

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.2-1: SAR Values (GSM 850 MHz Band - Head)

			Am	bient Te	mperature: 2	23.0 °C	Liquid Temp	erature: 22	.5°C		
Frequ	iency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		FUSITION	NO.	(dBm)	Fower (dBill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	Left	Touch	Fig.1	32.50	33.5	0.237	0.30	0.309	0.39	0.03

Table 14.2-2: SAR Values (GSM 850 MHz Band - Body)

			Ambie	ent Temp	erature: 23.	0°C Liq	uid Tempera	ture: 22.5°0	7		
Frequ	encv	Mode	Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	· · · · ·	(number of		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	GPRS (2)	Rear	Fig.2	30.34	30.5	0.44	0.46	0.76	0.79	-0.07

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-3: SAR Values (GSM 1900 MHz Band - Head)

			Am	bient Te	mperature: 2	23.0 °C	Liquid Temp	erature: 22	.5°C		
Freque	ency	0:4-	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1909.8	810	Left	Touch	Fig.3	29.64	30.5	0.197	0.24	0.322	0.39	0.14

Table 14.2-4: SAR Values (GSM 1900 MHz Band - Body)

			Ambie	nt Tempe	erature: 23.0)°C Liqu	ıid Tempera	ture: 22.5°0	7		
Frequ	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	1	(number of	Position	No.	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	,		FUSILION	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (3)	Bottom	Fig.4	25.94	27	0.473	0.60	0.926	1.18	-0.09

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-5: SAR Values (WCDMA 850 MHz Band - Head)

			Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C		
Frequ	uency		Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	, 	Side		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
826.4	4132	Left	Touch	Fig.5	23.27	24	0.279	0.33	0.370	0.44	0.17

Table 14.2-6: SAR Values (WCDMA 850 MHz Band - Body)

			Ambien	t Temperatu	re: 23.0 °C	Liquid Te	mperature:	22.5°C		
Fregu	uency	Toot	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	T	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.4	4182	Rear	Fig.6	23.38	24	0.308	0.36	0.412	0.48	0.05

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-7: SAR Values (WCDMA 1700 MHz Band - Head)

				Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C		
	Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
F	N 41 1-	O.	Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
	MHz	Ch.				(dBm)	(,	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
	1752.6	1513	Left	Touch	Fig.7	23.57	24	0.335	0.37	0.531	0.59	0.19

Table 14.2-8: SAR Values (WCDMA 1700 MHz Band - Body)

		A	mbient	Temperature	e: 23.0 °C	Liquid Tem	nperature: 2	22.5°C		
Frequ	encv	Toot	Eiguro	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
Frequency	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	MHz Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1712.4	1312	Rear	Fig.8	23.39	24	0.654	0.75	0.993	1.14	-0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-9: SAR Values (WCDMA 1900 MHz Band - Head)

						•			,		
			Aml	oient Ter	mperature: 2	23.0 °C L	iquid Temp	erature: 22	.5°C		
Frequency Test Figure				Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power	
•		Side			Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1852.4	9262	Left	Touch	Fig.9	23.68	24	0.427	0.46	0.708	0.76	0.10

Table 14.2-10: SAR Values (WCDMA 1900 MHz Band - Body) - AP ON

		А	mbient ⁻	Temperature	e: 23.0 °C	Liquid Ter	nperature:	22.5°C		
Freque	encv	Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
			Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Bottom	Fig.10	22.47	22.5	0.521	0.53	1.03	1.04	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-11: SAR Values (WCDMA 1900 MHz Band - Body) - AP OFF

					•			<i>,</i>		
		А	mbient ⁻	Temperature	e: 23.0 °C	Liquid Ter	mperature:	22.5°C		
Frequency Test Figure Conducted M					NASA AMBA MA	Measured	Reported	Measured	Reported	Power
. ,			Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	MHz Ch.		No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	1907.6 9538 Rear Fig.11 23.39		23.39	24	0.329	0.38	0.547	0.63	0.11	

Note1: The distance between the EUT and the phantom bottom is 15mm.

