

TEST REPORT

No.I20N02192-SAR

For

TCL Communication Ltd.

LTE/UMTS/GSM Smartphone

Model Name: 5030M, 5130M

With

Hardware Version: FS180-MB-V1.0A

Software Version: 5030M OFAR 1SIM V1.0 20200804 UNLOCK

FCC ID: 2ACCJB118

Issued Date: 2020-08-19

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen,

Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I20N02192-SAR	Rev.0	1st edition	2020-08-19

TCONTENTS

1. SUMMARY OF TEST REPORT	5
1.1. TEST ITEMS 1.2. TEST STANDARDS 1.3. TEST RESULT. 1.4. TESTING LOCATION 1.5. PROJECT DATA 1.6. SIGNATURE	5 5 5
2. STATEMENT OF COMPLIANCE	6
3. CLIENT INFORMATION	8
3.1. APPLICANT INFORMATION	
4. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1. ABOUT EUT 4.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	10 10
5. TEST METHODOLOGY	11
5.1. APPLICABLE LIMIT REGULATIONS	
6. SPECIFIC ABSORPTION RATE (SAR)	12
6.1. Introduction	
7. TISSUE SIMULATING LIQUIDS	13
7.1. TARGETS FOR TISSUE SIMULATING LIQUID	
8. SYSTEM VERIFICATION	17
8.1. SYSTEM SETUP	
9. MEASUREMENT PROCEDURES	19
9.1. TESTS TO BE PERFORMED	
9.2. GENERAL MEASUREMENT PROCEDURE	
9.4. BLUETOOTH & WLAN MEASUREMENT PROCEDURES FOR SAR	
9.5. SAR MEASUREMENT FOR LTE	
9.6. Power Drift	
10. CONDUCTED OUTPUT POWER	
10.1. GSM MEASUREMENT RESULT	
10.3. LTE MEASUREMENT RESULT	30
10.4. BLUETOOTH AND WLAN MEASUREMENT RESULT	
11. SIMULTANEOUS TX SAR CONSIDERATIONS	
11.1. Introduction	45

11.2. Transmit Antenna Separation Distances	
11.3. SAR MEASUREMENT POSITIONS	
12. EVALUATION OF SIMULTANEOUS	
13. SUMMARY OF TEST RESULTS	48
13.1. TESTING ENVIRONMENT	
13.2. SAR RESULTS	
13.4. PRODUCT SPECIFIC 10g SAR	
14. SAR MEASUREMENT VARIABILITY	60
15. MEASUREMENT UNCERTAINTY	62
15.1. MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	62
16. MAIN TEST INSTRUMENTS	63
ANNEX A: GRAPH RESULTS	64
ANNEX B: SYSTEMVERIFICATION RESULTS	82
ANNEX C: SAR MEASUREMENT SETUP	87
C.1. MEASUREMENT SET-UP	87
C.2. DASY5 E-FIELD PROBE SYSTEM	
C.3. E-FIELD PROBE CALIBRATION	
ANNEX D: POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	
D.1. GENERAL CONSIDERATIONS	
D.2. BODY-WORN DEVICE	
D.3. DESKTOP DEVICE	
D.4. DUT SETUP PHOTOS	
ANNEX E: EQUIVALENT MEDIA RECIPES	
ANNEX F: SYSTEM VALIDATION	
ANNEX G: DAE CALIBRATION CERTIFICATE	98
ANNEX H: PROBE CALIBRATION CERTIFICATE	101
ANNEX I: DIPOLE CALIBRATION CERTIFICATE	111
ANNEX J: EXTENDED CALIBRATION SAR DIPOLE	151
ANNEX K: SPOT CHECK TEST	152
K.1. INTERNAL IDENTIFICATION OF EUT USED DURING THE SPOT CHECK TEST	152
K.2. MEASUREMENT RESULTS	
K.3. GRAPH RESULTS FOR SPOT CHECK	
ANNEX L: SYSTEMVERIFICATION RESULTS FOR SPOT CHECK	
ANNEX M. ACCREDITATION CERTIFICATE	159

1. Summary of Test Report

1.1. Test Items

Description:

LTE/UMTS/GSM Smartphone

Model Name:

5030M, 5130M

Applicant's name:

TCL Communication Ltd.

Manufacturer's Name:

TCL Communication Ltd.

1.2. Test Standards

ANSI C95.1-1992, IEEE 1528-2013

1.3. Test Result

Pass. Please refer to "13. Summary of Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project Data

Testing Start Date: 2020-03-12

Testing End Date: 2020-08-18

1.6. Signature

Li Yongfu

孝中高

(Prepared this test report)

Zhang Yunzhuan

(Reviewed this test report)

Cao Junfei

(Approved this test report)

2. Statement of Compliance

This EUT is a variant product and the report of original sample is No.I20N00391-SAR. According to the client request, we quote the test results of original sample. The results of spot check are presented in annex K.

The maximum results of Specific Absorption Rate (SAR) found during testing for TCL Communication Ltd. LTE/UMTS/GSM Smartphone 5030M, 5130M are as follows:

Table 2.1: Highest Reported SAR for Head (1g)

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class
	GSM850	0.35	
	GSM1900	1.11	
	WCDMA Band 2	1.34	
Head	WCDMA Band 4	1.06	DOE
	WCDMA Band 5	0.23	PCE
	LTE Band 2	0.95	
	LTE Band 4	1.04	
	LTE Band 7	0.32	
	WLAN 2.4GHz	0.28	DTS

Table 2.2: Highest Reported SAR for Body (1g)

	rable 2.2. mg. rest reported of at its 20af (19)				
Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class		
	GSM850	0.61			
	GSM1900	0.82			
	WCDMA Band 2	1.16			
	WCDMA Band 4	0.86	PCE		
Hotspot/Body-worn	WCDMA Band 5	0.41	PCE		
	LTE Band 2	1.23			
	LTE Band 4	0.89			
	LTE Band 7	0.63			
	WLAN 2.4GHz	0.13	DTS		

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1 & 2.2), and the value is: 1.34 W/kg (1g).

Table2.3: The sum of reported SAR values for main antenna and WLAN

I	Position	WWAN Antenna (W/kg)	WLAN (W/kg)	Sum (W/kg)
Highest reported SAR value for Head	Right Touch	1.34	0.11	1.45
Highest reported SAR value for Body	Rear	1.23	0.13	1.36

Note: the test positions of above tables are for the worse case that has been evaluated.

Table2.4: The sum of reported SAR values for main antenna and Bluetooth

1	Position	WWAN Antenna (W/kg)	Bluetooth (W/kg)	Sum (W/kg)
Highest reported SAR value for Head	Right Touch	1.34	0.19	1.53
Highest reported SAR value for Body	Rear	1.23	0.09	1.32

Note: the test positions of above tables are for the worse case that has been evaluated.

According to the above tables, the highest sum of reported SAR values is 1.53 W/kg (1g).

The detail for simultaneous transmission consideration is described in chapter 12.

3. Client Information

3.1. Applicant Information

Company Name:	TCL Communication Ltd.
Address:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science
Address.	Park, Shatin, NT, Hong Kong
City:	1
Country:	1
Telephone:	0086-755-36611722

3.2. Manufacturer Information

Company Name:	TCL Communication Ltd.	
Address:	5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science	
Address.	Park, Shatin, NT, Hong Kong	
City:	1	
Country:	1	
Telephone:	0086-755-36611722	

4. Equipment under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	LTE/UMTS/GSM Smartphone
Model Name:	5030M, 5130M
	· · · · · · · · · · · · · · · · · · ·
Marketing Name:	Alcatel 1SE
Operating mode(s):	GSM850/1900, WCDMA Band2/4/5, LTE Band 2/4/7,
	Bluetooth, WLAN2.4G
Condition of EUT as received	No obvious damage in appearance
	825 – 848.8MHz (GSM 850)
	1850.2 – 1910MHz (GSM 1900)
	1852.4 – 1907.6MHz (WCDMA Band 2)
	1712.4 – 1752.6MHz (WCDMA Band 4)
Tested Tx Frequency:	826.4 – 846.6MHz (WCDMA Band 5)
	1850.7 – 1909.3MHz (LTE Band 2)
	1710.7 – 1754.3MHz (LTE Band 4)
	2502.5 – 2567.5MHz (LTE Band 7)
	2412 – 2462MHz (WLAN 2.4G)
GPRS / EGPRS Multislot Class:	12
GPRS capability Class:	В
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Hotspot mode:	Support
Product Dimensions:	Long 159mm ;Wide 71mm ; Overall Diagonal 163mm
Display Diagonal:	154mm
	•

Remark:

- 1. This device does not support DTM operation.
- 2. There is one power reduction level of WWAN antenna.
- 3. For WWAN transmitter

Head exposure conditions:

Reduced power level 1 – GSM1900, WCDMA Band 2/4, LTE Band 2/4

While the device WWAN is transmitting at the WWAN antenna and the audio is actively routed through the earpiece receiver, power reduction enabled for those bands.

4.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
UT01aa	354827110000138	FS180-MB-V0.2	5030J_OFAR_1SIM_V1.4_20200331
UTUTAA	354627110000136	F3160-WB-V0.2	_UNLOCK
UT07aa	354827110000088	FS180-MB-V0.2	5030J_OFAR_1SIM_V1.4_20200331
UTUTAA	aa 354827110000088 F5180-WB-V0.2		_UNLOCK
UT08aa	354827110000096	FS180-MB-V0.2	5030J_OFAR_1SIM_V1.4_20200331
UTUGAA	354627110000096	F3160-WD-V0.2	_UNLOCK
UT10aa	354827110000112	FS180-MB-V0.2	5030J_OFAR_1SIM_V1.4_20200331
UTTUAA	354627110000112	F3100-WD-VU.2	_UNLOCK
UT02aa	359203820000139	FS180-MB-V1.0A	5030M_OFAR_1SIM_V1.0_2020080
0102aa	339203620000139	FS TOU-IVID-V T.UA	4_UNLOCK

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the UT 07aa&08aa&10aa&02aa, and conducted power with the UT01aa.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
AE1	Battery	TLp038D7	VENKE
AE2	Battery	TLp038DA	TIANMAO
AE3	Headset	WH15/CCB0046A10C1	JUWEI
AE4	Headset	WH15/CCB0046A10C4	MEIHAO

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: The device has two types of batteries and headsets. AE1 battery was used for the initial test, AE2 battery was used for verification tests with the worst configuration.

4.4 General Description

LTE/UMTS/GSM Smartphone 5130M manufactured by TCL Communication Ltd.is a variant model based on 5030M for conformance test. According to client's description, the table below shows the difference between model 5130M and 5030M:

Changes	5130M	5030M
Brand Name	TCL	Alcatel

Note: According to the declaration of differences by manufacturer, the two model data are shared.

5. Test Methodology

5.1. Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Experimental Techniques.

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB 648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB 941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB 941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB 941225 D06 Hot Spot SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters.

KDB 865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

TCB workshop April 2019; RF Exposure Procedures (Tissue Simulating Liquids)

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. Tissue Simulating Liquids

7.1. Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency	Liquid Type	Conductivity	± 5% Range	Permittivity	± 5% Range
(MHz)		(σ)	_	(3)	
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
1750	Head	1.37	1.30~1.44	40.1	38.1~42.1
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2550	Head	1.91	1.81~2.01	39.1	37.1~41.0

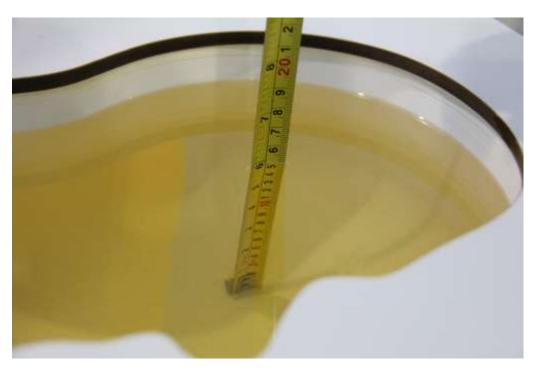

7.2. Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid


Measurement Date (yyyy-mm-dd)	Туре	Frequency	Conductivity σ (S/m)	Drift (%)	Permittivity ε	Drift (%)
2020-03-12	Head	835	0.884	-1.78	41.96	1.11
2020-03-28	Head	1750	1.352	-1.31	39.57	-1.32
2020-04-01	Head	1900	1.419	1.36	39.15	-2.13
2020-03-30	Head	2450	1.832	1.78	38.72	-1.22
2020-03-13	Head	2550	1.953	2.25	38.34	-1.94
2020-08-18	Head	835	0.915	1.67	40.88	-1.49
2020-08-18	Head	1900	1.424	1.71	38.96	-2.60

Note: The liquid temperature is 22.0°C.

Picture 7-1: Liquid depth in the Head Phantom (835MHz)

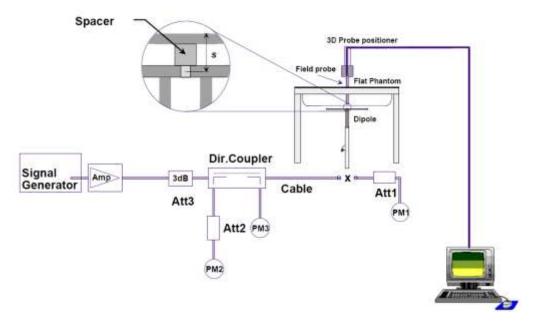


Picture 7-2: Liquid depth in the Head Phantom (1750MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900MHz)

Picture 7-4: Liquid depth in the Head Phantom(2450MHz)

Picture 7-5: Liquid depth in the Head Phantom(2550MHz)



8. System verification

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2. System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Table 8.1: System Verification of Head

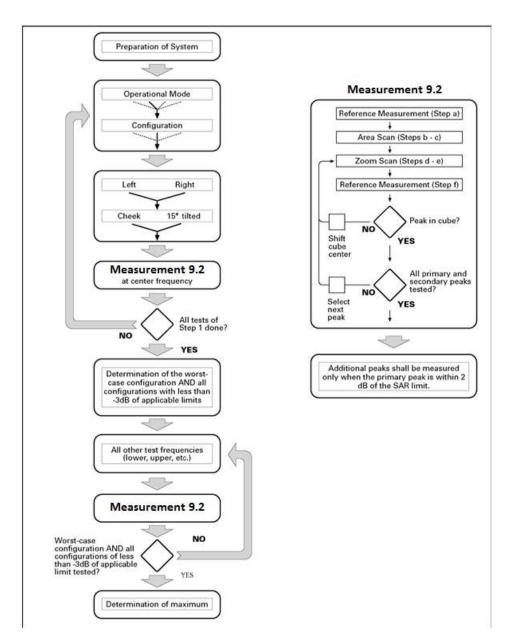
Measurement		Target val	Target value (W/kg) Measured value (W/kg)			Deviat	Deviation (%)		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g		
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average		
2020-03-12	835 MHz	6.29	9.62	6.12	9.24	-2.70	-3.95		
2020-03-28	1750 MHz	19.30	36.40	18.96	35.52	-1.76	-2.42		
2020-04-01	1900 MHz	21.00	40.50	21.48	42.00	2.29	3.70		
2020-03-30	2450 MHz	24.10	52.00	24.48	53.60	1.58	3.08		
2020-03-13	2550 MHz	26.50	57.80	27.32	60.40	3.09	4.50		
2020-08-18	835 MHz	6.29	9.62	6.44	9.96	2.38	3.53		
2020-08-18	1900 MHz	21.00	40.50	21.60	42.40	2.86	4.69		

9. Measurement Procedures

9.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c >$ 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2. General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

		≤ 3 GHz	> 3 GHz	
		5 ± 1 mm	½-δ-ln(2) ± 0.5 mm	
		30°±1°	20° ± 1°	
		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	$3-4 \text{ GHz} \le 12 \text{ mm}$ $4-6 \text{ GHz} \le 10 \text{ mm}$	
tial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
atial resolu	tion: Δx_{Zoom} , Δy_{Zoom}	≤2 GHz: ≤8 mm 3 - 4 GHz: ≤5 2 - 3 GHz: ≤5 mm 4 - 6 GHz: ≤4		
uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 - 4 GHz: \le 4 mm 4 - 5 GHz: \le 3 mm 5 - 6 GHz: \le 2 mm	
graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{200m}}(n-1)$		
finimum zoom scan olume x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	
	be sensors) from probe a ent location tial resoluti natial resolu uniform a graded grid	graded grid \[\Delta z_{Zoom}(1): \text{ between } 1^{st} \) two points closest to phantom surface \[\Delta z_{Zoom}(n>1): \text{ between } subsequent points \]	To closest measurement point be sensors) to phantom surface from probe axis to phantom surface ent location	

Note: 5 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	$oldsymbol{eta_d}$ (SF)	β_c/β_d	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSPA Data Devices

Sub- test	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	$oldsymbol{eta}_d$	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4. Bluetooth & WLAN Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5. SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Anristu MT8820C. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the Anristu MT8820C. It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

- 1) QPSK with 1 RB allocation
 - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
- 2) QPSK with 50% RB allocation The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation
 - For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.6. Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10. Conducted Output Power

10.1. GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 10.1: The conducted power measurement results for GSM

Full Power								
GSM	Tune		Conducted Power(dBm)					
850MHz	up	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
85UIVID2	34	33.38	33.45	33.51				
0014	Tune		Conducted Power(dBm)					
GSM 1900MHz	up	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel512(1850.2MHz)				
1900IVITZ	30.5	30.12	30.21	30.28				
		Reduced	power level 1					
GSM	Tune		Conducted Power(dBm)					
1900MHz	up	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel512(1850.2MHz)				
1900MHZ	28.5	27.82	27.97	28.04				

Table 10.2: The conducted power measurement results for GPRS and EGPRS

Full Power									
GPRS850/	Tune	Meas	sured Powe	r (dBm)	calculation	Average Power (dBm)			
EGPRS850	up	251	190	128	Calculation	251	190	128	
1Tx-slots	34	33.37	33.43	33.49	-9.03dB	24.34	24.40	24.46	
2Tx-slots	32	31.13	31.30	31.45	-6.02dB	25.11	25.28	25.43	
3Tx-slots	30	29.17	29.31	29.43	-4.26dB	24.91	25.05	25.17	
4Tx-slots	28	27.15	27.28	27.37	-3.01dB	24.14	24.27	24.36	
EGPRS 850	Tune	Meas	sured Powe	r (dBm)	calculation	Measured Power (dBm)			
(8PSK)	up	251	190	128	Calculation	251	190	128	
1Tx-slots	28	26.57	26.32	26.45	-9.03dB	17.54	17.29	17.42	
2Tx-slots	26.5	25.36	25.20	25.41	-6.02dB	19.34	19.18	19.39	
3Tx-slots	24	22.81	22.39	22.55	-4.26dB	18.55	18.13	18.29	
4Tx-slots	21.5	20.04	19.82	20.08	-3.01dB	17.03	16.81	17.07	

	Full Power									
GPRS1900/	Tune	Meası	ıred Power	(dBm)	calculation	Averag	ge Power (d	Bm)		
EGPRS1900	up	810	661	512	Calculation	810	661	512		
1Tx-slots	31	30.11	30.19	30.25	-9.03dB	21.08	21.16	21.22		
2Tx-slots	29	27.68	27.87	28.04	-6.02dB	21.66	21.85	22.02		
3Tx-slots	27.5	26.13	26.28	26.51	-4.26dB	21.87	22.02	22.25		
4Tx-slots	25.5	24.11	24.34	24.51	-3.01dB	21.10	21.33	21.50		
EGPRS 1900	Tune	Measu	red Power	(dBm)	coloulation	Measured Power (dBm)				
(8PSK)	up	810	661	512	calculation	810	661	512		
1Tx-slots	26.5	25.67	26.14	25.67	-9.03dB	16.64	17.11	16.64		
2Tx-slots	25	23.62	24.29	23.76	-6.02dB	17.60	18.27	17.74		
3Tx-slots	22	20.31	21.19	20.57	-4.26dB	16.05	16.93	16.31		
4Tx-slots	18	16.88	17.54	17.15	-3.01dB	13.87	14.53	14.14		

Note:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for 850MHz and 3Txslots for 1900MHz.

