

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-2065/16-01-03

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

SBO hearing A/S

Kongebakken 9

2765 Smørum / DENMARK Phone: +45 39 17 71 00

Fax: -/-

Contact: Ole Myrtue

e-mail: olmy@sbohearing.com

Phone: -/-

Manufacturer

SBO hearing A/S

Kongebakken 9

2765 Smørum / DENMARK

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

Radio Communications & EMC

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Wireless Programmer

Model name: FittingLINK WP-2

FCC ID: 2ACAHWLP021

IC: 11936A-WLP021

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth®, +EDR

Antenna: Integrated antenna

Power supply: 3.7 V DC by Li-lon battery

Temperature range: +5°C to +40°C

Radio Communications & EMC

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
Andreas Luckenbill Lab Manager	Mihail Dorongovskij Testing Manager		

Table of contents

1	Table of contents2						
2	Gener	al information	3				
		Notes and disclaimer					
		Application details					
3	Test s	tandard/s and references					
4		nvironment					
5		em					
5							
		General descriptionAdditional information					
6	_	boratories sub-contracted					
7		ption of the test setup					
′		•					
		Shielded semi anechoic chamber					
		Shielded fully anechoic chamber					
		Conducted measurements C.BER system					
		•					
8	Seque	nce of testing	11				
		Sequence of testing radiated spurious 9 kHz to 30 MHz					
		Sequence of testing radiated spurious 30 MHz to 1 GHz					
		Sequence of testing radiated spurious 1 GHz to 18 GHz					
	8.4	Sequence of testing radiated spurious above 18 GHz	14				
9	Measu	rement uncertainty	15				
10	Sum	mary of measurement results	16				
11	Add	itional comments	17				
12	Mea	surement results	18				
	12.1	Antenna gain					
	12.2	Carrier frequency separation	19				
	12.3	Number of hopping channels					
	12.4	Time of occupancy (dwell time)	23				
	12.5	Spectrum bandwidth of a FHSS system					
	12.6	Maximum output power					
	12.7	Detailed spurious emissions @ the band edge - conducted					
	12.8	Band edge compliance radiated					
	12.9	Spurious emissions conducted					
	12.10	Spurious emissions radiated below 30 MHz					
	12.11	Spurious emissions radiated 30 MHz to 1 GHz					
	12.12	Spurious emissions radiated above 1 GHz	64				
13	Obs	ervations	74				
Anr	ex A	Document history	75				
Anr	ex B	Further information	7				
Anr	Annex C Accreditation Certificate						

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:

Date of receipt of test item:

Start of test:

End of test:

Person(s) present during the test:

2016-06-16

2016-07-14

2016-07-14

2016-07-27

Mr. Ole Myrtue

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	T _{nom} : T _{max} T _{min}		+22 °C during room temperature tests No tests under extreme conditions performed No tests under extreme conditions performed
Relative humidity content : 55 %		55 %	
Barometric pressure :			not relevant for this kind of testing
		V_{nom}	3.7 V DC by Li-Ion battery
Power supply	:	V_{max}	No tests under extreme conditions performed
		V_{min}	No tests under extreme conditions performed

5 Test item

5.1 General description

Kind of toot it and	Windows Drawnson
Kind of test item :	Wireless Programmer
Type identification :	FittingLINK WP-2
HMN :	-/-
PMN :	FittingLINK
HVIN :	WP-2
FVIN :	3.0.7
S/N serial number :	Rad. 1929130 Cond. 1929163
HW hardware status :	Product rev: 142721 rev. 2, Assembly rev: 143001 rev. 3, PCB: 132524 rev. 05
SW software status :	SW version: 3.0.7
Frequency band :	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK, Pi/4DQPSK, 8DPSK
Number of channels :	79
Antenna :	Integrated antenna
Power supply :	3.7 V DC by Li-Ion battery
Temperature range :	+5°C to +40°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-2065/16-01-01_AnnexA

1-2065/16-01-01_AnnexB 1-2065/16-01-01_AnnexD

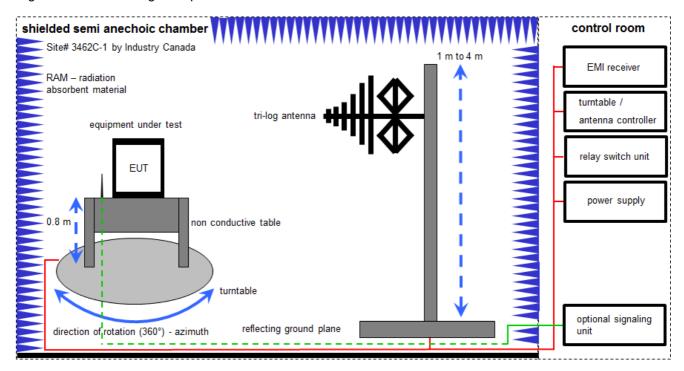
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

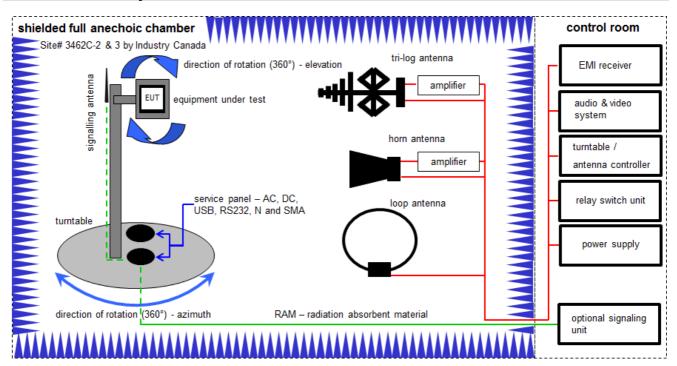
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

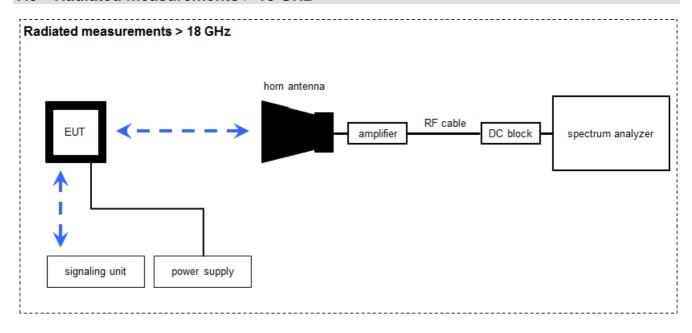
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016
7	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	vIKI!	28.01.2015	28.01.2017

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

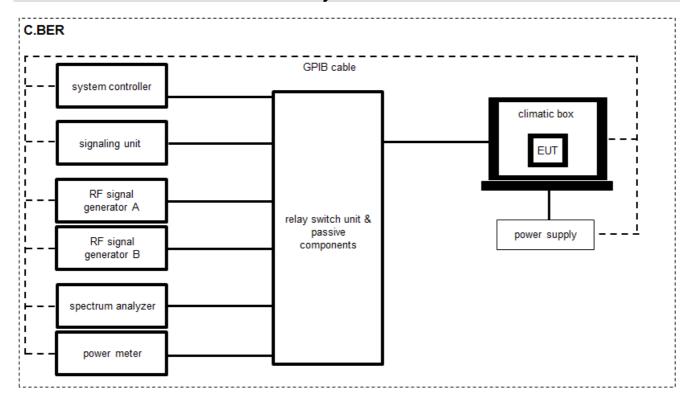
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A, B	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
8	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 [dB\mu\text{V/m}] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu\text{V/m}] (6.79 \mu\text{V/m})$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8402	300000486	k	10.09.2015	10.09.2017
2	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
3	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
4	Α	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
6	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 600918	400001185	ev	-/-	-/-
7	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	vIKI!	28.01.2015	28.01.2017

