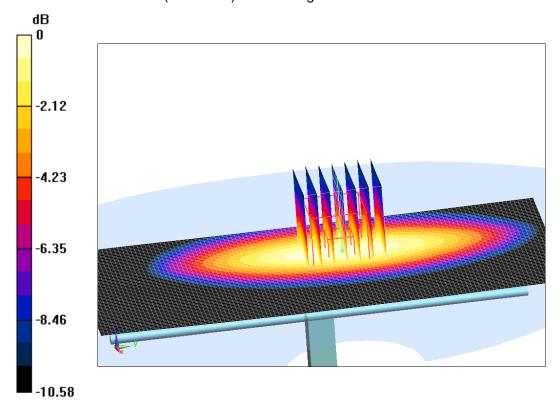
Probe: EX3DV4 - SN3617 ConvF(9.66,9.66,9.66)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 62.29 V/m; Power Drift = 0.06

Fast SAR: SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (interpolated) = 3.11 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =62.29 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dB W/kg

Fig.B.2 validation 835 MHz 250mW

Date: 7/4/2020

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.377$ mho/m; $\epsilon_r = 40.82$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.41,8.41,8.41)

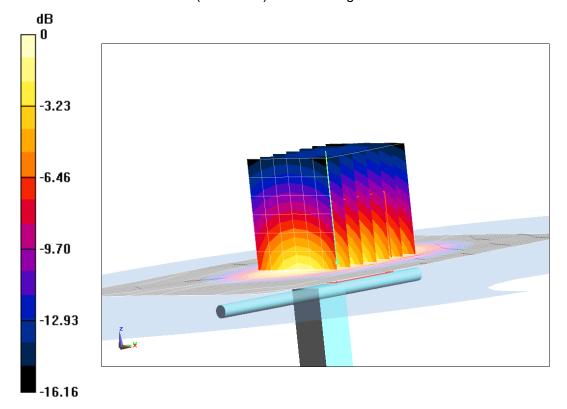
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 107.9 V/m; Power Drift = -0.03

Fast SAR: SAR(1 g) = 9.33 W/kg; SAR(10 g) = 4.73 W/kg

Maximum value of SAR (interpolated) = 14.19 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value =107.9 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.59 W/kg

SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 14.09 W/kg

0 dB = 14.09 W/kg = 11.49 dB W/kg

Fig.B.3validation 1750 MHz 250mW

Date: 7/5/2020

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.428 \text{ mho/m}$; $\epsilon_r = 39.99$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.14,8.14,8.14)

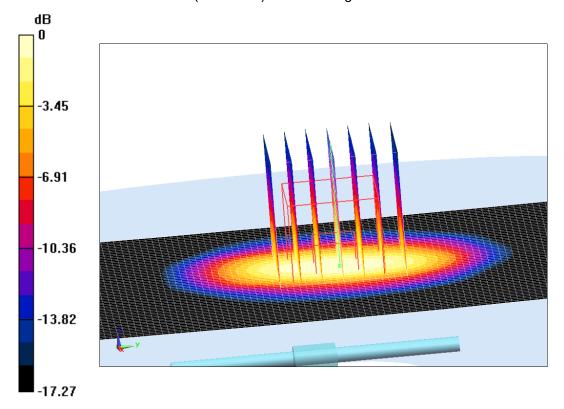
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 109.25 V/m; Power Drift = -0.02

Fast SAR: SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (interpolated) = 14.98 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value =109.25 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.82 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 14.78 W/kg

0 dB = 14.78 W/kg = 11.7 dB W/kg

Fig.B.4 validation 1900 MHz 250mW

Date: 7/6/2020

Electronics: DAE4 Sn777 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ mho/m}$; $\epsilon_r = 38.99$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.65,7.65,7.65)

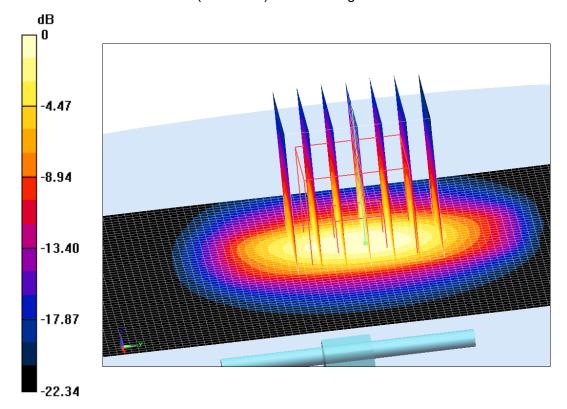
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 115.5 V/m; Power Drift = 0.04

Fast SAR: SAR(1 g) = 12.73 W/kg; SAR(10 g) = 5.98 W/kg

Maximum value of SAR (interpolated) = 21.56 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value =115.5 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 25.82 W/kg

SAR(1 g) = 12.68 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 21.47 W/kg

