

SAR TEST REPORT

No. I19Z60742-SEM01

For

TCL Communication Ltd.

Smart Phone

Model name: 5006G

With

Hardware Version: PIO

Software Version: 9K3I

FCC ID: 2ACCJB109

Issued Date: 2019-05-15

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn,

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I19Z60742-SEM01	Rev.0	2019-05-08	Initial creation of test report
I19Z60742-SEM01	Rev.1	2019-05-15	Update the duty cycle of GSM1900 on page 54

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 Testing Location	5
1.2 Testing Environment	5
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 Applicant Information	
3.2 MANUFACTURER INFORMATION	8
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 About EUT	9
4.2INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
5 TEST METHODOLOGY	10
5.1 APPLICABLE LIMIT REGULATIONS	
5.2 Applicable Measurement Standards	10
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 INTRODUCTION	
6.2 SAR DEFINITION	
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	17
8.1 System Setup	
8.2 System Verification	
9 MEASUREMENT PROCEDURES	19
9.1 Tests to be performed	
9.2 GENERAL MEASUREMENT PROCEDURE	21
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.5 Power Drift	23
10 AREA SCAN BASED 1-G SAR	24
10.1 REQUIREMENT OF KDB	24
10.2 FAST SAR ALGORITHMS	24
11 CONDUCTED OUTPUT POWER	25

No.I19Z60742-SEM01 Page 4 of 143

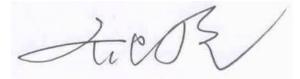
11.1 GSM	MEASUREMENT RESULT	25
11.2 WCD	MA MEASUREMENT RESULT	27
11.3 WI-FI	AND BT MEASUREMENT RESULT	28
12 SIMULT	ANEOUS TX SAR CONSIDERATIONS	29
12.1 Intro	DUCTION	29
	SMIT ANTENNA SEPARATION DISTANCES	
	Measurement Positions	
12.4 Stani	DALONE SAR TEST EXCLUSION CONSIDERATIONS	30
13 EVALU	ATION OF SIMULTANEOUS	31
14 SAR TE	ST RESULT	32
14.1 SAR F	RESULTS FOR FAST SAR	33
14.2 SAR F	RESULTS FOR STANDARD PROCEDURE	38
14.3 WLA	N EVALUATION FOR 2.4G	41
15 SAR MI	EASUREMENT VARIABILITY	44
16 MEASU	IREMENT UNCERTAINTY	45
16.1 Meas	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	45
16.2 MEAS	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	46
16.3 Meas	UREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	47
	UREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	
17 MAIN T	EST INSTRUMENTS	49
ANNEX A	GRAPH RESULTS	50
ANNEX B	SYSTEM VERIFICATION RESULTS	80
ANNEX C	SAR MEASUREMENT SETUP	89
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	95
ANNEX E	EQUIVALENT MEDIA RECIPES	98
ANNEX F	SYSTEM VALIDATION	99
ANNEX G	PROBE CALIBRATION CERTIFICATE	100
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	111
ANNEX I	ACCREDITATION CERTIFICATE	143

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment


Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	April 28, 2019
Testing End Date:	May 1, 2019

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

rets

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of SAR found during testing for TCL Communication Ltd. Smart Phone 5006G are as follows:

Table 2.1: Highest Reported SAR (1g)				
Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/kg)	Equipment Class	
	GSM 850	0.21		
Head	PCS 1900	0.19		
(Separation Distance	UMTS FDD 5	0.20	PCE	
、 ·	UMTS FDD 4	0.14		
0mm)	UMTS FDD 2	0.21		
	WLAN 2.4 GHz	0.96	DTS	
Hotspot (Separation Distance	GSM 850	0.31		
	PCS 1900	0.91		
	UMTS FDD 5	0.23	PCE	
	UMTS FDD 4	0.75		
10mm)	UMTS FDD 2	0.71		
	WLAN 2.4 GHz	0.23	DTS	
Body-worn	PCS 1900	0.44		
(Separation Distance	UMTS FDD 4	0.56	PCE	
15mm)	UMTS FDD 2	0.51		

Table 2.1: Highest Reported SAR (1g)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm for hotspot and 15mm for body worn between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **0.96 W/kg(1g)**.

	Position	Main antenna	WLAN 2.4G	Sum	
Maximum reported	Left hand, Touch cheek	0.21	0.96	1.17	
SAR value for Head	Leit nanu, Touch cheek	0.21	0.90	1.17	
Maximum reported	Rear 10mm	0.69	0.23	0.92	
SAR value for Body	Bottom 10mm	0.91	/	0.91	

Table 2.2: The sum of reported SAR values for main antenna and WiFi

Table 2.3: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum	
Maximum reported	Left hand, Touch cheek	0.21	0.07 ^[1]	0.28	
SAR value for Head	Left hand; Toden cheek	0.21	0.07**	0.20	
Maximum reported	Rear 10mm	0.69	0.03 ^[1]	0.72	
SAR value for Body	Bottom 10mm	0.91	/	0.91	

[1] - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.17 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

According to the KDB648474 D04, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB Publication 865664 D01 to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg

Exposure Configuration	Technology Band	Highest Reported SAR 10g(W/kg)	Limit 10g (W/kg)
Listenet	PCS 1900	1.62	4.0
Hotspot (Separation Distance 0mm)	UMTS FDD 4	1.70	4.0
	UMTS FDD 2	1.42	4.0

Table 2.4: 0mm Reported SAR for phablet (10g)

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd.	
Address/Post:	7/F, Block F4, TCL Communication Technology Building, TCL International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen, Guangdong, P.R. China 518052	
Contact Person:	Gong Zhizhou	
E-mail:	zhizhou.gong@tcl.com	
Telephone:	0086-755-36611722	
Fax:	0086-75536612000-81722	

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd.
Address/Post:	7/F, Block F4, TCL Communication Technology Building, TCL International E City, Zhong Shan Yuan Road, Nanshan District, Shenzhen, Guangdong, P.R. China 518052
Contact Person:	Gong Zhizhou
E-mail:	zhizhou.gong@tcl.com
Telephone:	0086-755-36611722
Fax:	0086-75536612000-81722

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Smart Phone					
Model name:	5006G					
Operating mode(s):	GSM 850/900/1800/1900, UMTS FDD 1/2/4/5/8, BT, Wi-Fi					
	825 – 848.8 MHz (GSM 850)					
Tested Tx Frequency:	1850.2 – 1910 MHz (GSM 1900)					
	826.4–846.6 MHz (WCDMA 850 Band V)					
	1712.4 – 1752.6 MHz (WCDMA 1700 Band IV)					
	1852.4–1907.6 MHz (WCDMA1900 Band II)					
	2412 – 2462 MHz (Wi-Fi 2.4G)					
GPRS/EGPRS Multislot Class:	12					
GPRS capability Class:	В					
Test device Production information:	Production unit					
Device type:	Portable device					
Antenna type:	Integrated antenna					
Hotspot mode:	Support					
VoIP:	Support					
Product Dimension:	L: 173.4mm W: 83.4mm overall diagonal: 192.4mm					

4.2Internal Identification of EUT used during the test

EUT ID*	IMEI	HW	SW Version
EUT1	015486000200018	PIO	9K3I
EUT2	015486000200026	PIO	9K3I
EUT3	015486000200034	PIO	9K3I

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1&2 and conducted power with the EUT3.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAC2900005C7	/	VEKEN
AE2	Headset	CCB0046A10C4	/	MEIHAO
AE3	Headset	CCB0046A10C1	/	JUWEI

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D06 Hotspot Mode SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Liquid Type	Conductivity(o)	± 5% Range	Permittivity(ε)	± 5% Range
Head	0.90	0.86~0.95	41.5	39.4~43.6
Body	0.97	0.92~1.02	55.2	52.4~58.0
Head	1.37	1.30~1.44	40.08	38.1~42.1
Body	1.49	1.42~1.56	53.4	50.7~56.1
Head	1.40	1.33~1.47	40.0	38.0~42.0
Body	1.52	1.44~1.60	53.3	50.6~56.0
Head	1.80	1.71~1.89	39.2	37.2~41.2
Body	1.95	1.85~2.05	52.7	50.1~55.3
	Head Body Head Body Head Body Head	Head 0.90 Body 0.97 Head 1.37 Body 1.49 Head 1.40 Body 1.52 Head 1.80	Head 0.90 0.86~0.95 Body 0.97 0.92~1.02 Head 1.37 1.30~1.44 Body 1.49 1.42~1.56 Head 1.40 1.33~1.47 Body 1.52 1.44~1.60 Head 1.80 1.71~1.89	Head 0.90 $0.86 \sim 0.95$ 41.5 Body 0.97 $0.92 \sim 1.02$ 55.2 Head 1.37 $1.30 \sim 1.44$ 40.08 Body 1.49 $1.42 \sim 1.56$ 53.4 Head 1.40 $1.33 \sim 1.47$ 40.0 Body 1.52 $1.44 \sim 1.60$ 53.3 Head 1.80 $1.71 \sim 1.89$ 39.2

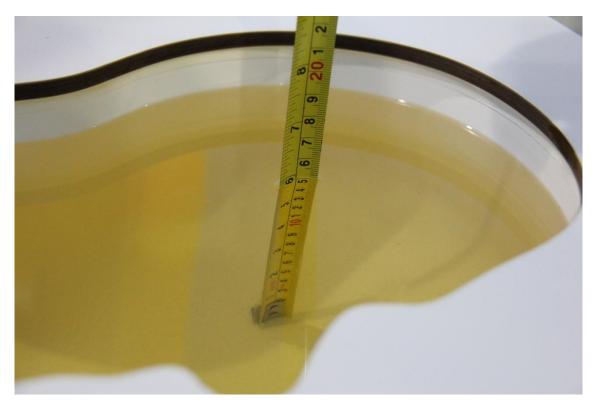
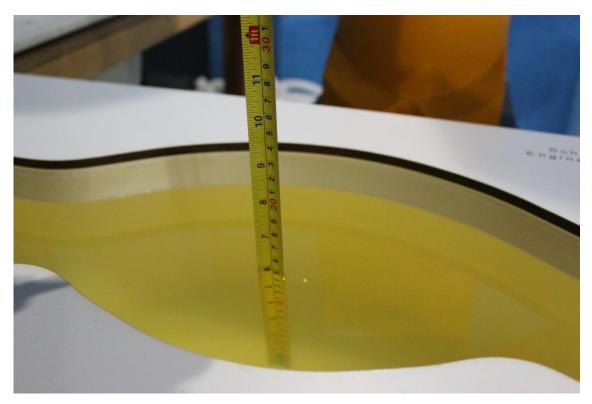

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

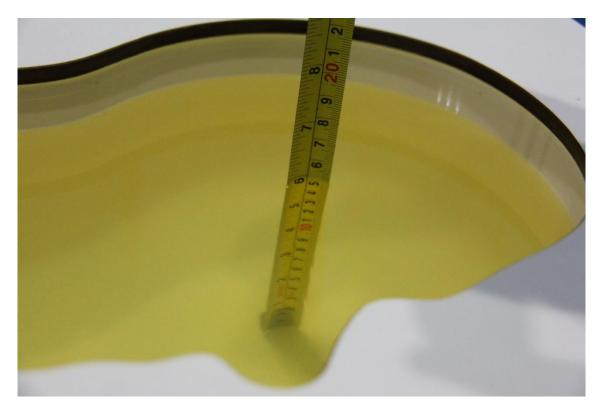
Measurement Date	Туре	Frequency	Permittivity	Drift	Conductivity	Drift		
(yyyy-mm-dd)	. , , , , , , , , , , , , , , , , , , ,	equoney	3	(%)	σ (S/m)	(%)		
2019-4-28	Head	835 MHz	42.11	1.47	0.933	3.67		
2019-4-20	Body	835 MHz	55.75	1.00	0.965	-0.52		
2019-4-29	Head	1750 MHz	39.52	-1.40	1.385	1.09		
2019-4-29	Body	1750 MHz	54.05	1.22	1.517	1.81		
2019-4-30	Head	1900 MHz	40.72	1.80	1.416	1.14		
2019-4-30	Body	1900 MHz	52.24	-1.99	1.553	2.17		
	Head	2450 MHz	39.64	1.12	1.845	2.50		
2019-5-1	Body	2450 MHz	52.14	-1.06	1.971	1.08		

Note: The liquid temperature is 22.0°C

Picture 7-1 Liquid depth in the Head Phantom (835 MHz)

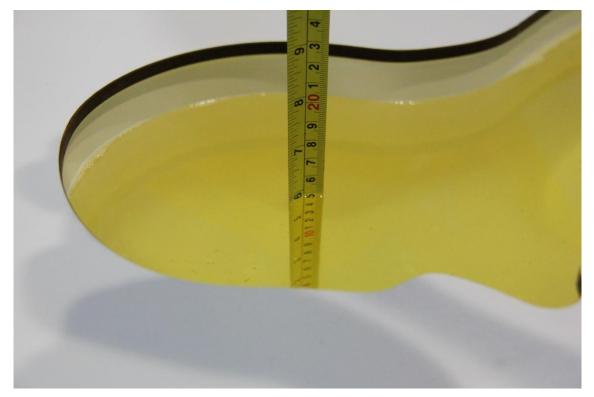


Picture 7-2 Liquid depth in the Flat Phantom (835 MHz)

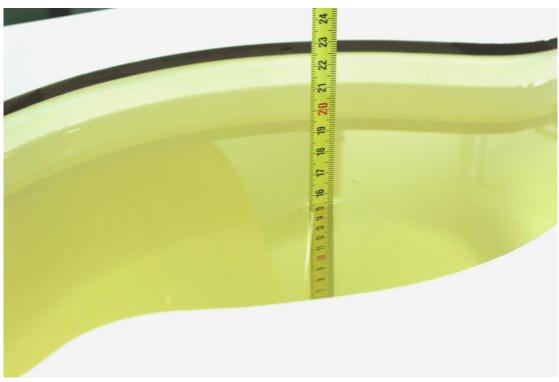


Picture 7-3 Liquid depth in the Head Phantom (1750 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1750MHz)



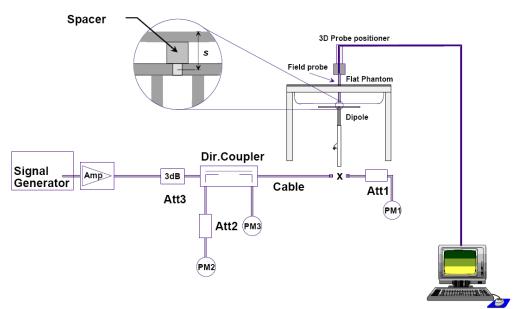
Picture 7-5 Liquid depth in the Head Phantom (1900 MHz)



Picture 7-6 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-7 Liquid depth in the Head Phantom (2450MHz)

Picture 7-8 Liquid depth in the Flat Phantom (2450MHz)


©Copyright. All rights reserved by CTTL.