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

Head Evaluation

Table 14.3-1: SAR Values (WLAN - Head) – 802.11b 1Mbps (Fast SAR)

	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C														
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power				
•		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
MHz	MHz Ch. 2462 11		Position	110.	(dBm)	Power (ubili)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
2462	11	Left	Touch	/	17.92	18	0.283	0.29	0.527	0.54	-0.19				
2462	11	Left	Tilt	/	17.92	18	0.255	0.26	0.493	0.50	-0.08				
2462	11	Right	Touch	/	17.92	18	0.512	0.52	1.08	1.10	0.01				
2462	11	Right	Tilt	/	17.92	18	0.328	0.33	0.681	0.69	-0.03				

As shown above table, the <u>initial test position</u> for head is "Right Touch". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head) – 802.11b 1Mbps (Full SAR)

	Ambient Temperature: 23.0 °C Liquid Temperature: 22.5 °C													
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power			
		Side		No.	Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
2462	11	Right	Touch	/	17.92	18	0.473	0.48	1.04	1.06	0.01			
2462	11	Right	Tilt	/	17.92	18	0.292	0.30	0.632	0.64	-0.03			
2437	6	Right	Touch	Fig.21	17.65	18	0.524	0.57	1.13	1.22	-0.12			
2412	1	Right	Touch	/	17.45	18	0.510	0.58	1.07	1.21	-0.15			
2462	11	Left	Touch	/	17.92	18	0.292	0.30	0.556	0.57	-0.19			

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 23.0 °C	Liquid Temperature: 22.5 °C				
Freque	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR		
MHz	Ch.	0.0.0	Position	factor	duty factor	(1g) (W/kg)	(1g) (W/kg)		
2437	6	Right	Touch	97.85%	100%	1.22	1.25		
2462 11		Left	Touch	97.85%	100%	0.57	0.58		

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body) - 802.11b 1Mbps (Fast SAR)

		Aı	mbient T	emperature:	23.0 °C	Liquid Temperature: 22.5 °C					
Freque	encv	Test	Figure	Conducted Max. tune-up		Measured	Reported	Measured	Reported	Power	
	,			Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462	11	Front	/	17.99	18	0.109	0.11	0.208	0.21	-0.06	
2462	11	Rear	/	17.99	18	0.128	0.13	0.272	0.27	0.04	
2462	11	Right	/	17.99	18	0.0252	0.03	0.0459	0.05	0.17	
2462	11	Тор	/	17.99	18	0.0859	0.09	0.166	0.17	0.16	

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body) – 802.11b 1Mbps (Full SAR)

		Aı	mbient T	emperature:	23.0 °C	Liquid Temperature: 22.5 °C					
Frequency		Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power	
	ı		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
2462	11	Rear	Fig.22	17.99	18	0.133	0.13	0.28	0.28	0.04	

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is $\leq 0.8 \text{ W/kg}$.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

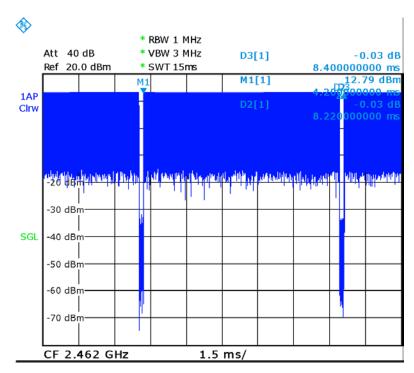
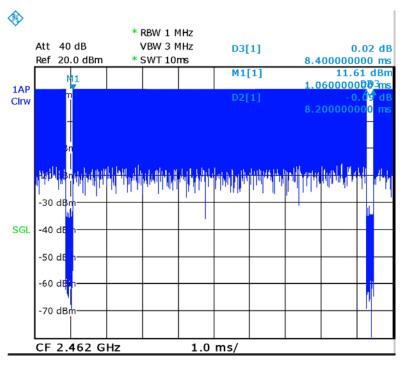

