

Table 14.2-6: SAR Values (WCDMA 850 MHz Band - Body)

			Ambien	t Temperatu	re: 23.0 °C	Liquid Te	mperature:	22.5°C		
Frequ	Jency	Toot	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	Por	Test	3	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.4	836.4 4182 Rear Fig.6 23.38 2		24	0.308	0.36	0.412	0.48	0.05		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-7: SAR Values (WCDMA 1700 MHz Band - Head)

			Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C		
Frequ	ency		Toot	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
-	,	Side Test Figure Position No.	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1752.6	1513	Left	Touch	Fig.7	23.57	24	0.335	0.37	0.531	0.59	0.19

Table 14.2-8: SAR Values (WCDMA 1700 MHz Band - Body)

		A	Ambient	Temperature	e: 23.0 °C	Liquid Tem	nperature: 2	2.5°C		
Freque	encv	Test	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	ı		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1712.4	2.4 1312 Rear Fig.8 23.39 24		24	0.654	0.75	0.993	1.14	-0.01		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-9: SAR Values (WCDMA 1900 MHz Band - Head)

			Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C					
Frequency Test Figure Conducted					Max. tune-up	Measured	Reported	Measured	Reported	Power				
	-	Side			Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1852.4	9262	Left	Touch	Fig.9	23.68	24	0.427	0.46	0.708	0.76	0.10			

Table 14.2-10: SAR Values (WCDMA 1900 MHz Band - Body) - AP ON

					•			• •		
		Α	mbient	Temperature	e: 23.0 °C	Liquid Ter	mperature:	22.5°C		
Freque	encv	Toot	Figure	Conducted	May tune un	Measured	Reported	Measured	Reported	Power
Frequency		Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch. Position No. (dBm) Power		Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1907.6	9538	Bottom	Fig.10	22.47 22.5		0.521	0.53	1.03	1.04	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-11: SAR Values (WCDMA 1900 MHz Band - Body) - AP OFF

		А	mbient [*]	Temperature	e: 23.0 °C	Liquid Ter	nperature:	22.5°C		
Frequ	ency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Docition	No	Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6 9538 Rear Fig.11 23.39 24		24	0.329	0.38	0.547	0.63	0.11			

Note1: The distance between the EUT and the phantom bottom is 15mm.

Table 14.2-12: SAR Values (LTE Band2 - Head)

			Amb	ient Temp	erature:	23.0 °C	Liquid	Temperatur	e: 22.5°C			
Frequ	iency			Tast	F:	Conducted	Max.	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Test Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1900	19100	1RB_Mid	Left	Touch	Fig.12	23.61	24.8	0.37	0.49	0.602	0.79	0.08

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-13: SAR Values (LTE Band2 - Body) - AP ON

						-					
			Ambient 7	Tempera	nture: 23.0°C	C Liqui	d Temperat	ture: 22.5°0	C		
Frequ	iency	Mode	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1900	19100	1RB_Low	Bottom	Fig.13	22.40	23	0.576	0.66	1.11	1.27	-0.19

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-14: SAR Values (LTE Band2 - Body) - AP OFF

			Ambient ⁻	Tempera	nture: 23.0°C	Liqui	Liquid Temperature: 22.5°C				
Frequ	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1900	19100	1RB_Mid	Rear	Fig.14	23.61	24.8	0.379	0.50	0.62	0.82	-0.11

Note1: The distance between the EUT and the phantom bottom is 15mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-15: SAR Values (LTE Band4 - Head)

			Amb	ient Temp	erature	23.0 °C	Liquid	Temperatu	re: 22.5°C			
Frequ	uency			Tool	F:	Conducted	Max.	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Test Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1745	20300	1RB_Mid	Left	Touch	Fig.15	24.18	24.5	0.423	0.46	0.686	0.74	0.03

Note1: The LTE mode is QPSK_20MHz.

Table 14.2-16: SAR Values (LTE Band4 - Body)

			Ambient 7	Tempera	nture: 23.0°C	C Liqui	d Tempera	2			
Frequ	iency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1720	20050	1RB_Mid	Rear	Fig.16	23.3	24.5	0.657	0.87	0.988	1.30	-0.15

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.2-17: SAR Values (LTE Band5 - Head)

						0	<u>`</u>	_				
			Amb	ient Temp	perature	: 23.0 °C	Liquid	Temperatur	e: 22.5°C			
Frequ	uency			Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Test Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.5	20525	1RB_Mid	Left	Touch	Fig.17	24.00	24.5	0.292	0.33	0.394	0.44	-0.12

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-18: SAR Values (LTE Band5 - Body)

	Tuble 1 Hz Tel Grant Tubbes (El E Eulius E Euly)												
	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C												
Freq	Ch.	Mode	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)		
836.5	20525	1RB_Mid	Rear	Fig.18	23.69	24.5	0.326	0.39	0.434	0.52	0.15		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-19: SAR Values (LTE Band12 - Head)

			Ambient Temperature: 23.0 °C				Liquid	Temperatur	e: 22.5 °C			
Frequ	uency			To et	F:	Conducted	Max.	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Test Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
707.5	23095	1RB_Mid	Left	Touch	Fig.19	23.66	24	0.232	0.25	0.304	0.33	-0.02

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-20: SAR Values (LTE Band12 - Body)

			Ambient 7	Tempera	ture: 23.0 °C	Liqui	d Temperat	ure: 22.5°	3		
Frequ	iency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
704	23060	1RB_Mid	Rear	Fig.20	23.56	24	0.352	0.39	0.471	0.52	0.17

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.2-21: SAR Values (LTE Band17 - Head)

			Amb	ient Temp	erature:	23.0 °C	Liquid	Temperatur	e: 22.5 °C			
Frequ	uency			Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Mode	Side	Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
709	23780	1RB_Low	Left	Touch	/	23.88	24	0.183	0.19	0.233	0.24	0.12

Note1: The LTE mode is QPSK_10MHz.

Table 14.2-22: SAR Values (LTE Band17 - Body)

	1400 1 112 221 0 111 141400 (2.1.2 241411 204)													
	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C													
Frequ	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
MHz	Ch.	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)			
709	23780	1RB_Low	Rear	Fig.22	23.88	24	0.308	0.32	0.408	0.42	-0.12			

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

Head Evaluation

Table 14.3-1: SAR Values (WLAN - Head) - 802.11b 1Mbps (Fast SAR)

			Amb	ient Tem	nperature: 2	3.0 °C L	iquid Tempe	rature: 22.5	5°C		
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	NO.	(dBm)	Power (abiii)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Left	Touch	/	17.92	18	0.283	0.29	0.527	0.54	-0.19
2462	11	Left	Tilt	/	17.92	18	0.255	0.26	0.493	0.50	-0.08
2462	11	Right	Touch	/	17.92	18	0.512	0.52	1.08	1.10	0.01
2462	11	Right	Tilt	/	17.92	18	0.328	0.33	0.681	0.69	-0.03

As shown above table, the <u>initial test position</u> for head is "Right Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head) – 802.11b 1Mbps (Full SAR)

			Amb	ient Ten	nperature: 2	3.0 °C L	iquid Tempe	rature: 22.5	5°C		
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	_	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Right	Touch	/	17.92	18	0.473	0.48	1.04	1.06	0.01
2462	11	Right	Tilt	/	17.92	18	0.292	0.30	0.632	0.64	-0.03
2437	6	Right	Touch	Fig.19	17.65	18	0.524	0.57	1.13	1.22	-0.12
2412	1	Right	Touch	/	17.45	18	0.510	0.58	1.07	1.21	-0.15
2462	11	Left	Touch	/	17.92	18	0.292	0.30	0.556	0.57	-0.19

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 23.0 °C	:: 23.0 °C Liquid Temperature: 22.5 °C				
Frequ	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR		
MHz	Ch.	0.0.0	Position	factor	duty factor	(1g) (W/kg)	(1g) (W/kg)		
2437	6	Right	Touch	97.85%	100%	1.22	1.25		
2462	11	Left	Touch	97.85%	100%	0.57	0.58		