10.2. WCDMA Measurement result

Table 10.3: The conducted power measurement results WCDMA

		Ful	I Power				
	band		WCDM	A Band 2			
Item	ARFCN	Tune up	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)		
WCDMA	١	24	23.5	23.3	23.0		
	1	21	20.4	20.2	20.0		
	2	22	21.1	20.7	20.5		
HSUPA	3	21.5	20.8	20.5	20.2		
	4	22	21.3	20.9	20.8		
	5	24	23.2	23.0	22.5		
	1	24	23.4	23.2	22.6		
HEDDA	2	24	23.0	22.8	22.4		
HSDPA	3	23.5	22.7	22.5	22.3		
	4	23.5	22.7	22.5	22.3		
	1	24	23.3	23.3	22.8		
DC-HSDPA	2	24	23.0	22.9	22.6		
DC-HSDPA	3	23.5	22.6	22.6	22.4		
	4	23.5	22.6	22.6	22.6		
		Reduced	power level 1				
	band	WCDMA Band 2					
Item	ARFCN	Tune up	9538	9400	9262		
	_		(1907.6MHz)	(1880MHz)	(1852.4MHz)		
WCDMA	\	19.5	19.17	19.06	18.79		
	1	16.5	16.20	16.14	15.98		
	2	17.5	16.56	16.44	16.21		
HSUPA	3	17	16.35	16.20	16.03		
	4	17.5	16.55	16.42	16.18		
	5	19	18.21	18.12	18.03		
	1	19.5	19.04	18.99	18.73		
HSDPA	2	19.5	19.00	18.95	18.68		
	3	19	18.57	18.43	18.35		
	4	19	18.52	18.41	18.32		
	1	19.5	19.02	18.95	18.69		
DC-HSDPA	2	19.5	18.94	18.88	18.57		
	3	19	18.58	18.45	18.39		
	4	19	18.50	18.42	18.36		

		Ful	l Power		
	band		WCDM	A Band 4	
Item	ARFCN	Tungun	1513	1413	1312
	ARFUN	Tune up	(1752.6MHz)	(1732.6MHz)	(1712.4MHz)
WCDMA	1	24	23.4	23.3	23.2
	1	21	19.8	19.8	19.8
	2	21	19.6	19.8	19.6
HSUPA	3	21	19.8	19.9	19.9
	4	21	19.9	19.9	20.0
	5	23	21.9	22.0	21.9
	1	23	22.3	22.6	22.3
HSDPA	2	23	22.1	22.4	22.0
	3	22.5	21.7	22.0	21.5
	4	22.5	21.7	21.9	21.5
	1	23	22.4	22.5	22.4
DC-HSDPA	2	23	22.2	22.3	22.1
DC-HSDPA	3	22.5	21.8	22.0	21.6
	4	22.5	21.8	21.8	21.7
		Reduced	power level 1		
	band		WCDM	A Band 4	
ltem	ARFCN	Tune up	1513	1413	1312
	ARTON	rune up	(1752.6MHz)	(1732.6MHz)	(1712.4MHz)
WCDMA	\	18.5	18.08	17.73	18.09
	1	15.5	13.97	13.88	14.01
	2	15.5	14.19	14.03	14.25
HSUPA	3	15.5	14.84	14.65	14.88
	4	15.5	14.11	14.96	14.18
	5	17.5	16.28	16.16	16.35
	1	17.5	17.09	16.95	17.17
HSDPA	2	17.5	17.04	16.91	17.11
HODI A	3	17	16.29	16.18	16.35
	4	17	16.22	16.10	16.33
	1	17.5	17.06	16.90	17.15
DC-HSDPA	2	17.5	17.01	16.88	17.10
DC-HODEA	3	17	16.25	16.16	16.33
	4	17	16.22	16.08	16.30

Full Power									
	band	WCDMA Band 5							
Item	ARFCN	Tungun	4233	4182	4132				
	ARFCN	Tune up	(846.6MHz)	(836.4MHz)	(826.4MHz)				
WCDMA	\	23.5	22.7	23.2	22.9				
	1	21	20.2	20.3	20.0				
	2	21	20.5	20.5	20.3				
HSUPA	3	21	20.3	20.4	20.1				
	4	21	20.3	20.3	20.0				
	5	23	21.7	22.1	21.7				
	1	23	21.2	21.3	21.3				
HSDPA	2	23	21.8	21.9	21.7				
ПЭРРА	3	23	21.7	21.9	21.7				
	4	23	21.8	21.8	21.7				
	1	23	21.3	21.3	21.4				
DC-HSDPA	2	23	21.8	21.8	21.8				
	3	23	21.8	21.9	21.7				
	4	23	21.9	21.8	21.7				

10.3. LTE Measurement result

Table 10.4: The conducted Power for LTE

			Full Po	wer			
	LTE Bar	nd 2		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
				1909.3MHz	1880MHz	1850.7MHz	
		Lliab	QPSK	23.33	23.05	22.72	24
		High	16QAM	22.95	22.19	22.33	23
	1RB	Middle	QPSK	23.32	22.96	22.71	24
	IKD	Middle	16QAM	23.02	22.14	22.35	23
		Low	QPSK	23.38	22.99	22.73	24
		LOW	16QAM	23.00	22.18	22.36	23
1.4 MHz		∐iah	QPSK	23.46	23.05	22.84	24
		High	16QAM	22.74	22.21	22.12	23
	200	Middle	QPSK	23.52	23.08	22.79	24
	3RB	Middle	16QAM	22.82	22.18	22.10	23
		Low	QPSK	23.48	22.99	22.74	24
			16QAM	22.78	22.23	22.13	23
	6RB	/	QPSK	22.45	21.94	21.77	23
			16QAM	21.30	20.89	20.62	22
				1908.5MHz	1880MHz	1851.5MHz	/
		High	QPSK	23.39	23.02	22.76	24
		riigii	16QAM	22.99	22.03	22.30	23
	1RB	Middle	QPSK	23.37	22.91	22.75	24
	IND	Middle	16QAM	23.00	21.99	22.35	23
		Low	QPSK	23.35	22.94	22.73	24
		LOW	16QAM	22.96	21.98	22.35	23
3 MHz		High	QPSK	22.49	22.05	21.75	23
		riigii	16QAM	21.63	21.18	21.03	22
	8RB	Middle	QPSK	22.44	21.98	21.74	23
	OIVD	iviluale	16QAM	21.69	21.14	21.01	22
		Low	QPSK	22.41	22.01	21.74	23
		LUW	16QAM	21.67	21.10	21.06	22
	15RB	/	QPSK	22.40	21.96	21.76	23
	1010	/	16QAM	21.64	21.13	21.02	22

	Full Power											
	LTE Bar	nd 2		Actual	output Power	(dBm)						
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up					
		•		1907.5MHz	1880MHz	1852.5MHz						
		l li ede	QPSK	23.33	22.97	22.69	24					
		High	16QAM	23.02	22.60	22.35	23					
	1RB	Middle	QPSK	23.30	22.89	22.79	24					
	IKB	ivildale	16QAM	23.02	22.55	22.35	23					
		Low	QPSK	23.29	22.84	22.77	24					
		LOW	16QAM	22.94	22.50	22.39	23					
5 MHz		∐iah	QPSK	22.43	21.93	21.80	23					
		High	16QAM	21.63	21.20	20.95	22					
	12RB	Middle	QPSK	22.40	22.03	21.76	23					
	IZRD	Middle	16QAM	21.57	21.13	20.95	22					
		Low	QPSK	22.32	21.97	21.82	23					
			16QAM	21.52	21.09	20.94	22					
	25RB	/	QPSK	22.38	21.90	21.74	23					
			16QAM	21.47	21.06	20.85	22					
				1905MHz	1880MHz	1855MHz	/					
		High	QPSK	23.36	23.11	22.71	24					
		riigii	16QAM	22.87	22.56	22.29	23					
	1RB	Middle	QPSK	23.36	23.01	22.69	24					
	IND	ivildale	16QAM	22.82	22.39	22.28	23					
		Low	QPSK	23.24	22.94	22.73	24					
		LOW	16QAM	22.75	22.39	22.21	23					
10 MHz		High	QPSK	22.50	22.01	21.78	23					
		riigii	16QAM	21.77	21.38	21.11	22					
	25RB	Middle	QPSK	22.33	22.07	21.84	23					
	20110	IVIIGGIG	16QAM	21.62	21.35	21.08	22					
		Low	QPSK	22.30	21.92	21.76	23					
		LOW	16QAM	21.69	21.27	21.11	22					
	50RB	/	QPSK	22.35	21.99	21.76	23					
	DUKB	DUKB	DND	DUKB	DAND	DUKD	,	16QAM	21.43	21.15	20.88	22

Full Power								
	LTE Bar	nd 2	Actual	Actual output Power (dBm)				
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up	
	,			1902.5MHz	1880MHz	1857.5MHz		
		Lliab	QPSK	23.37	23.00	22.69	24	
		High	16QAM	23.06	22.79	22.44	23	
	1RB	Middle	QPSK	23.27	22.90	22.73	24	
	IKD	ivildale	16QAM	22.98	22.69	22.41	23	
		Low	QPSK	23.27	22.82	22.76	24	
		Low	16QAM	22.92	22.68	22.45	23	
15 MHz		∐iah	QPSK	22.34	22.11	21.77	23	
		High	16QAM	21.47	21.12	20.92	22	
	36RB	Middle	QPSK	22.35	22.03	21.86	23	
	SORD	ivildale	16QAM	21.49	21.10	20.90	22	
		Low	QPSK	22.31	21.93	21.82	23	
			16QAM	21.40	21.04	20.93	22	
	75RB	/	QPSK	22.35	22.03	21.74	23	
			16QAM	21.54	21.19	20.94	22	
				1900MHz	1880MHz	1860MHz	/	
		High	QPSK	23.10	23.15	22.77	24	
			16QAM	23.05	22.34	22.48	23	
	1RB	Middle	QPSK	22.98	22.99	22.65	24	
	IND	Middle	16QAM	22.88	22.17	22.42	23	
		Low	QPSK	22.97	22.95	22.76	24	
		LOW	16QAM	22.84	22.14	22.48	23	
20 MHz		High	QPSK	22.12	22.04	21.86	23	
		піgп	16QAM	21.48	21.24	21.02	22	
	50RB	Middle	QPSK	21.98	22.03	21.73	23	
	JUND	iviidule	16QAM	21.39	21.17	20.94	22	
		Low	QPSK	21.91	21.91	21.76	23	
		LOW	16QAM	21.42	21.12	20.99	22	
	100PP		QPSK	22.01	21.96	21.80	23	
	100RB	/	16QAM	21.43	21.19	21.02	22	

Reduced power level 1									
	LTE Bar	nd 2	Actual	output Power	(dBm)				
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up		
				1909.3MHz	1880MHz	1850.7MHz			
		∐iah	QPSK	17.17	16.85	16.80	18.5		
		High	16QAM	16.44	16.17	16.02	17.5		
	1RB	Middle	QPSK	17.37	17.06	17.00	18.5		
	IKD	ivildale	16QAM	16.64	16.38	16.23	17.5		
		Low	QPSK	17.19	16.91	16.82	18.5		
		Low	16QAM	16.47	16.24	16.04	17.5		
1.4 MHz		∐iah	QPSK	17.31	17.00	16.95	18.5		
		High	16QAM	16.29	16.04	15.88	17.5		
	3RB	Middle	QPSK	17.38	17.09	17.02	18.5		
	SKD	ivildale	16QAM	16.37	16.12	15.97	17.5		
		Low	QPSK	17.33	17.04	16.96	18.5		
			16QAM	16.32	16.08	15.89	17.5		
	6RB	/	QPSK	16.28	16.01	15.95	17.5		
			16QAM	15.53	15.28	14.99	16.5		
				1908.5MHz	1880MHz	1851.5MHz	/		
		High	QPSK	17.21	16.82	16.80	18.5		
			16QAM	16.48	16.14	16.03	17.5		
	1RB	Middle	QPSK	17.40	17.08	17.00	18.5		
	IND	Middle	16QAM	16.68	16.41	16.25	17.5		
		Low	QPSK	17.21	16.97	16.83	18.5		
		LOW	16QAM	16.49	16.26	16.10	17.5		
3 MHz		High	QPSK	16.31	15.98	15.92	17.5		
		riigii	16QAM	15.52	15.22	14.92	16.5		
	8RB	Middle	QPSK	16.35	16.06	15.99	17.5		
	OND	Middle	16QAM	15.56	15.30	14.98	16.5		
		1	QPSK	16.31	16.07	15.98	17.5		
		Low	16QAM	15.52	15.30	14.97	16.5		
	15DD	/	QPSK	16.31	16.03	15.96	17.5		
	15RB	/	16QAM	15.49	15.25	14.92	16.5		

	Reduced power level 1								
	LTE Bar	nd 2	Actual	output Power	(dBm)				
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up		
				1907.5MHz	1880MHz	1852.5MHz			
		∐iah	QPSK	16.85	16.46	16.57	18.5		
		High	16QAM	16.14	15.89	15.82	17.5		
	1RB	Middle	QPSK	17.37	17.10	16.92	18.5		
	IKD	ivildale	16QAM	16.67	16.54	16.22	17.5		
		Low	QPSK	16.96	16.72	16.49	18.5		
		Low	16QAM	16.27	16.16	15.77	17.5		
5 MHz		∐iah	QPSK	16.20	15.96	15.89	17.5		
		High	16QAM	15.37	15.07	14.85	16.5		
	12RB	Middle	QPSK	16.36	16.20	15.99	17.5		
	IZKD	Middle	16QAM	15.54	15.28	14.95	16.5		
		Low	QPSK	16.26	16.12	15.86	17.5		
			16QAM	15.44	15.20	14.82	16.5		
	25RB	/	QPSK	16.23	16.06	15.88	17.5		
			16QAM	15.41	15.13	14.83	16.5		
				1905MHz	1880MHz	1855MHz	/		
		High	QPSK	17.63	17.03	17.39	18.5		
			16QAM	16.89	16.38	16.71	17.5		
	1RB	Middle	QPSK	17.42	17.08	16.74	18.5		
	IND	Middle	16QAM	16.68	16.47	16.11	17.5		
		Low	QPSK	17.24	17.07	16.39	18.5		
		LOW	16QAM	16.50	16.41	15.74	17.5		
10 MHz		High	QPSK	16.61	16.24	16.19	17.5		
		riigii	16QAM	15.74	15.38	15.28	16.5		
	25RB	Middle	QPSK	16.47	16.24	15.87	17.5		
	23110	Middle	16QAM	15.61	15.38	14.95	16.5		
		1	QPSK	16.42	16.27	15.68	17.5		
		Low	16QAM	15.56	15.42	14.77	16.5		
	50DD	/	QPSK	16.51	16.26	15.94	17.5		
	50RB	50KB	50KB	/	16QAM	15.65	15.41	15.03	16.5

	Reduced power level 1								
	LTE Bar	nd 2		Actual output Power (dBm)					
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up		
				1902.5MHz	1880MHz	1857.5MHz			
		High	QPSK	17.34	16.89	17.50	18.5		
		підп	16QAM	16.57	16.20	16.81	17.5		
	1RB	Middle	QPSK	17.35	17.10	16.88	18.5		
	IND	Middle	16QAM	16.59	16.51	16.28	17.5		
		Low	QPSK	17.36	17.46	16.70	18.5		
		LOW	16QAM	16.59	16.76	16.02	17.5		
15 MHz		∐iah	QPSK	16.39	16.07	16.36	17.5		
		High	16QAM	15.56	15.22	15.47	16.5		
	36RB	Middle	QPSK	16.33	16.21	16.02	17.5		
	SOKD	Middle	16QAM	15.50	15.35	15.10	16.5		
		Low	QPSK	16.40	16.46	15.87	17.5		
			16QAM	15.57	15.61	14.98	16.5		
	75RB	/	QPSK	16.39	16.27	16.12	17.5		
			16QAM	15.56	15.41	15.23	16.5		
				1900MHz	1880MHz	1860MHz	/		
		High	QPSK	18.05	17.88	18.12	18.5		
			16QAM	17.30	17.06	17.42	17.5		
	1RB	Middle	QPSK	17.23	16.99	16.89	18.5		
	IND	Middle	16QAM	16.51	16.27	16.22	17.5		
		Low	QPSK	17.40	18.00	16.62	18.5		
		LOW	16QAM	16.67	17.20	15.91	17.5		
20 MHz		High	QPSK	16.65	16.39	16.58	17.5		
		підп	16QAM	15.85	15.45	15.74	16.5		
	50RB	Middle	QPSK	16.32	16.22	15.98	17.5		
	JUND	ivildule	16QAM	15.54	15.29	15.15	16.5		
		Low	QPSK	16.24	16.49	15.61	17.5		
		LOW	16QAM	15.45	15.55	14.77	16.5		
	100PP	1	QPSK	16.44	16.44	16.11	17.5		
	100RB	100RB /	16QAM	15.63	15.48	15.25	16.5		

			Full Po	wer										
	LTE Bar	nd 4		Actual	output Power	(dBm)								
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up							
		•		1754.3MHz	1732.5MHz	1710.7MHz								
		Lliab	QPSK	23.11	22.97	22.80	24							
		High	16QAM	22.38	22.57	22.53	23							
	1RB	Middle	QPSK	23.09	22.96	22.81	24							
	IKD	ivildale	16QAM	22.42	22.58	22.55	23							
		Low	QPSK	23.08	22.95	22.83	24							
		Low	16QAM	22.40	22.59	22.51	23							
1.4 MHz		High	QPSK	23.30	23.02	23.01	24							
		nign	16QAM	22.50	22.32	22.29	23							
	200	Middle	QPSK	23.35	22.99	22.92	24							
	3RB	Middle	16QAM	22.53	22.37	22.33	23							
		Low	QPSK	23.29	23.07	22.96	24							
			16QAM	22.48	22.36	22.25	23							
	6RB	/	QPSK	22.27	21.99	21.89	23							
		/	16QAM	21.22	20.86	20.78	22							
				1753.5MHz	1732.5MHz	1711.5MHz	/							
		High	QPSK	23.10	23.04	22.91	24							
		riigii	16QAM	22.45	22.43	22.37	23							
	1RB	Middle	QPSK	23.14	22.96	22.87	24							
	IND	Mildule	16QAM	22.46	22.48	22.39	23							
		Low	QPSK	23.14	23.00	22.95	24							
		LOW	16QAM	22.48	22.43	22.41	23							
3 MHz		High	QPSK	22.26	21.95	21.89	23							
		riigii	16QAM	21.52	21.26	21.19	22							
	8RB	Middle	QPSK	22.29	22.04	21.90	23							
	OIND	iviidule	16QAM	21.54	21.31	21.16	22							
		Low	QPSK	22.23	22.06	21.98	23							
		LUW	16QAM	21.50	21.27	21.21	22							
	15RB	/	QPSK	22.25	22.02	22.03	23							
	מאכו	IJIND	וטונט	13170	IJND	1317.0	IJKD	IJND	'	16QAM	21.44	21.24	21.15	22

			Full Po	wer			
	LTE Bar	nd 4		Actual output Power (dBm)			
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
		•		1752.5MHz	1732.5MHz	1712.5MHz	
		l li ede	QPSK	23.04	22.94	22.84	24
		High	16QAM	22.92	22.60	22.55	23
	1DD	Middle	QPSK	23.10	22.96	22.84	24
	1RB	ivildale	16QAM	22.88	22.59	22.54	23
		Low	QPSK	23.05	22.94	22.86	24
		Low	16QAM	22.91	22.62	22.54	23
5 MHz		∐iah	QPSK	22.17	21.98	21.83	23
		High	16QAM	21.30	21.15	21.07	22
	12RB	Middle	QPSK	22.28	22.00	21.91	23
	IZKD	Middle	16QAM	21.31	21.16	21.05	22
		Low	QPSK	22.24	21.95	21.90	23
		LOW	16QAM	21.36	21.12	21.04	22
	25RB	/	QPSK	22.27	21.94	21.98	23
	ZUND	,	16QAM	21.34	21.09	21.04	22
				1750MHz	1732.5MHz	1715MHz	/
		High	QPSK	23.19	22.96	22.85	24
		riigii	16QAM	22.60	22.52	22.40	23
	1RB	Middle	QPSK	23.13	22.92	22.89	24
	IND	Middle	16QAM	22.53	22.42	22.39	23
		Low	QPSK	23.20	22.94	22.97	24
		LOW	16QAM	22.55	22.44	22.37	23
10 MHz		High	QPSK	22.19	22.01	21.99	23
		riigii	16QAM	21.59	21.42	21.24	22
	25RB	Middle	QPSK	22.27	22.02	21.91	23
	2310	iviluale	16QAM	21.54	21.32	21.34	22
		Low	QPSK	22.21	21.99	22.01	23
		LUW	16QAM	21.57	21.38	21.32	22
	5000	,	QPSK	22.20	21.95	21.98	23
	50RB	/	16QAM	21.42	21.15	21.11	22