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Ter	nperature: 23.0)°C Liquid	d Temperature: 22	.5 °C
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	factor	(1g) (W/kg)	(1g) (W/kg)
2462 11		Rear	97.61%	100%	0.28	0.29


SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Date: 19.JAN.2016 10:45:58

Picture 14.1 The plot of duty factor for head

Date: 23.MAY.2016 11:38:14

Picture 14.2 The plot of duty factor for body

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Head WLAN (1g)

Frequ	ency		Test	Original	First	The	Second
MHz	Ch.	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
2437	6	Right	Touch	1.13	1.12	1.01	1

Table 15.2: SAR Measurement Variability for Body GSM1900 (1g)

Frequency		Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1909.8	810	Bottom	10	0.926	0.923	1.00	1

Table 15.3: SAR Measurement Variability for Body WCDMA1700 (1g)

Frequency		Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1712.4	1537	Rear	10	0.993	0.997	1.00	1

Table 15.4: SAR Measurement Variability for Body WCDMA1900 (1g)

Frequency		Toot	Chaoina	Original	First	The	Second
MHz	Ch.	- Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1907.6	9938	Bottom	10	1.03	1.01	1.02	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)										
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
	-		Test	sample related	1	I	I	I	I	
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

(Combined standard uncertainty	u' _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
_	anded uncertainty fidence interval of)	l	$u_e = 2u_c$					19.1	18.9	
16.	2 Measurement U	ncerta	ainty for No	rmal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	ì					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up										
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
			· · · · · · · · · · · · · · · · · · ·							

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					21.4	21.1	

	3 Measurement U			l				T -	l .		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Mea	Measurement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8	
			Test	sample related	l						
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8	

	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Meas	Measurement system										
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	$\begin{array}{cc} Fast & SAR \\ z\text{-}Approximation \end{array}$	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8	
	Test sample related										

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c' =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
_	anded uncertainty fidence interval of)	ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year		
02	Power meter	NRVD	102196	March 02, 2016	One year		
03	Power sensor	NRV-Z5	100596	March 03, 2016	One year		
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year		
05	Amplifier	60S1G4	0331848	No Calibration Requested			
06	BTS	E5515C	MY50263375	January 30, 2016	One year		
07	E-field Probe	SPEAG EX3DV4	3617	August 26, 2015	One year		
08	DAE	SPEAG DAE4	777	August 26, 2015	One year		
09	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2015	One year		
10	Dipole Validation Kit	SPEAG D1750V2	1003	July 16, 2015	One year		
11	Dipole Validation Kit	SPEAG D1900V2	5d101	July 23, 2015	One year		
12	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2015	One year		

^{***}END OF REPORT BODY***

ANNEX A Graph Results

850 Left Cheek Middle

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.916$ mho/m; $\epsilon r = 41.849$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.345 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.052 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.237 W/kg