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body) - 802.11b 1Mbps (Fast SAR)

		Aı	mbient T	emperature:	23.0 °C	Liquid Tem	perature: 2	22.5 °C		
Freque	encv	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
				Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2462	11	Front	/	17.99	18	0.109	0.11	0.208	0.21	-0.06
2462	11	Rear	/	17.99	18	0.128	0.13	0.272	0.27	0.04
2462	11	Right	/	17.99	18	0.0252	0.03	0.0459	0.05	0.17
2462	11	Тор	/	17.99	18	0.0859	0.09	0.166	0.17	0.16

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body) – 802.11b 1Mbps (Full SAR)

		Aı	mbient T	emperature:	23.0 °C	Liquid Tem	perature: 2	22.5 °C		
Freque	encv	Toot	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	ı	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position No. (dBm)		Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462 11 Rear Fig.20 17.99 18					18	0.133	0.13	0.28	0.28	0.04

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is $\leq 0.8 \text{ W/kg}$.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

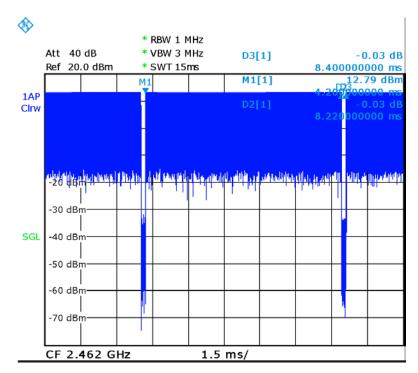

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Ter	nperature: 23.0)°C Liquid	d Temperature: 22	.5 °C						
Freque	Frequency Test Actual duty maximum duty Reported SAR Scaled reported SAR											
MHz	Ch.	Position	factor	factor	(1g) (W/kg)	(1g) (W/kg)						
2462	2462 11 Rear 97.61% 100% 0.28 0.29											

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Date: 19.JAN.2016 10:45:58

Picture 14.1 The plot of duty factor for head

Date: 23.MAY.2016 11:38:14

Picture 14.2 The plot of duty factor for body

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Head WLAN (1g)

Frequ	ency		Test	Original	First	The	Second
MHz	Ch.	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
2437	6	Right	Touch	1.13	1.12	1.01	1

Table 15.2: SAR Measurement Variability for Body GSM1900 (1g)

Frequency		Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1909.8	810	Bottom	10	0.926	0.923	1.00	1

Table 15.3: SAR Measurement Variability for Body WCDMA1700 (1g)

Freque	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1712.4	1537	Rear	10	0.993	0.997	1.00	1

Table 15.4: SAR Measurement Variability for Body WCDMA1900 (1g)

Frequency		Test	Chaoina	Original	First	The	Second
MHz	Ch.	Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1907.6	9938	Bottom	10	1.03	1.01	1.02	1

Table 15.5: SAR Measurement Variability for Body LTE Band2 (1g)

Freq	uency	Test	Specina	Original	First	The	Second
MHz	Ch.	Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1900	19100	Bottom	10	1.11	1.09	1.02	1

Table 15.5: SAR Measurement Variability for Body LTE Band4 (1g)

Frequency		Test	Specing	Original	First	The	Second
MHz	Ch.	Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1720	20050	Rear	10	0.988	0.976	1.01	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.	1 Measurement Ui	icerta	illity for No	IIIIai SAR	16212	(SUUI	VITIZ~	JUNZ	<u>, </u>	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	i					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257		
_	nded uncertainty idence interval of	ι	$u_e = 2u_c$					19.1	18.9			
16.	2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)					
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree		
			value	Distribution		1g	10g	Unc.	Unc.	of		
								(1g)	(10g)	freedo		
										m		
Mea	surement system											
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞		
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8		
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8		
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8		
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8		
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8		
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8		
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8		
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8		
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8		
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8		
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8		
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8		
			Test	sample related	l							
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71		
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5		
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8		
	Phantom and set-up											
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞		
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8		
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43		

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	inded uncertainty fidence interval of	ι	$u_e = 2u_c$					21.4	21.1	

	3 Measurement U		1		· ·			T -	l .	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system	ı	T	T	1	1	1	1	1	
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	i					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8

	Phantom and set-up												
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8			
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞			
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43			
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8			
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521			
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257			
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					20.8	20.6				

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	$\begin{array}{cc} Fast & SAR \\ z\text{-}Approximation \end{array}$	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞
			Test	sample related	l					

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
_	inded uncertainty fidence interval of	ι	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year
02	Power meter	NRVD	102196	March 03, 2016	One year
03	Power sensor	NRV-Z5	100596		
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	E5515C	MY50263375	January 30, 2016	One year
07	BTS	CMW500	129942	March 03, 2016	One year
80	E-field Probe	SPEAG EX3DV4	3617	August 26, 2015	One year
09	DAE	SPEAG DAE4	777	August 26, 2015	One year
10	Dipole Validation Kit	SPEAG D750V3	1017	July 23, 2015	One year
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2015	One year
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 16, 2015	One year
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 23, 2015	One year
14	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2015	One year

END OF REPORT BODY

ANNEX A Graph Results

850 Left Cheek Middle

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.916$ mho/m; $\epsilon r = 41.849$; $\rho =$

 1000 kg/m^3

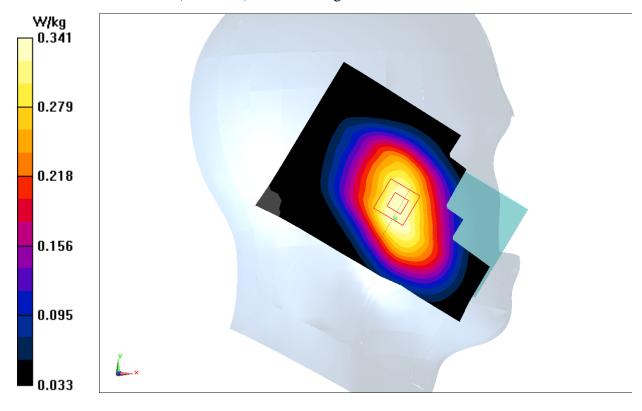
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.345 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.052 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.237 W/kg

Maximum value of SAR (measured) = 0.341 W/kg

Fig.1 850MHz

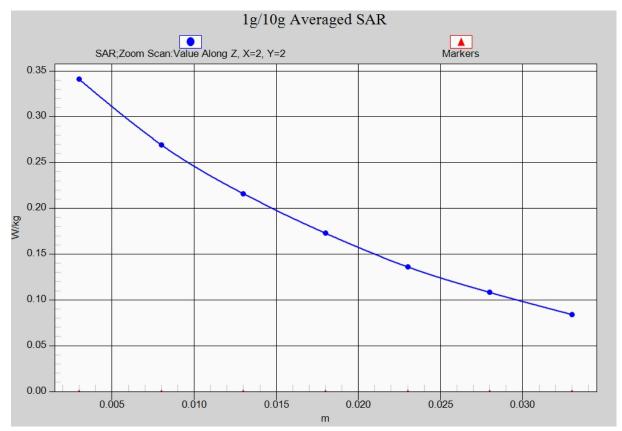


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2016-05-11

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.994$ mho/m; $\epsilon r = 56.053$; $\rho =$

 1000 kg/m^3

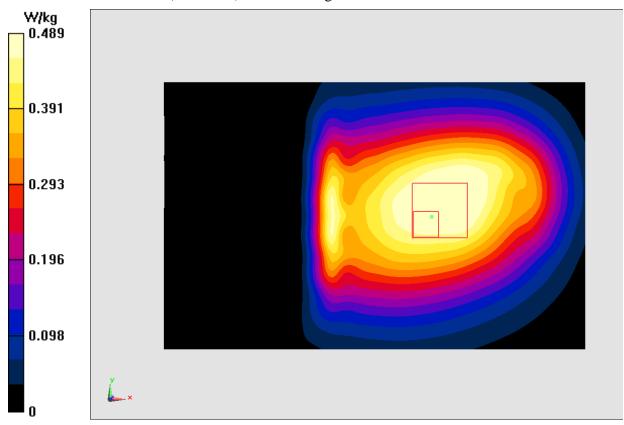
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.522 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.03 V/m; Power Drift = -0.07dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.760 W/kg; SAR(10 g) = 0.440 W/kg