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Deviation					
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g				
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average				
2019-4-28	835 MHz	6.06	9.40	6.20	9.64	2.31%	2.55%				
2019-4-29	1750 MHz	18.9	35.9	19.4	36.8	2.86%	2.40%				
2019-4-30	1900 MHz	21.3	40.4	21.8	41.2	2.16%	1.98%				
2019-5-1	2450 MHz	24.2	51.7	24.1	51.6	-0.33%	-0.19%				

Table 8.1: System Verification of Head

Table 8.2: System Verification of Body

Measurement		Target val	ue (W/kg)	Measured	value (W/kg)	Deviation		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average	
2019-4-28	835 MHz	6.28	9.53	6.36	9.68	1.27%	1.57%	
2019-4-29	1750 MHz	19.3	36.4	19.68	37.24	1.97%	2.31%	
2019-4-30	1900 MHz	21.4	40.4	21.68	41.20	1.31%	1.98%	
2019-5-1	2450 MHz	24.1	51.3	24.76	52.40	2.74%	2.14%	

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of

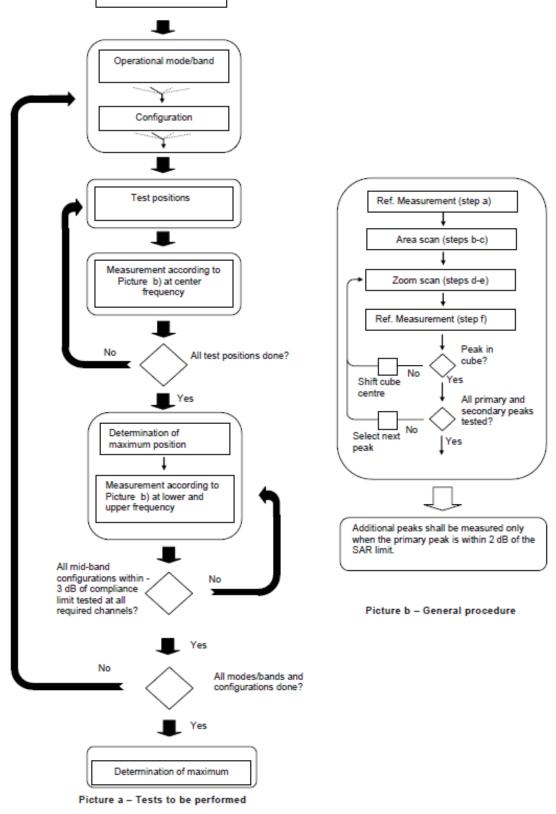
the transmit frequency band (f_c) for:

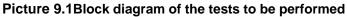
a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.


Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Preparation of system

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

		\leq 3 GHz	> 3 GHz		
	-	$5 \pm 1 \text{ mm}$	¼·δ·ln(2) ± 0.5 mm		
rom probe a ent location		30°±1° 20°±1°			
		$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
ial resolutio	m: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the abov measurement resolution must be ≤ the corresponding x dimension of the test device with at least one measurem point on the test device.			
atial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$		
uniform g	rid: ∆z _{Zoom} (n)	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $\le 5 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$			
maded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 2.5 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$		
grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
x, y, z	1	≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ 5 - 6 GHz: > 22 mm		
	e sensors) f om probe a ent location ial resolution atial resolution uniform g graded grid	$\frac{1}{2} = \frac{1}{2} \frac{\Delta x_{Area}}{\Delta x_{Zoom}} \frac{\Delta y_{Area}}{\Delta x_{Zoom}}$ $\frac{1}{2} = \frac{1}{2} \frac{\Delta x_{Zoom}}{\Delta x_{Zoom}} \Delta $	closest measurement point 5 ± 1 mm per sensors) to phantom surface $30^{\circ} \pm 1^{\circ}$ com probe axis to phantom surface $30^{\circ} \pm 1^{\circ}$ ial resolution: $\Delta x_{Area}, \Delta y_{Area}$ $\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ ial resolution: $\Delta x_{Area}, \Delta y_{Area}$ When the x or y dimension of the measurement plane orientation measurement resolution must be dimension of the test device. atial resolution: $\Delta x_{Zoom}, \Delta y_{Zoom}$ $\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}^*$ uniform grid: $\Delta z_{Zoom}(1)$: between 1^{st} $\leq 4 \text{ mm}$ $\Delta z_{Zoom}(n>1)$: between 1^{st} $\leq 4 \text{ mm}$ $\Delta z_{Zoom}(n>1)$: between 1^{st} $\leq 1.5 \cdot \Delta z$		

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	eta_{c}	$oldsymbol{eta}_d$	eta_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	eta_c	eta_d	β _d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$eta_{_{ec}}$	$eta_{_{ed}}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.5	1.5	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	1.5	1.5	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$eta_{ed1}{}_{:47/15}$ $eta_{ed2}{}_{:47/15}$	4	2	1.5	1.5	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	1.5	1.5	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.5	1.5	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz)and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm mare 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

For Main antenna, there are two sets of tune-up power, Normal power and Low power, used for different use cases for PCS1900 and W1700/1900. Normal power status is applied for head test and body worn test of above bands. Low power status is applied for hotspot test of above bands. For other bands, Normal power status is applied for both head and body test.

11.1 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

GSM 850		ed Power		Tune up	calculation		ed Power	
Speech (GMSK)	251	190	128			251	190	128
1 Txslot	32.63	32.52	32.40	33.5	/	/	/	/
GSM 850	Measured Power (dBm)				calculation	Averag	ed Powe	r (dBm)
GPRS (GMSK)	251	190	128			251	190	128
1 Txslot	32.82	32.69	32.55	33.5	-9.03	23.79	23.66	23.52
2 Txslots	31.37	31.21	31.07	31.5	-6.02	25.35	25.19	25.05
3Txslots	29.35	29.18	29.05	29.5	-4.26	25.09	24.92	24.79
4 Txslots	27.84	27.69	27.57	28	-3.01	24.83	24.68	24.56
GSM 850	Measur	ed Power	(dBm)		calculation	Averag	ed Power	r (dBm)
EGPRS (GMSK)	251	190	128			251	190	128
1 Txslot	32.78	32.62	32.50	33.5	-9.03	23.75	23.59	23.47
2 Txslots	31.33	31.16	31.03	31.5	-6.02	25.31	25.14	25.01
3Txslots	29.32	29.14	29.02	29.5	-4.26	25.06	24.88	24.76
4 Txslots	27.82	27.64	27.54	28	-3.01	24.81	24.63	24.53
PCS1900	Measur	ed Power	(dBm)	Tune up	calculation	Averaged Power (dBm)		
Speech (GMSK)	810	661	512			810	661	512
1 Txslot	29.61	29.68	29.71	31	/	/	/	/
PCS1900	Measur	ed Power	(dBm)		calculation	Averag	ed Powe	r (dBm)
GPRS (GMSK)	810	661	512			810	661	512
1 Txslot	29.65	29.70	29.70	31	-9.03	20.62	20.67	20.67
2 Txslots	28.45	28.48	28.43	29	-6.02	22.43	22.46	22.41
3Txslots	26.36	26.36	26.27	27	-4.26	22.10	22.10	22.01
4 Txslots	24.91	24.90	24.83	25.5	-3.01	21.90	21.89	21.82
PCS1900	Measur	ed Power	(dBm)		calculation	Averag	ed Powe	r (dBm)
EGPRS (GMSK)	810	661	512			810	661	512
1 Txslot	29.62	29.69	29.70	31	-9.03	20.59	20.66	20.67
2 Txslots	28.44	28.46	28.42	29	-6.02	22.42	22.44	22.40
3Txslots	26.34	26.35	26.26	27	-4.26	22.08 22.09		22.00
4 Txslots	24.89	24.89	24.82	25.5	-3.01	21.88	21.88	21.81

Table 11.1-1: The conducted power measurement results for GSM – Normal power

©Copyright. All rights reserved by CTTL.

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for GSM850 and GSM1900.

PCS1900	Measur	ed Power	· (dBm)	Tune up	calculation	Averag	Averaged Power (dBm			
Speech (GMSK)	810	661	512			810	661	512		
1 Txslot	26.41	26.40	26.33	28	/	/	/	/		
PCS1900	Measur	ed Power	· (dBm)		calculation	Averag	ed Powe	r (dBm)		
GPRS (GMSK)	810	661	512			810	661	512		
1 Txslot	26.42	26.38	26.33	27	-9.03	17.39	17.35	17.30		
2 Txslots	26.36	26.34	26.28	27	-6.02	20.34	20.32	20.26		
3Txslots	26.30	26.25	26.20	27	-4.26	22.04	21.99	21.94		
4 Txslots	24.83	24.81	24.77	25	-3.01	21.82	21.80	21.76		
PCS1900	Measur	ed Power	(dBm)		calculation	Averag	Averaged Power (dBm)			
EGPRS (GMSK)	810	661	512			810	661	512		
1 Txslot	26.40	26.37	26.30	27	-9.03	17.37	17.34	17.27		
2 Txslots	26.35	26.33	26.26	27	-6.02	20.33	20.31	20.24		
3Txslots	26.27	26.25	26.17	27	-4.26	22.01	21.99	21.91		
4 Txslots	24.83	24.80	24.74	25	-3.01	21.82	21.79	21.73		

Table 11.1-2: The conducted power measurement results for GSM – Low power

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 3Txslots for GSM1900.

No.I19Z60742-SEM01 Page 27 of 143

11.2 WCDMA Measurement result

		1.2-1: The conducted			
Item	band		FDDV resu		
	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)	Tune up
WCDMA	١	23.35	23.37	23.43	23.5
	1	20.39	20.46	20.40	21
	2	20.33	20.43	20.38	21
HSUPA	3	21.40	21.47	21.45	22
	4	19.89	19.95	19.93	20.5
	5	22.34	22.32	22.40	23
	band		FDDIV result		
ltem	ARFCN	1513 (1752.6MHz)	1412 (1732.4MHz)	1312 (1712.4MHz)	
WCDMA	١	23.47	23.41	23.48	23.5
	1	20.70	20.68	20.75	21
	2	20.68	20.66	20.71	21
HSUPA	3	21.73	21.70	21.75	23
	4	20.21	20.19	20.25	21
	5	22.70	22.65	22.73	23
lt e see	band		FDDII result		
ltem	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)	
WCDMA	١	23.43	23.44	23.45	23.5
	1	20.51	20.69	20.78	21
	2	20.49	20.68	20.75	21
HSUPA	3	21.49	21.71	21.79	22
	4	20.01	20.18	20.24	21
	5	22.38	22.61	22.65	23

Table 11.2-1: The conducted Power for WCDMA – Normal power

 Table 11.2-2: The conducted Power for WCDMA – Low power

	band		FDDIV result		
ltem	ARFCN	1513 (1752.6MHz)	1412 (1732.4MHz)	1312 (1712.4MHz)	
WCDMA	\	20.72	20.69	20.74	21
	1	18.77	18.70	18.80	19
	2	18.74	18.69	18.77	19
HSUPA	3	19.73	19.71	19.76	20
	4	18.21	18.18	18.26	19
	5	20.70	20.67	20.73	21
lt a ma	band		FDDII result		
ltem	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)	
WCDMA	\	20.56	20.79	20.82	21
	1	18.57	18.79	18.83	19
	2	18.55	18.75	18.82	19
HSUPA	3	19.52	19.70	19.80	20
	4	18.09	18.24	18.34	19
	5	20.47	20.70	20.79	21

©Copyright. All rights reserved by CTTL.

11.3 Wi-Fi and BT Measurement result

The maximum conducted power of BT is 1.8dBm. The tune up of BT is 2dBm.

