

Fig. 58 Radiated Spurious Emission (8DPSK, Ch0, 1 GHz ~3 GHz)

Fig. 59 Radiated Spurious Emission (8DPSK, Ch0, $3 \mathrm{GHz} \sim 18 \mathrm{GHz}$)

Fig. 60 Radiated Spurious Emission (8DPSK, Ch39, 1 GHz ~3 GHz)

Fig. 61 Radiated Spurious Emission (8DPSK, Ch39, $3 \mathrm{GHz} \sim 18 \mathrm{GHz}$)

Fig. 62 Radiated Spurious Emission (8DPSK, Ch78, 1 GHz ~3 GHz)

Fig. 63 Radiated Spurious Emission (8DPSK, Ch78, $3 \mathrm{GHz} \sim 18 \mathrm{GHz}$)

Fig. 64 Radiated Band Edges (8DPSK, Ch0, 2380GHz~2450GHz)

Fig. 65 Radiated Band Edges (8DPSK, Ch78, 2450GHz~2500GHz)

Fig. 66 Radiated Spurious Emission (All Channels, 9 kHz ~30 MHz)

Fig. 67 Radiated Spurious Emission (All Channels, $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$)

Fig. 68 Radiated Spurious Emission (All Channels, 18 GHz ~26.5 GHz)

A. 5 20dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	$/$

Measurement Result:

Mode	Channel	20dB Bandwidth(KHz)		conclusion
GFSK	0	Fig. 69	969.00	/
	39	Fig. 70	966.75	
	78	Fig. 71	936.00	
$\pi / 4$ DQPSK	0	Fig. 72	1281.75	1
	39	Fig. 73	1280.25	
	78	Fig. 74	1286.25	
8DPSK	0	Fig. 75	1275.75	1
	39	Fig. 76	1284.75	
	78	Fig. 77	1275.75	

See below for test graphs.

Conclusion: PASS

Fig. 69 20dB Bandwidth (GFSK, Ch 0)

Fig. 70 20dB Bandwidth (GFSK, Ch 39)

Fig. 71 20dB Bandwidth (GFSK, Ch 78)

Fig. 72 20dB Bandwidth ($\pi / 4$ DQPSK, Ch 0)

Fig. 73 20dB Bandwidth ($\pi / 4$ DQPSK, Ch 39)

Fig. 74 20dB Bandwidth ($\pi / 4$ DQPSK, Ch 78)

Fig. 75 20dB Bandwidth (8DPSK, Ch 0)

Fig. 76 20dB Bandwidth (8DPSK, Ch 39)

Fig. 77 20dB Bandwidth (8DPSK, Ch 78)

CAICT
No. I20N00775-BT

A. 6 Time of Occupancy (Dwell Time)

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)	$<400 \mathrm{~ms}$

Measurement Results:

Mode	Channel	Packet	Dwell Time(ms)		Conclusion
GFSK	39	DH5	Fig. 78	310.38	P
			Fig. 79		
$\pi / 4$ DQPSK	39	2-DH5	Fig. 80	308.62	P
			Fig. 81		
8DPSK	39	3-DH5	Fig. 82	309.11	P
			Fig. 83		

See below for test graphs.
Conclusion: Pass

No. I20N00775-BT

Fig. 78 Time of Occupancy(Dwell Time) (GFSK, Ch39)

Fig. 79 Time of Occupancy(Dwell Time) (GFSK, Ch39)

No. I20N00775-BT

Fig. 80 Time of Occupancy(Dwell Time) ($\pi / 4$ DQPSK, Ch39)

Fig. 81 Time of Occupancy(Dwell Time) ($\pi / 4$ DQPSK, Ch39)

No. I20N00775-BT

Fig. 82 Time of Occupancy(Dwell Time) (8DPSK, Ch39)

Fig. 83 Time of Occupancy(Dwell Time) (8DPSK, Ch39)

A. 7 Number of Hopping Channels

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)	At least 15 non-overlapping channels

Measurement Results:

Mode	Packet	Number of hopping		Test result	Conclusion
GFSK	DH5	Fig.84	Fig.85	79	\mathbf{P}
$\pi / 4$ DQPSK	2-DH5	Fig.86	Fig.87	79	\mathbf{P}
8DPSK	3-DH5	Fig.88	Fig.89	79	P

See below for test graphs.
Conclusion: Pass

No. I20N00775-BT

Fig. 84 Hopping channel ch0~39 (GFSK, Ch39)