			Full Po	wer			
	LTE Bar	nd 4		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
				1747.5MHz	1732.5MHz	1717.5MHz	
		Lliab	QPSK	23.17	22.97	22.90	24
		High	16QAM	22.79	22.63	22.50	23
	1RB	Middle	QPSK	23.13	22.89	22.76	24
	IKD	ivildale	16QAM	22.80	22.53	22.51	23
		Low	QPSK	23.11	22.97	22.86	24
		Low	16QAM	22.77	22.59	22.59	23
15 MHz		∐iah	QPSK	22.30	22.13	21.96	23
		High	16QAM	21.29	21.13	21.01	22
	2600	Middle	QPSK	22.23	21.98	22.00	23
	36RB	Middle	16QAM	21.32	21.10	21.03	22
		Low	QPSK	22.16	22.12	21.97	23
		LOW	16QAM	21.29	21.18	21.09	22
	75RB	/	QPSK	22.21	22.06	21.85	23
	7386		16QAM	21.44	21.15	21.08	22
				1745MHz	1732.5MHz	1720MHz	/
		High	QPSK	23.09	22.96	22.95	24
		піgп	16QAM	22.97 22.67 22.5	22.54	23	
	1RB	Middle	QPSK	23.07	22.90	22.81	24
	IND	Middle	16QAM	22.94	22.58	22.53	23
		Low	QPSK	23.02	22.98	22.91	24
		LOW	16QAM	22.91	22.65	22.58	23
20 MHz		High	QPSK	22.24	22.09	22.07	23
		піgп	16QAM	21.31	21.15	21.09	22
	50RB	Middle	QPSK	22.30	22.09	21.94	23
	JUKD	ivildale	16QAM	21.34	21.14	21.06	22
		Low	QPSK	22.18	22.01	22.02	23
		Low	16QAM	21.25	21.17	21.07	22
	100RB		QPSK	22.19	22.01	21.95	23
	IUUKD	/	16QAM	21.38	21.14	21.07	22

			Reduced pow	ver level 1					
	LTE Bar	nd 4		Actual	output Power	(dBm)			
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up		
				1754.3MHz	1732.5MHz	1710.7MHz			
		∐iah	QPSK	16.42	16.19	16.35	17.5		
		High	16QAM	15.88	15.64	15.76	17		
	1RB	Middle	QPSK	16.62	16.44	16.50	17.5		
	IKD	ivildale	16QAM	16.08	15.93	15.91	17		
		Low	QPSK	16.41	16.28	16.27	17.5		
		Low	16QAM	15.88	15.74	15.69	17		
1.4 MHz		∐iah	QPSK	16.56	16.37	16.48	17.5		
		High	16QAM	15.71	15.55	15.56	17		
	200	Middle	QPSK	16.63	16.48	16.47 15.58	17.5		
	3RB	ivildale	16QAM	15.80	15.63		17		
		Low	QPSK	16.56	16.43	16.39	17.5		
		LOW	16QAM	15.73	15.59	15.49	17		
	6RB	/	QPSK	15.65	15.51	15.46	16.5		
	OND	/	16QAM	14.87	14.65	14.53	16		
				1753.5MHz	1732.5MHz	1711.5MHz	/		
		High	QPSK	16.44	16.15	16.53	17.5		
		riigii	16QAM	15.89	15.62	16.15 16.53			
	1RB	Middle	QPSK	16.61	16.46	16.61	17.5		
	IND	Middle	16QAM	16.05	15.92	16.03	17		
		Low	QPSK	16.42	16.32	16.29	17.5		
		LOW	16QAM	15.88	15.80	15.70	17		
3 MHz		High	QPSK	15.65	15.46	15.63	16.5		
		riigii	16QAM	14.83	14.58	14.67	16		
	8RB	Middle	QPSK	15.69	15.55	15.63	16.5		
	OND	Middle	16QAM	14.86	14.67	14.67	16		
		Low	QPSK	15.65	15.56	15.51	16.5		
		LUW	16QAM	14.83	14.68	14.55	16		
	15RB	/	QPSK	15.65	15.52	15.58	16.5		
	IJND	/	16QAM	14.79	14.61	14.58	16		

			Reduced pow	ver level 1			
	LTE Bar	nd 4		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
		•	1	1752.5MHz	1732.5MHz	1712.5MHz	
		l li ada	QPSK	16.08	15.70	16.34	17.5
		High	16QAM	15.54	15.19	15.78	17
	400	N 4: al all a	QPSK	16.60	16.44	16.68	17.5
	1RB	Middle	16QAM	16.04	15.92	16.09	17
		Low	QPSK	16.10	16.04	15.93	17.5
		Low	16QAM	15.58	15.53	15.37	17
5 MHz		Lliab	QPSK	15.56	15.32	15.68	16.5
		High	16QAM	14.69	14.38	14.65	16
	12RB	Middle	QPSK	15.71	15.58	15.72 14.71	16.5
	IZKD	ivildale	16QAM	14.84	14.64	14.71	16
		Low	QPSK	15.57	15.57 15.50 15.4	15.47	16.5
		LOW	16QAM	14.69	14.56	14.44	16
	25RB	/	QPSK	15.57	15.42	15.59	16.5
	ZUND	/	16QAM	14.68	14.47	14.55	16
				1750MHz	1732.5MHz	1715MHz	/
		High	QPSK	16.93	16.25	17.04	17.5
		riigii	16QAM	16.38	15.76	16.52	17
	1RB	Middle	QPSK	16.58	16.40	16.38	17.5
	IND	Middle	16QAM	16.06	15.88	15.85	17
		Low	QPSK	16.52	16.47	15.62	17.5
		LOW	16QAM	15.96	15.98	15.10	17
10 MHz		High	QPSK	15.94	15.56	15.97	16.5
		riigii	16QAM	15.04	14.61	15.01	16
	25RB	Middle	QPSK	15.77	15.60	15.56	16.5
	20110	IVIIGUIG	16QAM	14.87	14.65	14.60	16
		Low	QPSK	15.74	15.69	15.25	16.5
		LUVV	16QAM	14.84	14.74	14.30	16
	50RR	,	QPSK	15.84	15.63	15.63	16.5
	50RB	/	16QAM	14.95	14.69	14.67	16

			Reduced pow	ver level 1			
	LTE Bar	nd 4		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
				1747.5MHz	1732.5MHz	1717.5MHz	
		∐iah	QPSK	16.70	15.86	16.91	17.5
		High	16QAM	16.09	15.35	16.41	17
	1RB	Middle	QPSK	16.59	16.40	16.60	17.5
	IKD	ivildale	16QAM	16.04	15.88	16.07	17
		Low	QPSK	16.97	16.87	15.95	17.5
		Low	16QAM	16.38	16.36	15.43	17
15 MHz		∐iah	QPSK	15.81	15.32	16.05	16.5
		High	16QAM	14.91	14.37	15.10 15.74 14.77	16
	2600	Middle	QPSK	15.76	15.54		16.5
	36RB	ivildale	16QAM	14.88	14.60	14.77	16
		Low	QPSK	15.94	15.90	15.50	16.5
		LOW	16QAM	15.06	14.97	14.54	16
	75RB	/	QPSK	15.87	15.62	15.79	16.5
	7386	/	16QAM	14.98	14.67	14.84	16
				1745MHz	1732.5MHz	1720MHz	/
		High	QPSK	17.64	16.40	16.94	18
		піgп	16QAM	17.06	15.88	16.17	17.5
	1RB	Middle	QPSK	16.62	16.30	16.16	18
	IND	Middle	16QAM	16.10	15.79	15.46	17.5
		Low	QPSK	17.60	17.03	16.07	18
		LOW	16QAM	17.01	16.50	15.09	17.5
20 MHz		High	QPSK	16.17	15.48	15.64	17
		піgп	16QAM	15.28	14.53	14.82	16.5
	50RB	Middle	QPSK	15.85	15.54	15.26	17
	JUND	ivildule	16QAM	14.97	14.60	14.42	16.5
		Low	QPSK	16.08	15.84	15.05	17
		LOW	16QAM	15.20	14.90	14.51	16.5
	100RB		QPSK	16.11	15.65	15.25	17
	IUUKD	/	16QAM	15.21	14.70	14.61	16.5

			Full Po	wer			
	LTE-FDD E	Band 7		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
				2567.4MHz	2535MHz	2502.5MHz	
		Lliada	QPSK	22.86	22.51	22.82	24
		High	16QAM	22.61	22.34	22.30	23
	400	N 4: al all a	QPSK	22.78	22.54	22.80	24
	1RB	Middle	16QAM	22.55	22.30	22.36	23
		Low	QPSK	22.82	22.49	22.77	24
		Low	16QAM	22.60	22.32	22.37	23
5 MHz		Lliab	QPSK	21.86	21.61	21.96	23
		High	16QAM	21.08	20.77	21.04 21.85 21.09 22.00	22
	12RB	Middle	QPSK	21.93	21.72	+	23
	IZKB	ivildale	16QAM	21.05	20.77	21.09	22
		Low	QPSK	21.87	21.62	22.00	23
		LOW	16QAM	21.03	20.75	21.13	22
	25RB	/	QPSK	21.91	21.64	21.89	23
	ZUND	/	16QAM	21.02	20.71	21.22	22
				2565MHz	2535MHz	2505MHz	/
		High	QPSK	22.80	22.59	22.83	24
		riigii	16QAM	22.38	22.18	22.38	23
	1RB	Middle	QPSK	22.85	22.55	22.77	24
	IND	Middle	16QAM	22.36	22.09	22.32	23
		Low	QPSK	22.74	22.58	22.69	24
		LOW	16QAM	22.33	22.04	22.32	23
10 MHz		High	QPSK	22.05	21.64	21.95	23
		riigii	16QAM	21.26	21.01	21.22	22
	25RB	Middle	QPSK	21.94	21.67	21.84	23
	20110	IVIIGUIG	16QAM	21.26	20.95	21.22	22
		Low	QPSK	21.93	21.72	21.97	23
		LOW	16QAM	21.27	20.96	21.18	22
	50RR	/	QPSK	21.99	21.65	21.89	23
	50RB	/	16QAM	21.07	20.81	21.10	22

			Full Po	wer			
	LTE-FDD E	Band 7		Actual	output Power	(dBm)	
Band-width	RB allocation	RB offset	Modulation	High	Middle	Low	Tune up
				2562.5MHz	2535MHz	2507.5MHz	
		∐iah	QPSK	22.90	22.60	22.81	24
		High	16QAM	22.71	22.51	22.28	23
	4 D D	Middle	QPSK	22.88	22.51	22.79	24
	1RB	Middle	16QAM	22.68	22.39	22.21	23
		Low	QPSK	22.70	22.60	22.80	24
		Low	16QAM	22.64	22.46	22.28	23
15 MHz		Lliab	QPSK	22.09	21.70	21.94	23
		High	16QAM	21.06	20.75	21.17	22
	2600	Middle	QPSK	21.97	21.71	21.93 21.17	23
	36RB	Middle	16QAM	21.05	20.76		22
		Low	QPSK	21.92	21.65	21.93	23
		LOW	16QAM	20.96	20.69	21.17	22
	75RB	/	QPSK	21.86	21.73	21.90	23
	/3KD		16QAM	21.15	20.88	21.07	22
				2560MHz	2535MHz	2510MHz	/
		∐iah	QPSK	23.00	22.84	22.90	24
		High	16QAM	22.70			
	1RB	Middle	QPSK	22.90	22.65	22.88	24
	IKD	Middle	16QAM	22.59	22.03	22.56	23
		Low	QPSK	22.68	22.70	22.79	24
		LOW	16QAM	22.48	22.04	22.55	23
20 MHz		High	QPSK	22.03	21.72	22.01	23
		підп	16QAM	21.09	20.91	21.03	22
	FODD	Middle	QPSK	22.03	21.60	21.95	23
	50RB	Middle	16QAM	21.06	20.81	21.12	22
		Low	QPSK	21.84	21.72	21.89	23
		Low	16QAM	21.09	20.82	21.01	22
	100BB	-	QPSK	21.92	21.62	22.04	23
	100RB	/	16QAM	21.10	20.81	21.14	22

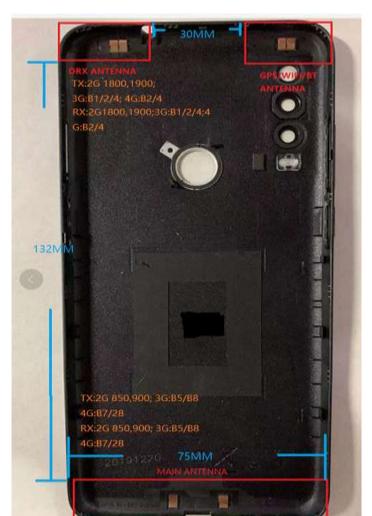
10.4. Bluetooth and WLAN Measurement result

Table 10.5: The conducted Power measurement results for Bluetooth

Bluetooth	Tune up	Averaged Po	ower (dBm)
	6.5	Ch.0 (2402 MHz)	5.97
GFSK	5.5	Ch39 (2441 MHz)	4.60
	5.5	Ch78 (2480 MHz)	4.34
EDR2M-4_DQPSK	5.5	Ch.0 (2402 MHz)	4.83
	4.5	Ch39 (2441 MHz)	3.23
	4.5	Ch78 (2480 MHz)	3.29
	6.5	Ch.0 (2402 MHz)	5.90
EDR3M-8DPSK	5.5	Ch39 (2441 MHz)	4.57
	5.5	Ch78 (2480 MHz)	4.34
	-6.5	Ch0 (2402MHz)	-7.67
BLE	-5.5	Ch19 (2440MHz)	-6.20
	-5.5	Ch39 (2480MHz)	-6.26

Table 10.6: The conducted Power measurement results for WLAN 2.4G

WLAN 2.4GHz	Tune up	Averaged Power (dBm)	Duty Cycle: 100%
	12	Ch.1(2412MHz)	11.15
802.11b	11	Ch.6(2437Mhz)	10.12
	13	Ch.11(2462MHz)	12.05
	10	Ch.1(2412MHz)	8.85
802.11g	9	Ch.6(2437Mhz)	8.34
	11	Ch.11(2462MHz)	9.78
	8	Ch.1(2412MHz)	7.18
802.11n(20MHz)	8	Ch.6(2437Mhz)	7.15
	10	Ch.11(2462MHz)	8.96


11. Simultaneous TX SAR Considerations

11.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and WLAN can transmit simultaneous with other transmitters.

11.2. Transmit Antenna Separation Distances

Top Side

Right Side

Left Side

Bottom Side
Picture 11.1 Antenna Locations (Front View)

/	Frequency Bands
DRX Antenna	GSM1900, WCDMA Band2/4, LTE Band 2/4
Main Antenna	GSM850, WCDMA Band5, LTE Band 7

11.3. SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR, the edges with less than 25mm distance to the antennas need to be tested for SAR.

SAR measurement positions							
Mode	Front	Rear	Left edge	Right edge	Top edge	Bottom edge	
DRX antenna	Yes	Yes	Yes	Yes	Yes	No	
Main antenna	Yes	Yes	Yes	Yes	No	Yes	
WLAN antenna	Yes	Yes	Yes	Yes	Yes	No	

11.4. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 11.1: Standalone SAR test exclusion considerations

Band/Mode	f(GHz)	Position	SAR test exclusion		utput wer	SAR test exclusion
			threshold (mW)	dBm	mW	exclusion
Dharteeth	2.441	Head	9.60	6.5	4.5	Yes
Bluetooth		Body	19.20	6.5	4.5	Yes
2.4GHz WLAN	2.45	Head	9.58	13	20.0	No
		Body	19.17	13	20.0	No

12. Evaluation of Simultaneous

Table 12.1: The sum of reported SAR values for main antenna and WLAN

I	Position	WWAN Antenna (W/kg)	WLAN (W/kg)	Sum (W/kg)
Highest reported SAR value for Head	Right Touch	1.34	0.11	1.45
Highest reported SAR value for Body	Rear	1.23	0.13	1.36

Note: the test positions of above tables are for the worse case that has been evaluated.

Table 12.2: The sum of reported SAR values for main antenna and Bluetooth

I	Position	WWAN Antenna (W/kg)	Bluetooth (W/kg)	Sum (W/kg)
Highest reported SAR value for Head	Right Touch	1.34	0.19	1.53
Highest reported SAR value for Body	Rear	1.23	0.09	1.32

Note: the test positions of above tables are for the worse case that has been evaluated.

Table 12.3: Estimated SAR for Bluetooth

Desition	f (CU=)	Distance (mm)	Upper limi	Estimated _{1g}	
Position	f (GHz)	Distance (mm)	dBm	mW	(W/kg)
Head	2.441	5	6.5	4.5	0.19
Body	2.441	10	6.5	4.5	0.09

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

Where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

13. Summary of Test Results

According to the client's decision rule in the test registration form, which is "based on the measurement results as the basis of the conformity statement", the test conclusion of this report meets the limit requirements.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

 P_{Measured} is the measured power in chapter 10.