The average conducted power for Wi-Fi is as following:

802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
11	/	/	/	17.02
6	/	/	/	17.24
1	17.16	17.14	17.16	17.34
Tune up	18	18	18	18

802.11g (dBm)

Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
11	16.52	/	/	/	/	/	/	/
Tune up	17	/	/	/	/	/	/	/
6	16.63	16.41	16.34	16.60	16.49	16.45	16.29	15.89
Tune up	17	17	17	17	17	17	16.5	16.5
1	16.59	/	/	/	/	/	/	/
Tune up	17	/	/	/	/	/	/	/

802.11n (dBm) - HT20 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
11	16.49	/		/	/	/	/	/
Tune up	17	/	/	/	/	/	/	/
6	16.37	/		/	/	/	/	/
Tune up	17	/	/	/	/	/	/	/
1	16.50	16.47	16.32	16.40	16.29	15.22	15.24	15.16
Tune up	17	17	17	17	17	16	16	16

802.11n (dBm) - HT40 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
9	15.89	15.87	15.87	15.81	15.82	14.95	14.43	14.39
Tune up	16	16	16	16	16	16	16	16
6	15.61	/	/	/	/	/	/	/
Tune up	16	/	/	/	/	/	/	/
3	15.81	/	/	/	/	/	/	/
Tune up	16	/	/	/	/	/	/	/

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

83.40 WIFI/BT/GPS Antenna 173.40 MAIN Antenna ł

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions							
Mode Front Rear Left edge Right edge Top edge Bottom edge							
Main antenna	Main antenna Yes Yes Yes Yes No Yes						
WLAN Yes Yes No Yes Yes No							

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Band/Mode	F(GHz)	Position	SAR test exclusion		utput wer	SAR test exclusion
			threshold(mW)	dBm	mW	
Plueteeth	2.441	Head	9.60	2	1.58	Yes
Bluetooth		Body	19.20	2	1.58	Yes
2.4GHz WLAN	2.45	Head	9.58	18	63.10	No
	2.45 -	Body	19.17	18	63.10	No

Table 12.1: Standalone SAR test exclusion considerations

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WLAN 2.4G	Sum
Maximum reported SAR value for Head	Left hand, Touch cheek	0.21	0.96	1.17
Maximum reported	Rear 10mm	0.69	0.23	0.92
SAR value for Body	Bottom 10mm	0.91	/	0.91

Table 13.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT	Sum
Maximum reported SAR value for Head	Left hand, Touch cheek	0.21	0.07 ^[1]	0.28
Maximum reported	Rear 10mm	0.69	0.03 ^[1]	0.72
SAR value for Body	Bottom 10mm	0.91	/	0.91

[1] - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3:	Estimated	SAR for	Bluetooth
-------------	-----------	---------	-----------

Mode/Band		Desition	Distance	Upper limi	t of power *	Estimated _{1g}
Mode/Band	ode/Band F (GHz) Position	(mm)	dBm	mW	(W/kg)	
Bluetooth	2.441	Head	5	2	1.58	0.07
Bluetooth	2.441	Body	10	2	1.58	0.03

* - Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10 mm or 15mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-gSAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

 $P_{Measured}$ is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850/1900 (Normal power)	1:4
GPRS&EGPRS for GSM1900 (Low power)	1:2.67
WCDMA	1:1

14.1 SAR results for Fast SAR

Table 14.1-1: SAR Values (GSM 850 MHz Band - Head)

			Am	nbient Tem	perature: 22	.9°C Lic	luid Tempera	ture: 22.5°C			
Freq	uency		Test	Figure	Conducted	Max. tune-up	Max tune-up		Measured	Reported	Power
		Side	Position	No./	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz		1 0311011	Note	(dBm)		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
251	848.8	Left	Touch	/	31.37	31.5	0.149	0.15	0.197	0.20	0.08
190	836.6	Left	Touch	Fig.1	31.21	31.5	0.153	0.16	0.200	0.21	0.04
128	824.2	Left	Touch	/	31.07	31.5	0.145	0.16	0.185	0.20	-0.09
190	836.6	Left	Tilt	/	31.21	31.5	0.104	0.11	0.131	0.14	0.12
190	836.6	Right	Touch	/	31.21	31.5	0.129	0.14	0.168	0.18	0.04
190	836.6	Right	Tilt	/	31.21	31.5	0.085	0.09	0.106	0.11	0.01

Note: the head SAR of GSM850 is tested with GPRS (2Txslots) mode because of VoIP.

	· · · · · · · · · · · · · · · · · · ·													
			Ambie	ent Temp	erature: 22.	9°C Liq	uid Tempera	ture: 22.5°C	2					
Frec	luency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
		(number of	No./ Power			SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
190	836.6	GPRS (2)	Front	/	31.21	31.5	0.115	0.12	0.209	0.22	-0.02			
251	848.8	GPRS (2)	Rear	Fig.2	31.37	31.5	0.183	0.19	0.305	0.31	-0.12			
190	836.6	GPRS (2)	Rear	/	31.21	31.5	0.160	0.17	0.274	0.29	0.07			
128	824.2	GPRS (2)	Rear	/	31.07	31.5	0.169	0.19	0.282	0.31	-0.10			
190	836.6	GPRS (2)	Left	/	31.21	31.5	0.103	0.11	0.156	0.17	0.13			
190	836.6	GPRS (2)	Right	/	31.21	31.5	0.076	0.08	0.119	0.13	0.12			
190	836.6	GPRS (2)	Bottom	/	31.21	31.5	0.044	0.05	0.076	0.08	0.02			
251	848.8	EGPRS (2)	Rear	/	31.33	31.5	0.119	0.12	0.167	0.17	0.07			

Table 14.1-2: SAR Values (GSM 850 MHz Band - Body)

Note: The distance between the EUT and the phantom bottom is 10mm.

No.I19Z60742-SEM01 Page 34 of 143

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C												
Free	quency		Test	Figure	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power		
	. ,	Side		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
Ch.	MHz		Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
810	1909.8	Left	Touch	Fig.3	28.45	29	0.104	0.12	0.165	0.19	0.06		
661	1880	Left	Touch	/	28.48	29	0.092	0.10	0.145	0.16	-0.09		
512	1850.2	Left	Touch	/	28.43	29	0.082	0.09	0.128	0.15	0.12		
661	1880	Left	Tilt	/	28.48	29	0.085	0.10	0.135	0.15	0.04		
661	1880	Right	Touch	/	28.48	29	0.086	0.10	0.138	0.16	0.03		
661	1880	Right	Tilt	/	28.48	29	0.068	0.08	0.115	0.13	-0.08		

Table 14.1-3: SAR Values (GSM 1900 MHz Band - Head)

Note: the head SAR of GSM1900 is tested with GPRS (2Txslots) mode because of VoIP.

Table 14.1-4: SAR Values (GSM 1900 MHz Band	l - Body)

			Ambier	nt Tempe	erature: 22.9	9°C Liqu	iid Tempera	ture: 22.5°C	2		
Fre	quency	Mode	Test	Figure	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power
		(number of		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
661	1880	GPRS (3)	Front	/	26.25	27	0.302	0.36	0.524	0.62	-0.18
661	1880	GPRS (3)	Rear	/	26.25	27	0.333	0.40	0.582	0.69	0.13
661	1880	GPRS (3)	Left	/	26.25	27	0.061	0.07	0.101	0.12	0.09
661	1880	GPRS (3)	Right	/	26.25	27	0.035	0.04	0.062	0.07	0.07
810	1909.8	GPRS (3)	Bottom	Fig.4	26.30	27	0.420	0.49	0.774	0.91	-0.04
661	1880	GPRS (3)	Bottom	/	26.25	27	0.368	0.44	0.666	0.79	-0.04
512	1850.2	GPRS (3)	Bottom	/	26.20	27	0.386	0.46	0.697	0.84	0.02
810	1909.8	EGPRS (3)	Bottom	/	26.27	27	0.418	0.49	0.769	0.91	0.17
810	1909.8	GPRS (3)	Bottom	Note2	26.30	27	1.38	1.62	3.36	3.95	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The distance between the EUT and the phantom bottom is 0mm Base on the Principle of adding Test for Phablet.

			Ambier	nt Tempe	erature: 22.9	°C Liqu	id Tempera	ture: 22.5°C					
Fre	quency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
	4	(number of		No./	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
661	1880	GPRS (2)	Front	/	28.48	29	0.204	0.23	0.335	0.38	-0.12		
810	1909.8	GPRS (2)	Rear	/	28.45	29	0.212	0.24	0.347	0.39	0.08		
661	1880	GPRS (2)	Rear	Fig.5	28.48	29	0.228	0.26	0.386	0.44	-0.09		
512	1850.2	GPRS (2)	Rear	/	28.43	29	0.201	0.23	0.340	0.39	-0.08		
661	1880	EGPRS (2)	Rear	/	28.46	29	0.229	0.26	0.368	0.42	0.02		

Note: The distance between the EUT and the phantom bottom is 15mm.

					OAN Values				,					
	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C													
Frequency		- Test		Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
Ch.	MHz	Side	Position	No./Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)			
4233	846.6	Left	Touch	/	23.35	23.5	0.134	0.14	0.179	0.19	0.04			
4182	836.4	Left	Touch	Fig.6	23.37	23.5	0.145	0.15	0.191	0.20	0.15			
4132	826.4	Left	Touch	/	23.43	23.5	0.139	0.14	0.183	0.19	-0.09			
4182	836.4	Left	Tilt	/	23.37	23.5	0.099	0.10	0.130	0.13	0.02			
4182	836.4	Right	Touch	/	23.37	23.5	0.141	0.15	0.186	0.19	0.01			
4182	836.4	Right	Tilt	/	23.37	23.5	0.091	0.09	0.113	0.12	0.08			

Table 14.1-6: SAR Values (WCDMA 850 MHz Band - Head)

Table 14.1-7: SAR Values (WCDMA 850 MHz Band - Body)

			Ambient	Temperatur	e: 22.9 °C	Liquid Ter	nperature:	22.5°C		
Frequ	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
4182	836.4	Front	/	23.37	23.5	0.009	0.01	0.155	0.16	0.00
4233	846.6	Rear	Fig.7	23.35	23.5	0.135	0.14	0.226	0.23	0.03
4182	836.4	Rear	/	23.37	23.5	0.125	0.13	0.200	0.21	0.12
4132	826.4	Rear	/	23.43	23.5	0.128	0.13	0.213	0.22	0.00
4182	836.4	Left	/	23.37	23.5	0.077	0.08	0.116	0.12	0.12
4182	836.4	Right	/	23.37	23.5	0.047	0.05	0.070	0.07	0.06
4182	836.4	Bottom	/	23.37	23.5	0.034	0.04	0.061	0.06	0.09

Note: The distance between the EUT and the phantom bottom is 10mm.

									,		
			Ambier	nt Temperat	ture: 22.9 °C	Lic	luid Temper	ature: 22.5	°C		
Freq	quency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1513	1752.6	Left	Touch	/	23.47	23.5	0.077	0.08	0.117	0.12	-0.04
1412	1732.4	Left	Touch	Fig.8	23.41	23.5	0.090	0.09	0.136	0.14	0.05
1312	1712.4	Left	Touch	/	23.48	23.5	0.077	0.08	0.115	0.12	0.12
1412	1732.4	Left	Tilt	/	23.41	23.5	0.063	0.06	0.095	0.10	0.09
1412	1732.4	Right	Touch	/	23.41	23.5	0.080	0.08	0.123	0.13	-0.03
1412	1732.4	Right	Tilt	/	23.41	23.5	0.051	0.05	0.083	0.08	0.18

Table 14.1-8: SAR Values (WCDMA 1700 MHz Band - Head)

Table 14.1-9: SAR Values (WCDMA 1700 MHz Band - Body)

		А	mbient ⁻	Temperature	e: 22.9 °C	Liquid Temperature: 22.5°C						
Fred	quency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
		Position	No./	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
Ch.	MHz	FUSILION	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1412	1732.4	Front	/	20.69	21	0.231	0.25	0.398	0.43	0.12		
1412	1732.4	Rear	/	20.69	21	0.267	0.29	0.468	0.50	-0.03		
1412	1732.4	Left	/	20.69	21	0.038	0.04	0.057	0.06	0.09		
1412	1732.4	Right	/	20.69	21	0.041	0.04	0.067	0.07	0.06		
1513	1752.6	Bottom	/	20.72	21	0.297	0.32	0.512	0.55	0.19		
1412	1732.4	Bottom	Fig.9	20.69	21	0.392	0.42	0.694	0.75	-0.04		
1312	1712.4	Bottom	/	20.74	21	0.256	0.27	0.443	0.47	0.03		
1412	1732.4	Bottom	Note2	20.69	21	1.58	1.70	3.68	3.95	-0.02		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The distance between the EUT and the phantom bottom is 0mm Base on the Principle of adding Test for Phablet.

					•					
Ambient Temperature: 22.9 °C						Liquid Temperature: 22.5°C				
Frequency		Test Position	Figure	Conducted	Max tuna un	Measured	Reported	Measured	Reported	Power
			No./	Power Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1412	1732.4	Front	/	23.41	23.5	0.278	0.28	0.466	0.48	-0.11
1513	1752.6	Rear	/	23.47	23.5	0.283	0.28	0.471	0.47	0.03
1412	1732.4	Rear	Fig.10	23.41	23.5	0.325	0.33	0.544	0.56	-0.10
1312	1712.4	Rear	/	23.48	23.5	0.241	0.24	0.404	0.41	-0.05

Note1: The distance between the EUT and the phantom bottom is 15mm.