0 dB = 21.47 W/kg = 13.32 dB W/kg

Fig.B.5 validation 2450 MHz 250mW

2600 MHz

Date: 7/7/2020

Electronics: DAE4 Sn777 Medium: Head 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.925 \text{ mho/m}$; $\epsilon_r = 39.06$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

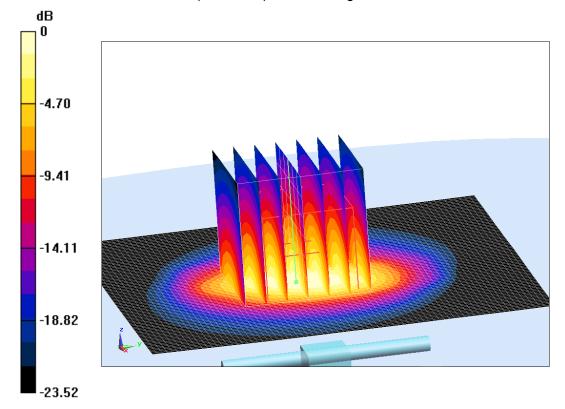
Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.52,7.52,7.52)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 117.26 V/m; Power Drift = 0.05

Fast SAR: SAR(1 g) = 13.89 W/kg; SAR(10 g) = 6.31 W/kg


Maximum value of SAR (interpolated) = 24.99 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =117.26 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.68 W/kg

SAR(1 g) = 13.68 W/kg; SAR(10 g) = 6.25 W/kg Maximum value of SAR (measured) = 24.47 W/kg

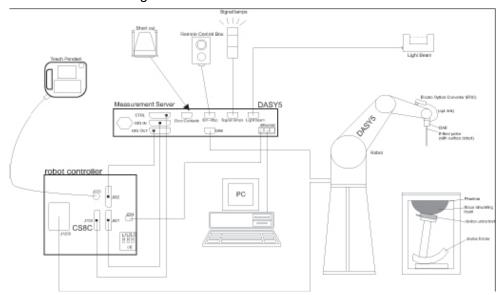
0 dB = 24.47 W/kg = 13.89 dB W/kg

Fig.B.6 validation 2600 MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification

	•				Drift (%)				
Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)				
2020/7/2	750	Head	2.14	2.15	-0.47				
2020/7/3	835	Head	2.40	2.40	0.00				
2020/7/4	1750	Head	9.33	9.17	1.74				
2020/7/5	1900	Head	9.90	9.92	-0.20				
2020/7/6	2450	Head	12.73	12.68	0.39				
2020/7/7	2600	Head	13.89	13.68	1.54				



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 DynamicRange: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)

Application:SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.3E-field Probe

Picture C.2Near-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5DASY 4

Picture C.6DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

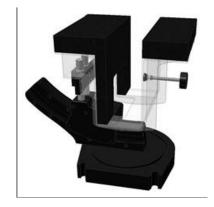
The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\ell=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation

of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

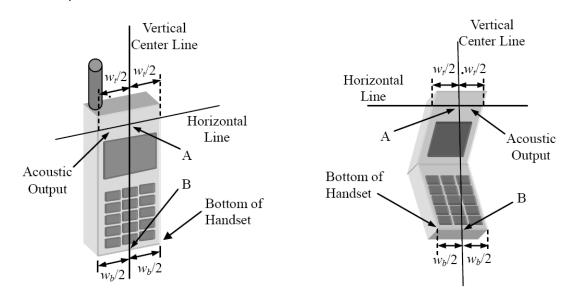
Shell Thickness: 2±0. 2 mm

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

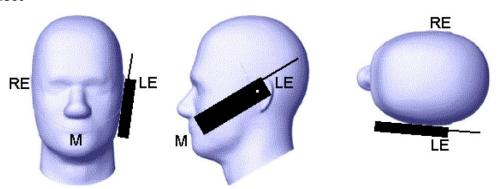
Picture C.10: SAM Twin Phantom



ANNEX D Position of the wireless device in relation to the phantom

D.1 General considerations

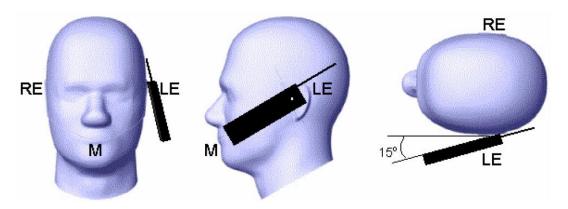
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

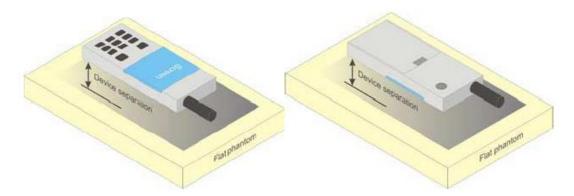
 W_b Width of the bottom of the handset

A Midpoint of the width W_t of the handset at the level of the acoustic output

B Midpoint of the width W_b of the bottom of the handset


Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

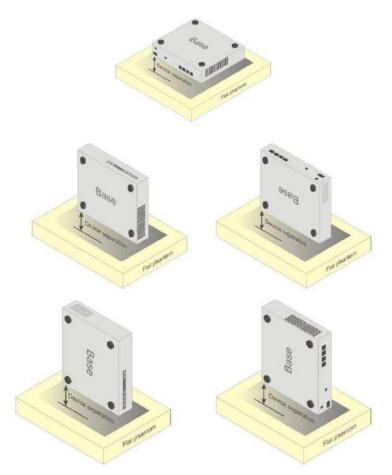


Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4Test positions for body-worn devices