Note:

B2 (Battery): TLp038DA (TIANMAO)

H1 (Headset): WH15/CCB0046A10C1 (JUWEI) H2 (Headset): WH15/CCB0046A10C4 (MEIHAO)

Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS for GSM850	1:4
GPRS for GSM1900	1:2.67
WCDMA850/1700/1900	1:1
FDD_LTE Band 2/4/7	1:1

13.1. Testing Environment

Temperature:	18°C~25°C
Relative humidity:	30%~70%
Ground system resistance:	$<4\Omega$
Ambient noise & Reflection:	< 0.012 W/kg

13.2. SAR results

Table 13.1: SAR Values (GSM 850 - Head)

	Ambient Temperature: 22.8°C Liquid Temperature: 22.2°C												
Frequency		Test	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Power				
MHz	IHz Ch. Mode	Position	No. / Note	Power (dBm)	Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)					
836.6	190	Speech	Left Touch	1	33.45	34	0.229	0.26	0.02				
836.6	190	Speech	Left Tilt	/	33.45	34	0.130	0.15	0.01				
836.6	190	Speech	Right Touch	/	33.45	34	0.212	0.24	-0.08				
836.6	190	Speech	Right Tilt	/	33.45	34	0.130	0.15	0.01				
836.6	190	Speech	Left Touch	B2	33.45	34	0.216	0.25	0.09				

Table 13.2: SAR Values (GSM 850 -Body)

	Table 10.2. OAR Values (Colli 000 Body)												
	Ambient Temperature: 22.8°C Liquid Temperature: 22.2°C												
Freque		Test	Test	Figure No. /	Conducted Power	Max. tune-up	Measured SAR(1g)	Reported SAR(1g)	Power				
MHz	Ch.	Mode	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	Drift(dB)				
	Hotspot / Body-Worn Test Data (10mm)												
836.6	190	GPRS	Front	/	31.30	32	0.261	0.31	0.08				
836.6	190	GPRS	Rear	2	31.30	32	0.390	0.46	0.14				
836.6	190	GPRS	Left	/	31.30	32	0.335	0.39	0.04				
836.6	190	GPRS	Right	/	31.30	32	0.192	0.23	0.09				
836.6	190	GPRS	Bottom	/	31.30	32	0.058	0.07	0.03				
836.6	190	GPRS	Rear	B2	31.30	32	0.381	0.45	0.05				

Table 13.3: SAR Values (GSM 1900 - Head)

		Ambie	ent Temperatur	e: 22.7°C	C Liquio	d Tempera	ture: 22.2°C		
Frequer MHz	Ch.	Test Mode	Test Position	Figure No. /	Conducted Power (dBm)	Max. tune-up Power	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
1880	661	Speech	Left Touch	Note /	27.97	(dBm) 28.5	0.421	0.48	0.01
1880	661	Speech	Left Tilt	/	27.97	28.5	0.286	0.32	-0.03
1880	661	Speech	Right Touch	3	27.97	28.5	0.981	1.11	-0.05
1880	661	Speech	Right Tilt	/	27.97	28.5	0.810	0.92	0.00
1909.8	810	Speech	Right Touch	/	27.82	28.5	0.950	1.11	0.13
1850.2	512	Speech	Right Touch	/	28.04	28.5	0.932	1.04	0.12
1909.8	810	Speech	Right Tilt	/	27.82	28.5	0.789	0.92	0.00
1850.2	512	Speech	Right Tilt	/	28.04	28.5	0.765	0.85	0.05
1880	661	Speech	Right Touch	B2	27.97	28.5	0.966	1.09	0.05

Table 13.4: SAR Values (GSM 1900 - Body)

		Ambier	nt Tempera	ture: 22.4°	C Liqui	d Tempera	ture: 22.0°C				
Freque MHz	Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
Hotspot / Body-Worn Test Data (10mm)											
1880	661	GPRS	Front	/	26.28	27.5	0.353	0.47	0.01		
1880	661	GPRS	Rear	4	26.28	27.5	0.607	0.80	0.17		
1880	661	GPRS	Left	/	26.28	27.5	0.209	0.28	0.10		
1880	661	GPRS	Right	/	26.28	27.5	0.041	0.05	0.06		
1880	661	GPRS	Тор	/	26.28	27.5	0.197	0.26	0.01		
1880	661	GPRS	Rear	B2	26.28	27.5	0.585	0.77	0.09		

Table 13.5: SAR Values (WCDMA Band 2 - Head)

		Amb	oient Temperat	ure: 22.7°C	Liquid	Temperatu	re: 22.2°C		
Freque		Test	Test	Figure No. /	Conducted Power	Max. tune-up	Measured SAR(1g)	Reported SAR(1g)	Power
MHz	Ch.	Mode	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	Drift(dB)
1880	9400	RMC	Left Touch	/	19.06	19.5	0.602	0.67	-0.02
1880	9400	RMC	Left Tilt	/	19.06	19.5	0.488	0.54	0.01
1880	9400	RMC	Right Touch	/	19.06	19.5	1.100	1.22	0.03
1880	9400	RMC	Right Tilt	/	19.06	19.5	0.688	0.76	0.07
1907.6	9538	RMC	Right Touch	/	19.17	19.5	1.050	1.13	-0.05
1852.4	9262	RMC	Right Touch	/	18.79	19.5	1.130	1.33	0.08
1852.4	9262	RMC	Right Touch	5 / B2	18.79	19.5	1.140	1.34	0.06

Table 13.6: SAR Values (WCDMA Band 2 - Body)

	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4											
	Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C											
Freque MHz	ency Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)			
	Hotspot / Body-Worn Test Data (10mm)											
1880	9400	RMC	Front	/	23.3	24	0.698	0.82	0.04			
1880	9400	RMC	Rear	/	23.3	24	0.991	1.16	-0.04			
1880	9400	RMC	Left	/	23.3	24	0.286	0.34	0.08			
1880	9400	RMC	Right	/	23.3	24	0.102	0.12	0.05			
1880	9400	RMC	Тор	/	23.3	24	0.359	0.42	0.04			
1907.6	9538	RMC	Rear	6	23.5	24	1.020	1.14	-0.02			
1852.4	9262	RMC	Rear	/	23.0	24	0.861	1.08	0.05			
1880	9400	RMC	Rear	B2	23.3	24	0.977	1.15	0.03			

Table 13.7: SAR Values (WCDMA Band 4 - Head)

		Am	bient Temperat	ure: 22.9°C	C Liquic	l Temperat	ure: 22.4°C		
Freque MHz	ency Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
1732.6	1413	RMC	Left Touch	/	17.73	18.5	0.383	0.46	-0.08
1732.6	1413	RMC	Left Tilt	/	17.73	18.5	0.286	0.34	0.12
1732.6	1413	RMC	Right Touch	/	17.73	18.5	0.845	1.01	0.06
1732.6	1413	RMC	Right Tilt	/	17.73	18.5	0.530	0.63	0.12
1752.6	1513	RMC	Right Touch	7	18.08	18.5	0.962	1.06	0.01
1712.4	1312	RMC	Right Touch	/	18.09	18.5	0.889	0.98	0.10
1752.6	1513	RMC	Right Touch	B2	18.08	18.5	0.904	1.00	-0.11

Table 13.8: SAR Values (WCDMA Band 4 - Body)

		Aml	pient Temperat	ture: 22.6°C	Liquid	Temperate	ure: 22.1°C				
Freque MHz	ency Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)		
	Hotspot / Body-Worn Test Data (10mm)										
1732.6	1413	RMC	Front	/	23.3	24	0.543	0.64	0.01		
1732.6	1413	RMC	Rear	/	23.3	24	0.715	0.84	-0.02		
1732.6	1413	RMC	Left	/	23.3	24	0.405	0.48	0.01		
1732.6	1413	RMC	Right	/	23.3	24	0.100	0.12	0.18		
1732.6	1413	RMC	Тор	/	23.3	24	0.277	0.33	0.04		
1752.6	1513	RMC	Rear	8	23.4	24	0.752	0.86	0.03		
1712.4	1312	RMC	Rear	/	23.2	24	0.652	0.78	0.02		
1752.6	1513	RMC	Rear	B2	23.4	24	0.735	0.84	0.06		

Table 13.9: SAR Values (WCDMA Band 5 - Head)

	Ambient Temperature: 22.8°C Liquid Temperature: 22.2°C														
Freque	ency	Test	Test	Figure	Conducted	Max.	Measured	Reported	Power						
MHz	Ch.	Mode	Position	No. / Note	Power (dBm)	tune-up Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)						
836.4	4182	RMC	Left Touch	/	23.2	23.5	0.182	0.20	0.05						
836.4	4182	RMC	Left Tilt	/	23.2	23.5	0.091	0.10	0.07						
836.4	4182	RMC	Right Touch	9	23.2	23.5	0.213	0.23	0.05						
836.4	4182	RMC	Right Tilt	/	23.2	23.5	0.125	0.13	0.04						
836.4	4182	RMC	Right Touch	B2	23.2	23.5	0.208	0.22	0.02						

Table 13.10: SAR Values (WCDMA Band 5 -Body)

1													
		Ambi	ent Temperat	ure: 22.8°	C Liquid	d Tempera	ture: 22.2°C						
Freque MHz	Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)				
	Hotspot / Body-Worn Test Data (10mm)												
836.4	4182	RMC	Front	/	23.2	23.5	0.188	0.20	0.01				
836.4	4182	RMC	Rear	10	23.2	23.5	0.380	0.41	0.02				
836.4	4182	RMC	Left	/	23.2	23.5	0.285	0.31	0.09				
836.4	4182	RMC	Right	/	23.2	23.5	0.313	0.34	0.05				
836.4	4182	RMC	Bottom	/	23.2	23.5	0.055	0.06	0.12				
836.4	4182	RMC	Rear	B2	23.2	23.5	0.369	0.40	0.08				

Table 13.11: SAR Values (LTE Band 2 - Head)

		Ambi	ent Temperatur	e: 22.5°C	Liquid	Temperatui	e: 22.0°C		
Freq	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Power
MHz	Ch.	Test Mode	Position	No./	Power (dBm)	Power	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
				Note	(dDIII)	(dBm)	(VV/Kg)	(VV/Rg)	
1860	18700	1RB_99	Left Touch	/	18.12	18.5	0.447	0.49	0.03
1900	19100	50RB_50	Left Touch	/	16.65	17.5	0.358	0.44	0.05
1860	18700	1RB_99	Left Tilt	/	18.12	18.5	0.325	0.35	0.80
1900	19100	50RB_50	Left Tilt	/	16.65	17.5	0.259	0.31	0.07
1860	18700	1RB_99	Right Touch	/	18.12	18.5	0.792	0.86	0.01
1900	19100	50RB_50	Right Touch	/	16.65	17.5	0.619	0.75	0.06
1860	18700	1RB_99	Right Tilt	/	18.12	18.5	0.544	0.59	0.05
1900	19100	50RB_50	Right Tilt	/	16.65	17.5	0.429	0.52	0.04
1900	19100	1RB_99	Right Touch	11	18.05	18.5	0.858	0.95	0.17
1880	18900	1RB_99	Right Touch	/	18.00	18.5	0.798	0.90	0.14
1900	19100	100RB	Right Touch	/	16.44	17.5	0.656	0.84	0.08
1900	19100	1RB_99	Right Touch	B2	18.05	18.5	0.764	0.85	-0.17

Table 13.12: SAR Values (LTE Band 2 - Body)

		Ambi	ent Temperatu	ıre: 22.8°C	Liquid T	emperatu	re: 22.2°C		
Freq MHz	uency Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
			Hotspot	t / Body-Wo	rn Test Data	(10mm)			
1880	18900	1RB_99	Front	/	23.15	24	0.582	0.71	-0.01
1900	19100	50RB_50	Front	/	22.12	23	0.494	0.60	-0.07
1880	18900	1RB_99	Rear	/	23.15	24	0.983	1.20	0.05
1900	19100	50RB_50	Rear	/	22.12	23	0.840	1.03	-0.08
1880	18900	1RB_99	Left	/	23.15	24	0.647	0.79	0.10
1900	19100	50RB_50	Left	/	22.12	23	0.557	0.68	0.12
1880	18900	1RB_99	Right	/	23.15	24	0.092	0.11	0.03
1900	19100	50RB_50	Right	/	22.12	23	0.076	0.09	-0.04
1880	18900	1RB_99	Тор	/	23.15	24	0.342	0.42	0.05
1900	19100	50RB_50	Тор	/	22.12	23	0.285	0.35	0.03
1900	19100	1RB_99	Rear	12	23.10	24	0.998	1.23	0.05
1860	18700	1RB_99	Rear	/	22.77	24	0.918	1.22	0.02
1880	18900	50RB_50	Rear	/	22.04	23	0.806	1.01	0.04
1860	18700	50RB_50	Rear	/	21.86	23	0.779	1.01	-0.03
1900	19100	100RB	Rear	/	22.01	23	0.863	1.08	0.02
1900	19100	1RB_99	Rear	B2	23.10	24	0.913	1.12	0.04
1900	19100	1RB_99	Rear	H1	23.10	24	0.976	1.20	0.06
1900	19100	1RB_99	Rear	H2	23.10	24	0.985	1.21	0.08

Table 13.13: SAR Values (LTE Band 4 - Head)

		Ambie	ent Temperature	e: 22.5°C	Liquid	Temperature	e: 22.0°C		
Frequ MHz	Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
1745	20300	1RB_99	Left Touch	/	17.64	18	0.587	0.64	0.00
1745	20300	50RB_50	Left Touch	/	16.17	17	0.434	0.53	0.04
1745	20300	1RB_99	Left Tilt	/	17.64	18	0.418	0.45	0.04
1745	20300	50RB_50	Left Tilt	/	16.17	17	0.302	0.37	0.06
1745	20300	1RB_99	Right Touch	13	17.64	18	0.957	1.04	0.12
1745	20300	50RB_50	Right Touch	/	16.17	17	0.703	0.85	0.02
1745	20300	1RB_99	Right Tilt	/	17.64	18	0.690	0.75	0.13
1745	20300	50RB_50	Right Tilt	/	16.17	17	0.516	0.62	0.03
1732.5	20175	1RB_0	Right Touch	/	17.03	18	0.805	1.01	0.01
1720	20050	1RB_99	Right Touch	/	16.94	18	0.799	1.02	0.10
1732.5	20175	50RB_0	Right Tilt	/	15.84	17	0.569	0.74	0.03
1720	20050	50RB_50	Right Tilt	/	15.64	17	0.636	0.87	0.09
1745	20300	100RB	Right Touch	/	16.11	17	0.811	1.00	0.12
1745	20300	1RB_99	Right Touch	B2	17.64	18	0.894	0.97	0.12

Table 13.14: SAR Values (LTE Band 4 - Body)

		Ambie	ent Temperatu		Liquid Te	emperature	•		
Frequ	ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
			Hotspot	/ Body-Wo	rn Test Data	(10mm)			
1745	20300	1RB_99	Front	/	23.09	24	0.472	0.58	-0.05
1745	20300	50RB_25	Front	/	22.30	23	0.386	0.45	0.00
1745	20300	1RB_99	Rear	14	23.09	24	0.724	0.89	0.02
1745	20300	50RB_25	Rear	/	22.30	23	0.608	0.71	0.09
1745	20300	1RB_99	Left	/	23.09	24	0.472	0.58	0.09
1745	20300	50RB_25	Left	/	22.30	23	0.370	0.43	0.06
1745	20300	1RB_99	Right	/	23.09	24	0.103	0.13	0.08
1745	20300	50RB_25	Right	/	22.30	23	0.079	0.09	-0.10
1745	20300	1RB_99	Тор	/	23.09	24	0.317	0.39	0.08
1745	20300	50RB_25	Тор	/	22.30	23	0.248	0.29	0.11
1732.5	20175	1RB_0	Rear	/	22.98	24	0.649	0.82	0.06
1720	20050	1RB_99	Rear	/	22.95	24	0.674	0.86	0.07
1745	20300	100RB	Rear	/	22.19	23	0.586	0.71	0.05
1745	20300	1RB_99	Rear	B2	23.09	24	0.691	0.85	0.03

Table 13.15: SAR Values (LTE Band 7 - Head)

		Am	bient Temperatu	ıre: 22.5°C	Liquid	Temperatui	re: 22.0°C		
Freq MHz	Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)
2560	21350	1RB_99	Left Touch	/	23.00	24	0.151	0.19	0.09
2560	21350	50RB_50	Left Touch	/	22.03	23	0.114	0.14	0.04
2560	21350	1RB_99	Left Tilt	/	23.00	24	0.211	0.27	0.05
2560	21350	50RB_50	Left Tilt	/	22.03	23	0.168	0.21	0.06
2560	21350	1RB_99	Right Touch	/	23.00	24	0.249	0.31	-0.03
2560	21350	50RB_50	Right Touch	/	22.03	23	0.189	0.24	0.06
2560	21350	1RB_99	Right Tilt	/	23.00	24	0.156	0.20	0.08
2560	21350	50RB_50	Right Tilt	/	22.03	23	0.122	0.15	0.07
2560	21350	1RB_99	Right Touch	15 /B2	23.00	24	0.256	0.32	0.10

Table 13.16: SAR Values (LTE Band 7 - Body)

		Ambi	ent Temperatu	ıre: 22.8°C	Liquid T	emperatui	re: 22.2°C					
Freq	uency		Test	Figure	Conducted Power	Max. tune-up	Measured	Reported	Power			
MHz	Ch.	Test Mode	Position	Position No. /		Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)			
	Hotspot / Body-Worn Test Data (10mm)											
2560	21350	1RB_99	Front	/	23.00	24	0.433	0.55	0.08			
2560	21350	50RB_50	Front	/	22.03	23	0.343	0.43	0.10			
2560	21350	1RB_99	Rear	/	23.00	24	0.478	0.60	0.14			
2560	21350	50RB_50	Rear	/	22.03	23	0.400	0.50	0.01			
2560	21350	1RB_99	Left	/	23.00	24	0.189	0.24	-0.01			
2560	21350	50RB_50	Left	/	22.03	23	0.151	0.19	0.07			
2560	21350	1RB_99	Right	/	23.00	24	0.240	0.30	0.07			
2560	21350	50RB_50	Right	/	22.03	23	0.192	0.24	0.02			
2560	21350	1RB_99	Bottom	/	23.00	24	0.311	0.39	0.07			
2560	21350	50RB_50	Bottom	/	22.03	23	0.246	0.31	-0.02			
2560	21350	1RB_99	Rear	16 /B2	23.00	24	0.498	0.63	0.14			

13.3. WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

Table 13.17: SAR Values (WLAN 2.4G - Head)

	Ambient Temperature: 22.6°C Liquid Temperature: 22.0°C													
Frequ	ency	Test	Test	Figure	Conducte	Max. tune-up	Measured	Reported	Power					
MHz	Ch.	Mode	Position	No. / Note	d Power (dBm)	Power (dBm)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)					
2462	11	802.11 b	Left Touch	/	12.05	13	0.190	0.24	0.07					
2462	11	802.11 b	Left Tilt	/	12.05	13	0.119	0.15	0.01					
2462	11	802.11 b	Right Touch	/	12.05	13	0.084	0.11	0.04					
2462	11	802.11 b	Right Tilt	/	12.05	13	0.079	0.10	0.12					
2462	11	802.11 b	Left Touch	17 /B2	12.05	13	0.223	0.28	-0.12					

Note1: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Table 13.18: SAR Values (WLAN - Head) - 802.11b (Scaled Reported SAR)

Frequ	ency	Test Position	Actual duty	maximum	Reported SAR	Scaled reported
MHz	Ch.	10011 00111011	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)
2462	11	Left Touch	100%	100%	0.28	0.28

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

Table 13.19: SAR Values (WLAN 2.4G - Body)

	Ambient Temperature: 22.6°C Liquid Temperature: 22.0°C													
Frequ MHz	ency Ch.	Test Mode	Test Position	Figure No. / Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)					
	Test Data (10mm)													
2462	11	802.11 b	Front	/	12.05	13	0.040	0.05	-0.05					
2462	11	802.11 b	Rear	18	12.05	13	0.108	0.13	-0.07					
2462	11	802.11 b	Left	/	12.05	13	0.009	0.01	-0.06					
2462	11	802.11 b	Right	/	12.05	13	0.062	0.08	0.07					
2462	11	802.11 b	Тор	/	12.05	13	0.037	0.05	0.03					
2462	11	802.11 b	Rear	B2	12.05	13	0.101	0.13	0.11					

Note1: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Table 13.20: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)

	Ambient Temperature: 22.6°C Liquid Temperature: 22.0°C										
Frequency		Test	Actual duty	maximum	Reported SAR	Scaled reported					
MHz	Ch.	Position	factor	duty factor	(1g)(W/kg)	SAR (1g)(W/kg)					
2462	11	Rear	100%	100%	0.13	0.13					

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

13.4. Product specific 10g SAR

Table 13.21: SAR Values (LTE Band 2 - Body)

	Ambient Temperature: 22.8°C Liquid Temperature: 22.2°C										
Frequency			Test	Figure	Conducted	Max.	Measured	Reported	Power		
MHz	Ch.	Test Mode	Position	No. / Note	Power (dBm)	tune-up Power (dBm)	SARGON	SAR(10g) (W/kg)	Drift(dB)		
	Test Data (0mm)										
1900	19100	1RB_99	Rear	/	23.10	24	2.91	3.58	0.03		

14. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 14.1: SAR Measurement Variability for Head – GSM1900

Frequ	quency Test Position		Original	Original 1 st Repeated		2 nd Repeated	
MHz	Ch.	Test Position	SAR (W/kg) SAR (W/kg)		Ratio	SAR (W/kg)	
1880	9400	Right Touch	0.981	0.975	1.01	/	

Table 14.2: SAR Measurement Variability for Head – WCDMA Band 2

Frequ	ency	Test Position	Original 1 st Repeated		Ratio	2 nd Repeated
MHz	Ch.	Test Position	SAR (W/kg)	SAR (W/kg)	Kalio	SAR (W/kg)
1852.4	9262	Right Touch	1.14	1.06	1.08	/

Table 14.3: SAR Measurement Variability for Body – WCDMA Band 2

Frequ	ency	Test Position	Original 1 st Repeated		Ratio	2 nd Repeated
MHz	Ch.	Test Position	SAR (W/kg) SAR (W/kg)		Kalio	SAR (W/kg)
1907.6	9538	Rear	1.02	1.00	1.02	/

Table 14.4: SAR Measurement Variability for Head –WCDMA Band 4

Frequ	ency	Test Position	Original 1 st Repeated		Ratio	2 nd Repeated
MHz	Ch.	Test Position	SAR (W/kg) SAR (W/kg)		Kalio	SAR (W/kg)
1752.6	1513	Right Touch	0.962	0.954	1.01	/