			Idiolo						~)		
			Ambie	ent Temp	erature: 22.9	9°C Liqu	uid Tempera	ature: 22.5°	Ϋ́C		
Frequency			Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Position	No./	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
_				Note	(dBm)		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9538	1907.6	Left	Touch	/	23.43	23.5	0.113	0.11	0.179	0.18	0.04
9400	1880	Left	Touch	Fig.11	23.44	23.5	0.129	0.13	0.205	0.21	0.15
9262	1852.4	Left	Touch	/	23.45	23.5	0.124	0.13	0.196	0.20	-0.03
9400	1880	Left	Tilt	/	23.44	23.5	0.103	0.10	0.165	0.17	0.01
9400	1880	Right	Touch	/	23.44	23.5	0.098	0.10	0.158	0.16	0.19
9400	1880	Right	Tilt	/	23.44	23.5	0.090	0.09	0.147	0.15	0.02

Table 14.1-11: SAR Values (WCDMA 1900 MHz Band - Head)

		A	Ambient T	emperature	: 22.9°C	Liquid Ten	nperature: 2	22.5°C		
Fred	luency	Test	Figure	Conducted	Max. tune-up	Measured Reported Mea		Measured	Reported	Power
		Position	No./	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	FUSILION	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9400	1880	Front	/	20.79	21	0.264	0.28	0.457	0.48	-0.08
9400	1880	Rear	/	20.79	21	0.284	0.30	0.504	0.53	-0.06
9400	1880	Left	/	20.79	21	0.056	0.06	0.093	0.10	-0.05
9400	1880	Right	/	20.79	21	0.022	0.02	0.045	0.05	-0.02
9538	1907.6	Bottom	/	20.56	21	0.353	0.39	0.634	0.70	-0.04
9400	1880	Bottom	Fig.12	20.79	21	0.376	0.39	0.674	0.71	0.04
9262	1852.4	Bottom	/	20.82	21	0.334	0.35	0.598	0.62	-0.07
9400	1880	Bottom	Note2	20.79	21	1.35	1.42	3.27	3.43	0.08

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The distance between the EUT and the phantom bottom is 0mm Base on the Principle of adding Test for Phablet.

		А	mbient T	Temperature	: 22.9°C	Liquid Temperature: 22.5°C					
Frequency		Test	Figure	Conducted Max tupo up		Measured	Reported	Measured	Reported	Power	
	,	Position	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz	FUSILION	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
9400	1880	Front	/	23.44	23.5	0.281	0.28	0.469	0.48	0.04	
9538	1907.6	Rear	/	23.43	23.5	0.268	0.27	0.447	0.45	0.01	
9400	1880	Rear	Fig.13	23.44	23.5	0.300	0.30	0.505	0.51	-0.12	
9262	1852.4	Rear	/	23.45	23.5	0.271	0.27	0.457	0.46	-0.10	

Note1: The distance between the EUT and the phantom bottom is 15mm.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C														
Freq	uency		Test	Figure	Conducted	Max tuno un	Measured	Reported	Measured	Reported	Power				
	-	Side	Position	No./	Power	Max. tune-up Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
Ch.	MHz		Position	Note	(dBm)	Power (dbm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
190	836.6	Left	Touch	Fig.1	31.21	31.5	0.153	0.16	0.200	0.21	0.04				

Table 14.2-1: SAR Values (GSM 850 MHz Band - Head)

Note: the head SAR of GSM850 is tested with GPRS (2Txslots) mode because of VoIP.

Table 14.2-2: SAR Values (GSM 850 MHz Band - Body)

			Ambie	nt Temp	erature: 22.	9°C Liq	uid Tempera	ture: 22.5°C	2		
Frequency		Mode	Test	Figure	Conducted	Max tuna un	Measured	Reported	Measured	Reported	Power
	10.01.09	(number of		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
251	848.8	GPRS (2)	Rear	Fig.2	31.37	31.5	0.183	0.19	0.305	0.31	-0.12

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-3: SAR Values (GSM 1900 MHz Band - Head)

			Amb	ient Tem	perature: 22	9°C Lic	uid Temper	ature: 22.5	°C		
Fred	Frequency		Test	Figure	Conducted	Max tupo up	Measured	Reported	Measured	Reported	Power
		Side	Position	No./	Power	Max. tune-up Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz		POSILION	Note	(dBm)	Fower (ubiii)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
810	1909.8	Left	Touch	Fig.3	28.45	29	0.104	0.12	0.165	0.19	0.06

Note: the head SAR of GSM1900 is tested with GPRS (2Txslots) mode because of VoIP.

Table 14.2-4: SAR Values (GSM 1900 MHz Band - Body)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C													
Frequency		Mode	Test	Figure	Conducted	Max tuna un	Measured	Reported	Measured	Reported	Power			
	riequency	(number of		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
Ch.	MHz	timeslots)	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
810	1909.8	GPRS (3)	Bottom	Fig.4	26.30	27	0.420	0.49	0.774	0.91	-0.04			

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-5: SAR Values	(GSM 1900 MHz Band - Body)
--------------------------	----------------------------

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C													
Frequency		Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
	1	(number of	Position	No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
Ch.	MHz	timeslots)	FUSILION	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
661	1880	GPRS (2)	Rear	Fig.5	28.48	29	0.228	0.26	0.386	0.44	-0.09			

Note: The distance between the EUT and the phantom bottom is 15mm.

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C														
Frequer Ch.	ency MHz	Side	Test Position	Figure No./Note	Conducted Power	Max. tune-up Power	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift				
	836.4	Left	Touch	Fig.6	(dBm) 23.37	(dBm) 23.5	(W/kg)	(W/kg) 0.15	(W/kg)	(W/kg)	(dB) 0.15				

Table 14.2-6: SAR Values (WCDMA 850 MHz Band - Head)

Table 14.2-7: SAR Values (WCDMA 850 MHz Band - Body)

			Ambient	Temperatur	e: 22.9 °C	Liquid Ter	nperature:	22.5°C		
Freq	uency	Teet	Figure	Conducted		Measured	Reported	Measured	Reported	Power
		Test	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
4233	846.6	Rear	Fig.7	23.35	23.5	0.135	0.14	0.226	0.23	0.03

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-8: SAR Values (WCDMA 1700 MHz Band - Head)

			Ambier	nt Tempera	ture: 22.9°C	Lic	quid Temper	ature: 22.5	°C		
Frec	quency		Teet	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1412	1732.4	Left	Touch	Fig.8	23.41	23.5	0.090	0.09	0.136	0.14	0.05

Table 14.2-9: SAR Values (WCDMA 1700 MHz Band - Body)

		A	mbient 7	Femperature	e: 22.9 °C	Liquid Ter	mperature:	22.5 ⁰C		
Fred	quency	Teet	Figure	Conducted	Max tune un	Measured	Reported	Measured	Reported	Power
	1	Test	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1412	1732.4	Bottom	Fig.9	20.69	21	0.392	0.42	0.694	0.75	-0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-10: SAR Values (WCDMA 1700 MHz Band - Body)

		A	mbient 7	Temperature	: 22.9°C	Liquid Ter	mperature:	22.5°C		
Frequency Test Figure Conducted Max. tune-up Measured Reported Measured Reported Pow										Power
	1		No./	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1412	1732.4	Rear	Fig.10	23.41	23.5	0.325	0.33	0.544	0.56	-0.10

Note1: The distance between the EUT and the phantom bottom is 15mm.

			Table	14.2-11	. SAN Value			banu - nea	u)		
	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C										
Freq	luency	0.1	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
9400	1880	Left	Touch	Fig.11	23.44	23.5	0.129	0.13	0.205	0.21	0.15

Table 14.2-11: SAR Values (WCDMA 1900 MHz Band - Head)

Table 14.2-12: SAR Values (WCDMA 1900 MHz Band - Body)

		ŀ	Ambient T	emperature	: 22.9°C	Liquid Ten	nperature: 2	22.5°C		
Frec	quency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Position	No./	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	FUSILION	Note	(dBm)	Fower (ubili)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9400	1880	Bottom	Fig.12	20.79	21	0.376	0.39	0.674	0.71	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-13: SAR Values (WCDMA 1900 MHz Band - Body)

		А	mbient 7	emperature	: 22.9°C	Liquid Ter	mperature:	22.5 ⁰C			
Fred	Frequency Test Figure Conducted Max. tune-up Measured Reported Measured Reported Power										
			No./	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
9400 1880 Rear Fig.13 23.44 23.5 0.300 0.30 0.505 0.51 -0.12										-0.12	

Note1: The distance between the EUT and the phantom bottom is 15mm.

14.3 WLAN Evaluation for 2.4G

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial</u> test position procedure.

Head Evaluation

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C												
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
MHz	Ch.	Side	Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)		
2412	1	Left	Touch	/	17.34	18	0.397	0.46	0.785	0.91	0.17		
2412	1	Left	Tilt	/	17.34	18	0.267	0.31	0.556	0.65	0.05		
2412	1	Right	Touch	/	17.34	18	0.181	0.21	0.369	0.43	-0.04		
2412	1	Right	Tilt	/	17.34	18	0.178	0.21	0.393	0.46	0.01		

Table 14.3-1: SAR Values (WLAN - Head)– 802.11b (Fast SAR)

As shown above table, the <u>initial test position</u> for head is "Left Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head)- 802.11b (Full SAR)

			Amb	pient Ten	nperature: 2	2.9°C L	iquid Tempe	erature: 22.	5°C				
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
		Side		No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift		
MHz	Ch.		Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)		
2412	2412 1 Left Touch / 17.34 18 0.341 0.40 0.718 0.84 0.17												
2412													
2437													
Note1:	Wher	n the <u>repo</u>	orted SAR	of the in	<u>itial test pos</u>	<u>sition</u> is > 0.4	W/kg, SAR i	s repeated	for the 802.	11 transmis	ssion		
mode	config	uration te	sted in the	e <u>initial te</u>	est position (using subsequ	ent highest	estimated 1	I-g SAR con	ditions det	ermined		
by area	by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.												
Note2:	Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the												
roporte	reported SAR is > 0.8 W/kg. SAR is measured for these test positions/configurations on the subsequent part highest												

<u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is \leq 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 22.9 °C	Liquid Te	mperature: 22.5	°C
Frequ	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR
MHz	Ch.	0.00	Position	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)
2437	6	Left	Touch	100%	100%	0.96	0.96

SAR is not required for 802.11g/n because the 802.11b adjusted SAR < 1.2 W/kg.

Body Evaluation

	Table 14.3-4: SAR Values (WLAN - Body)– 802.11b (Fast SAR)	
--	--	--

								-		
		A	mbient T	emperature:	22.9 °C	Liquid Tem	perature: 2	22.5°C		
Freque	encv	Test	Figure	Conducted		Measured	Reported	Measured	Reported	Power
		Test	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2412	1	Front	/	17.34	18	0.098	0.11	0.182	0.21	0.09
2412	1	Rear	/	17.34	18	0.103	0.12	0.200	0.23	-0.02
2412	1	Right	/	17.34	18	0.046	0.05	0.088	0.10	0.06
2412	1	Тор	/	17.34	18	0.078	0.09	0.161	0.19	0.19

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body)- 802.11b (Full SAR)

		A	mbient T	emperature:	: 22.9 °C	Liquid Tem	perature: 2	22.5°C		
Frequency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	Bosition	Position	No./ Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift	
MHz	Ch.	1 0510011	Note	(dBm)		(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2412	1	Rear	Fig.15	17.34	18	0.100	0.12	0.197	0.23	-0.02

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is \leq 1.2 W/kg or all required channels are tested.

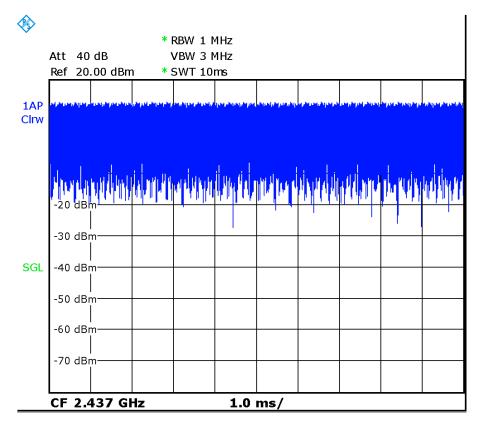
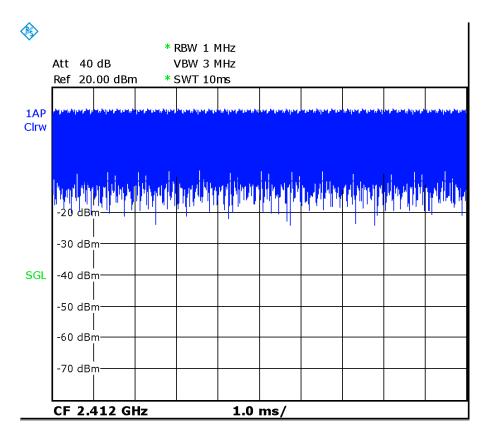

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)


	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5°C											
Frequency		Test	Actual duty maximum duty		Reported SAR	Scaled reported SAR						
MHz	Ch.	Position	factor	factor	(1g)(W/kg)	(1g)(W/kg)						
2412	1	Rear	100%	100%	0.23	0.23						

SAR is required for 802.11g/n because the 802.11b adjusted SAR < 1.2 W/kg.

Picture 14.1 Duty factor plot for channel 6

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Fr	Frequency				Test	Original	First	The	Second
Ch	ו.	MHz	Mode	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
6		2437	802.11b	Left	Touch	0.805	0.794	1.01	/

Table 15.1: SAR Measurement Variability for Head WiFi (1g)

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

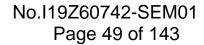
10.	i measurement of				10313	1000	VII 12/~		/	
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	~
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probepositioningwithrespecttophantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	ł					
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	~
			Phan	tom and set-u	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521

No.I19Z60742-SEM01 Page 46 of 143

							1					
(Combined standard uncertainty	<i>u</i> _c =	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257		
_	nded uncertainty ïdence interval of)	l	$u_e = 2u_c$					19.1	18.9			
16.	2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			11		
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
			value	Distribution		1g	10g	Unc.	Unc.	of		
								(1g)	(10g)	freedom		
Mea	Measurement system											
1	Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞		
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞		
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	œ		
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ		
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8		
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞		
			Test	sample related	ł							
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71		
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5		
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	œ		
			Phan	tom and set-u	р							
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞		
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8		
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43		
20	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞		

©Copyright. All rights reserved by CTTL.