D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

TableE.1: Composition of the Tissue Equivalent Matter

Frequency	835Head	835Body	1900	1900	2450	2450	5800	5800		
(MHz)	osoneau	ossbouy	Head	Body	Head	Body	Head	Body		
Ingredients (% by	Ingredients (% by weight)									
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53		
Sugar	56.0	45.0	\	\	\	/	/	\		
Salt	1.45	1.4	0.306	0.13	0.06	0.18	/	/		
Preventol	0.1	0.1	\	\	\	/	/	\		
Cellulose	1.0	1.0	\	\	\	/	/	\		
Glycol	,	١	44.452	29.96	41.15	27.22	\	1		
Monobutyl	\	\	44.432	29.90	41.13	21.22	\	\		
Diethylenglycol	,	\	\	\	\	\	17.04	17.04		
monohexylether	\	\	\	\	\	\	17.24	17.24		
Triton X-100	\	\	\	\	\	\	17.24	17.24		
Dielectric	c=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	c=52.7	c=25.2	ε=48.2		
Parameters	ε=41.5					ε=52.7	ε=35.3			
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00		

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation for 3617

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3617	Head 750MHz	January 30,2020	750 MHz	OK
3617	Head 850MHz	January 30,2020	835 MHz	OK
3617	Head 900MHz	January 30,2020	900 MHz	OK
3617	Head 1750MHz	January 30,2020	1750 MHz	OK
3617	Head 1810MHz	January 30,2020	1810 MHz	OK
3617	Head 1900MHz	January 30,2020	1900 MHz	OK
3617	Head 2000MHz	January 30,2020	2000 MHz	OK
3617	Head 2100MHz	January 30,2020	2100 MHz	OK
3617	Head 2300MHz	January 30,2020	2300 MHz	OK
3617	Head 2450MHz	January 30,2020	2450 MHz	OK
3617	Head 2600MHz	January 30,2020	2600 MHz	OK
3617	Head 3500MHz	January 30,2020	3500 MHz	OK
3617	Head 3700MHz	January 30,2020	3700 MHz	OK
3617	Head 5200MHz	January 30,2020	5250 MHz	OK
3617	Head 5500MHz	January 30,2020	5600 MHz	OK
3617	Head 5800MHz	January 30,2020	5800 MHz	OK
3617	Body 750MHz	January 30,2020	750 MHz	OK
3617	Body 850MHz	January 30,2020	835 MHz	OK
3617	Body 900MHz	January 30,2020	900 MHz	OK
3617	Body 1750MHz	January 30,2020	1750 MHz	OK
3617	Body 1810MHz	January 30,2020	1810 MHz	OK
3617	Body 1900MHz	January 30,2020	1900 MHz	OK
3617	Body 2000MHz	January 30,2020	2000 MHz	OK
3617	Body 2100MHz	January 30,2020	2100 MHz	OK
3617	Body 2300MHz	January 30,2020	2300 MHz	OK
3617	Body 2450MHz	January 30,2020	2450 MHz	OK
3617	Body 2600MHz	January 30,2020	2600 MHz	OK
3617	Body 3500MHz	January 30,2020	3500 MHz	OK
3617	Body 3700MHz	January 30,2020	3700 MHz	OK
3617	Body 5200MHz	January 30,2020	5250 MHz	OK
3617	Body 5500MHz	January 30,2020	5600 MHz	OK
3617	Body 5800MHz	January 30,2020	5800 MHz	OK

ANNEX G Probe Calibration Certificate

Probe 3617 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CTTL (Auden)

Certificate No: EX3-3617_Jan20/2

CALIBRATION CERTIFICATE (Replacement of No: EX3-3617_Jan20)

EX3DV4 - SN:3617

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

January 30, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID.	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	27-Dec-19 (No. DAE4-960_Dec19)	Dec-20
Reference Probe ES30V2	SN: 3013	31-Dec-19 (No. ES3-3013_Dec19)	Dec-20
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: G841293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-29
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20

Function Laboratory Technician Claudio Leubler Calibrated by: Katja Pokovic Technical Manager Approved by: Issued: April 7, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3617_Jan20/2