Maximum value of SAR (measured) = 0.489 W/kg

Fig.2 850 MHz

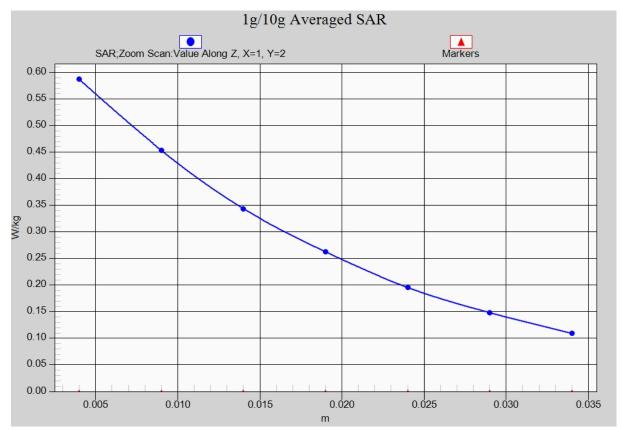


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek High

Date: 2016-1-13

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters use: f = 1910 MHz; $\sigma = 1.403 \text{ mho/m}$; $\epsilon r = 41.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.387 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.041 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.322 W/kg; SAR(10 g) = 0.197 W/kg

Maximum value of SAR (measured) = 0.377 W/kg

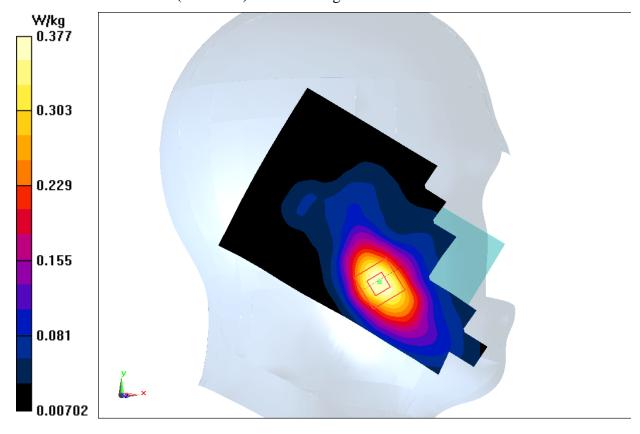


Fig.3 1900 MHz

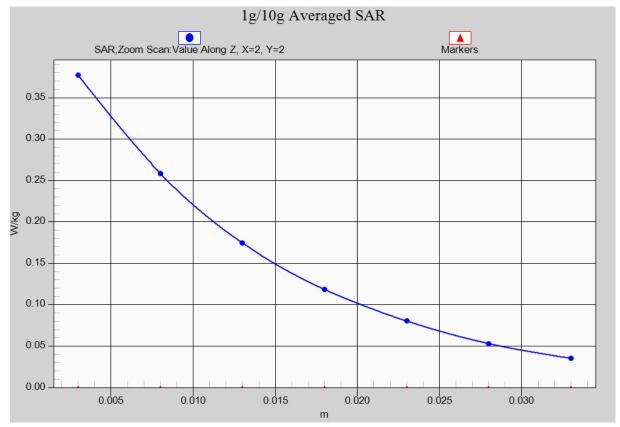


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom High

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.532 \text{ mho/m}$; $\epsilon r = 54.086$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1910 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.75 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.926 W/kg; SAR(10 g) = 0.473 W/kg

Maximum value of SAR (measured) = 1.17 W/kg

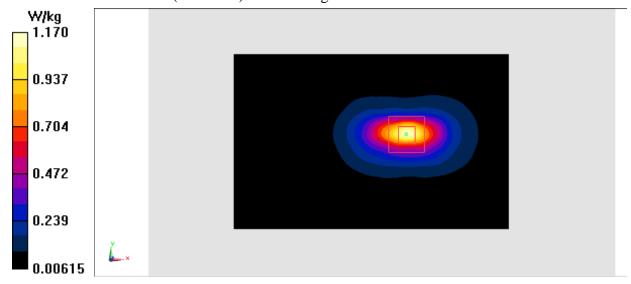


Fig.4 1900 MHz

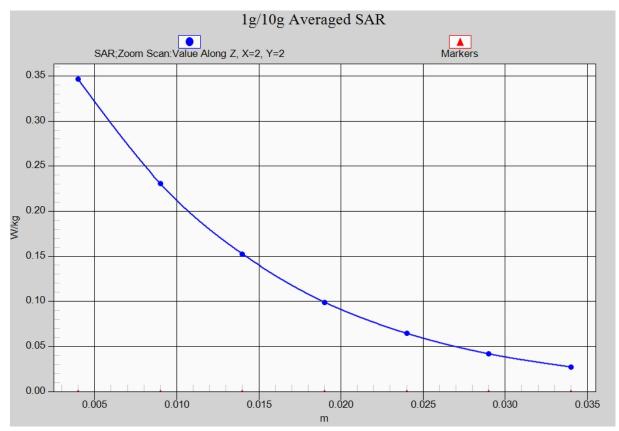


Fig.4-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Left Cheek Low

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.909$ mho/m; $\epsilon r = 41.928$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.408 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.43 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.485 W/kg

SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.279 W/kg

Maximum value of SAR (measured) = 0.410 W/kg

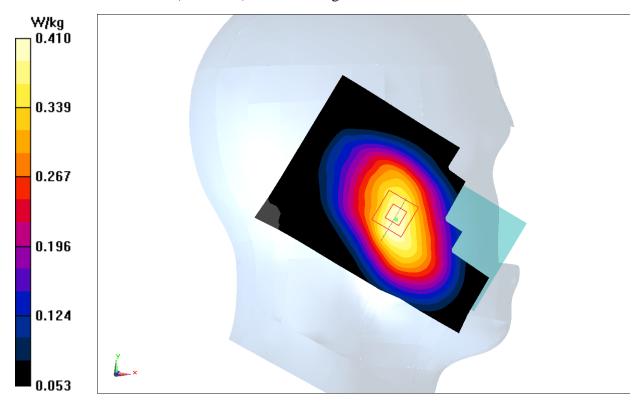


Fig.5 WCDMA 850

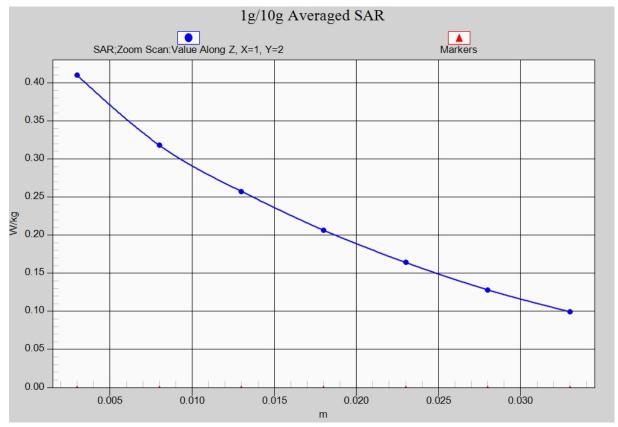


Fig. 5-1 Z-Scan at power reference point (WCDMA 850)

WCDMA 850 Body Rear Middle

Date: 2016-05-11

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.984$ mho/m; $\epsilon r = 56.214$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.470 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.55 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.537 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.308 W/kg