No.I19Z60742-SEM01 Page 47 of 143


	(target)											
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521		
C	Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257		
-	nded uncertainty											
(conf 95 %	idence interval of	ı	$u_e = 2u_c$					21.4	21.1			
16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)												
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
	1		value	Distribution		1g	10g	Unc.	Unc.	of		
						C	C	(1g)	(10g)	freedom		
Meas	Measurement system											
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8		
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8		
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞		
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ		
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞		
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8		
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	œ		
		•	Test	sample related	1		·	•				
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71		
16	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5		
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞		
			Phan	tom and set-u								
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8		

No.I19Z60742-SEM01 Page 48 of 143

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	Liquid conductivity	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	Liquid conductivity	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	Liquid permittivity	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	Liquid permittivity	А	1.6	N	1	0.6	0.49	1.0	0.8	521	
(conFidence interval of 95%) u_e = 2u_e less less <thless< th=""> less less</thless<>	(<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257	
No. Error Description Type Uncertainty value Probably Distribution Div. (Ci) (Ci) (Std.) Std. of of Meterment system 1 Probe calibration B 6.55 N 1 1 1 6.55 6.55 \sim 2 Isotropy B 4.7 R $\sqrt{3}$ 0.7 0.7 1.9 1.9 \sim 3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 \sim 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 1.2 1.2 \sim 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 \sim 6 Readout electronics B 0.3 RR $\sqrt{3}$ 1 1 1.5 1.5 \sim 9 RF <ambient conditions-noise<="" td=""> B 0.8</ambient>	(conf	idence interval of	1	$u_e = 2u_c$					20.8	20.6		
Image: Constraint of the section of the se	16.4	4 Measurement Ui	ncerta	inty for Fa	st SAR Tes	ts (3-	-6GH	z)				
Image: system Image: s	No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
Neasurement system 1 Probe calibration B 6.55 N 1 1 1 1 6.55 6.55 ∞ 2 Isotropy B 4.7 R $\sqrt{3}$ 0.7 0.7 1.9 1.9 ∞ 3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 8 Integration time B 2.6 R $\sqrt{3}$ 1 1 1.5 1.5 ∞ 9 RF ambient coditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RFambient coditions-reflec				value	Distribution		1g	10g	Unc.	Unc.	of	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									(1g)	(10g)	freedom	
2 Isotropy B 4.7 R $\sqrt{3}$ 0.7 0.7 1.9 1.9 ∞ 3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 2.7 2.7 ∞ 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 7 Response time B 0.8 R $\sqrt{3}$ 1 1 1.5 1.5 ∞ 9 RF ambient B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RFambient B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 11 Probe positioning B 0.8 R $\sqrt{3}$ 1 1 <t< td=""><td>Meas</td><td colspan="11"></td></t<>	Meas											
3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 7 Response time B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 8 Integration time B 2.6 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RFambient conditions-reflection B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 11 Probe positioning B 0.7 R $\sqrt{3}$		•	В	6.55	Ν	1	1	1	6.55	6.55	∞	
3 Boundary effect B 2.0 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 4 Linearity B 4.7 R $\sqrt{3}$ 1 1 1.2 1.2 ∞ 5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 7 Response time B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 8 Integration time B 2.6 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RFambient conditions-reflection B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 11 Probe positioning B 0.7 R $\sqrt{3}$	2		В		R	$\sqrt{3}$	0.7				œ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			В	2.0	R						œ	
5 Detection limit B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 7 Response time B 0.8 R $\sqrt{3}$ 1 1 0.3 0.3 ∞ 8 Integration time B 2.6 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RFambient conditions-reflection B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 11 Probe positioned mech. Restrictions B 0.8 R $\sqrt{3}$ 1 1 0 0.5 ∞ 12 Probe positioning phantom shell B 0.7 R $\sqrt{3}$ 1 1 1 0.6 0.6 ∞ 13 Post-processing B	4	•	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	œ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	•		1.0	R						œ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	Readout electronics	В	0.3	R		1	1	0.3	0.3	∞	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9		В	0	R	$\sqrt{3}$	1	1	0	0	œ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		В	0	R	$\sqrt{3}$	1	1	0	0	œ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	1	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	with respect to	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	ω	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
15Test sample positioningA3.3N1113.33.371	14		В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	~	
15 A 3.3 N 1 1 1 3.3 3.3 71 positioning				Test	sample related	1						
	15	•	А	3.3	Ν	1	1	1	3.3	3.3	71	
	16	Device holder	А	3.4	N	1	1	1	3.4	3.4	5	

©Copyright. All rights reserved by CTTL.

	uncertainty										
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
	Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ	
20	Liquid conductivity (meas.)	A	2.06	Ν	1	0.64	0.43	1.32	0.89	43	
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8	
22	Liquid permittivity (meas.)	A	1.6	Ν	1	0.6	0.49	1.0	0.8	521	
(Combined standard uncertainty	<i>u</i> _c =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257	
_	anded uncertainty fidence interval of	l	$u_e = 2u_c$					27.0	26.8		

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 24, 2019	One year	
02	Power meter	NRVD	102083	October 24, 2019		
03	Power sensor	NRV-Z5	100542	October 24, 2018	One year	
04	Signal Generator	E4438C	MY49070393	January 4, 2019	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 17, 2019	One year	
07	E-field Probe	SPEAG EX3DV4	7514	August 27, 2018	One year	
08	DAE	SPEAG DAE4	1555	August 20, 2018	One year	
09	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2018	One year	
10	Dipole Validation Kit	SPEAG D1750V2	1003	July 20, 2018	One year	
11	Dipole Validation Kit	SPEAG D1900V2	5d101	July 24, 2018	One year	
12	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2018	One year	

END OF REPORT BODY

ANNEX A Graph Results

850 Left Cheek Middle

Date: 2019-4-28 Electronics: DAE4 Sn1555 Medium: Head 850 MHz Medium parameters used: f = 836.6 MHz; $\sigma = 0.923$ mho/m; $\epsilon r = 42.26$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN7514 ConvF(9.09, 9.09, 9.09)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.221 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.038 V/m; Power Drift = 0.04 dBPeak SAR (extrapolated) = 0.253 W/kgSAR(1 g) = 0.200 W/kg; SAR(10 g) = 0.153 W/kgMaximum value of SAR (measured) = 0.211 W/kg

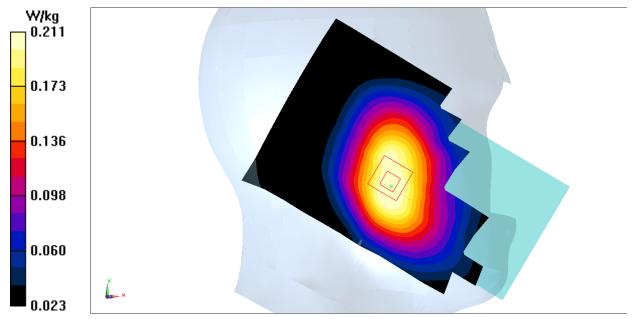


Fig.1 850MHz

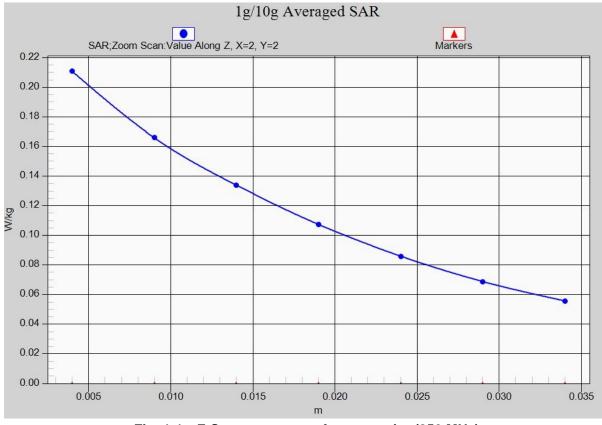


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2019-4-28 Electronics: DAE4 Sn1555 Medium: Body 850 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 55.71$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: EX3DV4 – SN7514 ConvF(9.47, 9.47, 9.47)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.367 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.67 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.489 W/kg SAR(1 g) = 0.305 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.397 W/kg

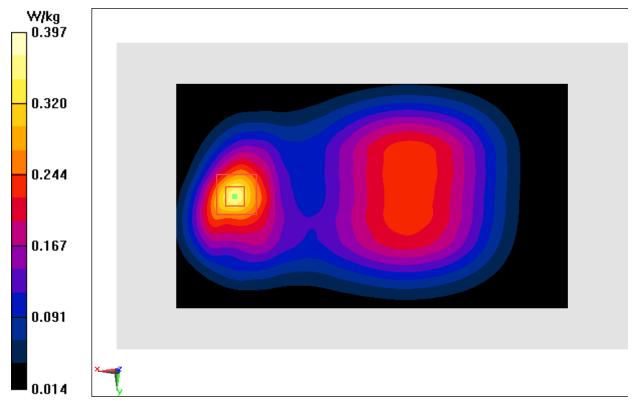


Fig.2 850 MHz

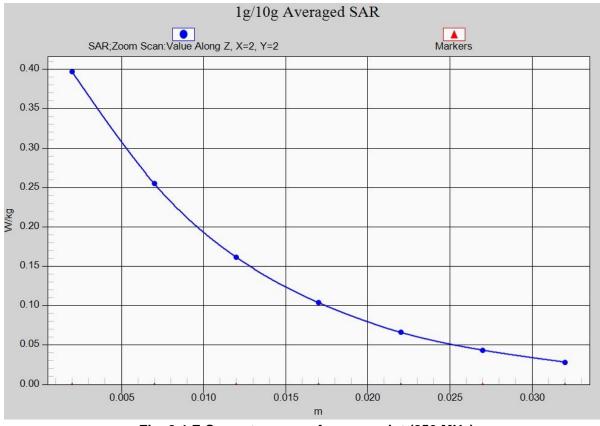


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek High

Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1909.8 MHz; $\sigma = 1.457$ mho/m; $\epsilon r = 40.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: EX3DV4– SN7514 ConvF(7.73, 7.73, 7.73)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.201 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.008 V/m; Power Drift = 0.06 dB
Peak SAR (extrapolated) = 0.250 W/kg
SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.104 W/kg
Maximum value of SAR (measured) = 0.179 W/kg

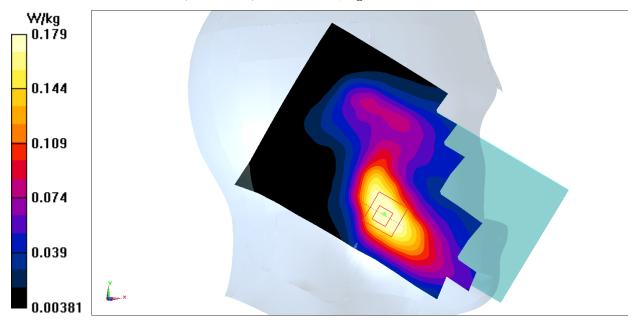


Fig.3 1900 MHz

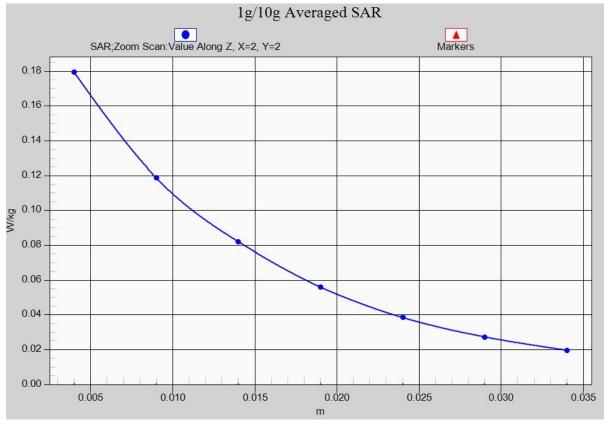


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom High

Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Body 1900 MHz Medium parameters used: f = 1909.8 MHz; $\sigma = 1.601$ mho/m; $\epsilon r = 52.18$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2.67 Probe: EX3DV4– SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.935 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.44 V/m; Power Drift = -0.04 dB
Peak SAR (extrapolated) = 1.32 W/kg
SAR(1 g) = 0.774 W/kg; SAR(10 g) = 0.420 W/kg
Maximum value of SAR (measured) = 1.06 W/kg

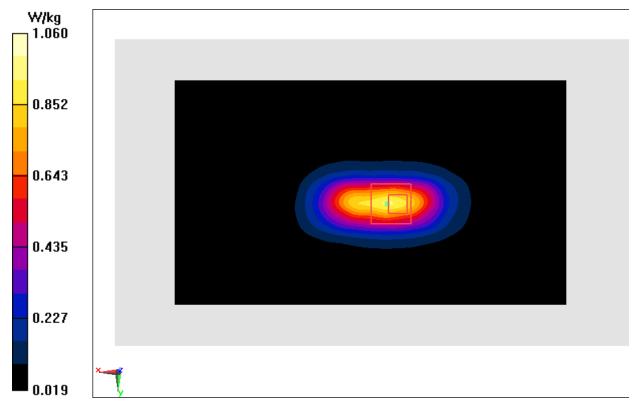


Fig.4 1900 MHz

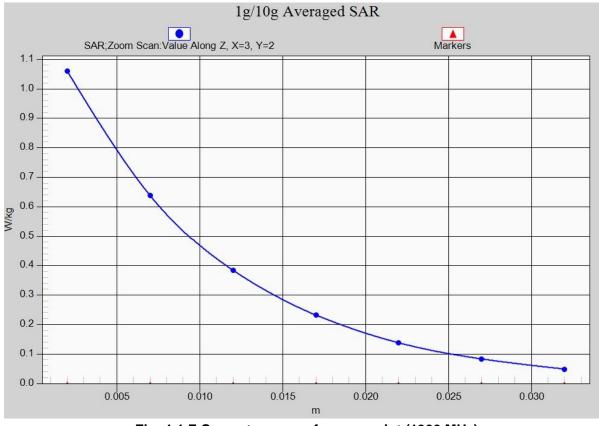


Fig. 4-1 Z-Scan at power reference point (1900 MHz)