Table 14.5: SAR Measurement Variability for Head - LTE Band 2

Frequency		equency Test Position		Original 1 st Repeated		2 nd Repeated	
MHz	Ch.	Test Position	SAR (W/kg)	SAR (W/kg)	Ratio	SAR (W/kg)	
1900	19100	Right Touch	0.858	0.842	1.02	/	

Table 14.6: SAR Measurement Variability for Body – LTE Band 2

Freque	ency	Test Position	Original 1 st Repeated		Ratio	2 nd Repeated
MHz	Ch.	Test Position	SAR (W/kg) SAR (W/kg)		Kallo	SAR (W/kg)
1900	19100	Rear	0.998	0.987	1.01	/

Table 14.7: SAR Measurement Variability for Head – LTE Band 4

Frequency		Test Position	Original	Original 1 st Repeated		2 nd Repeated	
MHz	Ch.	Test Position	SAR (W/kg)	SAR (W/kg)	Ratio	SAR (W/kg)	
1745	20300	Right Touch	0.957	0.939	1.02	/	

15. Measurement Uncertainty

15.1. Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

	. Measurement or					1000		<i>-</i>				
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci)	(Ci) 10g	Std. Unc.	Std. Unc.	Degree of		
			value	Diotribution		.9	.09	(1g)	(10g)	freedom		
	Measurement system											
1	Probe calibration	В	12	Ν	2	1	1	6.0	6.0	8		
2	Axial isotropy	В	4.7	R	$\sqrt{3}$	√0.5	√0.5	4.3	4.3	8		
3	Hemispherical isotropy	В	9.6	R	$\sqrt{3}$	1	1	4.8	4.8	8		
4	Boundary effect	В	1.1	R	$\sqrt{3}$	1	1	0.6	0.6	8		
5	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8		
6	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
7	Modulation response	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8		
8	Readout electronics	В	1.0	N	1	1	1	1.0	1.0	8		
9	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8		
10	Integration time	В	1.7	R	$\sqrt{3}$	1	1	1.0	1.0	8		
11	RF ambient conditions-noise	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8		
12	RF ambient conditions-reflection	В	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8		
13	Probe positioned mech. restrictions	В	0.35	R	$\sqrt{3}$	1	1	0.2	0.2	8		
14	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8		
15	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
			Test	sample related								
16	Test sample positioning	Α	3.3	N	1	1	1	3.3	3.3	5		
17	Device holder uncertainty	Α	3.4	N	1	1	1	3.4	3.4	5		
18	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8		
			Phant	om and set-up		1	1					
19	Phantom uncertainty	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
20	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8		
21	Liquid conductivity (meas.)	Α	1.3	N	1	0.64	0.43	0.83	0.56	9		
22	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8		
23	Liquid permittivity (meas.)	Α	1.6	N	1	0.6	0.49	0.96	0.78	9		
	Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{2}}$		$\sqrt{\sum_{i=1}^{23} c_i^2 u_i^2}$					11.3	11.2	95.5		
	Expanded uncertainty (Confidence interval of 95 %)		$u_e = 2u_c$					22.6	22.4			

16. Main Test Instruments

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46103759	2019-11-15	One year
02	Dielectric probe	85070E	MY44300317	/	/
03	Power meter	E4418B	MY50000366	0040 40 44	_
04	Power sensor	E9304A	MY50000188	2019-12-14	One year
05	Power meter	NRP	101460	2020 04 45	0.00.000
06	Power sensor	NRP-Z91	100553	2020-01-15	One year
07	Signal Generator	E8257D	MY47461211	2019-06-03	One year
08	Signal Generator	E8257D	MY47461211	2020-01-15	One year
09	Amplifier	VTL5400	0404	/	/
11	E-field Probe	ES3DV3	3151	2020-01-03	One year
12	DAE	DAE4	786	2020-03-03	One year
13	Dipole Validation Kit	D835V2	4d057	2018-10-09	Three year
14	Dipole Validation Kit	D1750V2	1152	2019-08-30	Three year
15	Dipole Validation Kit	D1900V2	5d088	2018-10-24	Three year
16	Dipole Validation Kit	D2450V2	873	2018-10-26	Three year
17	Dipole Validation Kit	D2550V2	1058	2018-08-24	Three year
18	Radio Communication Analyzer	MT8820C	6201341853	2020-01-15	One year
19	Software	DASY5	52.8.8.1222	/	/

ANNEX A: Graph Results

GSM850 Head

Date: 2020-3-12

Electronics: DAE4 Sn786 Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 S/m; ϵ_r = 41.943; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

Left Cheek Middle/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.299 W/kg

Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.340 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.157 W/kg

Maximum value of SAR (measured) = 0.304 W/kg

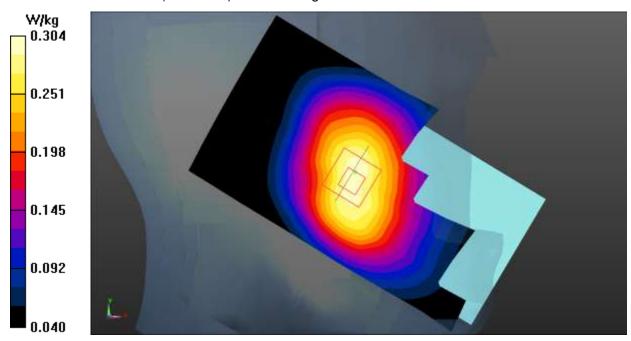


Fig.1 GSM 850 Head

GSM850 Body

Date: 2020-3-12

Electronics: DAE4 Sn786 Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.885 \text{ S/m}$; $\varepsilon_r = 41.943$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 2Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

Rear Side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.408 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.47 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.502 W/kg

SAR(1 g) = 0.390 W/kg; SAR(10 g) = 0.293 W/kg

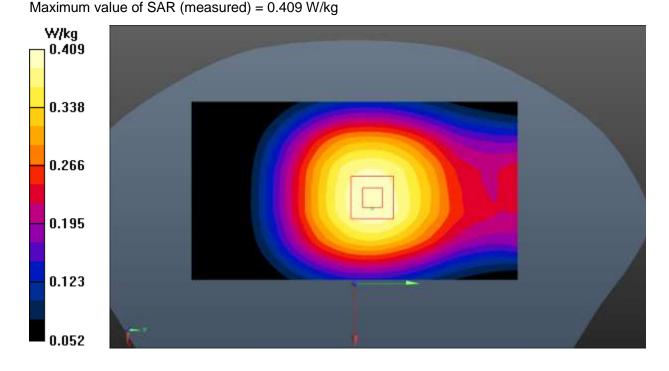


Fig.2 GSM 850 Body

GSM1900 Head

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.401 \text{ S/m}$; $\varepsilon_r = 39.224$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Right Cheek Middle /Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.57 W/kg

Right Cheek Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.45 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 0.981 W/kg; SAR(10 g) = 0.512 W/kg Maximum value of SAR (measured) = 1.08 W/kg

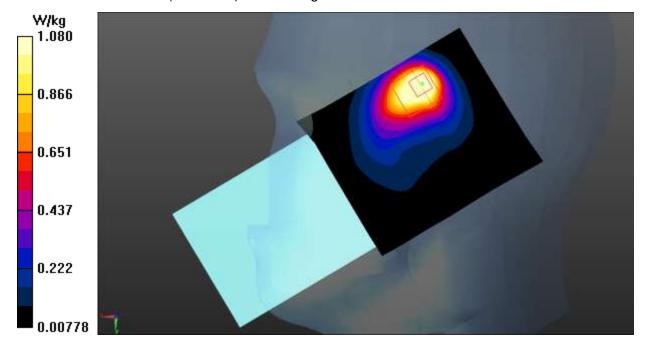


Fig.3 GSM 1900 Head

GSM1900 Body

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ε_r = 39.224; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 3Txslot (0) Frequency: 1880 MHz Duty Cycle: 1:2.67

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Rear Side Middle /Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.697 W/kg

Rear Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.971 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.607 W/kg; SAR(10 g) = 0.328 W/kg

Maximum value of SAR (measured) = 0.665 W/kg

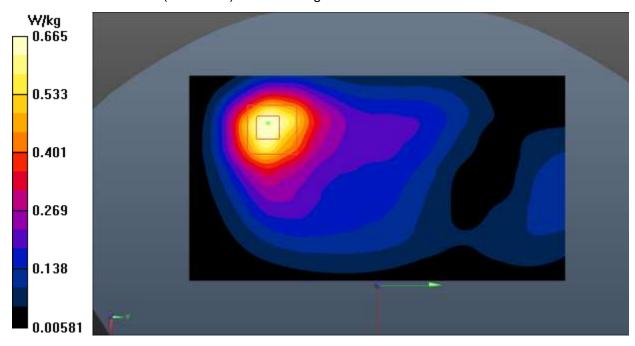


Fig.4 GSM 1900 Body

WCDMA Band 2 Head

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.377 S/m; ϵ_r = 39.332; ρ = 1000

kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Right Cheek Low /Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.59 W/kg

Right Cheek Low /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.16 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.602 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

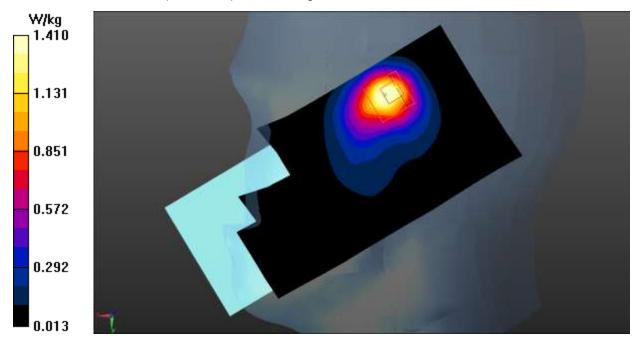


Fig.5 WCDMA Band 2 Head

WCDMA Band 2 Body

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; σ = 1.426 S/m; ε_r = 39.115; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Rear Side High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.49 W/kg

Rear Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.15 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.557 W/kg

Maximum value of SAR (measured) = 1.09 W/kg

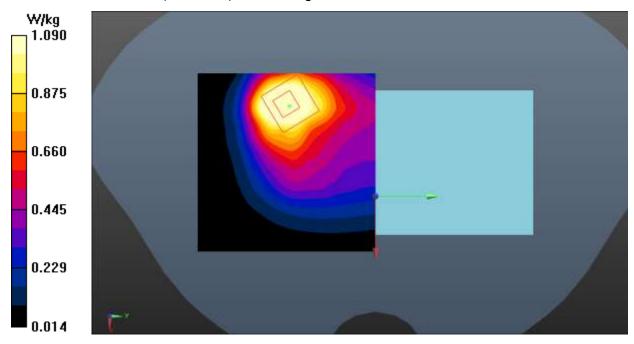


Fig.6 WCDMA Band 2 Body

WCDMA Band 4 Head

Date: 2020-3-28

Electronics: DAE4 Sn786 Medium: Head 1750MHz

Medium parameters used: f = 1753 MHz; $\sigma = 1.355$ S/m; $\varepsilon_r = 39.556$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.23, 5.23, 5.23);

Right Cheek High/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.78 W/kg

Right Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.92 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.501 W/kg

Maximum value of SAR (measured) = 1.34 W/kg

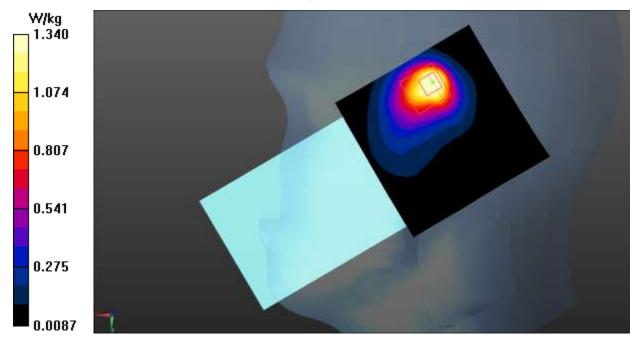


Fig.7 WCDMA Band 4 Head

WCDMA Band 4 Body

Date: 2020-3-28

Electronics: DAE4 Sn786 Medium: Head 1750MHz

Medium parameters used: f = 1753 MHz; σ = 1.355 S/m; ε_r = 39.556; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.23, 5.23, 5.23);

Rear Side High/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.13 W/kg

Rear Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.32 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.752 W/kg; SAR(10 g) = 0.407 W/kg

Maximum value of SAR (measured) = 1.08 W/kg

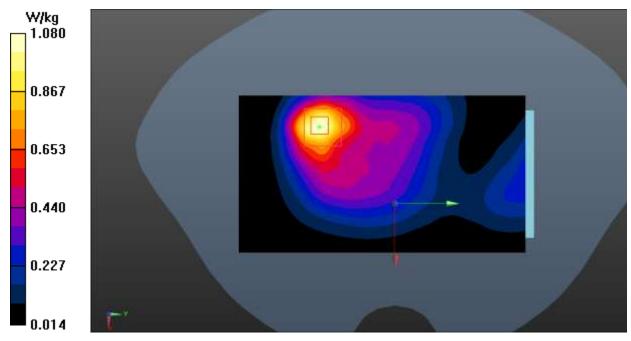


Fig.8 WCDMA Band 4 Body

WCDMA Band 5 Head

Date: 2020-3-12

Electronics: DAE4 Sn786 Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.885 \text{ S/m}$; $\varepsilon_r = 41.945$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

Right Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.249 W/kg

Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.683 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.160 W/kg Maximum value of SAR (measured) = 0.246 W/kg

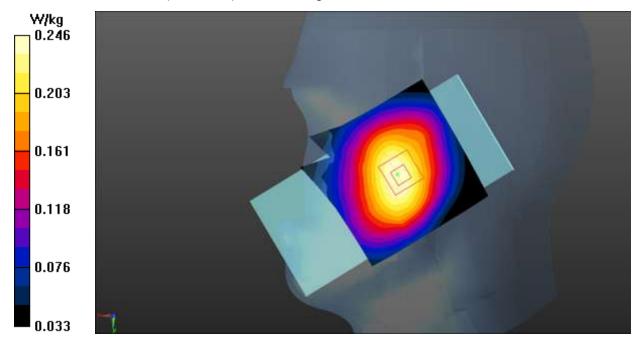


Fig.9 WCDMA Band 5 Head

WCDMA Band 5 Body

Date: 2020-3-12

Electronics: DAE4 Sn786 Medium: Head 835MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.885 \text{ S/m}$; $\varepsilon_r = 41.945$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WCDMA (0) Frequency: 836.4 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

Rear Side Middle/Area Scan (61x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.447 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.59 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.480 W/kg

SAR(1 g) = 0.380 W/kg; SAR(10 g) = 0.285 W/kg

Maximum value of SAR (measured) = 0.400 W/kg

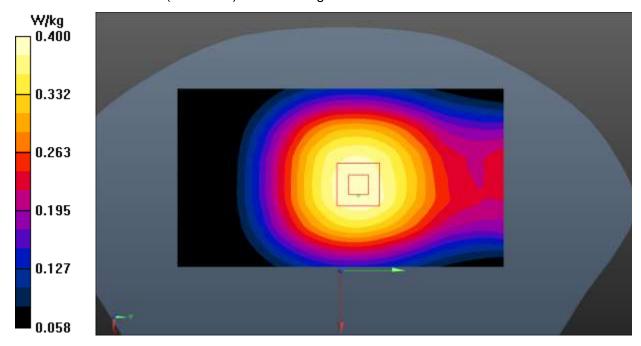


Fig.10 WCDMA Band 5 Body

LTE Band 2 Head

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.419 S/m; ϵ_r = 39.146; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Right Cheek High 1RB_99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.47 W/kg

Right Cheek High 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.60 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 0.858 W/kg; SAR(10 g) = 0.427 W/kg Maximum value of SAR (measured) = 1.11 W/kg

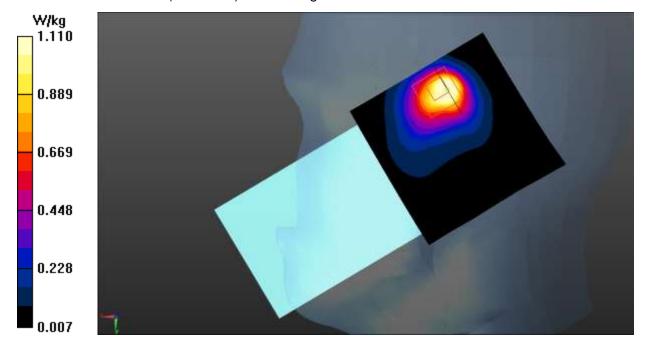


Fig.11 LTE Band 2 Head

LTE Band 2 Body

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.419 S/m; ϵ_r = 39.146; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1900 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Rear Side High 1RB_99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.45 W/kg

Rear Side High 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.68 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.998 W/kg; SAR(10 g) = 0.550 W/kg Maximum value of SAR (measured) = 1.08 W/kg

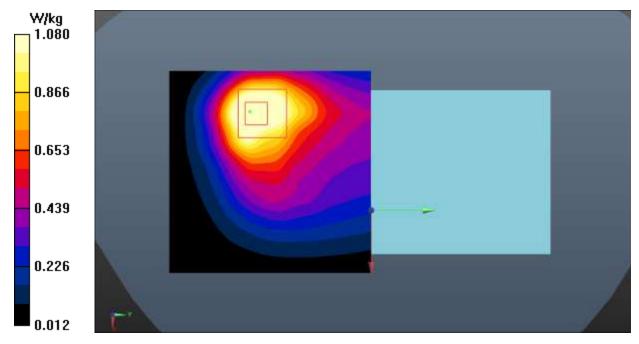


Fig.12 LTE Band 2 Body

LTE Band 4 Head

Date: 2020-3-28

Electronics: DAE4 Sn786 Medium: Head 1750MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.348 \text{ S/m}$; $\varepsilon_r = 35.588$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.23, 5.23, 5.23);

Right Cheek High 1RB_99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.59 W/kg

Right Cheek High 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.92 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.957 W/kg; SAR(10 g) = 0.493 W/kg Maximum value of SAR (measured) = 1.23 W/kg

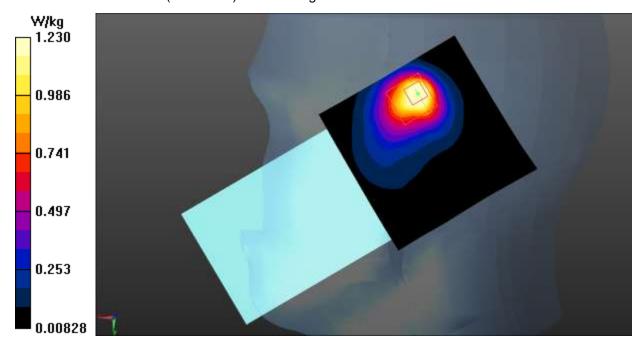


Fig.13 LTE Band 4 Head

LTE Band 4 Body

Date: 2020-3-28

Electronics: DAE4 Sn786 Medium: Head 1750MHz

Medium parameters used: f = 1745 MHz; σ = 1.348 S/m; ε_r = 35.588; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (5.23, 5.23, 5.23);

Rear Side High 1RB_99/Area Scan (51x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.10 W/kg

Rear Side High 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.01 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.724 W/kg; SAR(10 g) = 0.394 W/kg Maximum value of SAR (measured) = 0.802 W/kg

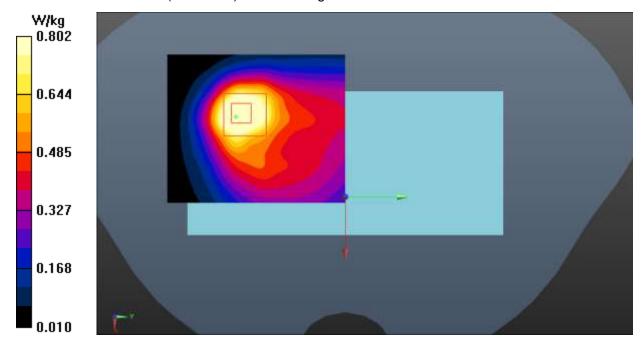


Fig.14 LTE Band 4 Body

LTE Band 7 Head

Date: 2020-3-13

Electronics: DAE4 Sn786 Medium: Head 2550MHz

Medium parameters used: f = 2560 MHz; σ = 1.965 S/m; ϵ_r = 38.301; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 2560 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (4.53, 4.53, 4.53);