Maximum value of SAR (measured) = 0.431 W/kg

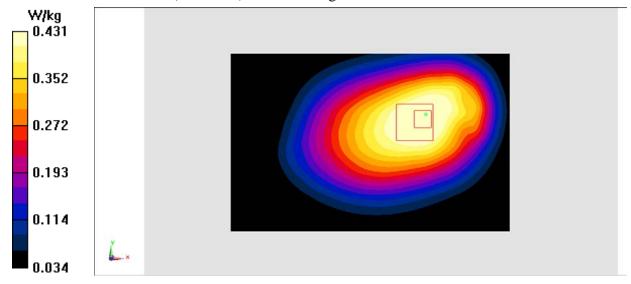


Fig.6 WCDMA 850

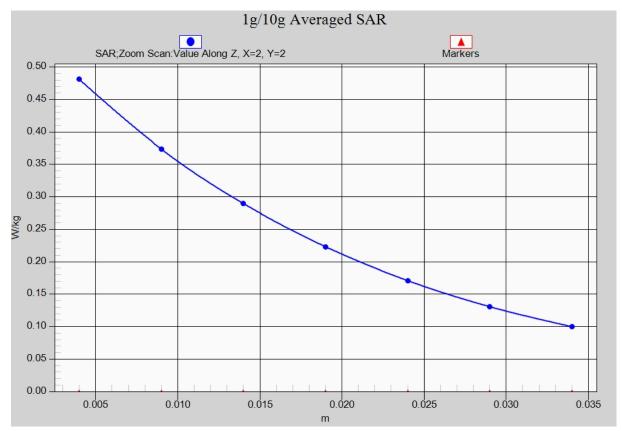


Fig. 6-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Left Cheek High

Date: 2016-1-12

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.354$ mho/m; $\epsilon r = 41.395$; $\rho = 1.354$ mho/m; $\epsilon r = 41.395$; $\epsilon r = 41.395$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1700 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.34, 8.34, 8.34)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.676 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.605 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.807 W/kg

SAR(1 g) = 0.531 W/kg; SAR(10 g) = 0.335 W/kg

Maximum value of SAR (measured) = 0.678 W/kg

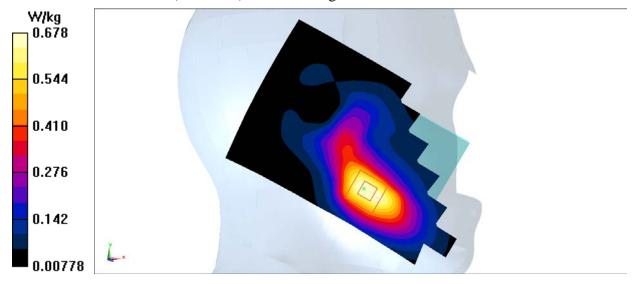


Fig.7 1700MHz

Fig. 7-1 Z-Scan at power reference point (1700 MHz)

WCDMA 1700 Body Rear Low

Date: 2016-05-12

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.386$ mho/m; $\epsilon r = 54.526$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1700 Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.96, 7.96, 7.96)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.13 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.47 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.993 W/kg; SAR(10 g) = 0.654 W/kg

Maximum value of SAR (measured) = 1.04 W/kg

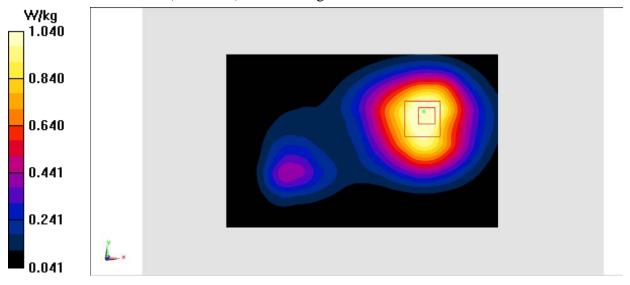


Fig.8 1700 MHz

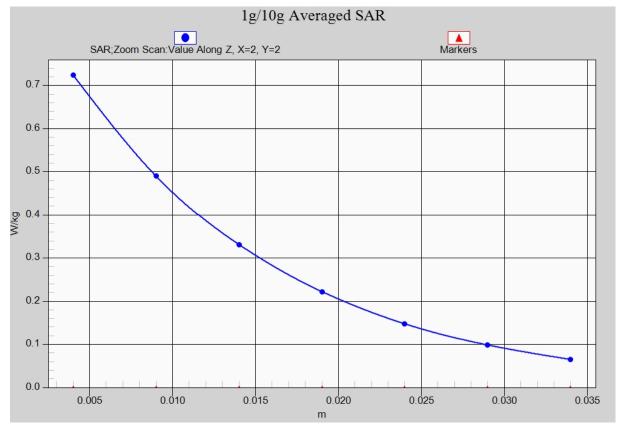


Fig. 8-1 Z-Scan at power reference point (1700 MHz)

WCDMA 1900 Left Cheek Low

Date: 2016-1-13

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.33$ mho/m; $\epsilon r = 41.987$; $\rho = 1.33$ mho/m; $\epsilon r = 41.987$; $\epsilon r = 41.987$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.857 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.272 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.708 W/kg; SAR(10 g) = 0.427 W/kg

Maximum value of SAR (measured) = 0.844 W/kg

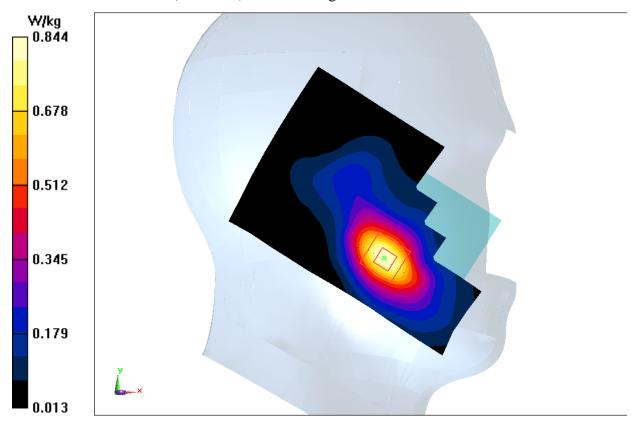


Fig.9 WCDMA1900



Fig. 9-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Bottom High - AP ON

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1907.6 MHz; $\sigma = 1.663 \text{ mho/m}$; $\epsilon r = 54.253$; $\rho = 1000 \text{ kg/m}^3$

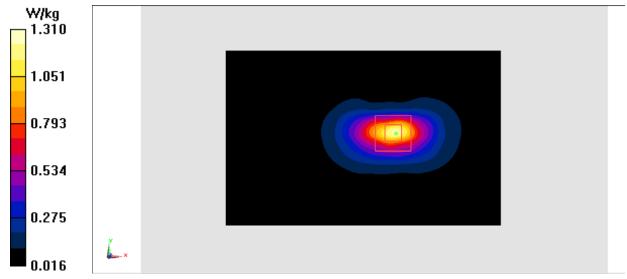
Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.24 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.77 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.521 W/kg

Maximum value of SAR (measured) = 1.31 W/kg

Fig.10 WCDMA1900

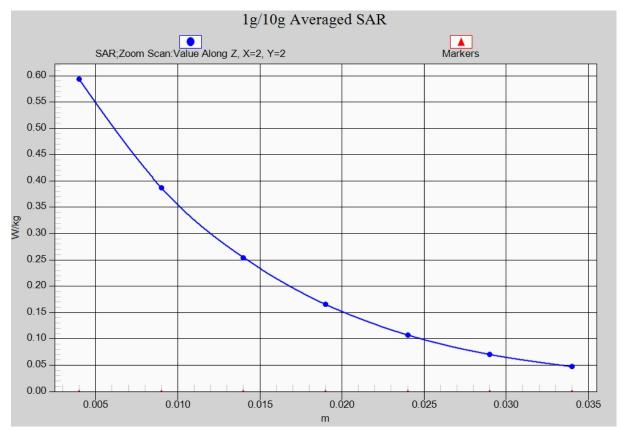


Fig. 10-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Rear High – AP OFF

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

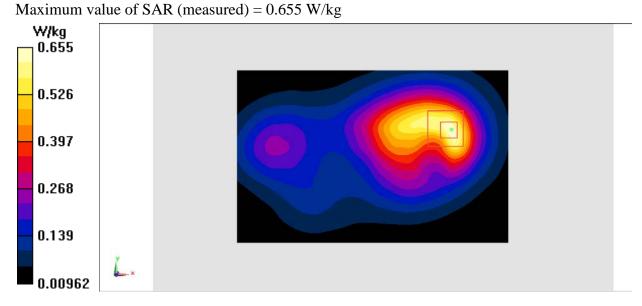
Medium parameters used: f = 1907.6 MHz; $\sigma = 1.663 \text{ mho/m}$; $\epsilon r = 54.253$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.640 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.18 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.845 W/kg