1900 Body Rear Middle

Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; σ =1.571 mho/m; ϵ r = 52.26; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: EX3DV4– SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.469 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.466 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.625 W/kg SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.228 W/kg Maximum value of SAR (measured) = 0.514 W/kg

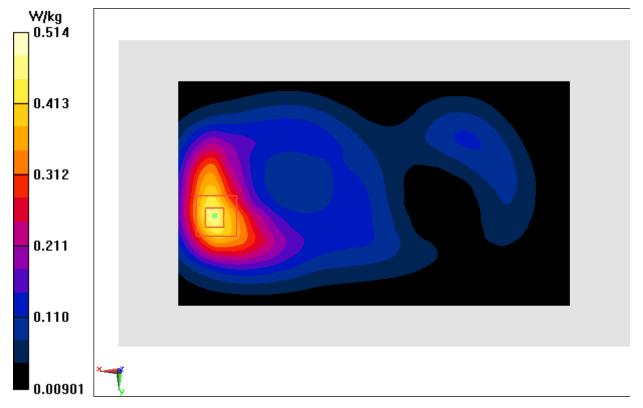


Fig.5 1900 MHz

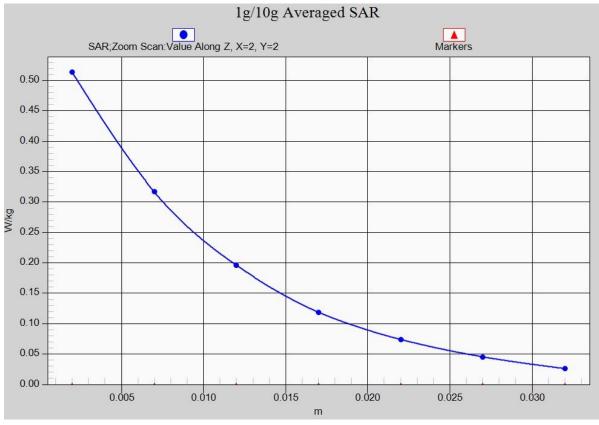
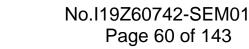



Fig. 5-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Left Cheek Middle

Date: 2019-4-28 Electronics: DAE4 Sn1555 Medium: Head 850 MHz Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.925$ mho/m; $\epsilon r = 42.205$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.09, 9.09, 9.09)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.209 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.246 V/m; Power Drift = 0.15 dB
Peak SAR (extrapolated) = 0.242 W/kg
SAR(1 g) = 0.191 W/kg; SAR(10 g) = 0.145 W/kg
Maximum value of SAR (measured) = 0.203 W/kg

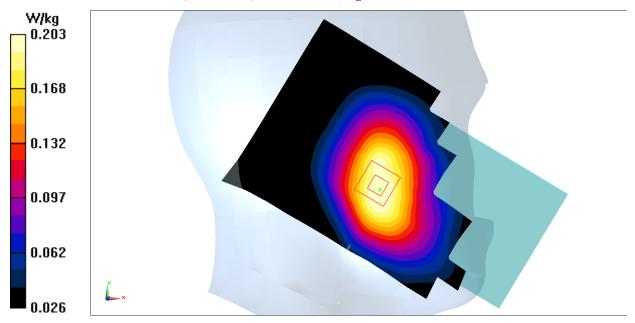
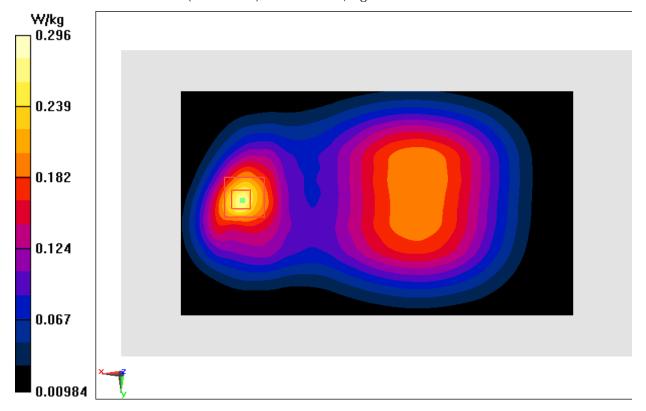


Fig.6 WCDMA 850

Fig. 6-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear High


Date: 2019-4-28 Electronics: DAE4 Sn1555 Medium: Body 850 MHz Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.967$ mho/m; $\epsilon r = 55.716$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.47, 9.47, 9.47)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.272 $\ensuremath{\mathbb{W}}\xspace/\ensuremath{\,\mathrm{kg}}\xspace$

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.15 V/m; Power Drift = 0.03 dB
Peak SAR (extrapolated) = 0.364 W/kg
SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.135 W/kg
Maximum value of SAR (measured) = 0.296 W/kg

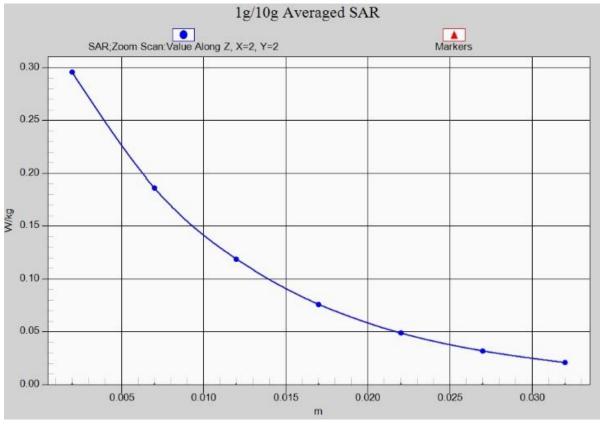
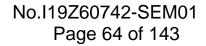



Fig. 7-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Left Cheek Middle

Date: 2019-4-29 Electronics: DAE4 Sn1555 Medium: Head 1750 MHz Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.384$ mho/m; $\epsilon r = 39.747$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA 1750 Frequency: 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(8.10, 8.10, 8.10)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.159 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.614 V/m; Power Drift = 0.05 dB
Peak SAR (extrapolated) = 0.196 W/kg
SAR(1 g) = 0.136 W/kg; SAR(10 g) = 0.090 W/kg
Maximum value of SAR (measured) = 0.145 W/kg



Fig.8 WCDMA1700

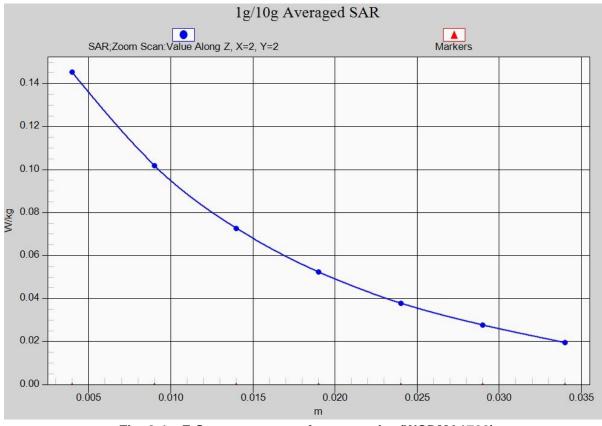


Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Bottom Middle

Date: 2019-4-29 Electronics: DAE4 Sn1555 Medium: Body 1750 MHz Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.507$ mho/m; $\epsilon r = 54.128$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA 1900 Frequency: 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(7.82, 7.82, 7.82)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.986 W/kg

```
Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
```

Reference Value = 22.18 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.694 W/kg; SAR(10 g) = 0.392 W/kg Maximum value of SAR (measured) = 0.945 W/kg

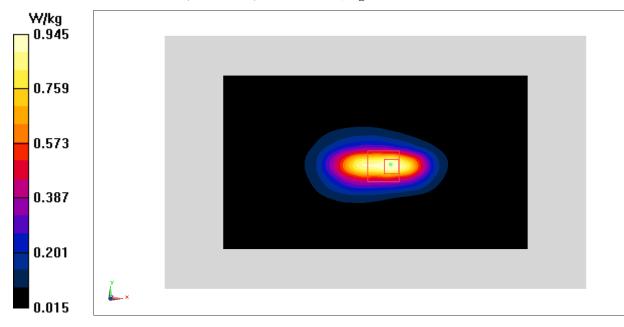
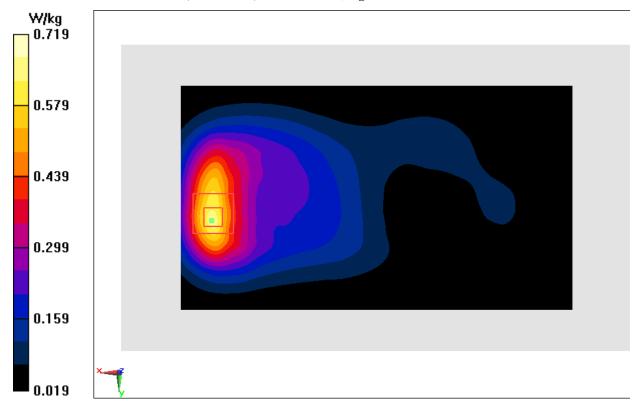


Fig.9 WCDMA1700



Fig. 9-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Middle


Date: 2019-4-29 Electronics: DAE4 Sn1555 Medium: Body 1750 MHz Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.507$ mho/m; $\epsilon r = 54.128$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA 1900 Frequency: 1732.4 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(7.82, 7.82, 7.82)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.654 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.751 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.862 W/kg SAR(1 g) = 0.544 W/kg; SAR(10 g) = 0.325 W/kg Maximum value of SAR (measured) = 0.719 W/kg

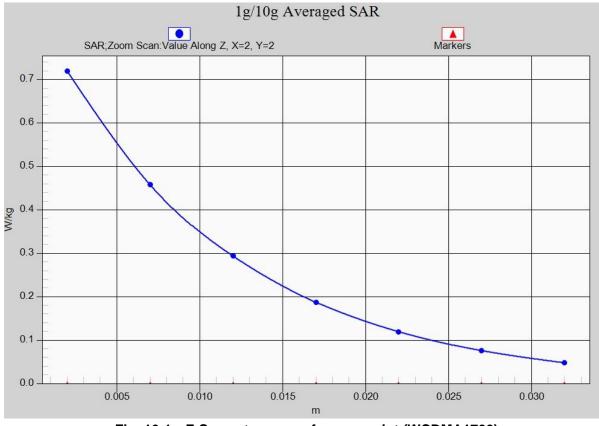


Fig. 10-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Left Cheek Middle

Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.403$ mho/m; $\epsilon r = 40.836$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(7.73, 7.73, 7.73)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.247 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.724 V/m; Power Drift = 0.15 dB
Peak SAR (extrapolated) = 0.310 W/kg
SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.129 W/kg
Maximum value of SAR (measured) = 0.218 W/kg

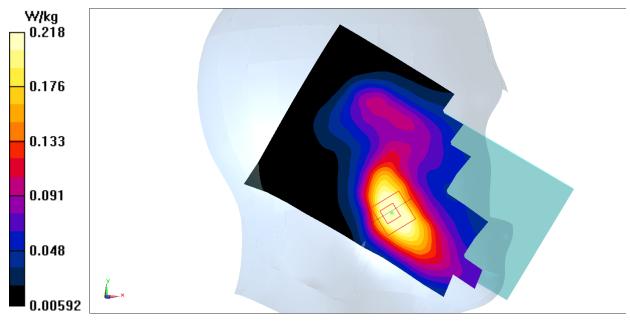


Fig.11 WCDMA1900

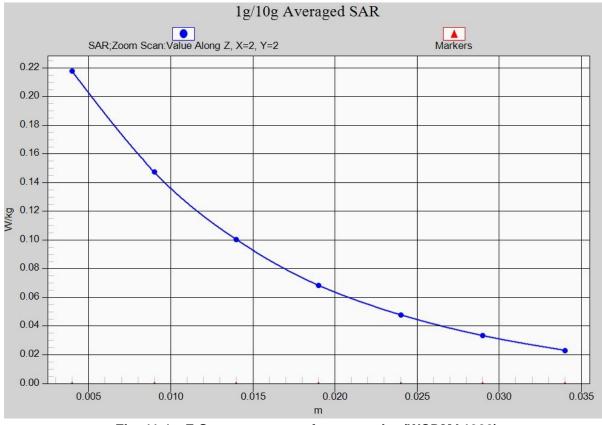
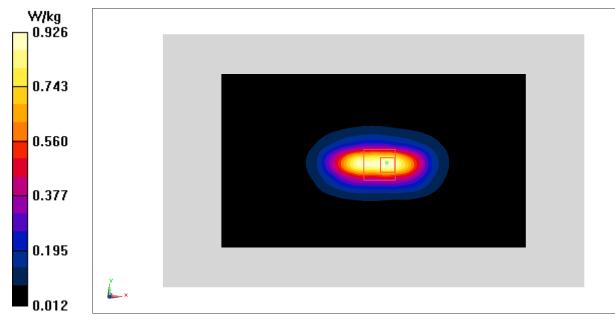