Maximum value of SAR (measured) = 0.341 W/kg

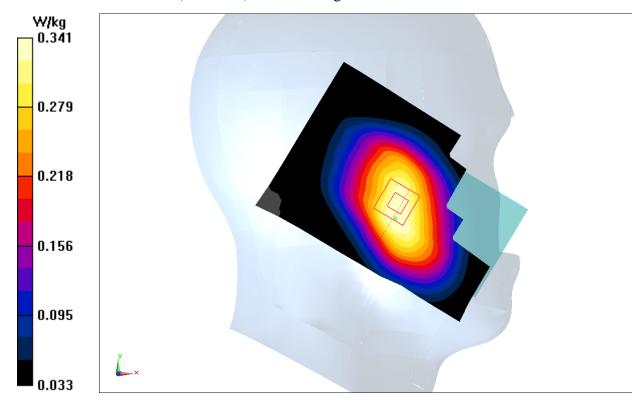


Fig.1 850MHz

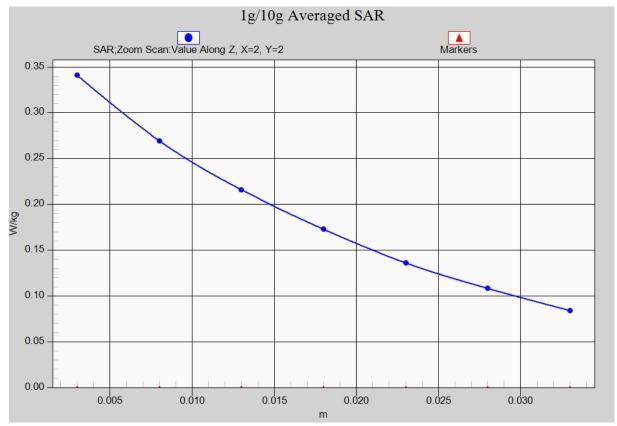


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2016-05-11

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.994$ mho/m; $\epsilon r = 56.053$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.522 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.03 V/m; Power Drift = -0.07dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.760 W/kg; SAR(10 g) = 0.440 W/kg

Maximum value of SAR (measured) = 0.489 W/kg

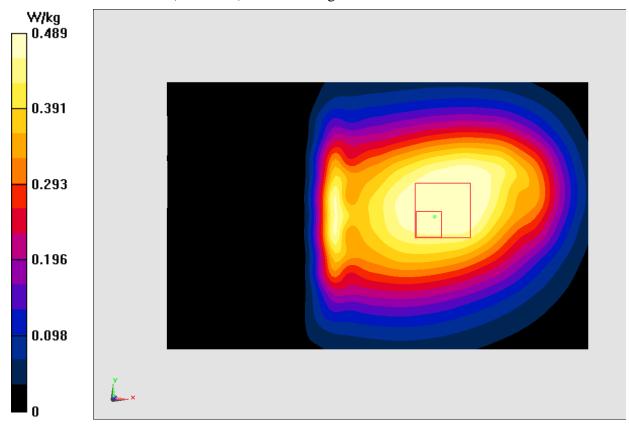


Fig.2 850 MHz

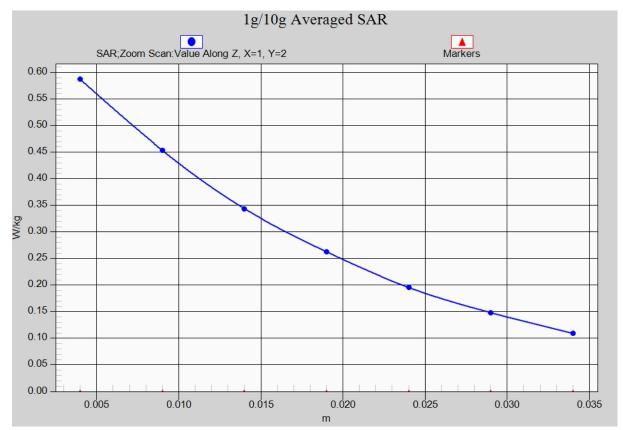


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek High

Date: 2016-1-13

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters use: f = 1910 MHz; $\sigma = 1.403 \text{ mho/m}$; $\epsilon r = 41.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.387 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.041 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.322 W/kg; SAR(10 g) = 0.197 W/kg