7.4 Conducted measurements C.BER system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP		300000929	ne	-/-	-/-
2	А	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416	vIKI!	28.01.2015	28.01.2017
3	А	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	25.01.2016	25.01.2017
4	Α	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
5	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
6	Α	Powersplitter	6005-3	Inmet Corp.	none	300002841	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
8	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Time of occupancy	According BT Core specification					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2016-08-30	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (2)	Antenna gain	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (2)	Carrier frequency separation	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (4)	Number of hopping channels	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (4)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (1)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	⊠ ⊠ ⊠				-/-
§15.247(b)(1) RSS - 247 / 5.4 (2)	Maximum output power	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	⊠ ⊠ ⊠				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	× ×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	⊠ ⊠ ⊠				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	× ×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	8 DPSK	×				*1)
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	8 DPSK RX mode	\boxtimes				*1)
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	8 DPSK RX mode	×				*1)
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFSK RX mode	- Nata		\boxtimes		Only battery powered.

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

^{*1)} Highest output power was measured at 8DPSK modulation, therefore the radiated measurements were also performed with 8DPSK modulation.

11 Additional comments

The Bluetooth $^{\odot}$ word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	None	
Special test descriptions:	None	•
Configuration descriptions:	paylo	ests: were performed with x-DH5 packets and static PRBS pattern rad. tandby tests: BT test mode enabled, scan enabled, TX Idle
Test mode:	\boxtimes	Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU)
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:	\boxtimes	Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

12 Measurement results

12.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth® devices, the GFSK modulation is used.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.4 A (conducted)			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC
6 dBi / > 6 dBi output power a	and power density reduction required

Results:

T _{nom}	V_{nom}	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		2.3	1.8	2.1
Radiated power [dBm] Measured with GFSK modulation		7.6	6.3	5.9
	[dBi] ılated	5.3	4.5	3.8

12.2 Carrier frequency separation

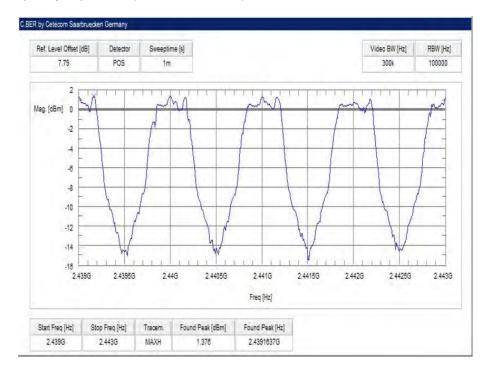
Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz			
Span	4 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC		
Carrier frequency separation			
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.			


Result:

Carrier frequency separation	~ 1 MHz
------------------------------	---------

Plot:

Plot 1: Carrier frequency separation (GFSK modulation)

12.3 Number of hopping channels

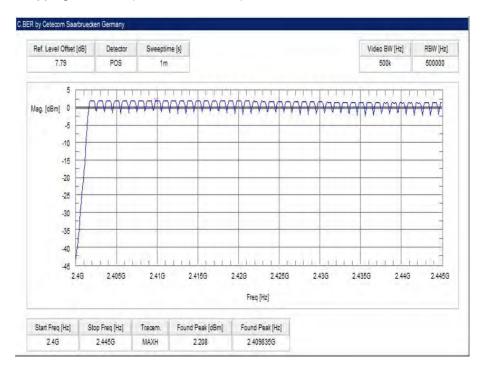
Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	500 kHz			
Video bandwidth	500 kHz			
Span	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC			
Number of hopping channels				
At least 15 non overlapping hopping channels				


Result:

Number of hopping channels	79
----------------------------	----

Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

12.4 Time of occupancy (dwell time)

Measurement:

For Bluetooth® devices no measurements mandatory depending on the fixed requirements according to the Bluetooth® Core Specifications!

For Bluetooth® devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth® devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \mu s * 1600*1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 * 625 \mu s * 1600/3 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 * 625 \mu s * 1600/5 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is according the Bluetooth® Core Specification V2.0 & V2.1 & V3.0 & V4.0 (+ critical errata) for all Bluetooth® devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

^{*} according Bluetooth® specification

Results:

Packet Size	Pulse Width [ms]*	Max. number of transmissions in 31.6 sec	Dwell time [Pulse width * Number of transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC	
Time of occupancy (dwell time)		
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds		

within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

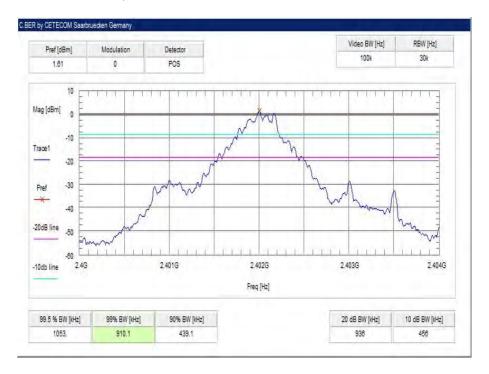
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	30 kHz	
Video bandwidth	100 kHz	
Span	3 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

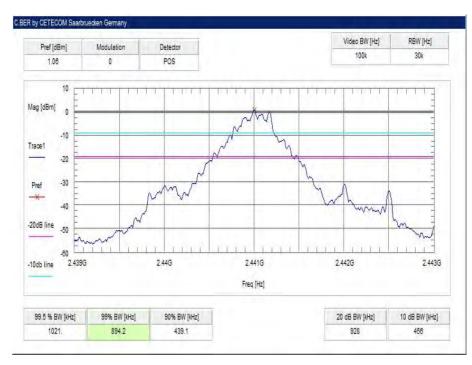
FCC	IC	
Spectrum bandwidth of a FHSS system		
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz		

Results:

Modulation	20 dB bandwidth [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	936	928	936
Pi/4 DQPSK	1240	1248	1240
8DPSK	1272	1264	1264

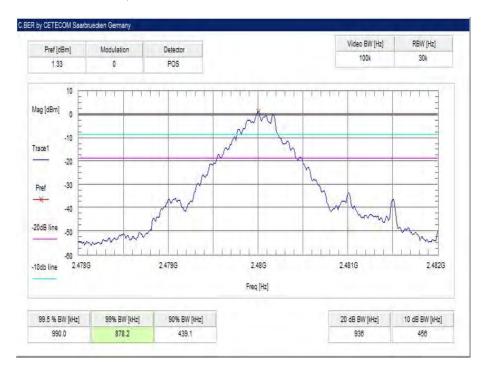

Results:

Modulation	99 % bandwidth [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	910	894	878
Pi/4 DQPSK	1181	1181	1173
8DPSK	1189	1181	1181

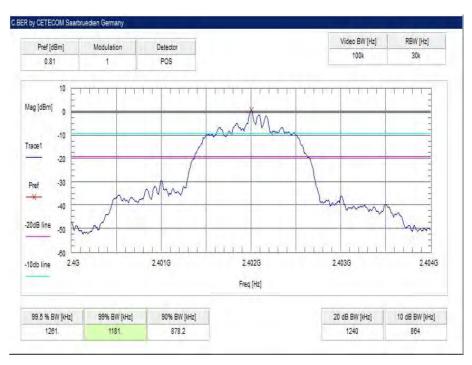


Plots:

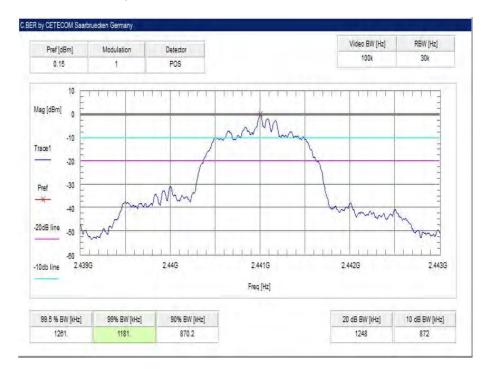
Plot 1: lowest channel - 2402 MHz, GFSK modulation



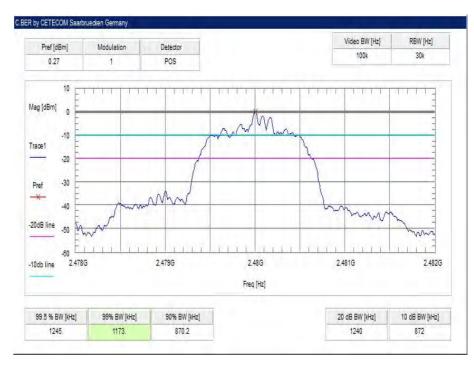
Plot 2: middle channel – 2441 MHz, GFSK modulation



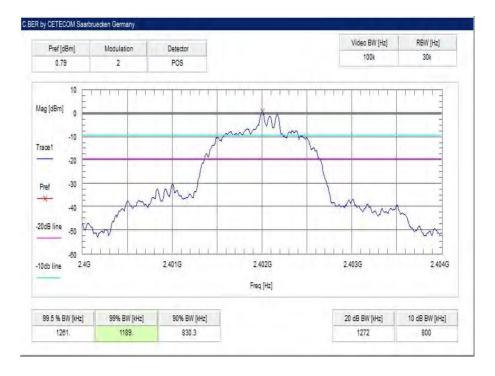
Plot 3: highest channel – 2480 MHz, GFSK modulation



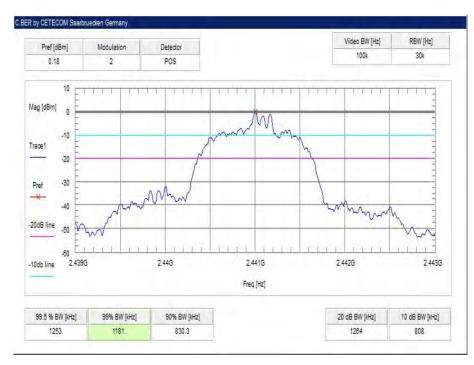
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation



Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation



Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation



Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

12.6 Maximum output power

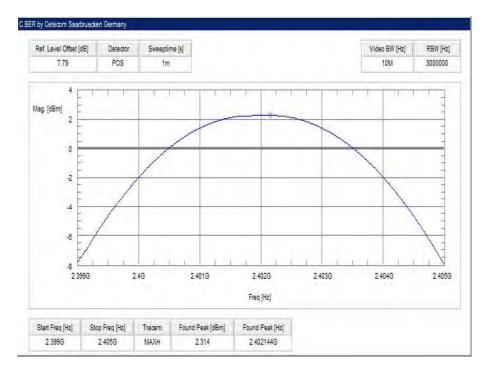
Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

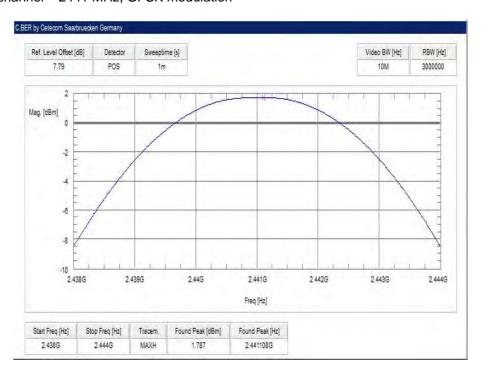
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	6 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Maximum output power		
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi		

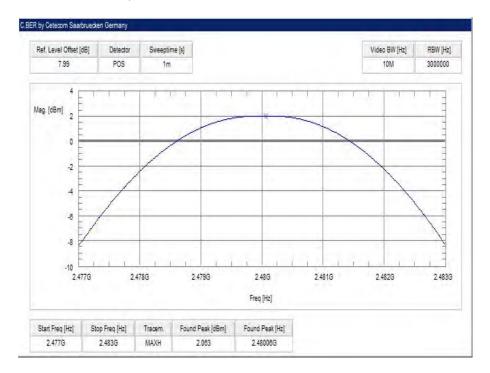

Results:

Modulation	Maximum output power conducted [dBm]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	2.3	1.8	2.1
Pi/4 DQPSK	2.4	1.9	2.0
8 DPSK	2.7	2.1	2.2

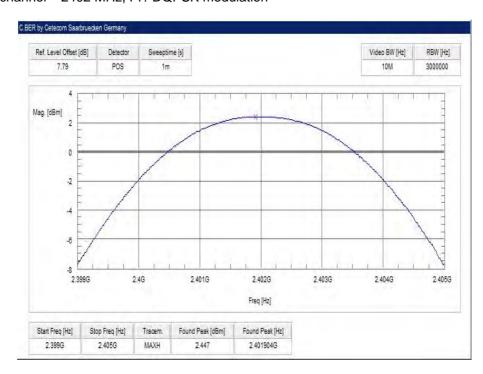


Plots:

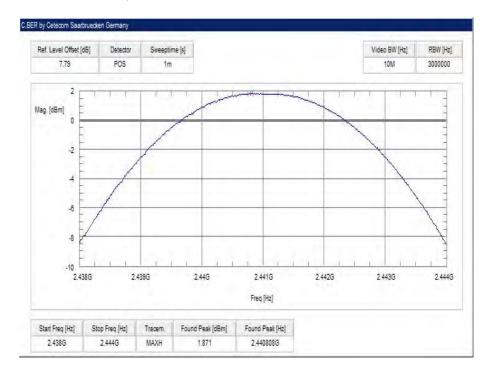
Plot 1: lowest channel - 2402 MHz, GFSK modulation



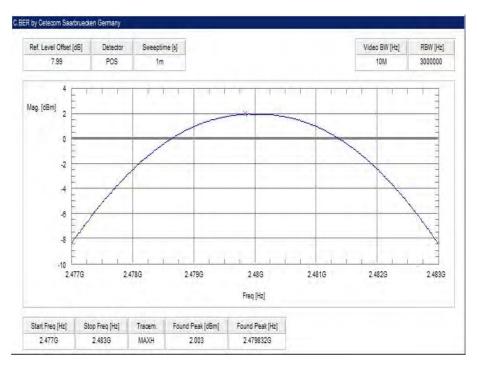
Plot 2: middle channel – 2441 MHz, GFSK modulation



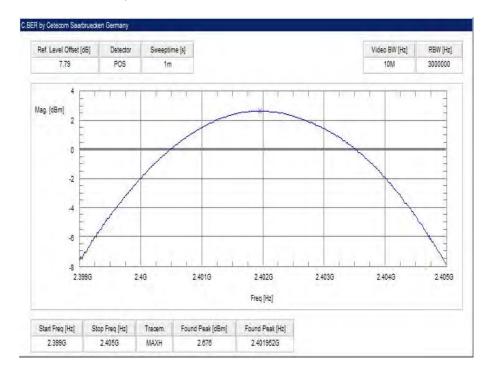
Plot 3: highest channel – 2480 MHz, GFSK modulation