Page 1 of 23

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3617_Jan20/2

Page 2 of 23

EX3DV4 - SN:3617 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3617

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.35	0.21	0.32	± 10.1 %
Norm (μV/(V/m)²) ^A DCP (mV) ^B	104.3	93.8	97.1	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	dB/µV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	130.5	± 3.5 %	±4.7 %
	34.00.0	Y	0.00	0.00	1.00		137.4		500000000000000000000000000000000000000
	Control of the second of the s	Z	0.00	0.00	1.00		129.2		
10352-	Pulse Waveform (200Hz, 10%)	X	5.74	74,31	15.16	10.00	60.0	± 2.6 %	± 9.6 %
AAA		Y	20.00	84.63	18.23		60.0		
		Z	20.00	90.64	20.98		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	11.18	82.57	16.62	6.99	80.0	±1.6%	± 9.6 %
AAA		Y	11.60	81.13	15.97		80.0		
		Z	20.00	91.54	20.06		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	20:00	88.75	16.93	3.98	95.0	±1.0%	± 9.6 %
AAA	22 22 23	Y	1.22	64.13	8.17		95.0		1200000
		Z	20.00	94.77	20.04		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	90.94	16.71	2.22	120.0	±1.3%	±9.6 %
AAA		Y	0.41	60.00	4.32		120.0		
		Z	20.00	99.77	20.92		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.73	63.23	9.65	0.00	150.0	±4.1%	± 9.6 %
AAA		Y	0.47	60.00	5.82	51,550	150.0		25/2/07
		Z	0.73	63.00	9.63		150.0	1	
10388-	QPSK Waveform, 10 MHz	X	2.46	70.66	17.17	0.00	150.0	±1.7%	± 9.6 %
AAA	A SURFACE PROPERTY OF A PROPERTY OF A	Y	2.10	68.37	15:67	111000111	150.0		2242200
		Z	2.45	70.34	17.05		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.34	72.82	19.20	3.01	150.0	± 1.6 %	±9.6 %
AAA	Distribution to the contract of the production of the contract	Y	3.57	72.45	19.52		150.0		**********
		Z	3.45	73.00	19.94		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.61	68.21	16.41	0.00	150.0	± 3.8 %	±9.6%
AAA		Y	3.40	67.13	15.82		150.0		***********
Darage 1		Z	3.62	68.06	16.39		150.0		V-22-12-2
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.88	66.26	15.89	0.00	150.0	±6.6%	±9.6 %
AAA		Y	4.57	64.95	15.35		150.0		
		Z	4.92	66.18	15.92		150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3617_Jan20/2

Page 3 of 23

⁶ The uncertainties of Norm X,Y,Z do not affect the E³-field uncertainty inside TSL (see Pages 5 and 6).
⁸ Numerical linearization parameter: uncertainty not required.
⁸ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-SN:3617 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3617

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V ⁻¹	T6
X	41.2	299.64	34.06	12.13	0.82	5.00	1.88	0.20	1.00
Y	42.0	334.64	39.96	9.91	1.46	5.06	0.00	0.82	1.01
Z	42.8	318.14	35.45	11.95	0.73	5.04	1.02	0.40	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (")	13
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3617_Jan20/2

EX3DV4-SN:3617 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3617

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
64	54.2	0.75	12.37	12.37	12.37	0.00	1.00	± 13.3 %
150	52.3	0.76	11.63	11.63	11.63	0.00	1.00	± 13.3 %
300	45.3	0.87	11.41	11.41	11.41	0.08	1.20	± 13.3 %
450	43.5	0.87	10.84	10.84	10.84	0.12	1.40	± 13.3 %
750	41.9	0.89	10.07	10.07	10.07	0.61	0.80	± 12.0 %
835	41.5	0.90	9.66	9.66	9.66	0.54	0.84	± 12.0 %
900	41.5	0.97	9.56	9.56	9.56	0.54	0.80	± 12.0 9
1450	40.5	1.20	8.72	8.72	8.72	0.45	0.80	± 12.0 9
1640	40.2	1.31	8.50	8.50	8.50	0.25	0.80	± 12.0 9
1750	40.1	1.37	8.41	8.41	8.41	0.30	0.80	±12.09
1810	40.0	1.40	8.20	8.20	8.20	0.15	1.26	± 12.0 9
1900	40.0	1.40	8.14	8.14	8.14	0.31	0.80	± 12.0 9
2000	40.0	1.40	8.25	8.25	8.25	0.40	0.81	± 12.0 9
2100	39.8	1.49	8.16	8.16	8.16	0.28	0.80	± 12.0 9
2300	39.5	1.67	7.95	7.95	7.95	0.35	0.86	± 12.0 9
2450	39.2	1.80	7.65	7.65	7.65	0.33	0.90	± 12.0 9
2600	39.0	1.96	7.52	7.52	7.52	0.38	0.90	± 12.0 °
3300	38.2	2.71	7.07	7.07	7.07	0.30	1.20	± 13.1 9
3500	37.9	2.91	7.02	7.02	7.02	0.35	1.30	± 13.1 5
3700	37.7	3.12	6.77	6.77	8.77	0.35	1.30	± 13.1
3900	37.5	3.32	6.62	6.62	6.62	0.40	1.60	± 13.1
4100	37.2	3.53	6.60	6.60	6.60	0.40	1.60	± 13.1
4200	37.1	3.63	6.50	6.50	6.50	0.40	1.60	± 13.1
4400	36.9	3.84	6.35	6.35	6.35	0.40	1.60	± 13.1
4600	36.7	4.04	6.30	6.30	6.30	0.40	1.60	± 13.1
4800	36.4	4.25	6.25	6.25	6.25	0.40	1.80	± 13.1
4950	36.3	4.40	6.10	6.10	6.10	0.40	1.80	± 13.1
5200	36.0	4.66	5.49	5.49	5.49	0.40	1.80	± 13.1
5250	35.9	4.71	5.39	5.39	5.39	0.40	1.80	± 13.1
5300	35.9	4.76	5.29	5.29	5.29	0.40	1.80	± 13.1
5500	35.6	4.96	5.14	5.14	5.14	0.40	1.80	± 13.1
5600	35.5	5.07	4.99	4.99	4.99	0.40	1.80	± 13.1
5750	35.4	5.22	5.10	5.10	5.10	0.40	1.80	± 13.1
5800	35.3	5.27	5.00	5.00	5.00	0.40	1.80	± 13.1