Fig. 85 Hopping channel ch39~78 (GFSK, Ch39)

Fig. 86 Hopping channel ch0~39 ($\pi / 4$ DQPSK, Ch39)

Fig. 87 Hopping channel ch39~78 ($\pi / 4$ DQPSK, Ch39)

Fig. 88 Hopping channel ch0~39 (8DPSK, Ch39)

Fig. 89 Hopping channel ch39~78 (8DPSK, Ch39)

A. 8 Carrier Frequency Separation

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)	By a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

Measurement Results:

Mode	Channel	Packet	Separation of hopping channels	Test result $\mathbf{(k H z)}$	Conclusion
GFSK	39	DH5	Fig. 90	1006.50	\mathbf{P}
$\pi / 4$ DQPSK	39	2-DH5	Fig. 91	999.75	P
8DPSK	39	3-DH5	Fig. 92	1007.25	P

See below for test graphs.
Conclusion: Pass

Fig. 90 Carrier Frequency Separation (GFSK, Ch39)

Fig. 91 Carrier Frequency Separation ($\pi / 4$ DQPSK, Ch39)

Fig. 92 Carrier Frequency Separation (8DPSK, Ch39)

A. 9 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BT (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dB $\mu \mathbf{V})$	Result (dB $\mu \mathbf{V}$)		Conclusion
	66 to 56		Traffic	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

BT (Average Limit)

Frequency range (MHz)	Average-peak Limit ($\mathrm{dB} \mu \mathrm{V}$)	Result ($\mathrm{dB} \mu \mathrm{V}$)		Conclusion
		Traffic	Idle	
0.15 to 0.5	56 to 46	Fig. 93	Fig. 94	P
0.5 to 5	46			
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz .

Note: The measurement results include the L1 and N measurements.
See below for test graphs.
Conclusion: Pass

Fig. 93 AC Powerline Conducted Emission (Traffic)

Measurement Results: Quasi Peak

Frequency $(\mathbf{M H z})$	Quasi Peak $(\mathbf{d B} \mu \mathrm{V})$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.422000	47.46	57.41	9.95	N	ON	9.7
0.698000	43.30	56.00	12.70	N	ON	9.7
1.222000	45.37	56.00	10.63	N	ON	9.7
1.794000	47.48	56.00	8.52	N	ON	9.7
2.782000	48.38	56.00	7.62	N	ON	9.7
3.670000	46.06	56.00	9.94	N	ON	9.7

Measurement Results : Average

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mathrm { V })} \boldsymbol{)}$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V }})$	Margin (dB)	Line	Filter	Corr. $(\mathbf{d B})$
0.426000	37.47	47.33	9.86	N	ON	9.7
0.698000	34.11	46.00	11.89	N	ON	9.7
1.230000	36.50	46.00	9.50	N	ON	9.7
1.794000	38.64	46.00	7.36	N	ON	9.7
2.682000	38.42	46.00	7.59	N	ON	9.7
3.750000	35.09	46.00	10.91	N	ON	9.7

Fig. 94 AC Power line Conducted Emission (Idle)

Measurement Results: Quasi Peak

Frequency $(\mathbf{M H z})$	Quasi Peak $(\mathbf{d B} \boldsymbol{\mathrm { V })}$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.394000	47.90	57.98	10.08	L 1	ON	9.7
0.618000	45.01	56.00	10.99	L 1	ON	9.7
1.194000	47.28	56.00	8.72	L 1	ON	9.7
1.966000	49.81	56.00	6.19	L 1	ON	9.7
2.642000	52.44	56.00	3.56	L 1	ON	9.7
3.634000	49.43	56.00	6.57	L 1	ON	9.7

Measurement Results : Average

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{}$	Limit $(\mathbf{d B} \boldsymbol{\mathrm { V })} \mathbf{)}$	Margin $(\mathbf{d B})$	Line	Filter	Corr. $(\mathbf{d B})$
0.394000	32.21	47.98	15.77	L 1	ON	9.7
0.510000	28.08	46.00	17.92	L 1	ON	9.7
0.786000	35.19	46.00	10.82	L 1	ON	9.7
2.098000	38.11	46.00	7.89	L 1	ON	9.7
2.950000	37.44	46.00	8.56	N	ON	9.7
3.746000	33.90	46.00	12.10	N	ON	9.7