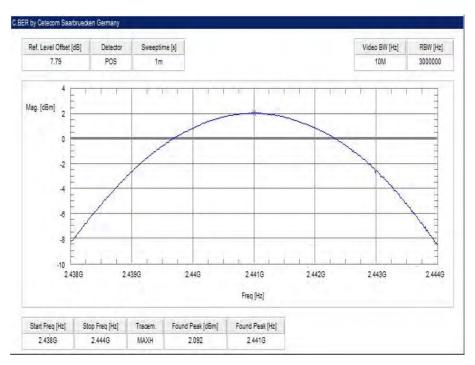
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation



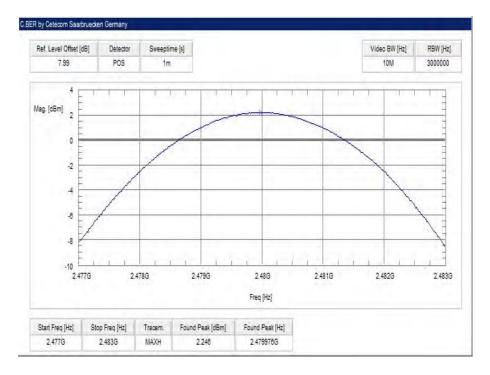
Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation



Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation



Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation



Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

12.7 Detailed spurious emissions @ the band edge - conducted

Description:

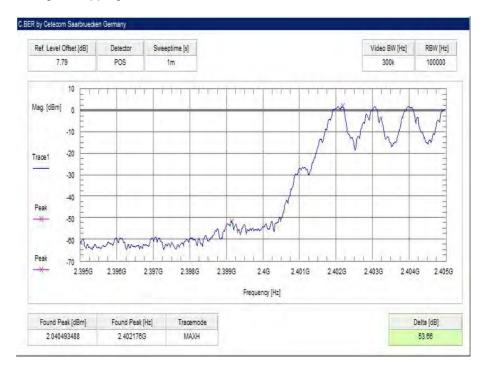
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 2395 – 2405 MHz Upper Band Edge: 2478 – 2489 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

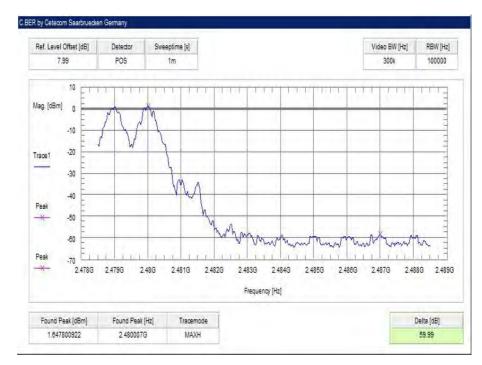
Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

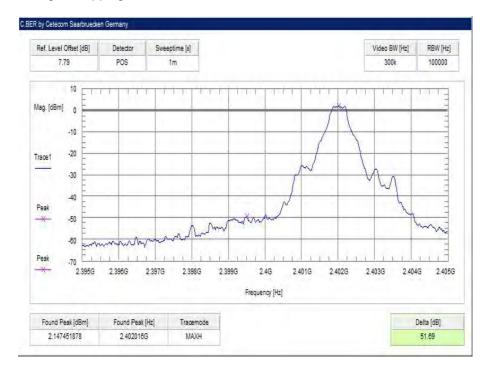

Results:

Scenario	Spurious band edge conducted [dB]		ted [dB]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

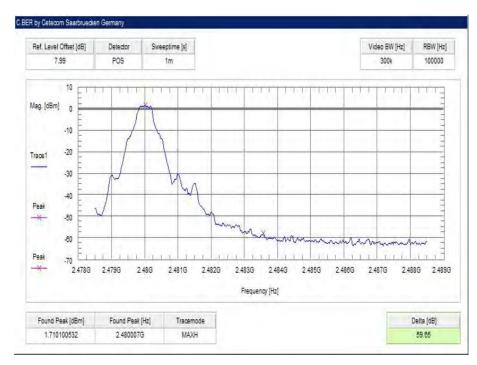


Plots:

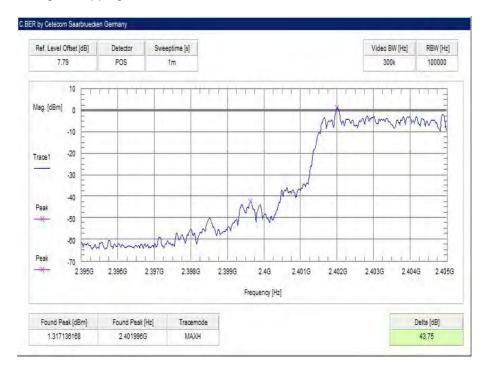
Plot 1: Lower band edge - hopping on, GFSK modulation



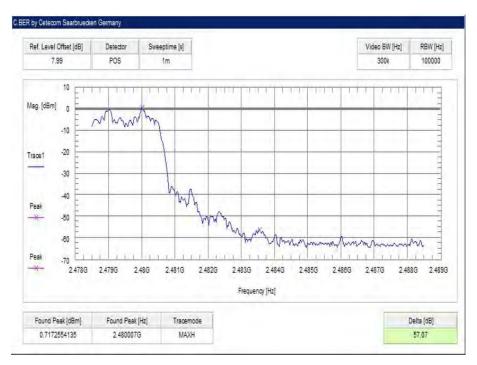
Plot 2: Upper band edge - hopping on, GFSK modulation



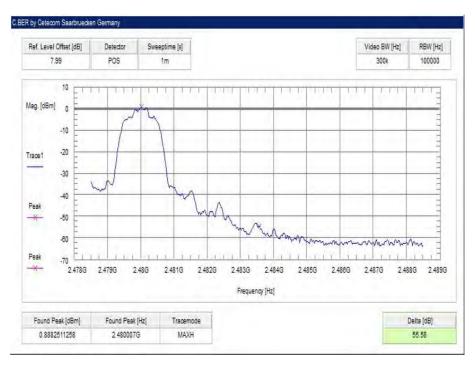
Plot 3: Lower band edge - hopping off, GFSK modulation



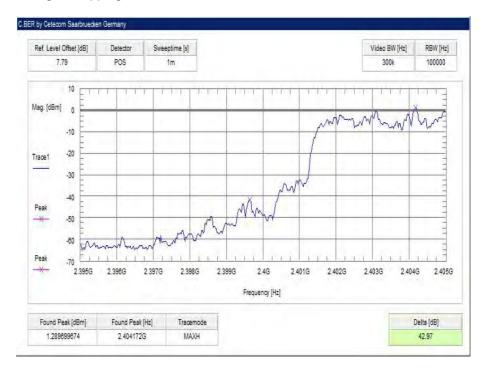
Plot 4: Upper band edge - hopping off, GFSK modulation



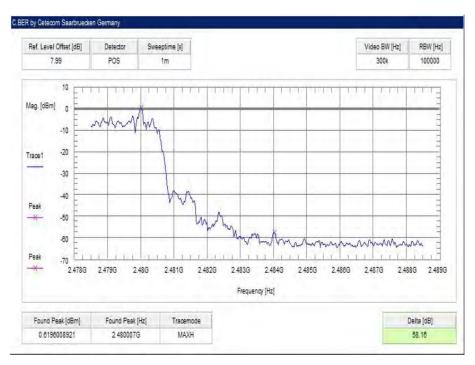
Plot 5: Lower band edge - hopping on, Pi/4 DQPSK modulation