Right Cheek High 1RB_99/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.348 W/kg

Right Cheek High 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.875 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.438 W/kg

SAR(1 g) = 0.256 W/kg; SAR(10 g) = 0.144 W/kg Maximum value of SAR (measured) = 0.344 W/kg

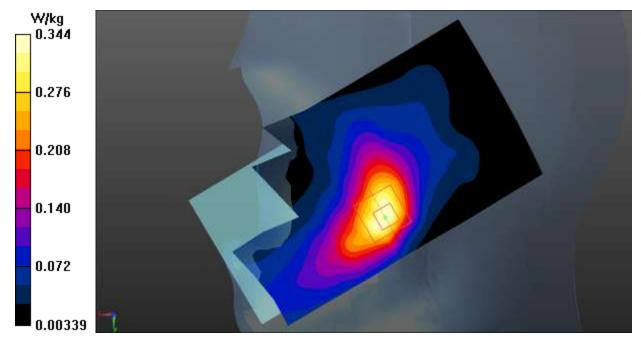


Fig.15 LTE Band 7 Head

LTE Band 7 Body

Date: 2020-3-13

Electronics: DAE4 Sn786 Medium: Head 2550MHz

Medium parameters used: f = 2560 MHz; σ = 1.965 S/m; ϵ_r = 38.301; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, LTE_FDD (0) Frequency: 2560 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (4.53, 4.53, 4.53);

Rear Side High 1RB_99/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.716 W/kg

Rear Side High 1RB_99/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.112 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.987 W/kg

SAR(1 g) = 0.498 W/kg; SAR(10 g) = 0.255 W/kg Maximum value of SAR (measured) = 0.535 W/kg

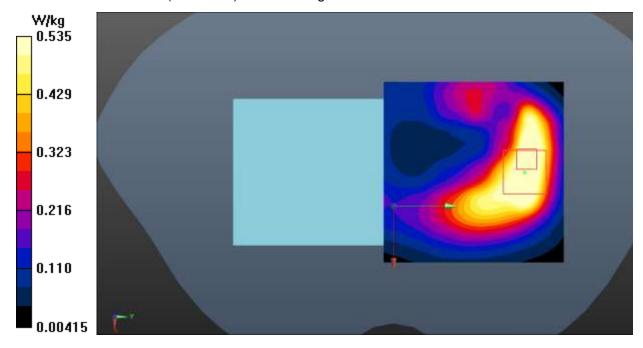


Fig.16 LTE Band 7 Body

WLAN 2.4G Head

Date: 2020-3-30

Electronics: DAE4 Sn786 Medium: Head 2450MHz

Medium parameters used: f = 2462 MHz; σ = 1.846 S/m; ϵ_r = 38.683; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (4.68, 4.68, 4.68);

Left Cheek High /Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.316 W/kg

Left Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.432 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.441 W/kg

SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.115 W/kg

Maximum value of SAR (measured) = 0.319 W/kg

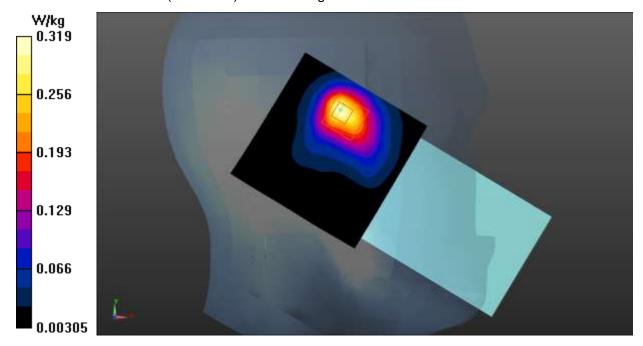


Fig.17 WLAN 2.4G Head

WLAN 2.4G Body

Date: 2020-3-30

Electronics: DAE4 Sn786 Medium: Head 2450MHz

Medium parameters used: f = 2462 MHz; σ = 1.846 S/m; ε_r = 38.683; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, WiFi (0) Frequency: 2462 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (4.68, 4.68, 4.68);

Rear Side High /Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.163 W/kg

Rear Side High /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.183 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.223 W/kg

SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.050 W/kg

Maximum value of SAR (measured) = 0.105 W/kg

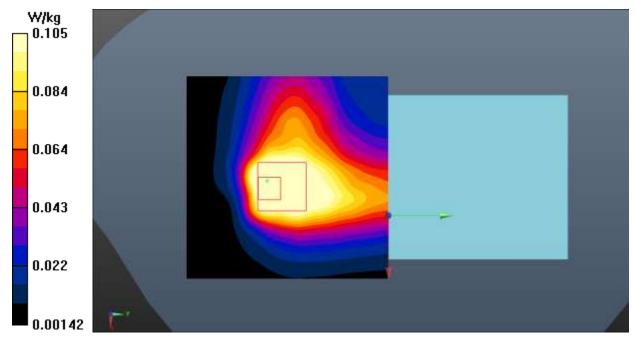


Fig.18 WLAN 2.4G Body

ANNEX B: SystemVerification Results

835MHz

Date: 2020-3-12

Electronics: DAE4 Sn786 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; σ = 0.884 S/m; ϵ r = 41.962; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 61.236 V/m; Power Drift = -0.09 dB

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (interpolated) = 2.65 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.236 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.38 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.61 W/kg

-2.12
-4.23
-6.35
-8.46

0 dB = 2.61 W/kg = 4.17 dB W/kg

Fig.B.1. Validation 835MHz 250mW

-10.58

Date: 2020-3-28

Electronics: DAE4 Sn786 Medium: Head 1750MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.352 \text{ S/m}$; $\varepsilon_r = 39.568$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

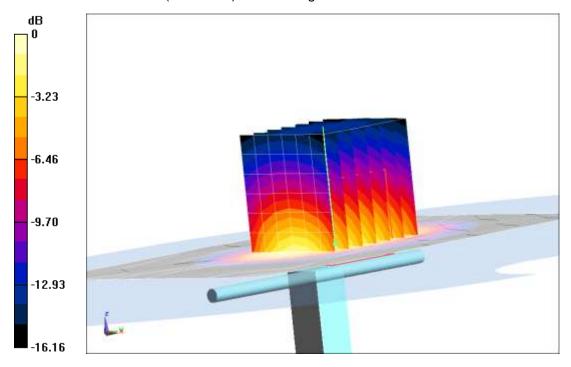
Probe: ES3DV3 - SN3151 ConvF (5.23, 5.23, 5.23);

System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 77.845 V/m; Power Drift = -0.06 dB

SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.79 W/kg

Maximum value of SAR (interpolated) = 11.0 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.845 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 8.88 W/kg; SAR(10 g) = 4.74 W/kg

Maximum value of SAR (measured) = 10.7 W/kg

0 dB = 10.7 W/kg = 10.29 dB W/kg

Fig.B.2. Validation 1750MHz 250mW

Date: 2020-4-1

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.419 S/m; ϵ_r = 39.146; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

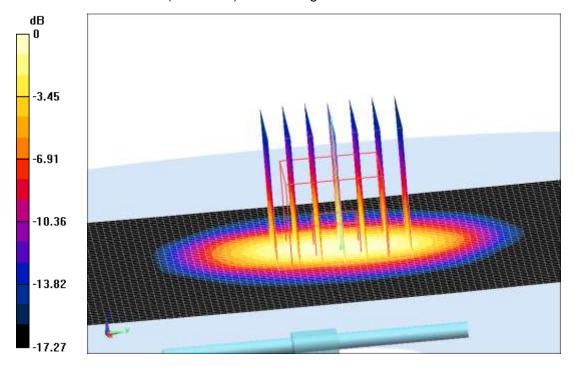
Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 90.728 V/m; Power Drift = 0.02 dB

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.21 W/kg

Maximum value of SAR (interpolated) = 13.2 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.728 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 22.7 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.37 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dB W/kg

Fig.B.3. Validation 1900MHz 250mW

Date: 2020-3-30

Electronics: DAE4 Sn786 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; σ = 1.832 S/m; ϵ_r = 38.723; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

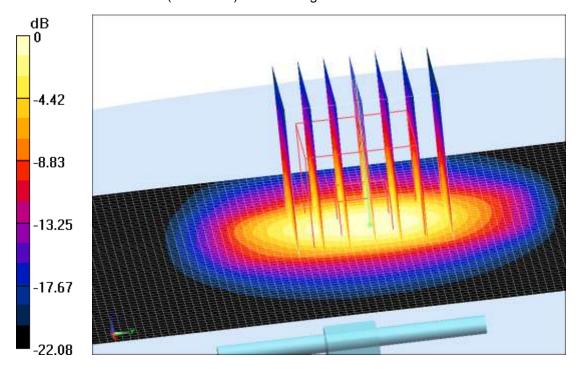
Probe: ES3DV3 - SN3151 ConvF (4.68, 4.68, 4.68);

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.536 V/m; Power Drift = 0.10 dB

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 5.98 W/kg

Maximum value of SAR (interpolated) = 15.4 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.536 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dB W/kg

Fig.B.4. Validation 2450MHz 250mW

Date: 2020-3-13

Electronics: DAE4 Sn786 Medium: Head 2550MHz

Medium parameters used: f = 2550 MHz; $\sigma = 1.953 \text{ S/m}$; $\varepsilon_r = 38.344$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW_TMC Frequency: 2550 MHz Duty Cycle: 1:1

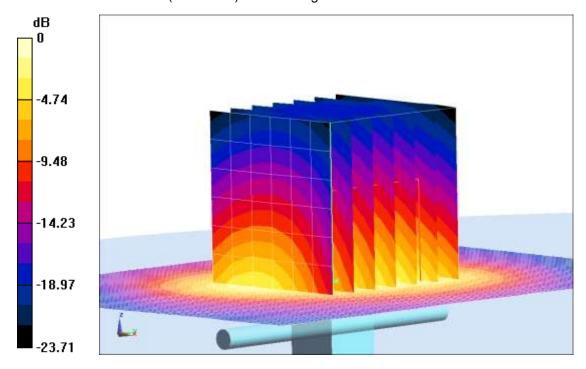
Probe: ES3DV3 - SN3151 ConvF (4.53, 4.53, 4.53);

System Validation/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 93.424 V/m; Power Drift = 0.05 dB

SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.71 W/kg

Maximum value of SAR (interpolated) = 16.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.424 V/m; Power Drift = 0.05 dB

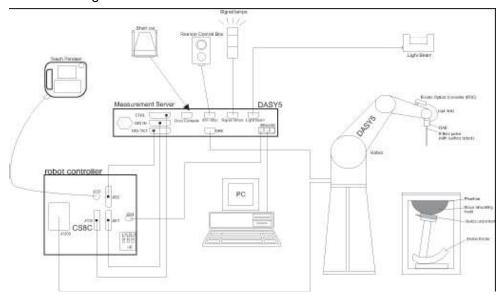
Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 15.1 W/kg; SAR(10 g) = 6.83 W/kg

Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dB W/kg

Fig.B.5. validation 2550MHz 250mW



ANNEX C: SAR Measurement Setup

C.1. Measurement Set-up

DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: $\pm 0.2 \text{ dB}(30 \text{ MHz to 6 GHz}) \text{ for EX3DV4}$

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones
Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material

has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.7-2: Laptop Extension Kit

C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

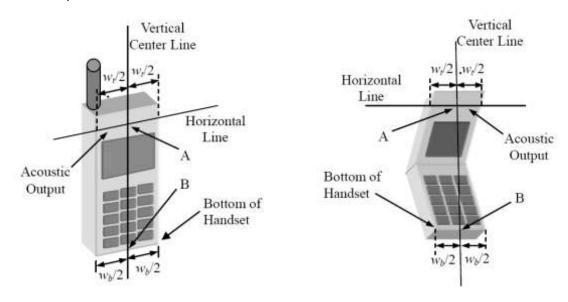
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

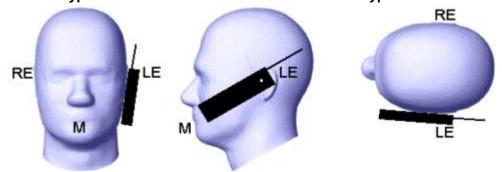
Picture C.8: SAM Twin Phantom



ANNEX D: Position of the wireless device in relation to the phantom

D.1. General considerations

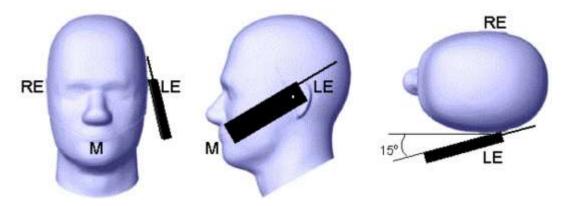
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

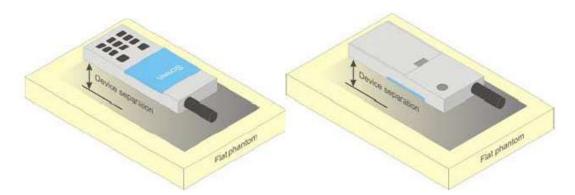
 W_b Width of the bottom of the handset

A Midpoint of the width W_t of the handset at the level of the acoustic output

B Midpoint of the width W_b of the bottom of the handset


Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

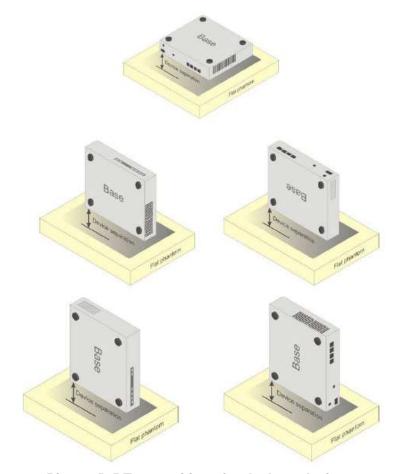
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4. DUT Setup Photos

Picture D.6

ANNEX E: Equivalent Media Recipes

The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

Frequency	835	835	1900	1900	2450	2450	5800	5800			
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body			
Ingredients (% by	Ingredients (% by weight)										
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53			
Sugar	56.0	45.0	\	\	\	\	\	\			
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\			
Preventol	0.1	0.1	\	\	\	\	\	\			
Cellulose	1.0	1.0	\	\	\	\	\	\			
Glycol	,	\	44.450	20.06	44 4E	27.22					
Monobutyl	\	\	44.452	29.96	41.15	27.22	\	\			
Diethylenglycol	,	\	\	\	\	\					
monohexylether	\	\	\	\	\	\	17.24	17.24			
Triton X-100	\	\	\	\	\	\	17.24	17.24			
Dielectric	ε=41.5	ε=55.2	ε=40.0	c=52.2	c=20.2	c=52.7					
Parameters	$\sigma = 0.90$	σ=0.97	$\sigma = 1.40$	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95	ε=35.3	ε=48.2			
Target Value	0-0.90	0-0.97	0-1.40	0-1.52	0-1.00	0-1.90	σ=5.27	σ=6.00			

Note: There is a little adjustment respectively for 750, 1800, 2600, 5200, 5300, and 5600, based on the recipe of closest frequency in table E.1

ANNEX F: System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3151	Head 750MHz	2020-01-06	750 MHz	OK
3151	Head 835MHz	2020-01-06	835 MHz	OK
3151	Head 1750MHz	2020-01-07	1750 MHz	OK
3151	Head 1900MHz	2020-01-07	1900 MHz	OK
3151	Head 2450MHz	2020-01-08	2450 MHz	OK
3151	Head 2550MHz	2020-01-08	2550 MHz	OK
3151	Body 750MHz	2020-01-06	750 MHz	OK
3151	Body 835MHz	2020-01-06	835 MHz	OK
3151	Body 1750MHz	2020-01-07	1750 MHz	OK
3151	Body 1900MHz	2020-01-07	1900 MHz	OK
3151	Body 2450MHz	2020-01-08	2450 MHz	OK
3151	Body 2550MHz	2020-01-08	5200 MHz	OK

ANNEX G: DAE Calibration Certificate

DAE4 SN: 786 Calibration Certificate

CTTL(South Branch) Certificate No: Z20-60101

Client 1 CALIBRATION CERTIFICATE Object DAE4 - SN: 786 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics Calibration date: March 03, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 24-Jun-19 (CTTL, No.J19X05126) Jun-20 Process Calibrator 753 1971018 Name: Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: SAR Test Engineer Lin Han Approved by: Qi Dianyuan SAR Project Leader Issued: March 05, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60101

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z20-60101

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: -86-10-62304633-2504 E-mail: cttl-g-chinattl.com Http://www.chinattl.com E-mail: cttl @chinattl.com

High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	404.081 ± 0.15% (k=2)	404.251 ± 0.15% (k=2)	404.649 ± 0.15% (k=2)
Low Range	3.97247 ± 0.7% (k=2)	3.97408 ± 0.7% (k=2)	3.95771 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	229.5° ± 1 °
	FC (1) (A. C.) (1) (A. C.)

Certificate No: Z20-60101

Page 3 of 3

ANNEX H: Probe Calibration Certificate

Probe ES3DV3-SN: 3151 Calibration Certificate

E-mail: ent/o chinuttl.com CTTL(South Branch) Certificate No: Z20-60021 Client CALIBRATION CERTIFICAT Object ES3DV3 - SN: 3151 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: January 03, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ond humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 101919 18-Jun-19(CTTL, No.J19X05125) Jun-20 Power sensor NRP-Z91 101547 18-Jun-19(CTTL, No.J19X05125) Jun-20 Power sensor NRP-Z91 101548 18-Jun-19(CTTL, No.J19X05125) Jun-20 18N50W-10dB 9-Feb-18(CTTL, No.J18X01133) Reference 10dBAttenuator Feb-20 Reference 20dBAttenuator 18N50W-20dB 9-Feb-18(CTTL, No.J18X01132) Feb-20 Reference Probe EX3DV4 SN 7307 24-May-19(SPEAG, No.EX3-7307 May19/2) May-20 DAE4 SN 1525 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Aug-20 Secondary Standards Scheduled Calibration ID# Call Date(Calibrated by, Certificate No.) SignalGenerator MG3700A 6201052605 18-Jun-19(CTTL, No.J19X05127) Jun-20 Network Analyzer E5071C MY46110673 24-Jan-19(CTTL, No.J19X00547) Jan-20 Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: January 05, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60021 Page 1 of 10

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettlarchinatti.com Ultra-Sweet almand a.

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis.

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

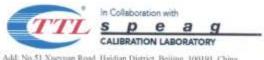
- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature
 Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on
 power measurements for f >800MHz. The same setups are used for assessment of the parameters
 applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given.
 These parameters are used in DASY4 software to improve probe accuracy close to the boundary.
 The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to
 that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which
 allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z20-60021

Page 2 of 10

Probe ES3DV3

SN: 3151


Calibrated: January 03, 2020

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z20-60021 Page 3 of 10

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: crif archinath.com | http://www.chinath.com

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3151

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	1.15	1.25	1.20	±10.0%
DCP(mV) ^B	104.7	104.8	103.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB µV	С	D dB	VR mV	Unc (k=2)
0 CW	cw	X	0.0	0.0	1.0	0.00	270.2	±2.2%
		Y	0.0	0.0	1.0		279.5	
		Z	0.0	0.0	1.0		271.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60021

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5).

⁸ Numerical linearization parameter: uncertainty not required.