SAR(1 g) = 0.547 W/kg; SAR(10 g) = 0.329 W/kgMaximum value of SAR (massured) = 0.655 W/kg

Fig.11 WCDMA1900

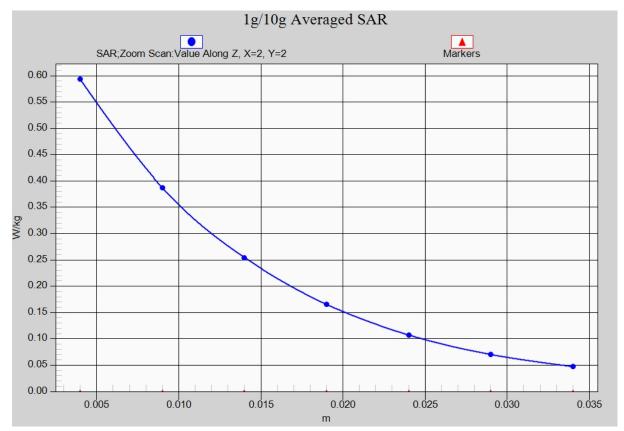


Fig. 11-1 Z-Scan at power reference point (WCDMA1900)

LTE Band2 Left Cheek High with QPSK_20M_1RB_Middle

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.436 \text{ mho/m}$; $\epsilon r = 39.88$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.745 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.469 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.916 W/kg

SAR(1 g) = 0.602 W/kg; SAR(10 g) = 0.370 W/kgMaximum value of SAR (measured) = 0.701 W/kg

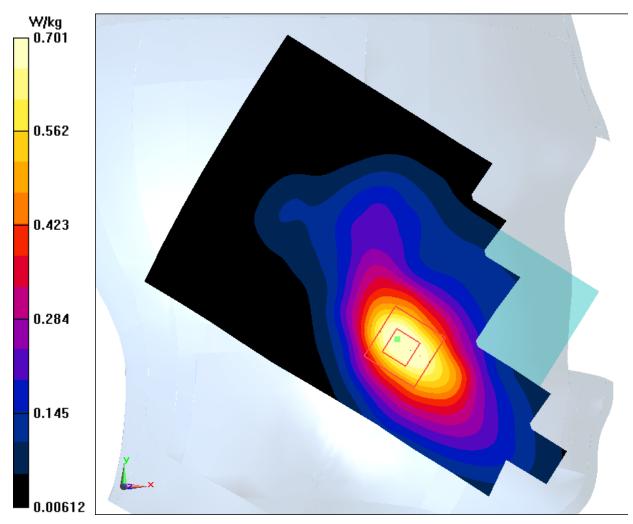


Fig.12 LTE Band2

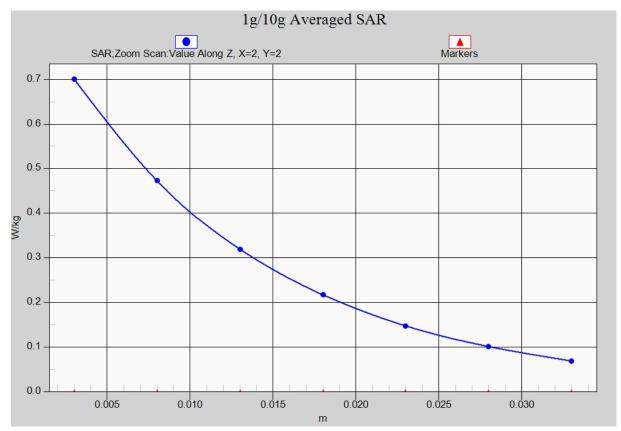


Fig. 12-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Bottom High with QPSK_20M_1RB_Low - AP ON

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.573 \text{ mho/m}$; $\epsilon r = 54.15$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.37 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.07 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.576 W/kg

Maximum value of SAR (measured) = 1.37 W/kg

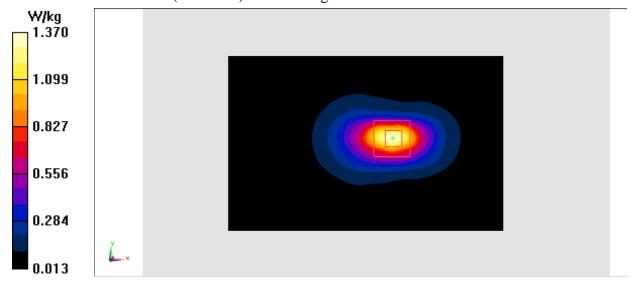


Fig.13 LTE Band2

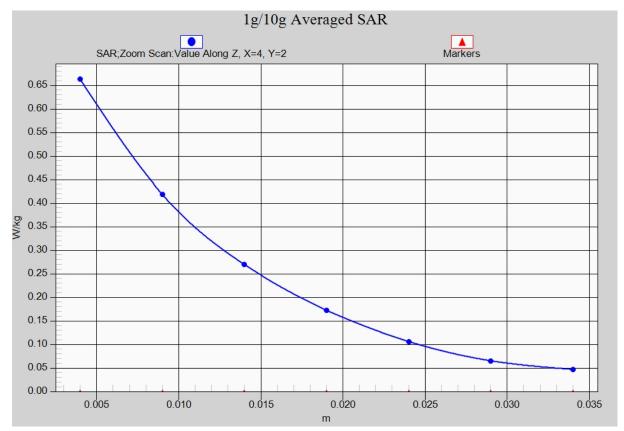


Fig. 13-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Rear High with QPSK_20M_1RB_Middle - AP OFF

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.573 \text{ mho/m}$; $\epsilon r = 54.15$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.733 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.96 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.964 W/kg

SAR(1 g) = 0.620 W/kg; SAR(10 g) = 0.379 W/kg

Maximum value of SAR (measured) = 0.733 W/kg

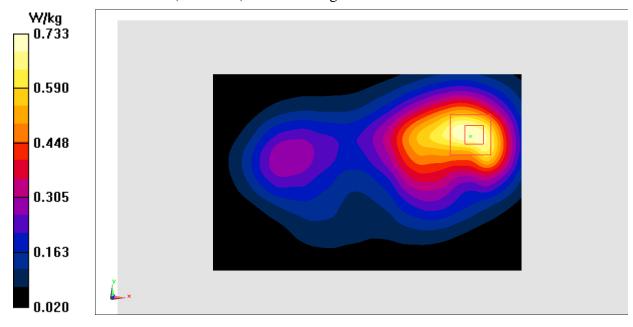


Fig.14 LTE Band2

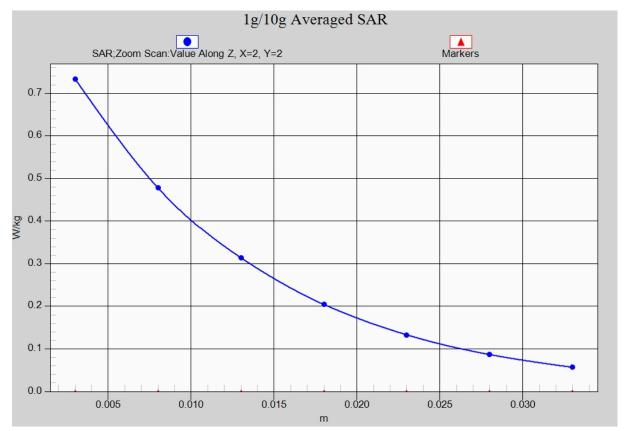


Fig. 14-1 Z-Scan at power reference point (LTE Band2)