Plot 6: Upper band edge - hopping on, Pi/4 DQPSK modulation

Plot 7: Lower band edge - hopping off, Pi/4 DQPSK modulation

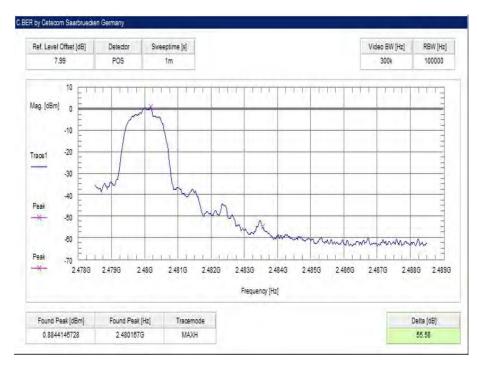


Plot 8: Upper band edge - hopping off, Pi/4 DQPSK modulation



Plot 9: Lower band edge - hopping on, 8DPSK modulation

Plot 10: Upper band edge – hopping on, 8DPSK modulation



Plot 11: Lower band edge – hopping off, 8DPSK modulation

Plot 12: Upper band edge – hopping off, 8DPSK modulation

12.8 Band edge compliance radiated

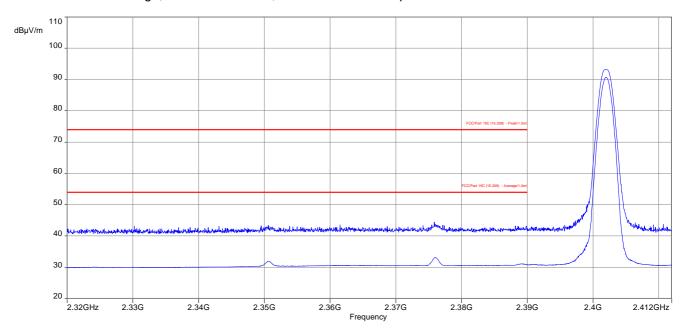
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

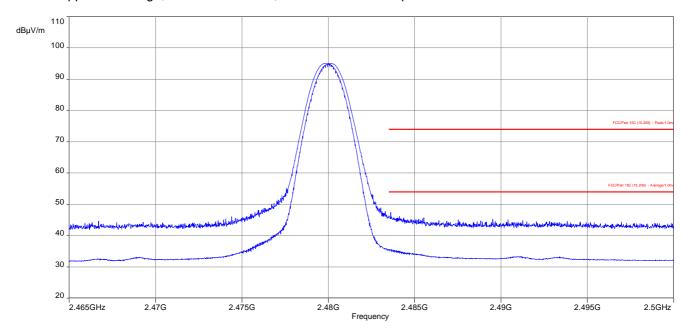
Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC		
Band edge com	pliance radiated		
radiator is operating, the radio frequency power that is produ that in the 100 kHz bandwidth within the band that contains t conducted or a radiated measurement. Attenuation below the In addition, radiated emissions which fall in the restricted band	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).		
54 dBμV/m AVG 74 dBμV/m Peak			

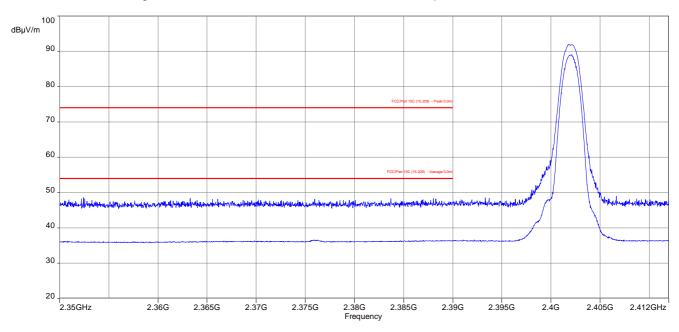

Results:

Scenario	Band edge compliance radiated [dBμV/m]		i [dΒμV/m]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP

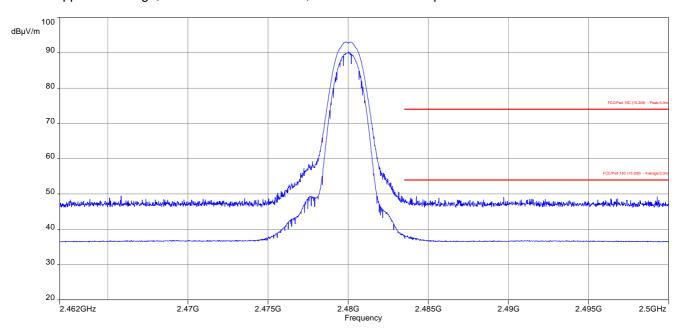


Plots:

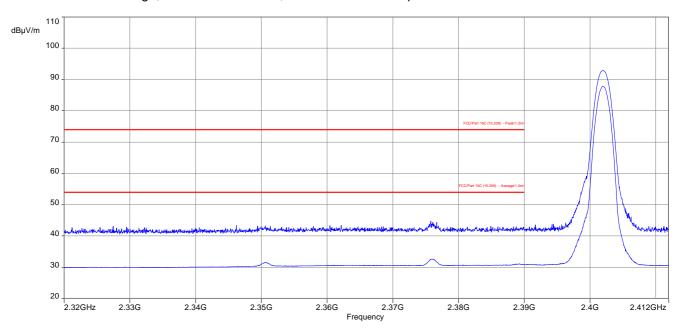
Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization



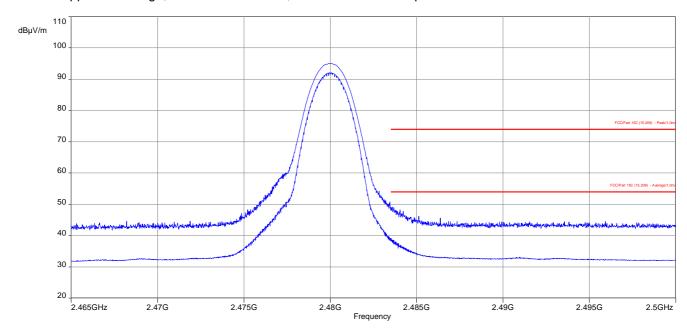
Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization



Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization



Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization



Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization

Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

12.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	9 kHz to 25 GHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty See sub clause 9			

Limits:

FCC	IC	
TX spurious emissions conducted		

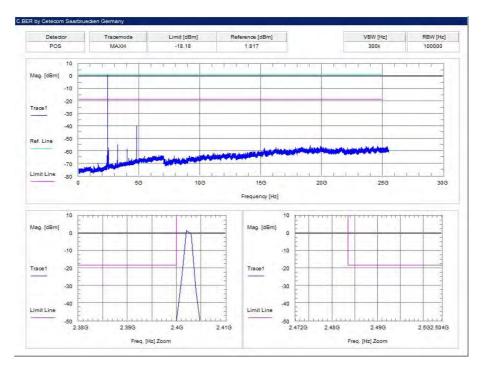
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

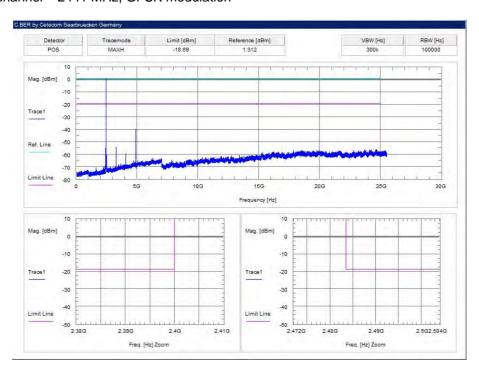
	TX spurious emissions conducted				
	GFSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402			30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
2441			30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
2480			30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant

Results:

		TX sp	urious emissions condu	ıcted	
			Pi/4-DQPSK - mode		
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402			30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
2441			30 dBm		Operating frequency
	ed emissions are be a. Please take a loc		-20 dBc		compliant
2480			30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	

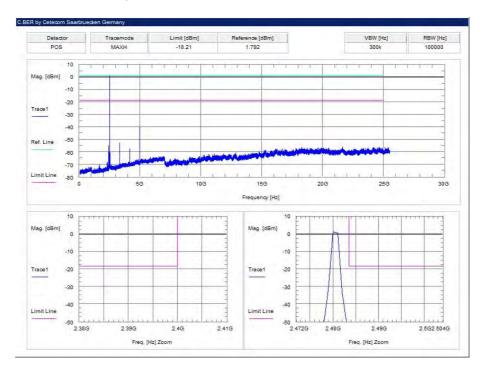

Results:

	TX spurious emissions conducted				
	8DPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402			30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
2441			30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
2480			30 dBm		Operating frequency
All detected	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant

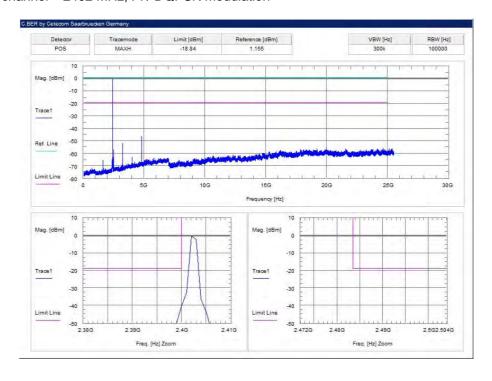


Plots:

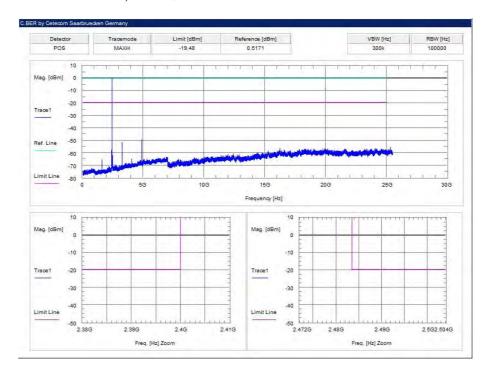
Plot 1: lowest channel - 2402 MHz, GFSK modulation



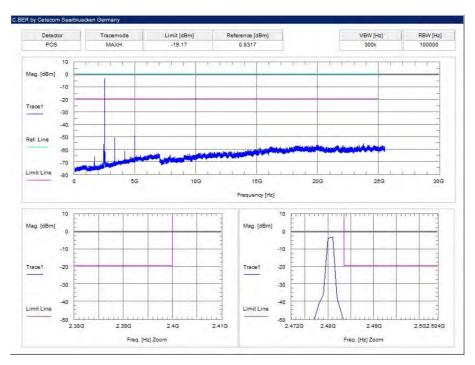
Plot 2: middle channel – 2441 MHz, GFSK modulation



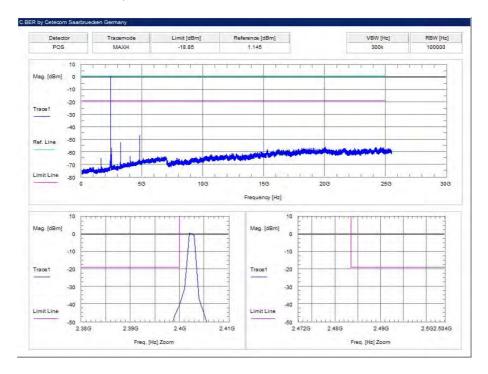
Plot 3: highest channel – 2480 MHz, GFSK modulation



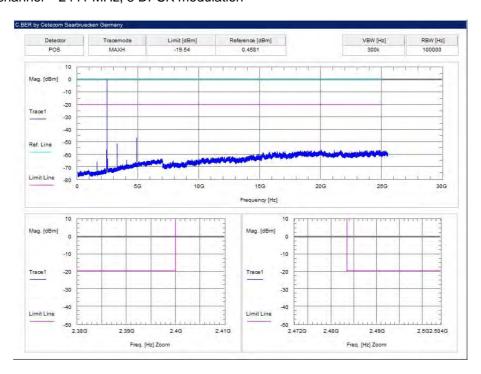
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation



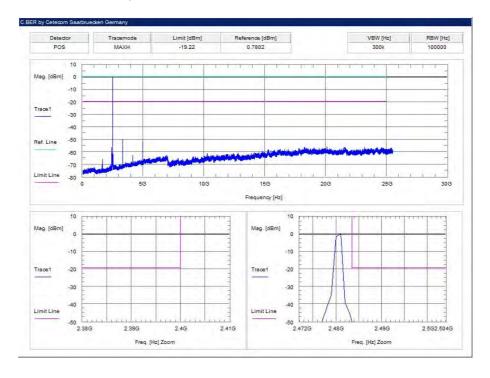
Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation



Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation



Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation



Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

12.10 Spurious emissions radiated below 30 MHz

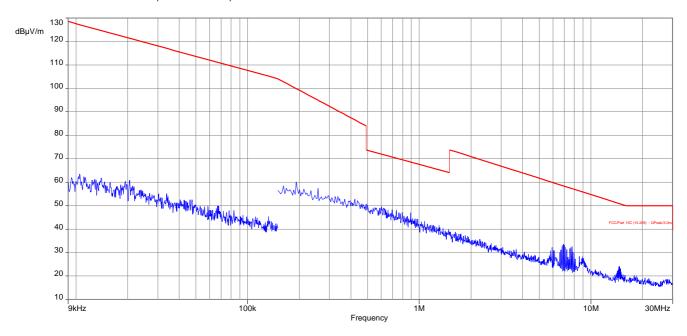
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

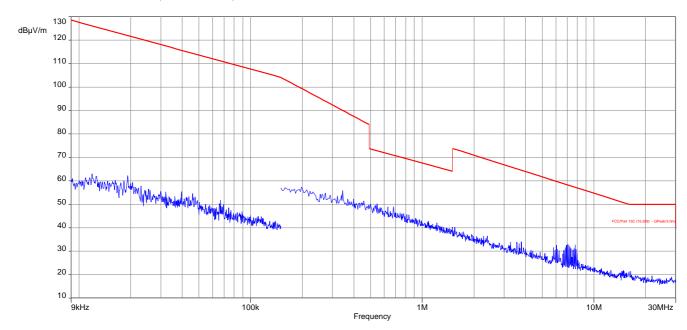
Measurement parameters				
Detector	Peak / Quasi peak			
Sweep time	Auto			
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span	9 kHz to 30 MHz			
Trace mode	Max hold			
Test setup	See sub clause 7.2 C			
Measurement uncertainty	See sub clause 9			

Limits:

FCC			IC					
TX spurious emissions radiated below 30 MHz								
Frequency (MHz)	Field streng	th (dBµV/m)	Measureme	ent distance				
0.009 – 0.490	2400/F	(kHz)	30	00				
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		24000/F(kHz)		3	30
1.705 – 30.0	3	0	3	30				