Maximum value of SAR (measured) = 0.377 W/kg

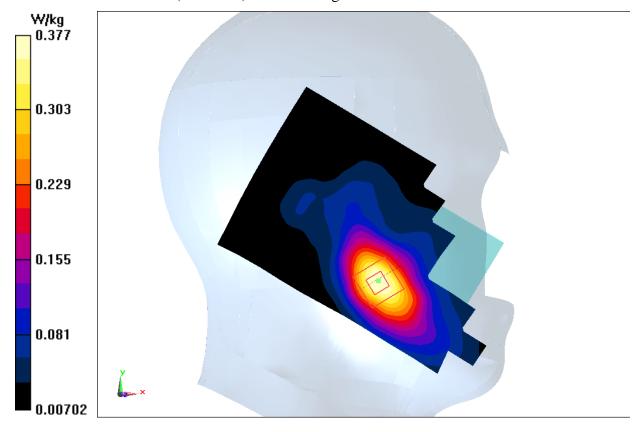


Fig.3 1900 MHz

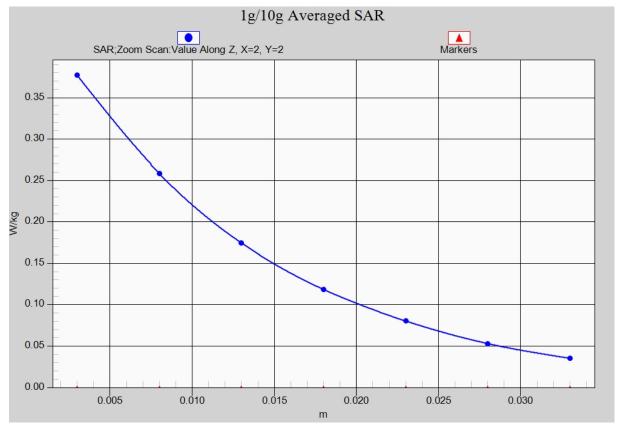


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom High

Date: 2016-05-13

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.532 \text{ mho/m}$; $\epsilon r = 54.086$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1910 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (111x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.75 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 0.926 W/kg; SAR(10 g) = 0.473 W/kgMaximum value of SAR (measured) = 1.17 W/kg

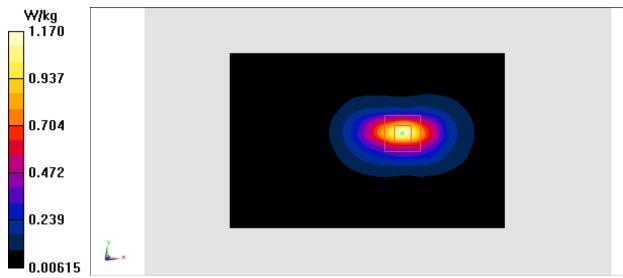


Fig.4 1900 MHz

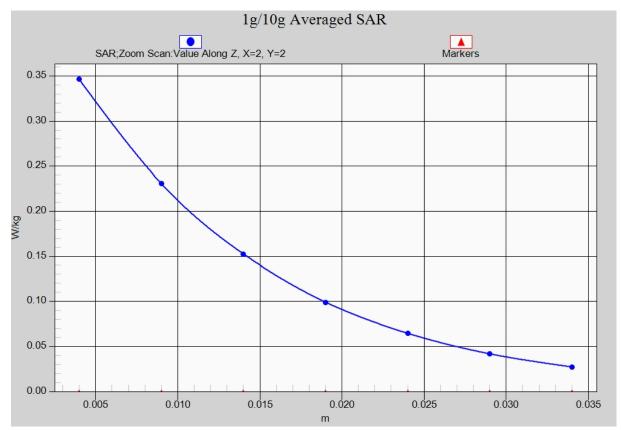


Fig.4-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Left Cheek Low

Date: 2016-1-11

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.909$ mho/m; $\epsilon r = 41.928$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.408 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.43 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.485 W/kg

SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.279 W/kg

Maximum value of SAR (measured) = 0.410 W/kg

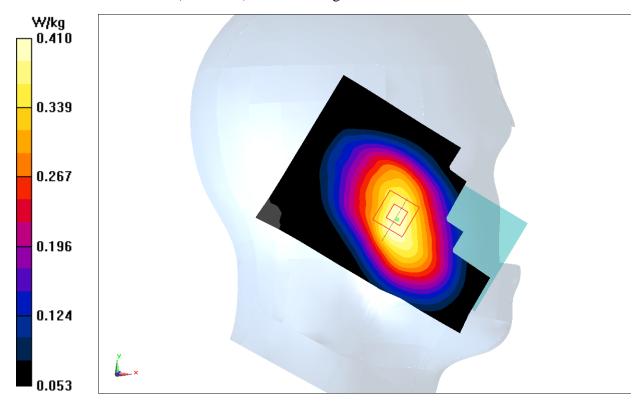


Fig.5 WCDMA 850