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY w4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 84, 129, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Full frequencies below 3 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warmants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3617_Jan20/2

Page 5 of 23

EX3DV4~SN:3617 January 30, 2020

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3617

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^q	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.80	9.80	9.80	0.50	0.80	± 12.0 %
835	55.2	0.97	9.53	9.53	9.53	0.43	0.80	± 12.0 %
900	55.0	1.05	9.49	9.49	9.49	0.42	0.80	± 12.0 %
1450	54.0	1.30	8.56	8.56	8.56	0.25	0.80	± 12.0 %
1640	53.7	1.42	8.44	8.44	8.44	0.32	0.80	± 12.0 %
1750	53.4	1.49	8.09	8.09	8.09	0.48	0.80	± 12.0 %
1810	53.3	1.52	8.05	8.05	8.05	0.44	0.80	± 12.0 %
1900	53.3	1.52	7.94	7.94	7.94	0.39	0.80	± 12.0 %
2000	53.3	1.52	7.92	7.92	7.92	0.37	0.86	± 12.0 %
2100	53.2	1.62	7.89	7.89	7.89	0.35	0.89	± 12.0 %
2300	52.9	1.81	7.78	7.78	7.78	0.39	0.85	± 12.0 %
2450	52.7	1.95	7.76	7.76	7.76	0.41	0.80	± 12.0 %
2600	52.5	2.16	7.45	7.45	7.45	0.32	0.80	± 12.0 %
3300	51.6	3.08	6.44	6.44	6.44	0.40	1.70	± 13.1 9
3500	51.3	3.31	6.30	6.30	6.30	0.40	1.70	± 13.1 %
3700	51.0	3.55	6.27	6.27	6.27	0.40	1.70	± 13.1 %
3900	51.2	3.78	6.24	6.24	6.24	0.40	1.70	± 13.1 9
4100	50.5	4.01	6.21	6.21	6.21	0.40	1.70	±13.19
4200	50.4	4.13	6.20	6.20	6.20	0.40	1.70	± 13.1 9
4400	50.1	4.37	5.97	5.97	5.97	0.40	1.70	±13.19
4600	49.8	4.60	5.83	5.83	5.83	0.40	1.70	± 13.1 9
4800	49.6	4.83	5.72	5.72	5.72	0.50	1.80	± 13.1 9
4950	49.4	5.01	5.41	5.41	5.41	0.50	1.90	± 13.1 9
5200	49.0	5.30	4.80	4.80	4.80	0.50	1.90	± 13.1 9
5250	48.9	5.36	4.70	4.70	4.70	0.50	1.90	± 13.1 9
5300	48.9	5.42	4.61	4.61	4.61	0.50	1.90	± 13.1 9
5500	48.6	5.65	4.32	4.32	4.32	0.50	1.90	± 13.1 9
5600	48.5	5.77	4.23	4.23	4.23	0.50	1.90	± 13.1 9
5750	48.3	5.94	4.36	4.36	4.36	0.50	1,90	± 13.1 9
5800	48.2	6.00	4.22	4.22	4.22	0.50	1.90	± 13.1 9

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

**All frequencies below 3 GHz, the validity of fissue parameters (c and σ) can be reliaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of fissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF incertainty for indicated target fissue parameters.