Fig. 11-1 Z-Scan at power reference point (WCDMA1900)


WCDMA 1900 Body Bottom Middle

Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.571$ mho/m; $\epsilon r = 52.26$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.941 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.17 V/m; Power Drift = 0.04 dB
Peak SAR (extrapolated) = 1.14 W/kg
SAR(1 g) = 0.674 W/kg; SAR(10 g) = 0.376 W/kg
Maximum value of SAR (measured) = 0.926 W/kg

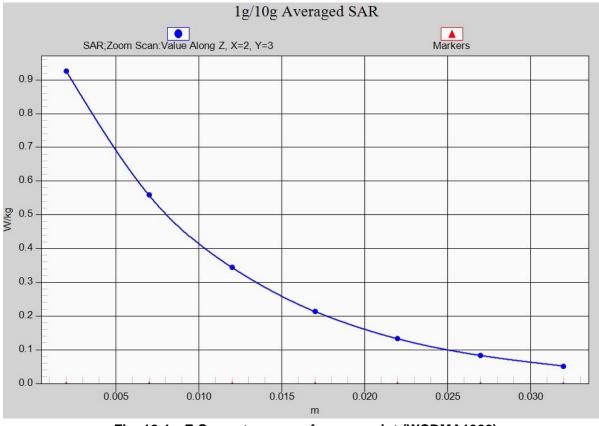


Fig. 12-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Rear Middle

Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.571$ mho/m; $\epsilon r = 52.26$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(7.53, 7.53, 7.53)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.623 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.611 V/m; Power Drift = -0.12 dBPeak SAR (extrapolated) = 0.814 W/kgSAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.300 W/kgMaximum value of SAR (measured) = 0.669 W/kg

Fig.13 WCDMA1900

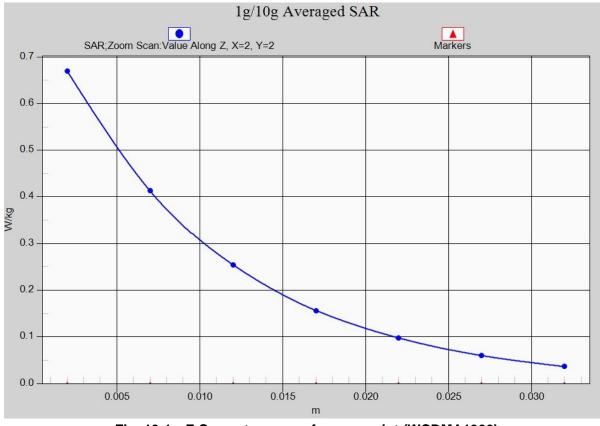


Fig. 13-1 Z-Scan at power reference point (WCDMA1900)

Wifi 802.11b Left Cheek Channel 6

Date: 2019-5-1 Electronics: DAE4 Sn1555 Medium: Head 2450 MHz Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.833$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4– SN7514 ConvF(6.95, 6.95, 6.95)

Area Scan (101x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.28 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.89 V/m; Power Drift = 0.09 dB
Peak SAR (extrapolated) = 2.17 W/kg
SAR(1 g) = 0.805 W/kg; SAR(10 g) = 0.374 W/kg
Maximum value of SAR (measured) = 0.932 W/kg

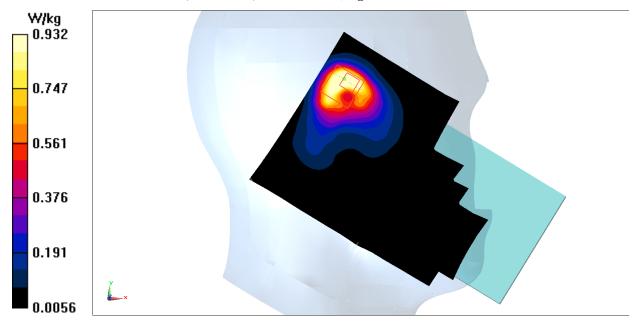


Fig.14 2450 MHz

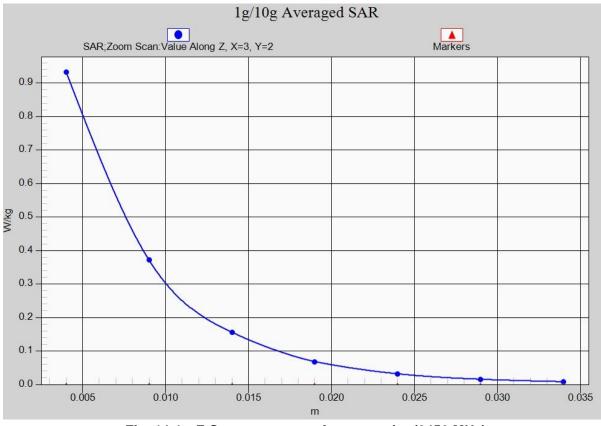
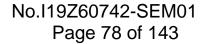



Fig. 14-1 Z-Scan at power reference point (2450 MHz)

Wifi 802.11b Body Rear Channel 1

Date: 2019-5-1 Electronics: DAE4 Sn1555 Medium: Body 2450 MHz Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.805$ mho/m; $\epsilon_r = 39.78$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: WLan 2450 Frequency: 2412 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(7.13, 7.13, 7.13)

Area Scan (171x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.258 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.541 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.387 W/kg SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.100 W/kg Maximum value of SAR (measured) = 0.287 W/kg

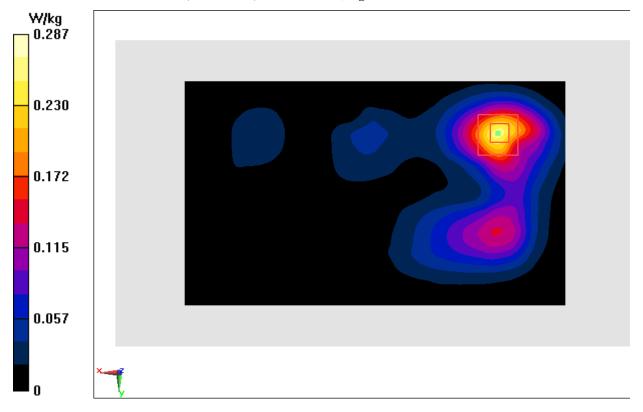


Fig.15 2450 MHz

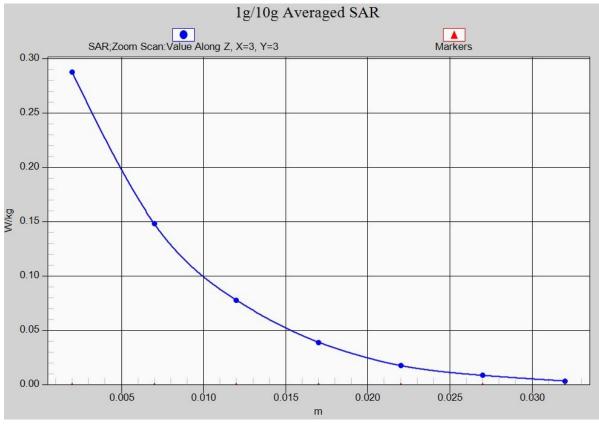


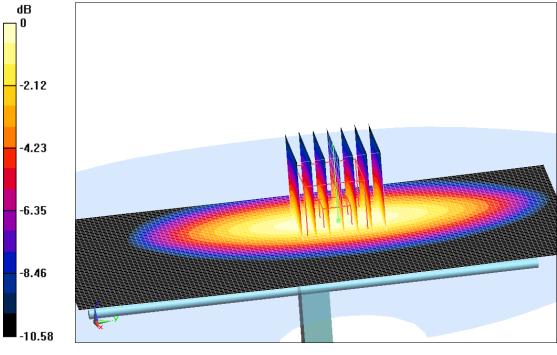
Fig. 15-1 Z-Scan at power reference point (2450 MHz)

ANNEX B System Verification Results

835MHz

Date: 2019-4-28 Electronics: DAE4 Sn1555 Medium: Head 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.933$ S/m; $\epsilon_r = 42.11$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.09, 9.09, 9.09)

System Validation/Area Scan (61x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm


Reference Value = 55.31 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 2.63 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.31 V/m; Power Drift = -0.05 dB

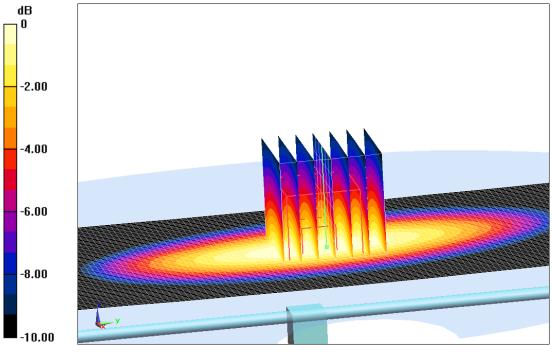
Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

Fig.B.1 validation 835MHz 250mW


Date: 2019-4-28 Electronics: DAE4 Sn1555 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.965$ S/m; $\epsilon_r = 55.75$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(9.47, 9.47, 9.47)

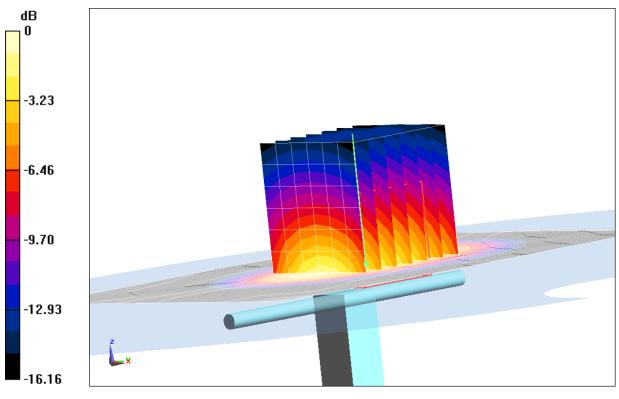
System Validation /Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 52.85 V/m; Power Drift = -0.03 dB

Fast SAR: SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (interpolated) = 2.72 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.85 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.75 W/kg

0 dB = 2.75 W/kg = 4.39 dBW/kg



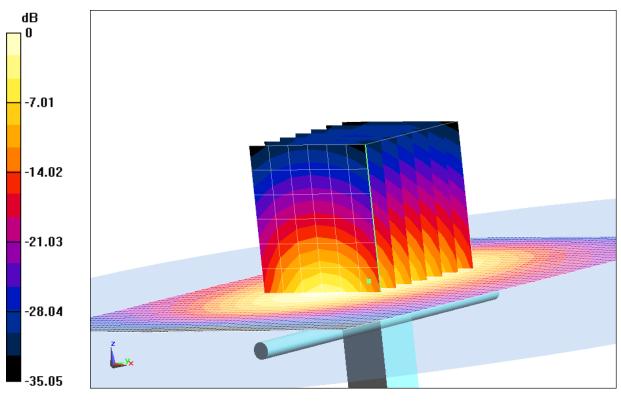
Date: 2019-4-29 Electronics: DAE4 Sn1555 Medium: Head 1750 MHz Medium parameters used: f=1750 MHz; σ = 1.385 mho/m; ϵ r = 39.52; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(8.10, 8.10, 8.10)


System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 90.14 V/m; Power Drift = 0.04 dB Fast SAR: SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (interpolated) = 10.1 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.14 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 15.58 W/kg

SAR(1 g) = 9.19 W/kg; SAR(10 g) = 4.86 W/kg Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dB W/kg



Date: 2019-4-29 Electronics: DAE4 Sn1555 Medium: Body 1750 MHz Medium parameters used: f=1750 MHz; σ = 1.517 mho/m; ϵ r = 54.05; ρ = 1000 kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(7.82, 7.82, 7.82)

System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 93.92 V/m; Power Drift = 0.03 dB Fast SAR: SAR(1 g) = 9.39 W/kg; SAR(10 g) = 4.99 W/kg Maximum value of SAR (interpolated) = 10.3 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.92 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 15.56 W/kgSAR(1 g) = 9.31 W/kg; SAR(10 g) = 4.92 W/kgMaximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dB W/kg

Fig.B.4 validation 1750MHz 250mW

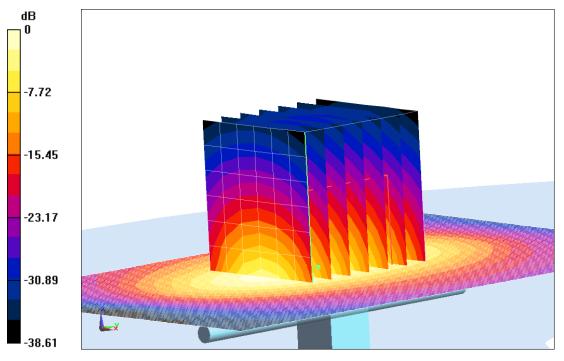
Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.416$ mho/m; $\epsilon_r = 40.72$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF (7.73, 7.73, 7.73)

System Validation /Area Scan(61x81x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 93.26 V/m; Power Drift = 0.02 dB SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.59 W/kg Maximum value of SAR (interpolated) = 12.7 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.26 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.15 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.44 W/kg Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.4 W/kg = 10.97 dBW/kg



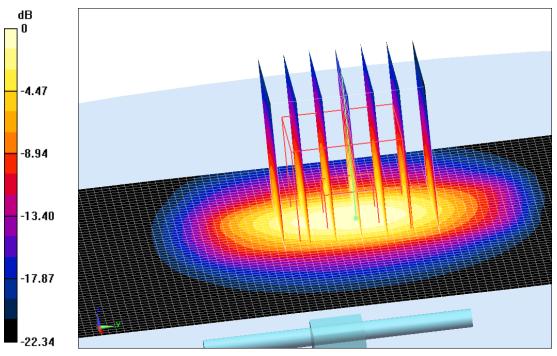
Date: 2019-4-30 Electronics: DAE4 Sn1555 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.553$ S/m; $\epsilon_r = 52.24$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(7.53, 7.53, 7.53)