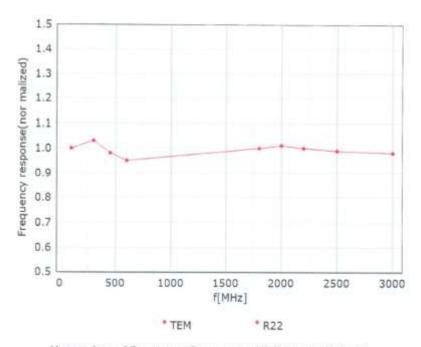
E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3151

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.41	6.41	6.41	0.40	1,35	±12.1%
900	41.5	0,97	6.23	6.23	6.23	0.40	1.46	±12.1%
1450	40.5	1.20	5.50	5.50	5.50	0.33	1.67	±12.1%
1750	40.1	1.37	5.23	5.23	5.23	0.54	1.35	±12.1%
1900	40.0	1.40	5.11	5.11	5.11	0.65	1.27	±12.1%
2000	40.0	1.40	5.07	5.07	5.07	0.60	1,35	±12.1%
2300	39.5	1.67	4.86	4.86	4.86	0.90	1.08	±12.1%
2450	39.2	1.80	4.68	4.68	4.68	0.90	1.08	±12.1%
2600	39.0	1.96	4.53	4.53	4.53	0.90	1.10	±12.1%
		311 PCS/C1 PC	Programme or spring the behavior	Complete and the second	land the second of the second	and the second s	Company and the Company of the Compa	

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

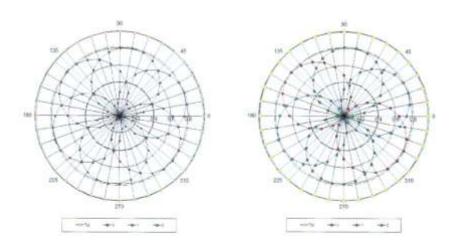

Certificate No: Z20-60021

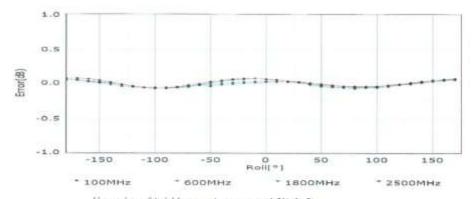
 $^{^{\}circ}$ At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{\circ}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z20-60021 Page 6 of 10



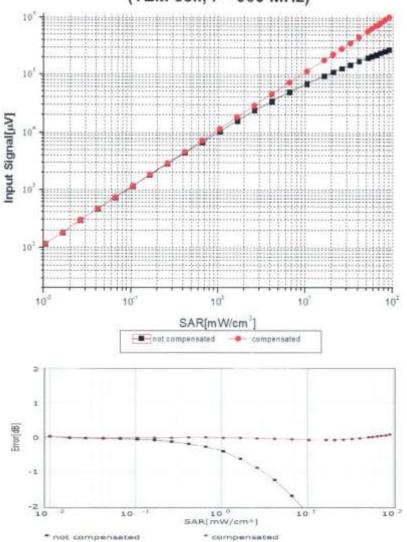


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

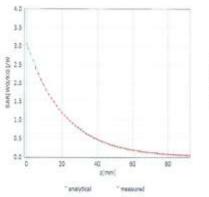
Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

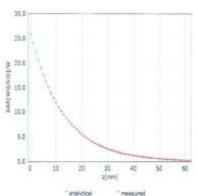

Certificate No: Z20-60021 Page 7 of 10

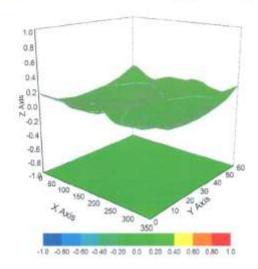
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2512 Fax; =86-10-62304633-2504 E-mail; ctl/s/chinattl.com 110p www.shinattl.com

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)


Certificate No: Z20-60021 Page 8 of 10




Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z20-60021 Page 9 of 10

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3151

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	89
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z20-60021

Page 10 of 10

ANNEX I: Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

E-mail: cnt a chinant com CTTL(South Branch) Certificate No: Z18-60385 CALIBRATION CERTIFICATE Object D835V2 - SN: 4d057 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date October 9, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Cal Date(Calibrated by, Certificate No.) Primary Standards ID# Scheduled Calibration Power Meter NRVD 102083 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Power sensor NRV-Z5 100542 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Reference Probe EX3DV4 SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18) Aug-19 DAE4 SN 1555 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Aug-19 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-18 (CTTL, No.J18X00560) Jan-19 NetworkAnalyzer E5071C MY46110673 24-Jan-18 (CTTL, No.J18X00561) Jan-19 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 11, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60385

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China lei: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctf.ii.chinattl.com http://www.chinattl.com

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60385

Page 2 of 8

| Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China | Tel: +86-10-62304633-2079 | Fax: +86-10-62304633-2504 | E-mail: ettl-@chinattl.com | http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	222	-

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.62 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.58 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.29 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.9 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

Condition	
250 mW input power	2.51 mW / g
normalized to 1W	9.90 mW /g ± 18.8 % (k=2)
Condition	
250 mW input power	1.66 mW / g
normalized to 1W	6.56 mW /g ± 18.7 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Certificate No: Z18-60385

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl-a-chinattl.com http://www.chinattl.com

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6Ω- 4.08jΩ	
Return Loss	-27.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8Ω- 4.96jΩ	
Return Loss	- 24.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.260 na

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

The Assessment Control of the Contro	
Manufactured by	SPEAG

Certificate No: Z18-60385 Page 4 of 8

Date: 10.08.2018

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Il-mail: ctf à chinatt.com http://www.chinartl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

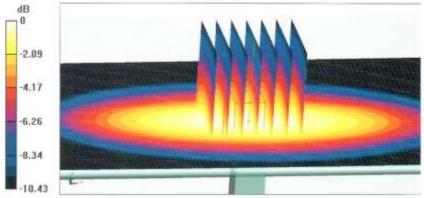
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.912$ S/m; $\varepsilon_t = 42.22$; $\rho = 1000$ kg/m3

Phantom section; Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.09, 9.09, 9.09) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

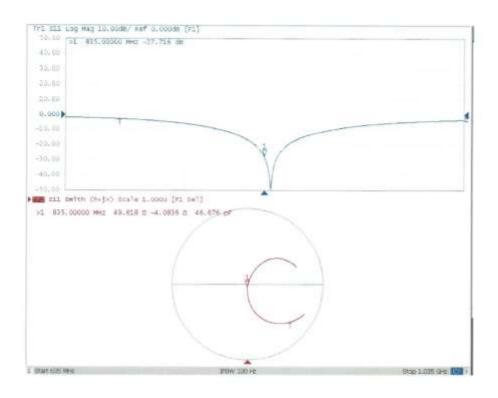

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 55.57 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.58 W/kgMaximum value of SAR (measured) = 3.22 W/kg


0 dB = 3.22 W/kg = 5.08 dBW/kg

Certificate No: Z18-60385 Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60385 Page 6 of 8

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cnt a chinant Leon http://www.chinant.cn

DASY5 Validation Report for Body TSL

Date: 10.08.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d057

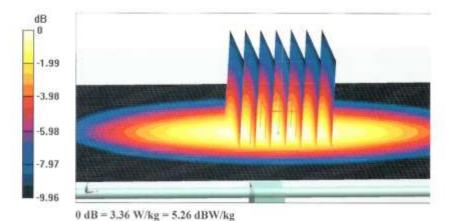
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.992 S/m; ϵ_t = 55.93; ρ = 1000 kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.47, 9.47, 9.47) @ 835 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0; Measurement grid: dx=5mm,

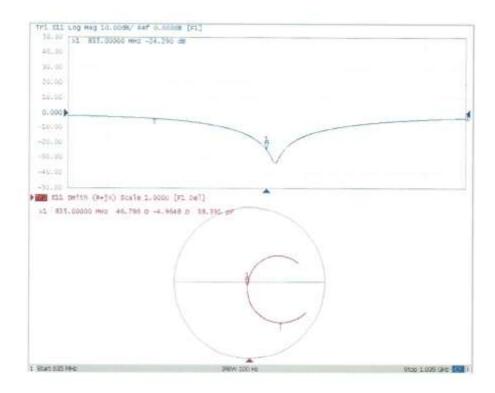

dy=5mm, dz=5mm

Reference Value = 56.64 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.83 W/kg

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.66 W/kg

Maximum value of SAR (measured) = 3.36 W/kg


Certificate No: Z18-60385 Page 7 of 8

| Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 | Fax: +86-10-62304633-2504 | E-mail: cnt.ii.chinattl.com | http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60385 Page 8 of 8

1750 MHz Dipole Calibration Certificate

nd, Handian District, Beijing, 100191, China 179 Fas: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl-a chinattl.com Certificate No: Z19-60292 CTTL(South Branch) CALIBRATION CERTIFICATE Object D1750V2 - SN: 1152 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 30, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) T and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date(Calibrated by, Certificate No.) Primary Standards Apr-20 Power Meter NRP2 106276 11-Apr-19 (CTTL, No.J19X02605) Apr-20 Power sensor NRP6A 101369 11-Apr-19 (CTTL, No.J19X02605) Jan-20 Reference Probe EX3DV4 SN 3617 31-Jan-19(SPEAG,No.EX3-3617_Jan19) Aug-20 22-Aug-19(CTTL-SPEAG,No.Z19-60295) DAE4 SN 1555 Scheduled Calibration Cal Date(Calibrated by, Certificate No.) Secondary Standards 23-Jan-19 (CTTL, No.J19X00336) Jan-20 Signal Generator E4438C MY49071430 MY46110673 24-Jan-19 (CTTL, No.J19X00547) Jan-20 NetworkAnalyzer E5071C Function Name Calibrated by: SAR Test Engineer Zhao Jing Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 2, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60292 Page 1 of 8

Add: No.51 Xusyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60292

Page 2 of 8

| Add: No.51 Xneyuan Road, Haidian District, Beijing, 100191, China | Tel: -86-10-62304633-2079 | Fax. -86-10-62304633-2504 | E-mail: ctil a chinatti.com | http://www.chinatti.cn

Measurement Conditions

Measurement Conditions

Selection as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The second secon	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.36 mha/m ± 6 %
Head TSL temperature change during test	<1.0 °C		_

SAR result with Head TSL

SAR averaged over 1 cm (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 18.7 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.52 mha/m ± 6 %
Body TSL temperature change during test	<1.0 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.0 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60292

Page 3 of 8

Add: No.51 Xuryuan Road, Haidian District, Beijing, 100191, China Tel: -86-10-62304633-2079 Fax: -86-10-62304633-2504 E-mail: orti-g-chinatt.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1Ω- 0.84 jΩ	
Return Loss	- 38.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45,2Ω- 1.37 jΩ	
Return Loss	+ 25.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.084 ns
Electrical Delay (one direction)	1275-117

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60292

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-19-62304633-2079 Fax: +86-19-62304633-2504 E-mail: etti ü chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 08.30.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152

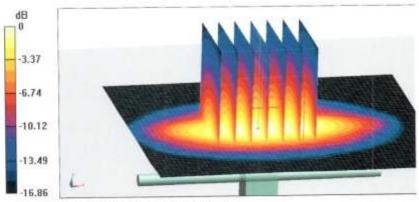
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.358$ S/m; $\varepsilon_f = 39.91$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2): SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

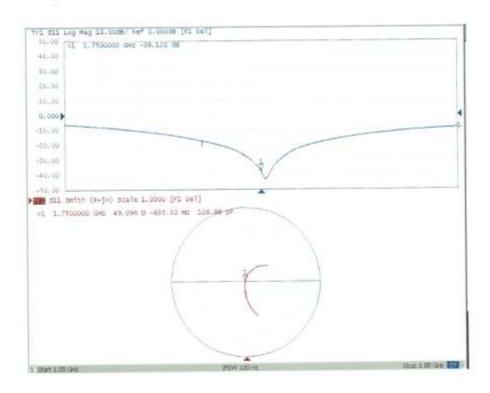
Reference Value = 97.38 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg


Certificate No: Z19-60292

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60292 Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: =86-10-62304633-2504 E-mail: onlarchinantl.com http://www.chinantl.com

DASY5 Validation Report for Body TSL

Date: 08.30.2019

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152

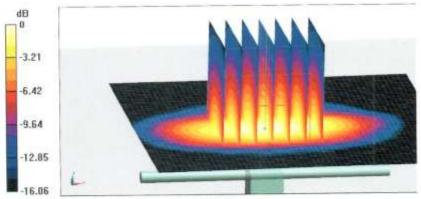
Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.516 S/m; ϵ_r = 53.05; ρ = 1000 kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

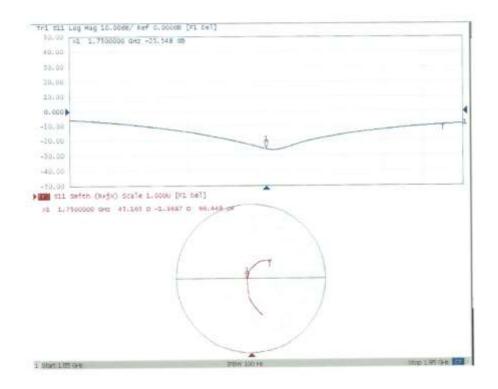
Reference Value = 87.16 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.05 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg


Certificate No: Z19-60292

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60292 Page 8 of 8

1900 MHz Dipole Calibration Certificate

		www.chinattl.cn		CNAS LO
	TL(South Brai		Certificate No:	Z18-60387
CALIBRATION C	ERTIFICAT	ΓE		
Object	D1900	V2 - SN: 5d088		
Calibration Procedure(s)	FF-Z11	1-003-01		
	Calibra	ation Procedures for	dipole validation kits	
Calibration date:	Octobe	r 24, 2018		
This calibration Certificate measurements(SI). The me pages and are part of the cr All calibrations have been	asurements and ertificate.	the uncertainties wi	th confidence probabili	ty are given on the follow
numidity<70%. Calibration Equipment used				
Primary Standards	ID#	Cal Date(Calibrat	- d b - 0 - d 5 - d - b - b	
			ed by, Certificate No.)	Scheduled Calibratio
이 많았더니 아이라면서 그리네 없었다.	102083	01-Nov-17 (CTTL,		Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, 01-Nov-17 (CTTL,	No.J17X08756) No.J17X08756)	Oct-18 Oct-18
Power sensor NRV-Z5 Reference Probe EX3DV4	100542 SN 7514	01-Nov-17 (CTTL, 01-Nov-17 (CTTL,	No.J17X08756)	Oct-18 Oct-18
Power sensor NRV-Z5 Reference Probe EX3DV4	100542	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC	No.J17X08756) No.J17X08756)	Oct-18 Oct-18 Aug-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	100542 SN 7514	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC	No.J17X08756) No.J17X08756) No.EX3-7514_Aug18	Oct-18 Oct-18) Aug-19 8) Aug-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	100542 SN 7514 SN 1555	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC	No.J17X08756) No.J17X08756) à No.EX3-7514_Aug18, à No.DAE4-1555_Aug1 d by, Certificate No.)	Oct-18 Oct-18) Aug-19 8) Aug-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	100542 SN 7514 SN 1555	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC Cal Date(Calibrate	No.J17X08756) No.J17X08756) R.No.EX3-7514_Aug18; R.No.DAE4-1555_Aug1 d by, Certificate No.) No.J18X00560)	Oct-18 Oct-18) Aug-19 8) Aug-19 Scheduled Calibratio
Secondary Standards Signal Generator E4438C	100542 SN 7514 SN 1555 ID# MY49071430	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC Cal Date(Calibrate 23-Jan-18 (CTTL,	No.J17X08756) No.J17X08756) R.No.EX3-7514_Aug18; R.No.DAE4-1555_Aug1 d by, Certificate No.) No.J18X00560)	Oct-18 Oct-18 Aug-19 8) Aug-19 Scheduled Calibratio Jan-19 Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC Cal Date(Calibrate 23-Jan-18 (CTTL, 24-Jan-18 (CTTL,	No.J17X08756) No.J17X08756) A.No.EX3-7514_Aug18; A.No.DAE4-1555_Aug1 d by, Certificate No.) No.J18X00560) No.J18X00561)	Oct-18 Oct-18) Aug-19 8) Aug-19 Scheduled Calibratio Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	100542 SN 7514 SN 1555 ID # MY49071430 MY46110673	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC Cal Date(Calibrate 23-Jan-18 (CTTL, 24-Jan-18 (CTTL,	No.J17X08756) No.J17X08756) R.No.EX3-7514_Aug18; R.No.DAE4-1555_Aug1 d by, Certificate No.) No.J18X00560) No.J18X00561)	Oct-18 Oct-18 Aug-19 8) Aug-19 Scheduled Calibratio Jan-19 Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards	100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC 20-Aug-18(SPEAC Cal Date(Calibrate 23-Jan-18 (CTTL, 24-Jan-18 (CTTL, Function SAR Test En	No.J17X08756) No.J17X08756) No.J17X08756) No.DAE4-1555_Aug1 d by, Certificate No.) No.J18X00560) No.J18X00561) gineer	Oct-18 Oct-18 Aug-19 8) Aug-19 Scheduled Calibratio Jan-19 Jan-19
Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C allibrated by:	100542 SN 7514 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing Lin Hao	01-Nov-17 (CTTL, 01-Nov-17 (CTTL, 27-Aug-18(SPEAC) 20-Aug-18(SPEAC) Cal Date(Calibrate 23-Jan-18 (CTTL, 24-Jan-18 (CTTL, Function SAR Test En	No.J17X08756) No.J17X08756) No.J17X08756) No.DAE4-1555_Aug18 d by, Certificate No.) No.J18X00560) No.J18X00561) gineer gineer	Oct-18 Oct-18 Aug-19 8) Aug-19 Scheduled Calibratic Jan-19 Jan-19

Certificate No: Z18-60387

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Teli +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctl.ig/chinattl.com http://www.chinattl.com

lossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60387

Page 2 of 8

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl-rehinattl.com
 http://www.chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1±6%	1.37 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL

SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 18.7 % (k=2)
SAR measured	250 mW input power	5.17 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	normalized to 1W	40.5 mW /g ± 18.8 % (k=2)
SAR measured	250 mW input power	9.92 mW / g
SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature change during test	<1,0 °C	-	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.6 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.41 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60387

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beiling, 100191, China Id: +86-10-62304633-2079 Fex: +86-10-62504633-2504 E-mail: cttl-ir-chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7Ω+ 6.63 _ξ Ω	
Return Loss	- 23.2dB	

Antenna Parameters with Body TSL

impedance, transformed to feed point	48.5Ω+ 7.40jΩ		s feed point 48.5Ω+ 7.40jΩ	
Return Loss	- 22.3dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.058 ns	ľ

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

A Contract of the Contract of	
Manufactured by	SPEAG

Certificate No: Z18-60387

Date: 10.24.2018

Add: No.51 Xueyuun Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2679 Fau: +86-10-62304633-2504 http://www.chinattl.cm

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

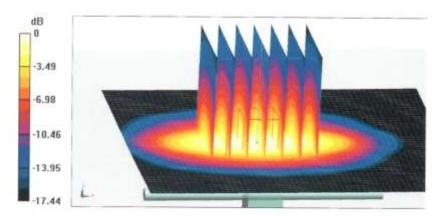
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.367$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1,4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type; QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid;

dx=5mm, dy=5mm, dz=5mm

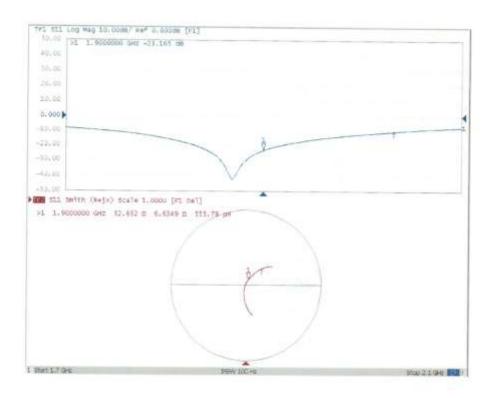
Reference Value = 102.2 V/m: Power Drift = 0.05 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.17 W/kgMaximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Certificate No: Z18-60387


Page 5 of 8

Add; No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: +86-10-62304633-2504 https://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60387 Page 6 of 8

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: -86-10-62304633-2504 I-mail: cttl g chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.24.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

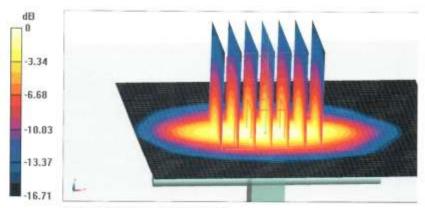
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.551$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