LTE Band4 Left Cheek High with QPSK_20M_1RB_Middle

Date: 2016-1-12

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.344$ mho/m; $\epsilon r = 41.456$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(8.34, 8.34, 8.34)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.906 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.753 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.686 W/kg; SAR(10 g) = 0.423 W/kg

Maximum value of SAR (measured) = 0.888 W/kg

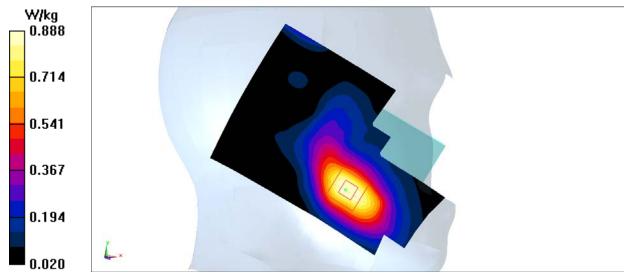


Fig.15 LTE Band4

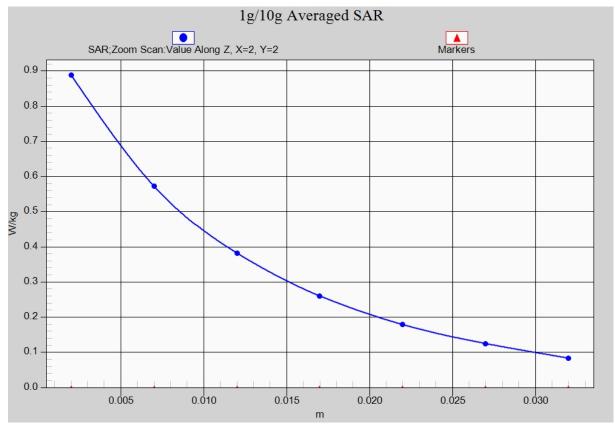


Fig. 15-1 Z-Scan at power reference point (LTE Band4)

LTE Band4 Body Rear Low with QPSK_20M_1RB_Middle

Date: 2016-05-12

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used: f = 1720 MHz; $\sigma = 1.448 \text{ mho/m}$; $\epsilon r = 52.843$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.96, 7.96, 7.96)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.23 V/m; Power Drift = -0.15dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.657 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

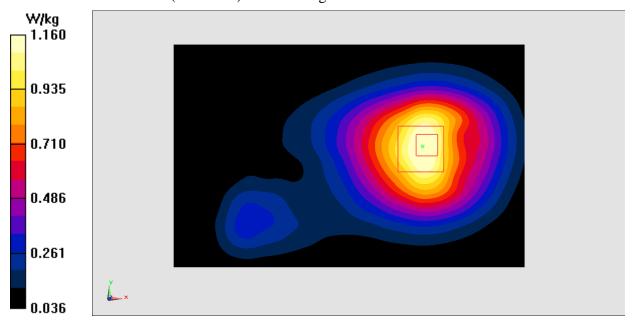


Fig.16 LTE Band4

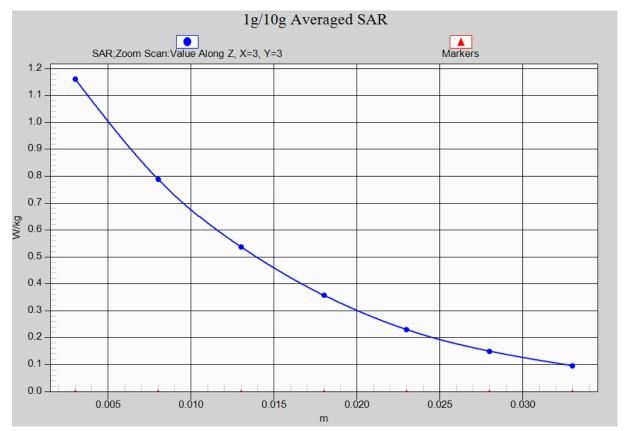


Fig. 16-1 Z-Scan at power reference point (LTE Band4)

LTE Band5 Left Cheek Middle with QPSK_10M_1RB_Middle

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.916$ mho/m; $\epsilon r = 41.861$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band5 Frequency: 836.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.471 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.910 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.521 W/kg

SAR(1 g) = 0.394 W/kg; SAR(10 g) = 0.292 W/kg

Maximum value of SAR (measured) = 0.420 W/kg



Fig.17 LTE Band5

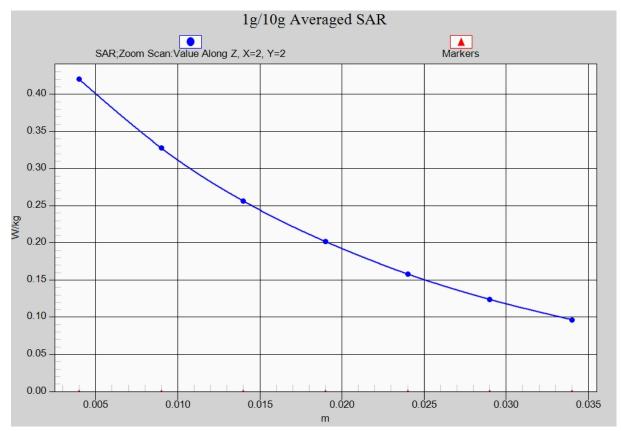


Fig. 17-1 Z-Scan at power reference point (LTE Band5)

LTE Band5 Body Rear Middle with QPSK_10M_1RB_Middle

Date: 2016-05-11

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.994$ mho/m; $\epsilon r = 56.084$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band5 Frequency: 836.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.476 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.36 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.562 W/kg

SAR(1 g) = 0.434 W/kg; SAR(10 g) = 0.326 W/kg

Maximum value of SAR (measured) = 0.457 W/kg

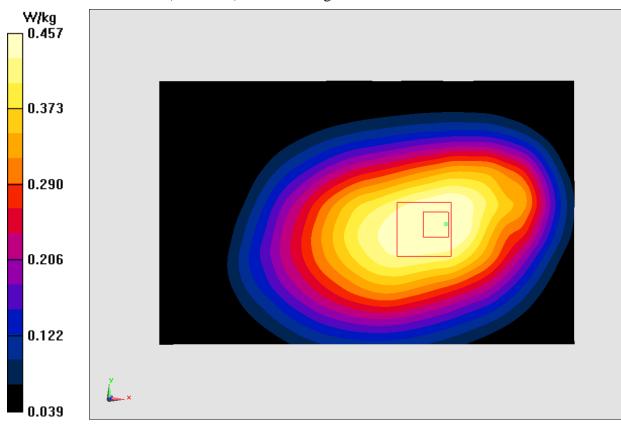


Fig.18 LTE Band5

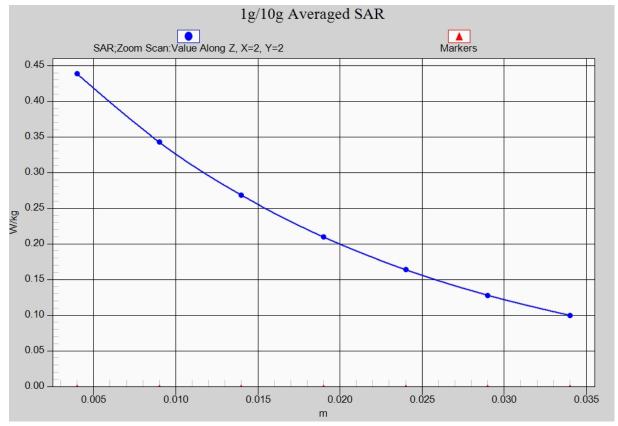


Fig. 18-1 Z-Scan at power reference point (LTE Band5)

LTE Band12 Left Cheek Middle with QPSK_10M_1RB_Middle

Date: 2016-1-8

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.871$ mho/m; $\epsilon r = 42.864$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 Frequency: 707.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.98, 9.98, 9.98)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.349 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.155 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.387 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.232 W/kg