Certificate No: EX3-3617_Jan20/2

Page 6 of 23

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4-SN:3617

January 30, 2020

3000

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

1.4 1.3-Frequency response (normalized) 1.0 0.9

1500

f [MHz]

2000

2500

Certificate No: EX3-3617_Jan20/2

0.8 0.7

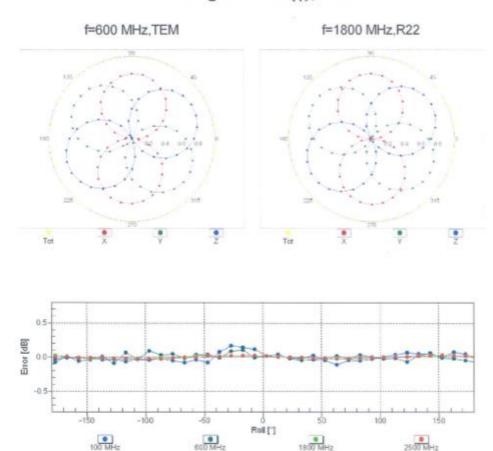
0.6-

0.5-

500

1000

TEM

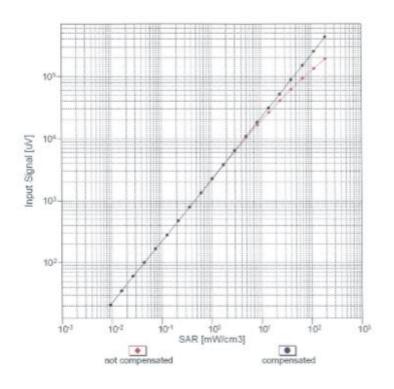

Page 7 of 23

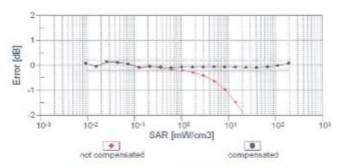
EX3DV4— SN:3617 January 30, 2020

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3617_Jan20/2


Page 8 of 23



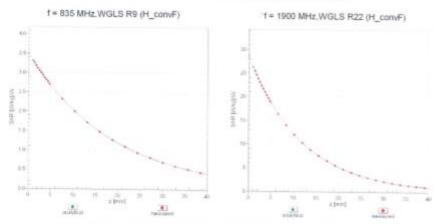
EX3DV4- SN:3617 January 30, 2020

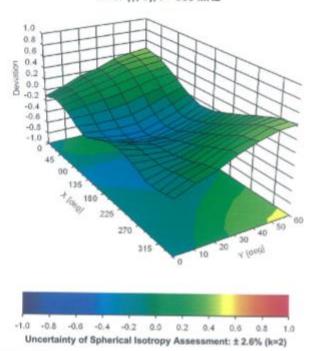
Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3617_Jan20/2

Page 9 of 23




EX3DV4-SN:3617

January 30, 2020

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (0, 9), f = 900 MHz

Certificate No: EX3-3617_Jan20/2

Page 10 of 23

EX3DV4- SN:3617

January 30, 2020

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ² (k=2)
) .		CW	CW	0.00	±4.7 %
0010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
0011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6 %
0012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6 %
0013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
0021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.63
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.63
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.63
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6 5
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.61
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.63
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.61
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.61
10031	CAA	IEEE 802,15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 5
10032	CAA	IEEE 802,15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.63
10033	CAA	IEEE 802.15.1 Bluetooth (PV4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 1
0034	CAA	IEEE 802,15.1 Bluetooth (PV4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 5
10035	CAA	IEEE 802.15.1 Bluetooth (PV4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 °
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 °
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (B-DPSK, DH5)	Bluelooth	4.10	± 9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 °
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Haifrate)	AMPS	7.78	± 9.6 °
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.61
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	19.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	19.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	19.5
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	19.6
			WLAN	2.12	
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.83	19.6
10060		IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)		3.60	
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN		± 9.6
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	19.6
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 °
10066	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 '
10067	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6
10071	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.5
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PV4-DQPSK, Fullrate)	AMPS	4,77	± 9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TOO	9.29	± 9.6
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDO	9.97	± 9.6
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDO	10.01	± 9.6
10108	CAG	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, GPSK)	LTE-FDD	5.80	±9.6

Certificate No: EX3-3617_Jan20/2

Page 11 of 23

EX3DV4- SN:3617 January 30, 2020

10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6%
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6%
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6%
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10140	CAE	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	WLAN	8.13	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.49	±9.6 % ±9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6%
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6%
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5,46	±9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 15-QAM)	LTE-FDD	6.52	±9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	6.50	±9.6%
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	5.73	±9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	5.73	±9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD		±9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6 % ±9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 % ± 9.6 %
10197	CAC	IEEE 802.11r (HT Mixed, 33 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

Certificate No: EX3-3617_Jan20/2

Page 12 of 23

EX3DV4-SN:3617	January 30, 2020

10221 10222 10223 10224 10225	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	
10223 10224	CAC	Habita South Fire Directionary Facility to the direct	7752707	9.47	±9.6 %
10224	300.750	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6 %
	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6 %
10225	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6 %
	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6 %
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6 %
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6 %
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6 %
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10231	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6 %
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
	the second second second	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10235	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	9.48	±9.6 %
10236 10237	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 04-QAM)	LTE-TDD	9.21	±9.6 %
10237	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD LTE-TDD	9.48	±9.6 % ±9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TOD	10.25	±9.6 %
10240	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TOD	9.21	±9.6 %
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6 %
10243	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6 %
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6 %
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6 %
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6 %
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6 %
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6 %
10256	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6 %
10257	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6 %
10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6 %
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6 %
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz. 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 3
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.69
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.69
10277	CAA	PHS (QPSK)	PHS	11.81	±9.69
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11,81	±9.69
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	±9.69
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.69
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.69
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9.63
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.69
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.69
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.69
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	5.72 6.39	±9.6 9