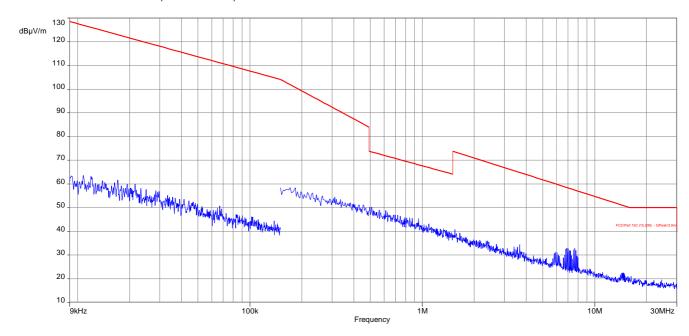

Results:

TX spurious emissions radiated below 30 MHz [dBμV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected emissions are more than 20 dB below the limit.							
Measurement uncertainty ± 3 dB							



Plots:

Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode



Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

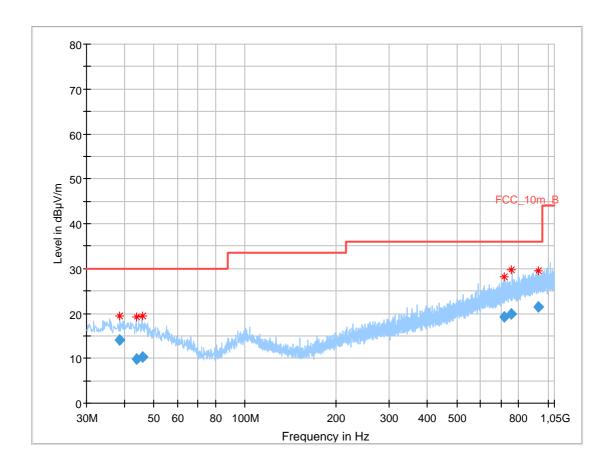
12.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

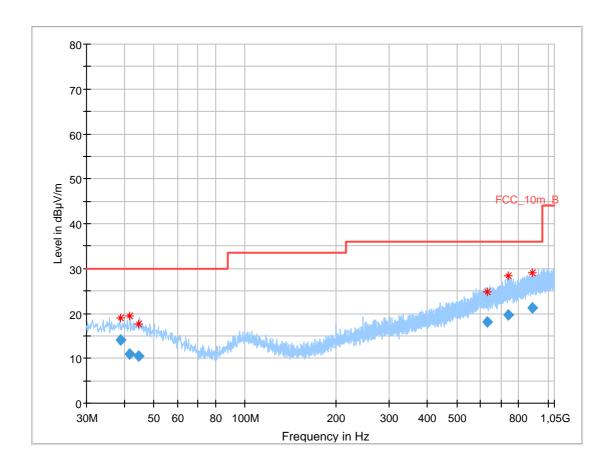
Measurement parameters							
Detector	Peak / Quasi Peak						
Sweep time	Auto						
Resolution bandwidth	3 x VBW						
Video bandwidth	120 kHz						
Span	30 MHz to 1 GHz						
Trace mode	Max hold						
Measured modulation	☐ GFSK ☐ Pi/4 DQPSK ☒ 8DPSK						
Test setup	See sub clause 7.1 A						
Measurement uncertainty	See sub clause 9						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

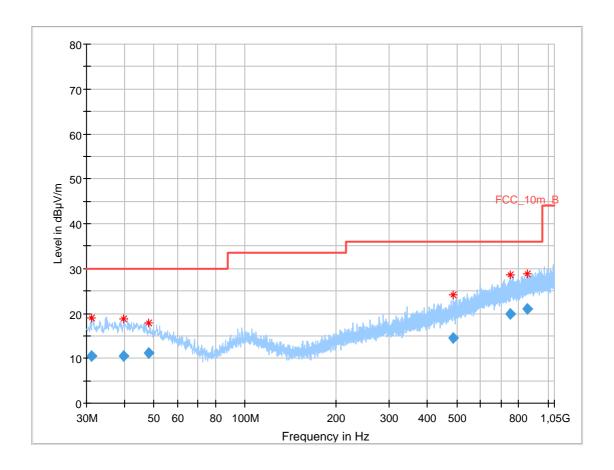

Limits:

FCC			IC					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
30 - 88	30	0.0	10					
88 – 216	33	3.5	10					
216 – 960 36.0 10								
Above 960	54	.0	3					

Plots: Transmit mode

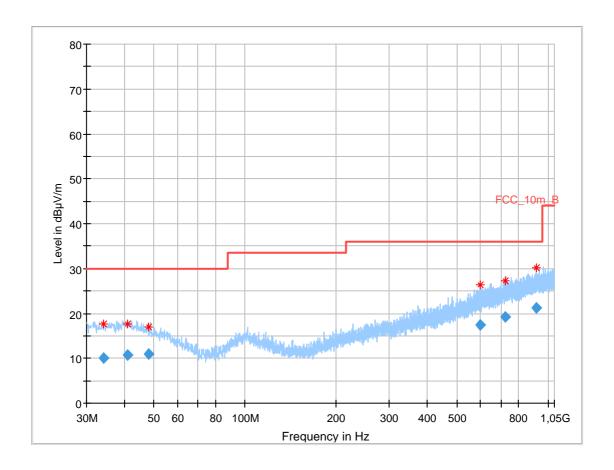

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.689350	14.18	30.00	15.82	1000.0	120.000	101.0	٧	280.0	14.0
43.883550	9.89	30.00	20.11	1000.0	120.000	101.0	Н	280.0	13.9
45.808800	10.22	30.00	19.78	1000.0	120.000	101.0	٧	190.0	13.7
718.818300	19.19	36.00	16.81	1000.0	120.000	170.0	٧	280.0	22.0
759.681450	19.81	36.00	16.19	1000.0	120.000	98.0	Н	100.0	22.7
931.163250	21.38	36.00	14.62	1000.0	120.000	170.0	٧	190.0	24.2


Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.726850	14.14	30.00	15.86	1000.0	120.000	101.0	٧	190.0	14.0
41.481000	10.90	30.00	19.10	1000.0	120.000	100.0	٧	-10.0	14.0
44.701350	10.41	30.00	19.59	1000.0	120.000	101.0	٧	190.0	13.9
630.354150	18.06	36.00	17.94	1000.0	120.000	170.0	٧	260.0	21.0
740.427300	19.68	36.00	16.32	1000.0	120.000	170.0	Н	100.0	22.5
886.340250	21.26	36.00	14.74	1000.0	120.000	170.0	٧	-9.0	23.9

Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.244550	10.44	30.00	19.56	1000.0	120.000	101.0	Н	-10.0	13.5
39.717600	10.57	30.00	19.43	1000.0	120.000	170.0	Н	100.0	14.0
47.979000	11.19	30.00	18.81	1000.0	120.000	101.0	٧	190.0	13.1
485.560200	14.44	36.00	21.56	1000.0	120.000	170.0	Н	-10.0	18.4
748.467900	19.79	36.00	16.21	1000.0	120.000	101.0	Н	171.0	22.7
857.822100	20.91	36.00	15.09	1000.0	120.000	170.0	Н	260.0	23.6

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.260300	10.01	30.00	19.99	1000.0	120.000	170.0	Н	170.0	13.7
41.000700	10.65	30.00	19.35	1000.0	120.000	101.0	٧	190.0	14.0
47.973450	10.98	30.00	19.02	1000.0	120.000	101.0	٧	171.0	13.1
598.430700	17.45	36.00	18.55	1000.0	120.000	170.0	٧	261.0	20.7
723.177150	19.28	36.00	16.72	1000.0	120.000	170.0	Н	260.0	22.1
915.087900	21.30	36.00	14.70	1000.0	120.000	170.0	Н	-10.0	24.2