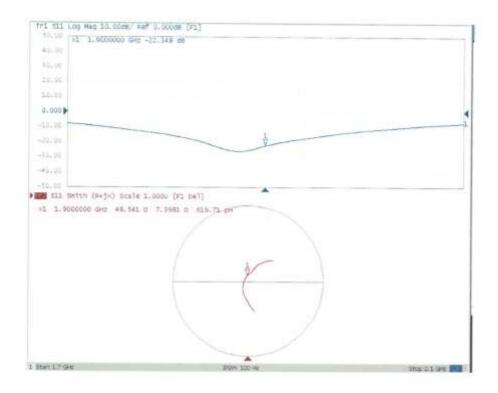
Reference Value = 97.60 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg


Certificate No: Z18-60387

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60387

2450 MHz Dipole Calibration Certificate

E-mail: ettl & chinattl.com http://www.chinuttl.cn CTTL(South Branch) Client Certificate No: Z18-60388 CALIBRATION CERTIFICATE Object D2450V2 - SN: 873 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 26, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRVD 102083 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Power sensor NRV-Z5 100542 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Reference Probe EX3DV4 SN 7514 27-Aug-18(SPEAG,No.EX3-7514_Aug18) Aug-19 DAE4 SN 1555 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) Aug-19 Secondary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 23-Jan-18 (CTTL, No.J18X00560) Jan-19 NetworkAnalyzer E5071C MY46110673 24-Jan-18 (CTTL, No.J18X00561) Jan-19 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 29, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60388 Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl.@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1; Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60388

Page 2 of 8

Add: No.51 Xueyman Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mall: ettl a chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.02 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	1	3445

SAR result with Body TSL

Condition	
250 mW input power	12.8 mW / g
normalized to 1W	50.5 mW /g ± 18.8 % (k=2)
Condition	
250 mW input power	5.91 mW / g
normalized to 1W	23.5 mW/g ± 18.7 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Certificate No: Z18-60388

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Iel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: cttl-rehinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 2.11 jΩ	
Return Loss	- 28.0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.3Ω+ 4.51 jΩ	
Return Loss	- 26.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.024 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
10.00 (10	A-2017/00/20

Certificate No: Z18-60388

Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2079 Fax: =86-10-62304633-2504 E-mail: crtl/i/chinatt.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 10.26.2018

Test Laboratory: CTTL, Beijing, China

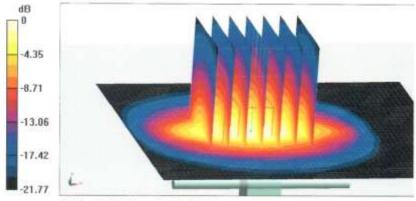
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.802$ S/m; $\epsilon_e = 39.2$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

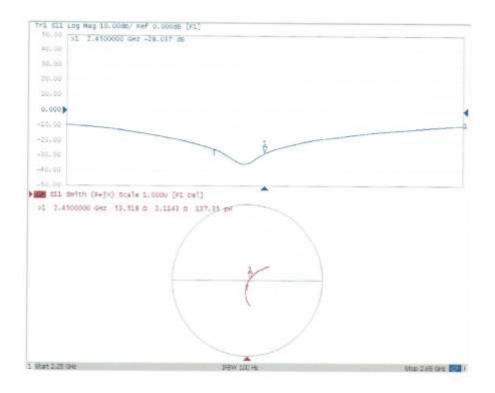
Reference Value = 105.0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 21.8 W/kg

0 dB = 21.8 W/kg = 13.38 dBW/kg


Certificate No: Z18-60388

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60388

Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2564 E-mail: cttl-r-chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.26,2018

Test Laboratory: CTTL, Beijing, China

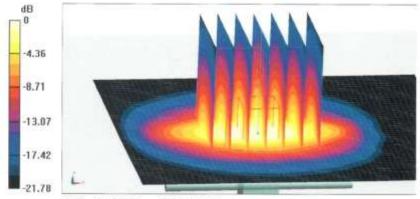
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.008$ S/m; $\varepsilon_r = 52.76$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

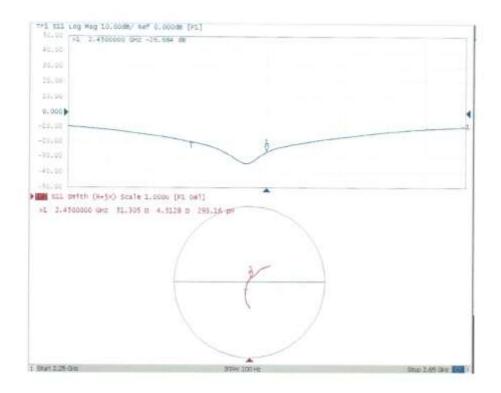
dy=5mm, dz=5mm

Reference Value = 98.89 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kgMaximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg


Certificate No: Z18-60388

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60388

Page 8 of 8

2550 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taretura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Multilateral Agreement for the recognition of calibration certificates

Client CTTL (Auden) Certificate No

Certificate No: D2550V2-1010_Aug18

Object	D2550V2 - SN:1010				
Calibration procedure(s)	QA CAL-05.v10				
	Calibration procedure for dipole validation kits above 700 MHz				
Calibration date:	August 24, 2018				
The measurements and the uncer	tainties with confidence g	tional standards, which resilize the physical un probability are given on the following pages are my facility: environment temperature (22 ± 3)**	nd are part of the certificate.		
Calibration Equipment used (M&T)	Ecritical for calibration)				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19		
Power sensor NRP-291	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19		
and the second s	BN: 103245	04-Apr-16 (No. 217-02673)	Apr-19		
Power sensor NHP-Z91					
	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19		
Reference 20 dB Attenuator	SN: 5058 (20k) SN: 5047,2 / 06327	04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19		
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4					
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 5047,2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19		
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-19 Dec-18 Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 5047,2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Apr-19 Dec-18 Oct-18 Scheduled Check		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 5047,2 / 08327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-19 Dec-18 Oct-18		
Peference 20 dB Attenuator Type-N mismatch combination Peference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 5047.2 / 08327 SN: 7349 SN: 601 ID # SN: GB37480704	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 5047,2 / 08327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A PF generator R&S SMT-06	SN: 5047,2 / 08327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41082317	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agitent E8358A	SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 31-Mar-14 (in house check Oct-17) Function	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agitent E8358A	SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41082317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 31-Mar-14 (in house check Oct-17)	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E6358A Calibrated by:	SN: 5047,2 / 08327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: WY41082317 SN: 100972 SN: US41080477 Name Manu Seitz	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 31-Mar-14 (in house check Oct-17) Function Laboratory Technician	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18		
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agitent E8358A	SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 31-Mar-14 (in house check Oct-17) Function	Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18		

Certificate No: D2550V2-1010_Aug18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C

Servizio svizzero di taratura

Accreditation No.: SCS 0108

2 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF

sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_Aug18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52:10,1
xtrapolation Advanced Extrapolation		
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3±6%	1.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to TW	57.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.14 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Certificate No: D2550V2-1010_Aug18

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω - 2.3 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω - 2.0 μΩ		
Return Loss	- 33.8 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	August 03, 2012		

Certificate No: D2550V2-1010_Aug18

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 2550 MHz

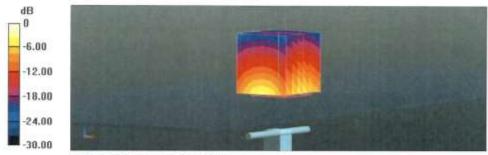
Medium parameters used: f = 2550 MHz; $\sigma = 1.97$ S/m; $\varepsilon_0 = 37.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.43, 7.43, 7.43) @ 2550 MHz; Calibrated: 30.12.2017

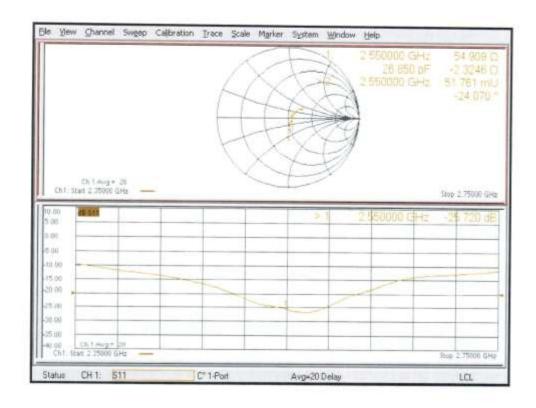

- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.5 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.73 W/kg

Maximum value of SAR (measured) = 24.9 W/kg



0 dB = 24.9 W/kg = 13.96 dBW/kg

Certificate No: D2550V2-1010_Aug18 Page 5 of 8

Impedance Measurement Plot for Head TSL

The state of with the country and the state of the state

DASY5 Validation Report for Body TSL

Date: 24.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type; D2550V2; Serial: D2550V2 - SN:1010

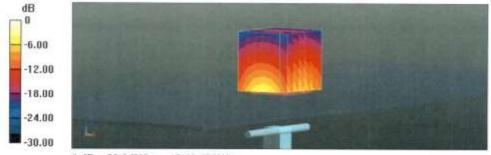
Communication System: UID 0 - CW; Frequency; 2550 MHz

Medium parameters used: f = 2550 MHz; $\sigma = 2.14$ S/m; $\epsilon_c = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

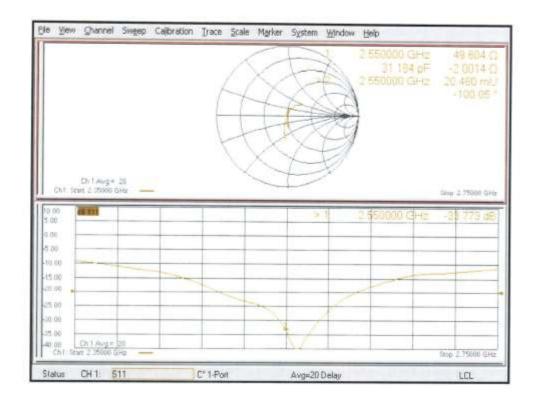

Probe: EX3DV4 - SN7349; ConvF(7.68, 7.68, 7.68) @ 2550 MHz; Calibrated: 30.12.2017

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10,2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.22 W/kgMaximum value of SAR (measured) = 22.9 W/kg


0 dB = 22.9 W/kg = 13.60 dBW/kg

Certificate No: D2550V2-1010_Aug18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_Aug18

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D835V2- serial no.4d057

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2018-10-09	-27.7	/	49.6	/	-4.08	/
2019-10-06	-26.9	2.9	50.1	0.5	-3.95	0.13

Justification of Extended Calibration SAR Dipole D1900V2- serial no. 5d088

Head							
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)	
2018-10-24	-23.2	/	52.7	/	6.63	/	
2019-10-22	-22.9	1.3	53.5	0.8	6.86	0.23	

Justification of Extended Calibration SAR Dipole D2450V2- serial no. 873

Head								
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)		
2018-10-26	-28.0	/	53.5	/	2.11	/		
2019-10-22	-27.3	2.5	54.4	0.9	2.29	0.18		

Justification of Extended Calibration SAR Dipole D2550V2- serial no.1010

Head									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)			
2018-08-24	-25.7	/	54.9	/	-2.30	/			
2019-08-22	-24.8	3.5	55.8	0.9	-2.22	0.08			

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Spot Check Test

As the test lab for 5030M, 5130M from TCL Communication Ltd., we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

K.1. Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version		
UT02aa	359203820000139	EC190 MP \/1.04	5030M_OFAR_1SIM_V1.0_20200804		
		FS180-MB-V1.0A	_UNLOCK		

K.2. Measurement results

SAR Values (GSM 850)

Freque	ency			Conducted	Max.	SAR(1g) (W/kg)		
	Ch.	Test Position		Power (dBm)	tune-up Power (dBm)	Spot check data		Original
MHz		163(1 03(10))	Measured			Reported	data	
						SAR		SAR
836.6	190	Head	Left Touch	33.45	34.0	0.311	0.35	0.26
836.6	190	Body	Rear	31.30	32.0	0.523	0.61	0.46

SAR Values (GSM 1900)

	Freque	ency	Test Position		Conducted Power	Max. tune-up	SAR(1g) (W/kg)		
	MHz	Ch.					Spot check data		Original
			165t FOSItiOH	t Position	(dBm)	Power	Measured	Reported	data
			(dbiii)		(dBm)	SAR	SAR	uala	
ſ	1880	661	Head	Right Touch	27.97	28.5	0.865	0.98	1.11
	1880	661	Body	Rear	26.28	27.5	0.618	0.82	0.80

K.3. Graph Results for Spot Check

GSM850 Head

Date: 2020-8-18

Electronics: DAE4 Sn786 Medium: Head 835MHz

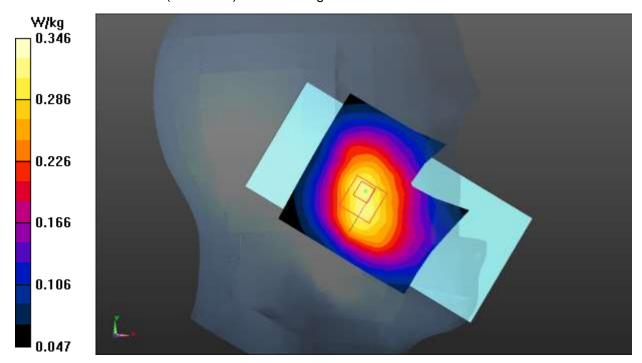
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.916 \text{ S/m}$; $\varepsilon_r = 40.862$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

Left Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.321 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.771 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.378 W/kg

SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.239 W/kg

Maximum value of SAR (measured) = 0.346 W/kg

GSM850 Body

Date: 2020-8-18

Electronics: DAE4 Sn786 Medium: Head 835MHz

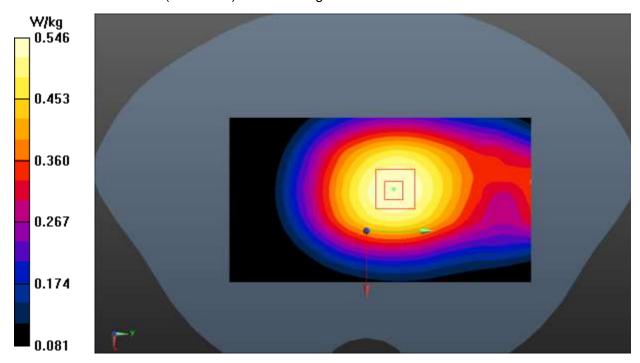
Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.916 \text{ S/m}$; $\varepsilon_r = 40.862$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 2Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:4

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

Rear Side Middle /Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.596 W/kg


Rear Side Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.09 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.657 W/kg

SAR(1 g) = 0.523 W/kg; SAR(10 g) = 0.400 W/kg

Maximum value of SAR (measured) = 0.546 W/kg

GSM1900 Head

Date: 2020-8-18

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.406 S/m; ϵ_r = 39.035; ρ = 1000 kg/m³

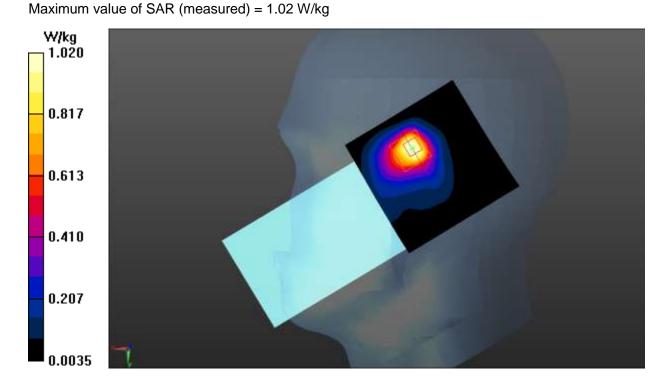
Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GSM (0) Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);

Right Cheek Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.14 W/kg


Right Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 11.95 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.438 W/kg

GSM1900 Body

Date: 2020-8-18

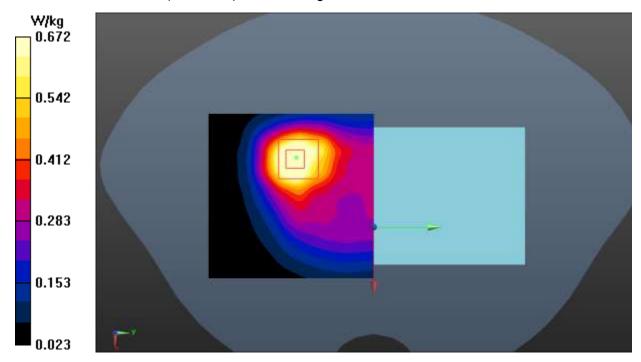
Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.406 S/m; ε_r = 39.035; ρ = 1000 kg/m³

Ambient Temperature: 22.0°C Liquid Temperature: 21.5°C

Communication System: UID 0, GPRS 3Txslot (0) Frequency: 1880 MHz Duty Cycle: 1:2.67

Probe: ES3DV3 - SN3151 ConvF (5.11, 5.11, 5.11);


Rear Side Middle/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.866 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.95 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.618 W/kg; SAR(10 g) = 0.347 W/kg

Maximum value of SAR (measured) = 0.672 W/kg

ANNEX L: SystemVerification Results for Spot Check

835MHz

Date: 2020-8-18

Electronics: DAE4 Sn786 Medium: Head 835MHz

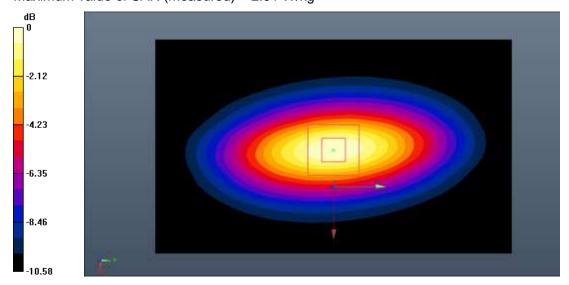
Medium parameters used: f = 835 MHz; $\sigma = 0.915 \text{ S/m}$; $\epsilon r = 40.882$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: ES3DV3 - SN3151 ConvF (6.41, 6.41, 6.41);

System Validation /Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 60.815 V/m; Power Drift = 0.02 dB


SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (interpolated) = 2.86 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.815 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dB W/kg

Fig.L.1. Validation 835MHz 250mW

1900MHz

Date: 2020-8-18

Electronics: DAE4 Sn786 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.424 S/m; ϵ_r = 38.957; ρ = 1000 kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1

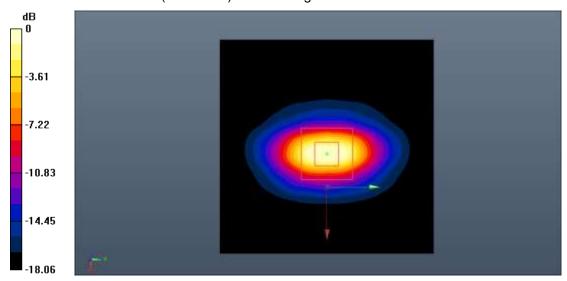
Probe: ES3DV3 - SN3151 ConvF (5.23, 5.23, 5.23);

System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 83.423 V/m; Power Drift = 0.09 dB

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.25 W/kg

Maximum value of SAR (interpolated) = 11.9 W/kg


System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.423 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.40 W/kg

Maximum value of SAR (measured) = 12.2 W/kg

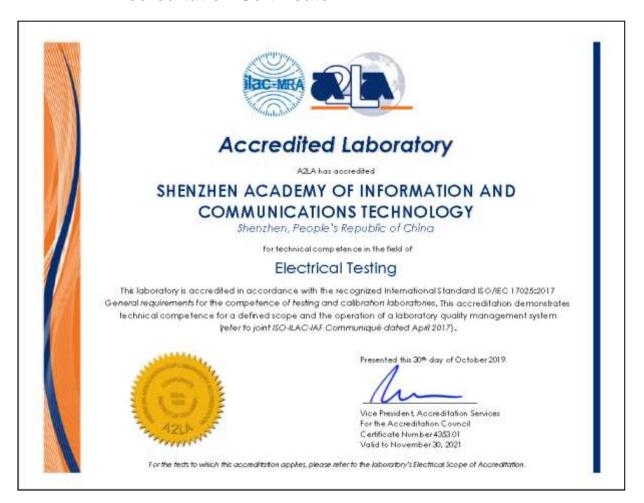

0 dB = 12.2 W/kg = 10.86 dB W/kg

Fig.L.2. Validation 1900MHz 250mW

ANNEX M: Accreditation Certificate

END OF REPORT