Certificate No: EX3-3617_Jan20/2

Page 13 of 23

EX3DV4- SN:3617 January 30, 2020

10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX	12.57	±9.6 %
10303	AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms. 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	± 9.6 %
10306	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	±9.6 %
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	±9.6 %
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	± 9.6 %
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	14.57	±9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	±9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 95pc duty cycle)	WLAN	8.36	±9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6%
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6%
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6%
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6 %
10401	AAD	IEEE 802,11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6%
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6 %
10410	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	±9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6%
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6 %
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6 %
	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6 %
10449					

Certificate No: EX3-3617_Jan20/2

Page 14 of 23

EX3DV4- SN:3617 January 30, 2020

10456 10457 10458 10459 10460 10461 10462	AAD AAB AAA AAA AAA AAA AAB	Validation (Square, 10ms, 1ms) IEEE 802,11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	Test WLAN WCDMA	10.00 8.63	± 9.6 % ± 9.6 %
10457 10458 10459 10460 10461 10462 10463 10464 10465	AAA AAA AAA AAA	UMTS-FDD (DC-HSDPA)	WCDMA		±9.6%
10458 10459 10460 10461 10462 10463 10464 10465	AAA AAA AAA AAB			10 mm	
10459 10460 10461 10462 10463 10464 10465	AAA AAA AAB	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)		6.62	±9.6 %
10460 10461 10462 10463 10464 10464	AAA		CDMA2000	6.55	± 9.6 %
10461 10462 10463 10464 10465	AAB	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10461 10462 10463 10464 10465	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10463 10464 10465	AAR	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
10464		Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.30	±9.6 %
10464		Subframe=2,3,4,7,8,9)			
10465	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2.3.4,7.8.9)	LTE-TDD	8.56	± 9.6 %
10000	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.82	± 9.6 %
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL	LTE-TOD	8.32	± 9.6 %
	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.6 %
		Subframe=2,3,4,7,8,9)			
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL. Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	± 9.6 %
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL.	LTE-TOD	8.56	± 9.6 %
10470	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	±9.6 %
40.474	AAF	Subframe=2,3,4,7,8,9)			100000000000000000000000000000000000000
10471		LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.63
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.69
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL	LTE-TDD	7.82	±9.69
10474	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL.	LTE-TDD	8.32	±9.6 9
10475	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.69
10477	AAF	Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	
		LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)			± 9.6 %
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2.3.4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 °
10480	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.18	±9.6 °
10481	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.45	±9.6 °
	ioun meta-	Subframe=2,3,4,7,8,9)	251393303031	1.000376	11100000
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6 °
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.39	±9.6
10484	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL.	LTE-TDD	8.47	±9.6
10485	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% R8, 5 MHz, QPSK, UL	LTE-TDD	7.59	±9.6
10100	377	Subframe=2,3,4,7,8,9)	2000	10000	108/00/00
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL. Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL.	LTE-TDD	7.70	±9.6
10489	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6
10490	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6

Certificate No: EX3-3617_Jan20/2

Page 15 of 23

EX3DV4- SN:3617 January 30, 2020

10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,6,9)	LTE-TDD	7.74	±9.6 %
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL. Subframe=2.3.4.7.8.9)	LTE-TDD	8.41	±9.6%
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.55	± 9.6 %
10494	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6 %
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL.	LTE-TDD	8.37	±9.6 %
10496	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10497	AAB	Subframe=2,3.4,7,8.9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.67	± 9.6 %
10498	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	± 9.6 %
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.68	±9.6 %
10500	AAC	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	± 9.6 %
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6 %
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3.4.7.8.9)	LTE-TDD	8.52	±9.6 %
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL. Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6 %
10504	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10505	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
10506	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6 %
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL. Subframe=2.3,4,7,8,9)	LTE-TDD	8.36	± 9.6 %
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2.3,4,7,8,9)	LTE-TDD	8.55	± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.74	±9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.42	±9.6 %
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	± 9.6 %
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1,58	± 9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	± 9.6 %
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.69
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 9
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6 %
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6 %
10533	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	WLAN	8.38	± 9.6 %