Maximum value of SAR (measured) = 0.319 W/kg

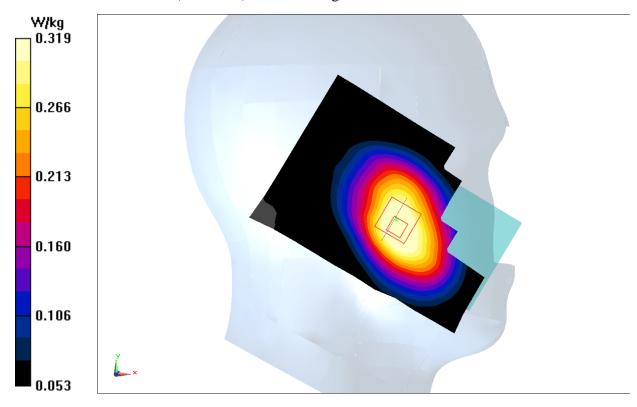


Fig.19 LTE Band12

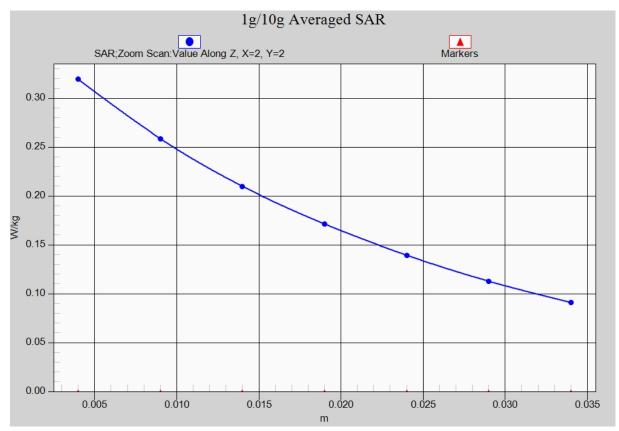


Fig. 19-1 Z-Scan at power reference point (LTE Band12)

LTE Band12 Body Rear Low with QPSK_10M_1RB_Middle

Date: 2016-05-10

Electronics: DAE4 Sn777 Medium: Body 750 MHz

Medium parameters used (interpolated): f = 704 MHz; $\sigma = 0.825$ mho/m; $\epsilon r = 56.942$; $\rho = 1000$

kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 Frequency: 704 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.76, 9.76, 9.76)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.520 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.11 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.618 W/kg

SAR(1 g) = 0.471 W/kg; SAR(10 g) = 0.352 W/kg

Maximum value of SAR (measured) = 0.494 W/kg

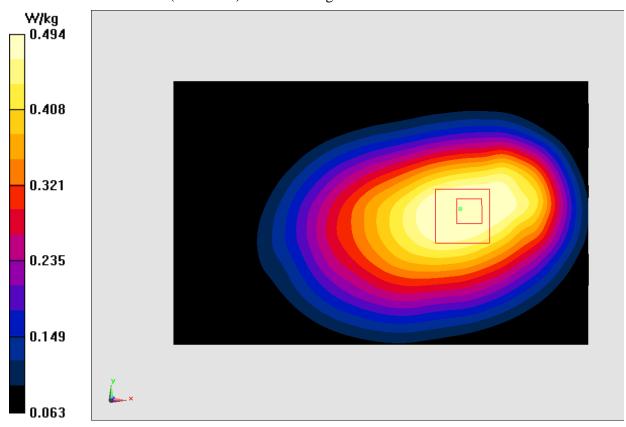


Fig.20 LTE Band12

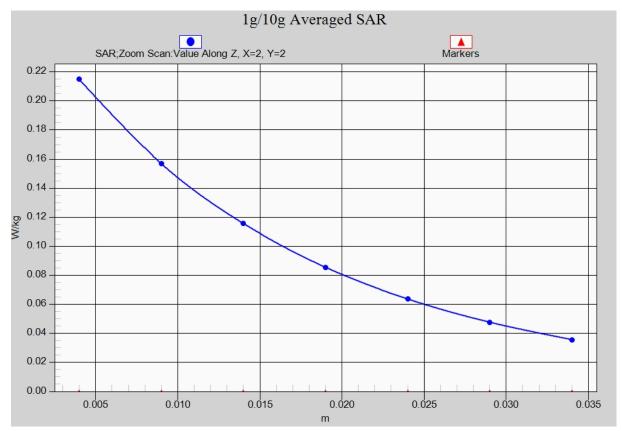


Fig. 20-1 Z-Scan at power reference point (LTE Band12)

LTE Band17 Left Cheek Low with QPSK_10M_1RB_Low

Date: 2016-06-20

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used (interpolated): f = 709 MHz; $\sigma = 0.825$ mho/m; $\epsilon r = 44.193$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band17 Frequency: 709 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.98, 9.98, 9.98)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.274 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.531 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.290 W/kg

SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.183 W/kg

Maximum value of SAR (measured) = 0.240 W/kg

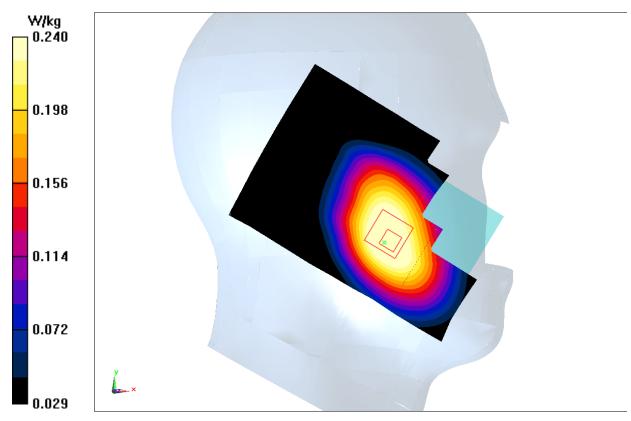


Fig.21 LTE Band17

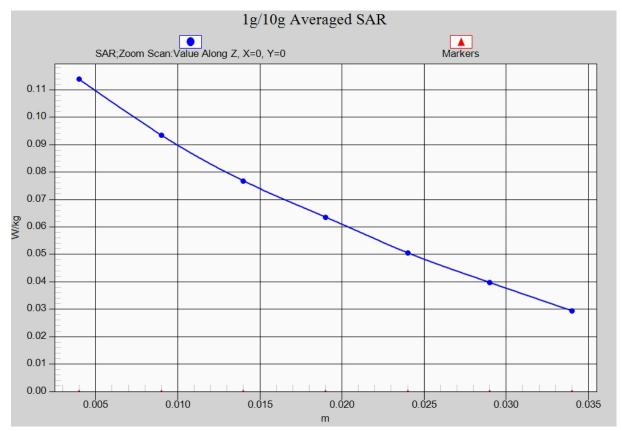


Fig. 21-1 Z-Scan at power reference point (LTE Band17)

LTE Band17 Body Rear Low with QPSK_10M_1RB_Low

Date: 2016-06-20

Electronics: DAE4 Sn777 Medium: Body 750 MHz

Medium parameters used (interpolated): f = 709 MHz; $\sigma = 0.905$ mho/m; $\epsilon r = 57.811$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: LTE Band17 Frequency: 709 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.76, 9.76, 9.76)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.459 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.78 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.540 W/kg

SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.308 W/kg

Maximum value of SAR (measured) = 0.430 W/kg

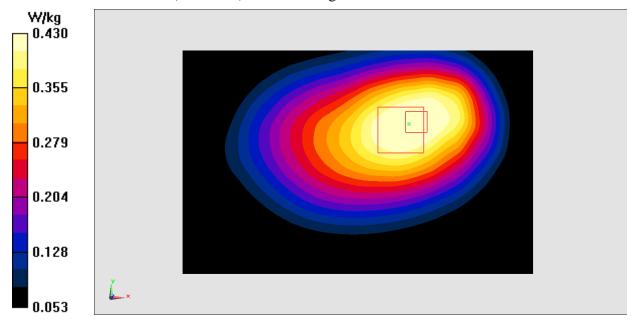


Fig.22 LTE Band17

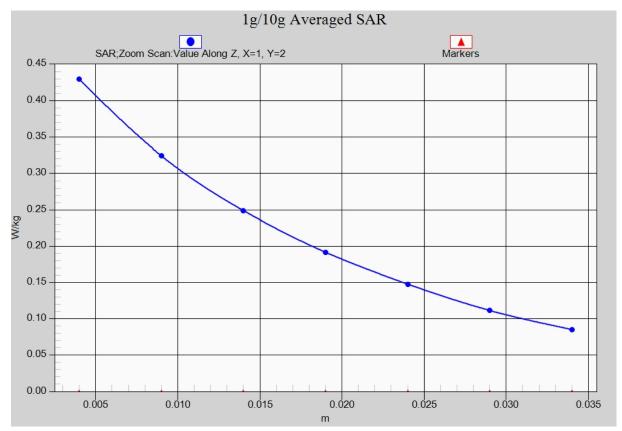


Fig. 22-1 Z-Scan at power reference point (LTE Band17)

Wifi 802.11b Right Cheek Channel 6

Date: 2016-1-14

Electronics: DAE4 Sn777 Medium: Head 2450 MHz

Medium parameters used (interpolated): f=2437 MHz; $\sigma=1.814$ mho/m; $\epsilon_r=39.973$; $\rho=1.814$ mho/m; $\epsilon_r=39.973$; $\epsilon_r=39.973$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.24, 7.24, 7.24)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.68 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.99 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 2.56 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 1.47 W/kg

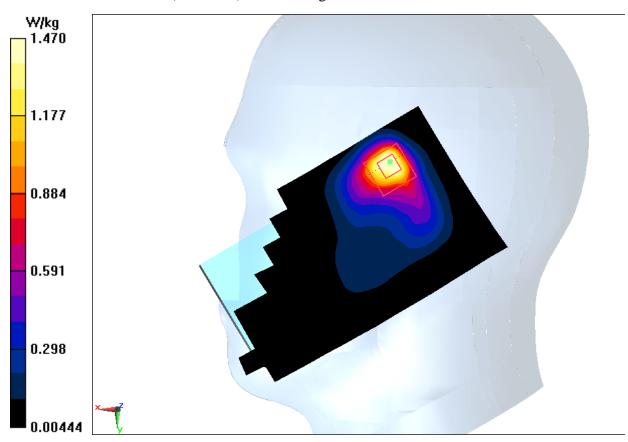


Fig.23 2450 MHz

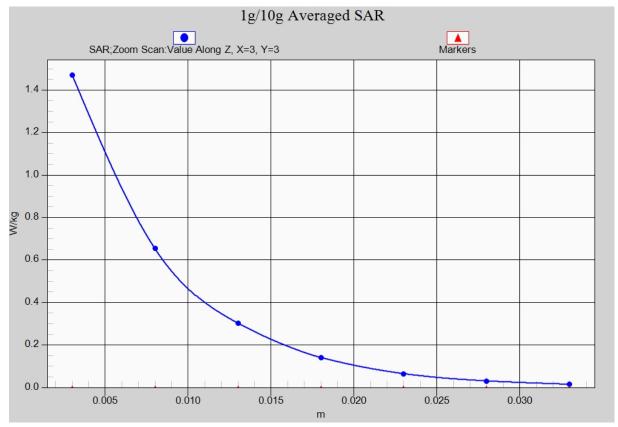


Fig. 23-1 Z-Scan at power reference point (2450 MHz)

Wifi 802.11b Body Rear Channel 11

Date: 2016-05-14

Electronics: DAE4 Sn777 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.009$ mho/m; $\varepsilon_r = 51.784$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WLan 2450 Frequency: 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(7.35, 7.35, 7.35)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.370 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.011 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.558 W/kg

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.133 W/kg

Maximum value of SAR (measured) = 0.324 W/kg

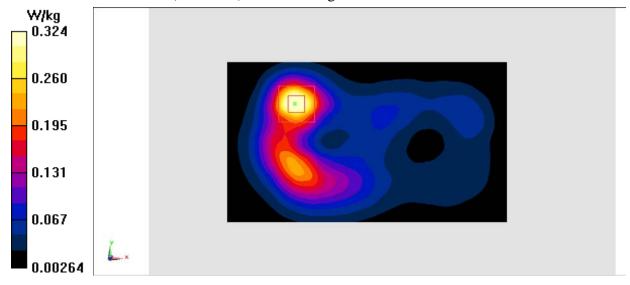


Fig.24 2450 MHz

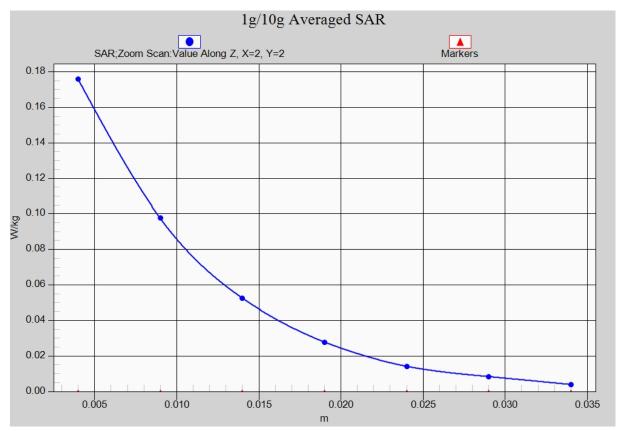


Fig. 24-1 Z-Scan at power reference point (2450 MHz)

ANNEX B System Verification Results

750MHz

Date: 2016-01-08

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.912 \text{ mho/m}$; $\varepsilon_r = 43.08$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.98, 9.98, 9.98)

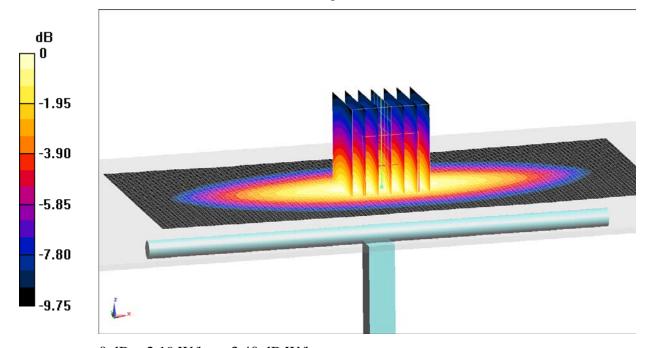
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 49.848 V/m; Power Drift = -0.09 dB

Fast SAR: SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (interpolated) = 2.23 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.848 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 2.88 W/kg

SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.35 W/kg

Maximum value of SAR (measured) = 2.19 W/kg

0 dB = 2.19 W/kg = 3.40 dB W/kg

Fig.B.1 validation 750MHz 250mW

835MHz

Date: 2016-01-11

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.915$ S/m; $\varepsilon_r = 41.85$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

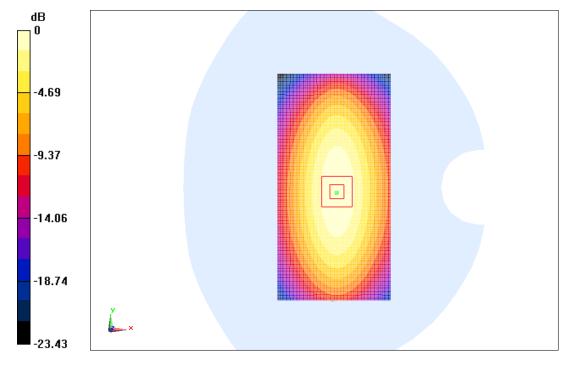
Probe: EX3DV4 – SN3617 ConvF(9.56, 9.56, 9.56)

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 50.281 V/m; Power Drift = 0.07 dB

Fast SAR: SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (interpolated) = 2.49 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.281 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.47 W/kg

Maximum value of SAR (measured) = 2.54 W/kg

0 dB = 2.54 W/kg = 4.01 dBW/kg

Fig.B.2 validation 835MHz 250mW