System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 93.11 V/m; Power Drift = -0.01 dB Fast SAR: SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.49 W/kg Maximum value of SAR (interpolated) = 12.4 W/kg

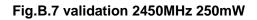
System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.11 V/m; Power Drift = -0.01 dBPeak SAR (extrapolated) = 19.05 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.42 W/kg Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dB W/kg



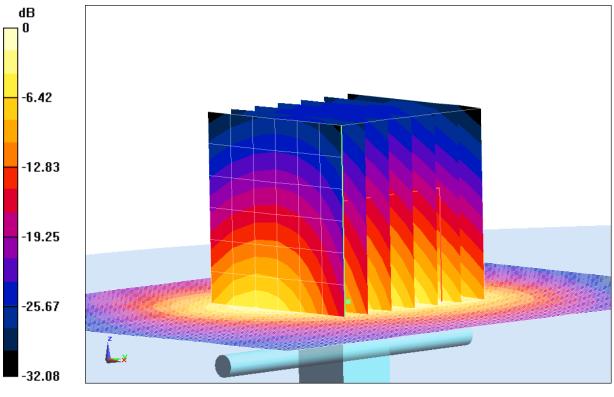
Date: 2019-5-1 Electronics: DAE4 Sn1555 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.845$ mho/m; $\epsilon_r = 39.64$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(6.95, 6.95, 6.95)


System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 85.88 V/m; Power Drift = -0.01 dB SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.19 W/kg Maximum value of SAR (interpolated) = 16.3 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.91 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (measured) = 16.1 W/kg

0 dB = 16.1 W/kg = 12.07 dBW/kg



Date: 2019-5-1 Electronics: DAE4 Sn1555 Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.971$ S/m; $\varepsilon_r = 52.14$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7514 ConvF(7.13, 7.13, 7.13)

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 91.3 V/m; Power Drift = 0.02 dB SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.03 W/kg Maximum value of SAR (interpolated) = 14.5 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

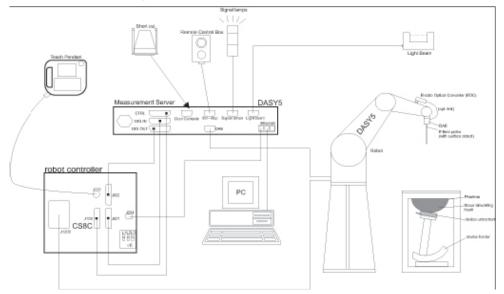
Reference Value = 91.3 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 24.74 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.19 W/kgMaximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dB W/kg

Fig.B.8 validation 2450MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2019-4-28	835	Head	2.43	2.41	0.83
	835	Body	2.39	2.42	-1.24
2019-4-29	1750	Head	9.11	9.19	-0.87
	1750	Body	9.39	9.31	0.86
2019-4-30	1900	Head	10.5	10.3	1.94
	1900	Body	10.4	10.3	0.97
2019-5-1	2450	Head	13.1	12.9	1.55
	2450	Body	12.9	13.1	-1.53


Table B.1 Comparison between area scan and zoom scan for system verification

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4		
Frequency	10MHz — 6.0GHz(EX3DV4)		
Range:	10MHz — 4GHz(ES3DV3)		
Calibration:	In head and body simulating tissue at		
	Frequencies from 835 up to 5800MHz		
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4		
± 0.2 dB(30 MHz to 4 GHz) for ES3DV3			
DynamicRange: 10 mW/kg — 100W/kg			
Probe Length:	330 mm		
Probe Tip			
Length:	20 mm		
Body Diameter:	12 mm		
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)		
Tip-Center:	1 mm (2.0mm for ES3DV3)		
Application:SAR Dosimetry Testing			
	Compliance tests ofmobile phones		
	Dosimetry in strong gradient fields		
Picture C.3E-field Probe			

Picture C.2Near-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL.

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

No.I19Z60742-SEM01 Page 92 of 143

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5DASY 4

Picture C.6DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

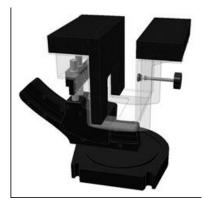
The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity &=3 and loss tangent &=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

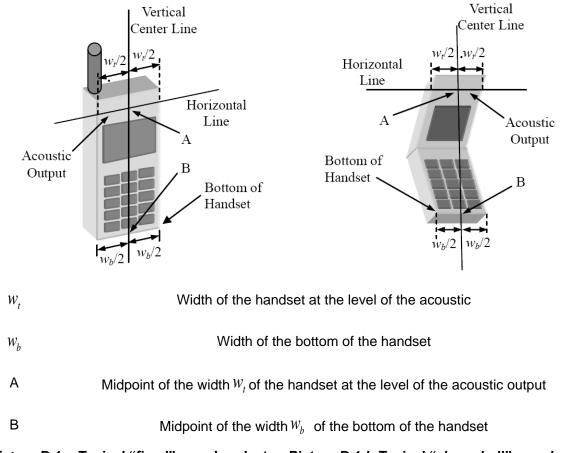
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

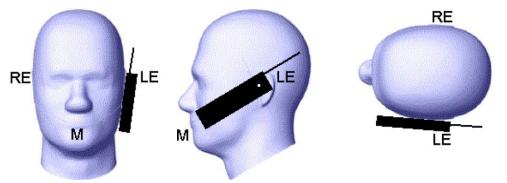
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat ©Copyright. All rights reserved by CTTL.

No.I19Z60742-SEM01 Page 94 of 143

phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

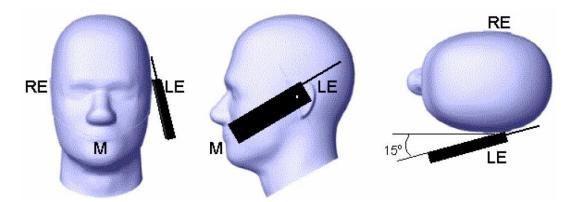
Shell Thickness:2±0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special


Picture C.10: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

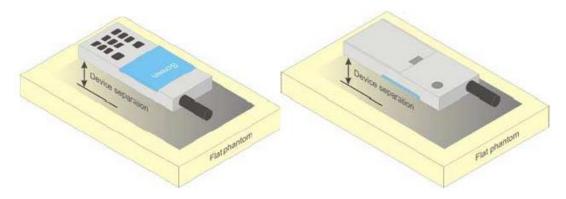
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

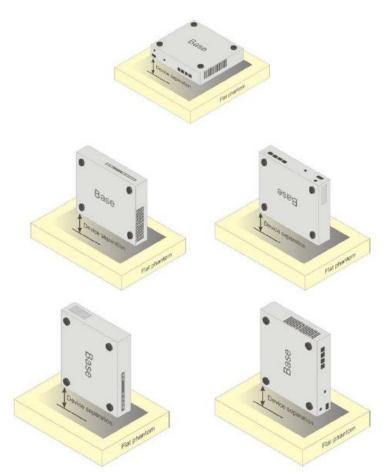
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Frequency	835Head	Head 835Body	1900	1900	2450	2450	5800	5800
(MHz)			Head	Body	Head	Body	Head	Body
Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	١	١	١	١	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	\
Preventol	0.1	0.1	١	١	١	١	١	\
Cellulose	1.0	1.0	١	١	١	١	١	\
Glycol	1	1	44.452	20.00	41.15	27.22	1	N
Monobutyl	١	١	44.402	29.96	41.15	21.22	١	١
Diethylenglycol	١	١	1	1	``	``	47.04	17.04
monohexylether		1	١	1	۸	λ	١	17.24
Triton X-100	١	١	١	١	١	١	17.24	17.24
Dielectric	c=11 E	c=55.0	c=10.0	c=52.2	c=20.2	c=52.7	c=25.2	c=10.0
Parameters	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00

TableE.1: Composition of the Tissue Equivalent Matter

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7514	Head 750MHz	Sep.10,2018	750 MHz	OK
7514	Head 850MHz	Sep.10,2018	835 MHz	OK
7514	Head 900MHz	Sep.10,2018	900 MHz	OK
7514	Head 1750MHz	Sep.10,2018	1750 MHz	OK
7514	Head 1810MHz	Sep.10,2018 Sep.10,2018	1810 MHz	OK
7514	Head 1900MHz	Sep.10,2018 Sep.11,2018	1900 MHz	OK
7514	Head 2000MHz	Sep.11,2018	2000 MHz	OK
7514				OK
	Head 2100MHz	Sep.11,2018	2100 MHz	
7514	Head 2300MHz	Sep.11,2018	2300 MHz	OK
7514	Head 2450MHz	Sep.11,2018	2450 MHz	OK
7514	Head 2600MHz	Sep.12,2018	2600 MHz	OK
7514	Head 3500MHz	Sep.12,2018	3500 MHz	OK
7514	Head 3700MHz	Sep.12,2018	3700 MHz	OK
7514	Head 5200MHz	Sep.12,2018	5250 MHz	OK
7514	Head 5500MHz	Sep.12,2018	5600 MHz	OK
7514	Head 5800MHz	Sep.12,2018	5800 MHz	OK
7514	Body 750MHz	Sep.12,2018	750 MHz	OK
7514	Body 850MHz	Sep.9,2018	835 MHz	OK
7514	Body 900MHz	Sep.9,2018	900 MHz	OK
7514	Body 1750MHz	Sep.9,2018	1750 MHz	OK
7514	Body 1810MHz	Sep.9,2018	1810 MHz	OK
7514	Body 1900MHz	Sep.9,2018	1900 MHz	OK
7514	Body 2000MHz	Sep.13,2018	2000 MHz	OK
7514	Body 2100MHz	Sep.13,2018	2100 MHz	OK
7514	Body 2300MHz	Sep.13,2018	2300 MHz	OK
7514	Body 2450MHz	Sep.13,2018	2450 MHz	OK
7514	Body 2600MHz	Sep.13,2018	2600 MHz	OK
7514	Body 3500MHz	Sep.8,2018	3500 MHz	OK
7514	Body 3700MHz	Sep.8,2018	3700 MHz	OK
7514	Body 5200MHz	Sep.8,2018	5250 MHz	OK
7514	Body 5500MHz	Sep.8,2018	5600 MHz	OK
7514	Body 5800MHz	Sep.8,2018	5800 MHz	OK

Table F.1: System Validation for 7514

ANNEX G Probe Calibration Certificate

Probe 7514 Calibration Certificate

Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zur	ory of	S C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service	
ccredited by the Swiss Accredi he Swiss Accreditation Servi	Steaments and an end of the second second		reditation No.: SCS 0108	
Iultilateral Agreement for the CTTL-BJ (Aud			EX3-7514_Aug18	
CALIBRATION	CERTIFICATE			
Dbject	EX3DV4 - SN:751	4		
Calibration procedure(s)	s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes			
Calibration date:	August 27, 2018			
The measurements and the und	certainties with confidence pro	nal standards, which realize the physical units bability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C a	are part of the certificate.	
The measurements and the und All calibrations have been cond Calibration Equipment used (M	certainties with confidence pro	bbability are given on the following pages and	are part of the certificate.	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP	certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19	
The measurements and the uno All calibrations have been cond Calibration Equipment used (Mo Primary Standards Power meter NRP Power sensor NRP-Z91	certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244	bability are given on the following pages and a facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672)/02673) 04-Apr-18 (No. 217-02672)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19	
The measurements and the uncellifications have been cond Calibration Equipment used (Mo Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	Certainties with confidence pro- lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x)	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Apr-19	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2	certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	Certainties with confidence pro- lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-17 (No. ES3-3013_Dec17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	Certainties with confidence pro- lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Dec-18	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	Certainties with confidence pro- lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013245 SN: 3013 SN: 660 ID	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-17 (No. 217-02672) 04-Apr-18 (No. 217-02672)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Dec-18 Scheduled Check	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A	certainties with confidence pro- lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID SN: GB41293874	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 05-Apr-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Scheduled Check In house check: Jun-20	
The measurements and the uno All calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	certainties with confidence producted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID SN: 6B41293874 SN: MY41498087	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-20 In house check: Jun-20	
The measurements and the unor All calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C	certainties with confidence producted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: 6841293874 SN: 3N: 3010210	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 30-Dec-17 (No. ES3-3013_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Scheduled Check In house check: Jun-20 In house check: Jun-20	
The measurements and the unor All calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C	certainties with confidence producted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: 6841293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-17 (No. DAE4-660_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20	
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	certainties with confidence producted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: GB41293874 SN: 00110210 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 05-Apr-16 (No. DAE4-660_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-20 In house check: Oct-18	
The measurements and the uno	ID ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: 660 SN: 00110210 SN: 00110210 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 05-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-20 In house check: Oct-18	
The measurements and the unor All calibrations have been cond Calibration Equipment used (Me Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by:	Certainties with confidence pro- lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 30132 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 00110210 SN: US3642U01700 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name Jeton Kastrati	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-17 (No. DAE4-660_Dec17) 21-Dec-17 (No. DAE4-660_Dec17) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Oct-17)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-19 Apr-19 Apr-19 Dec-18 Dec-18 Dec-18 Scheduled Check In house check: Jun-20 In house check: Cot-18	

No.I19Z60742-SEM01 Page 101 of 143

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- b) held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c) used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7514_Aug18

Page 2 of 39