Certificate No: EX3-3617_Jan20/2 Page 16 of 23

EX3DV4- SN:3617 January 30, 2020

10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6 %
10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	± 9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6 %
10548	AAB	JEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10550	BAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6 %
10556	AAC	IEEE 802,11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6 %
10558	AAC	IEEE 802,11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	± 9.6 %
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	± 9.6 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	± 9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty	WLAN	8.25	± 9.6 %
-		cycle)	WOW	0.23	E 9.0 N
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty	WLAN	8.13	±9.6 %
10567	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty	WLAN	8.00	± 9.6 %
		cycle)			
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	± 9.6 %
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty	WLAN	8.30	± 9.6 %
		cycle)	140 431	1.00	1000
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6%
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	± 9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6 %
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.69
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6 9
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty	WLAN	8.70	± 9.6 %
10578	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8.49	±9.63
30/2/27	20000	cycle)	200000000	1000000	1200000
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6 %
10580	AAA	IÉÉÉ 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6 9
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty	WLAN	8.35	± 9.6 %
10582	AAA	cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	±9.63
40000	4.00	cycle)	240 411	0.00	4000
10583	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.69
10584	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.69
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.69
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 °

Certificate No: EX3-3617_Jan20/2

Page 17 of 23

EX3DV4- SN:3617 January 30, 2020

10587	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	± 9.6 %
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6 %
10589	AAB	IEEE 802,11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10590	AAB	IEEE 802.11a/h WIFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6 %
10592	AAB	IEEE 802,11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6 %
10593	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6 %
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6 %
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6%
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	± 9.6 %
10604	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6 %
	AAB				
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.97	±9.6 % ±9.6 %
	- Contraction				
10607	BAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6 %
10608	AAB	IEEE 802.11ac WIFI (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6 %
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6 %
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10613	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10617	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6 %
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	± 9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6 %
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	± 9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6 %
10624	BAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	± 9.6 %
10625	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6 %
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	± 9.6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6 %
10631	AAB	IEEE 802,11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10632	AAB	IEEE 802,11ac WiFi (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10632	AAB	IEEE 802, 11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6 %
10634	AAB		WLAN	8.80	±9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN		
10635	and the state of the state of		The state of the s	8.81	±9.6 %
	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6 %
10638	AAC	IEEE 802.11ac WiFi (180MHz, MCS2, 90pc duty cycle)	WLAN	8.86	± 9.6 %
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6 %
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	± 9.6 %
10641	AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6 %
10642	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6%
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6%
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6 %
10646	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6 %
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652	AAE	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6 %
	AAE	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	± 9.6 %

Certificate No: EX3-3617_Jan20/2

Page 18 of 23

EX3DV4— SN:3617 January 30, 2020

10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	± 9.6 %
10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	± 9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
0659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	± 9.6 %
0660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	± 9.6 %
0661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	± 9.6 %
0662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
0670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %
0671	AAA	IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)	WLAN	9.09	± 9.6 %
0672	AAA	IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6 %
0673	AAA	IEEE 802.11ax (20MHz, MCS2, 90pc duty cycle)	WLAN	8.78	± 9.6 %
0674	AAA	IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
0675	AAA	IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)	WLAN		
0676	AAA	IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6%
0677	AAA		100000000		±9.69
		IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6 %
0678	AAA	IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.69
0679	AAA	IEEE 802.11ax (20MHz, MCS8, 90pc duty cycle)	WLAN	8,89	± 9.6 %
0680	AAA	IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.69
0681	AAA	IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6 %
0682	AAA	IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WLAN	8.83	± 9.6 °
0683	AAA	IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle)	WLAN	8.42	± 9.6 9
0684	AAA	IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)	WLAN	8.26	± 9.6 °
0685	AAA	IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
0686	AAA	IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6
0687	AAA	IEEE 802.11ax (20MHz, MCS4, 99pc duty cycle)	WLAN	8.45	± 9.6 5
8890	AAA	IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
0689	AAA	IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)	WLAN	8.55	± 9.6 5
0690	AAA	IEEE 802,11ax (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6
0691	AAA	IEEE 802.11ax (20MHz, MCS8, 99pc duty cycle)	WLAN	8.25	± 9.6
0692	AAA	IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)	WLAN	8.29	± 9.6
0693	AAA	IEEE 802.11ax (20MHz, MCS10, 99pc duty cycle)	WLAN	8.25	± 9.6
0694	AAA	IEEE 802.11ax (20MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
0895	AAA	IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)	WLAN	8.78	± 9.6
0696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	± 9.6
0697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	± 9.6
0698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc duty cycle)	WLAN	8.89	± 9.6
0699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	± 9.6
0700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	± 9.6
0701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc duty cycle)	WLAN	8.86	± 9.6
0702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)	WLAN	8.70	
0703	AAA		WLAN		±9.6
	the state of the s	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)		8.82	
0704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.56	± 9.6
0705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle)	WLAN	8.69	± 9.6
0706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
0707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
0708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
0709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
0710	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
0711	AAA	IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
0712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
0713	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.33	± 9.6
0714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WLAN	8.26	± 9.6
0715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	± 9.6
0716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
0717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	± 9.6
0718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
0719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
0720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
0721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	± 9.6
0723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	± 9.6
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	± 9.6
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6
10726	AAA	IEEE 002.118X (00MHz, MOSO, SUDU GUTY CYCH)			
1127 633	1 /1/1/1	IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)	WLAN	8.72	± 9.6

Certificate No: EX3-3617_Jan20/2