12.12 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters							
Detector	Peak / RMS						
Sweep time	Auto						
Resolution bandwidth 1 MHz							
Video bandwidth 3 x RBW							
Span	1 GHz to 26 GHz						
Trace mode	Max hold						
Measured modulation	☐ GFSK ☐ Pi/4 DQPSK ☒ 8DPSK						
Test setup	See sub clause 7.2 A (1 GHz - 18 GHz) See sub clause 7.3 A (18 GHz - 26 GHz)						
Measurement uncertainty See sub clause 9							

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

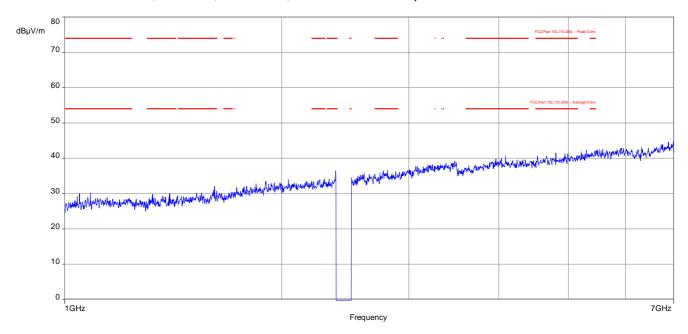
Limits:

FCC			IC						
	TX spurious emissions radiated								
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement.	y power that is produce band that contains to Attenuation below the all in the restricted be	uced by the intention he highest level of the general limits speci- pands, as defined in							
	§15.	209							
Frequency (MHz)	Field strength (dBµV/m) Measurement distance								
Above 960	54.0 3								

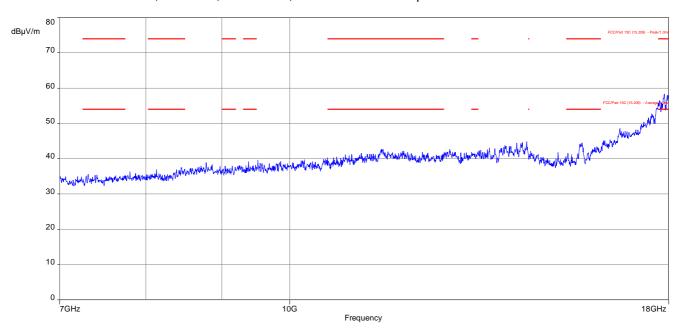
Results: Transmitter mode

TX spurious emissions radiated [dBµV/m]										
2402 MHz				2441 MHz		2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m]			Detector	Level [dBµV/m]		
	All detected emissions are more than 20 dB below the limit.									
-/-	Peak	-/-	-/-	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
-/-	Peak	-/-	,	Peak	-/-	,	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
,	Peak	-/-	,	Peak	-/-	,	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		

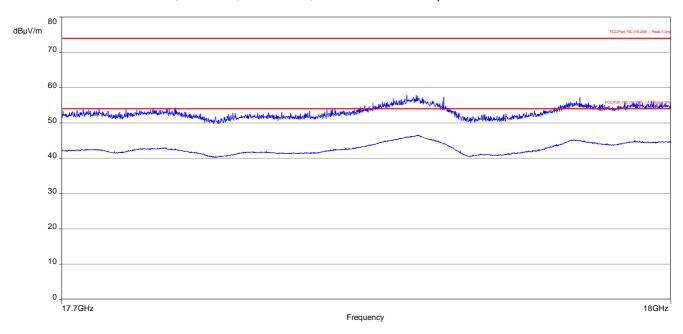
Results: Receiver mode


RX spurious emissions radiated [dBμV/m]							
F [MHz] Detector Level [dBµV/m]							
All detect	ed emissions are more than 20 dB below	the limit.					
-/-	Peak	-/-					
	AVG	-/-					

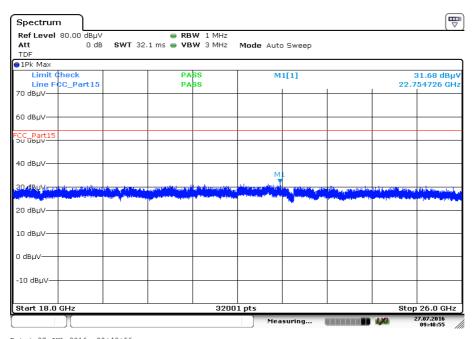
Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)


Plots: Transmitter mode

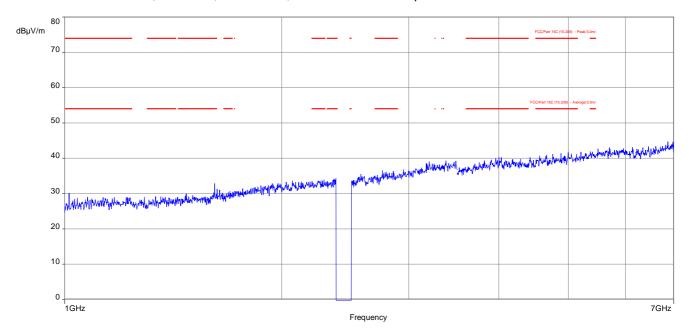
Plot 1: 1 GHz to 7 GHz, TX mode, channel 00, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

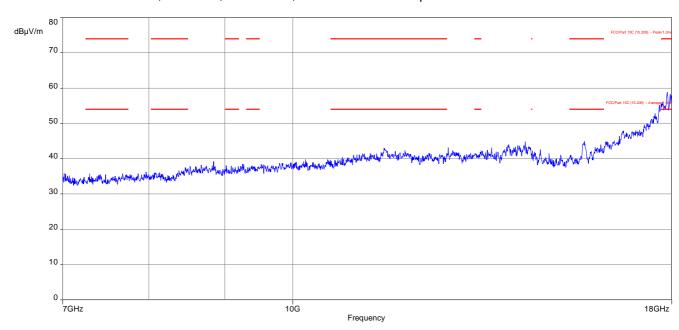
Plot 2: 7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization



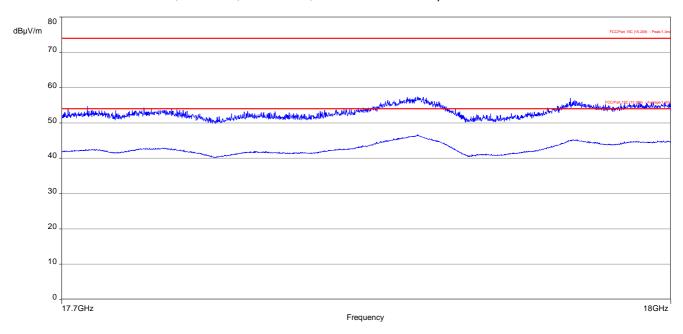
Plot 3: 17.7 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization


Plot 4: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

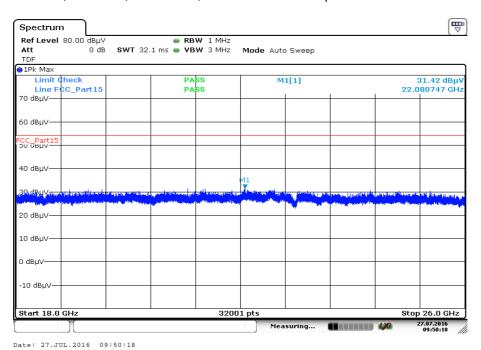
Date: 27.JUL.2016 09:48:56



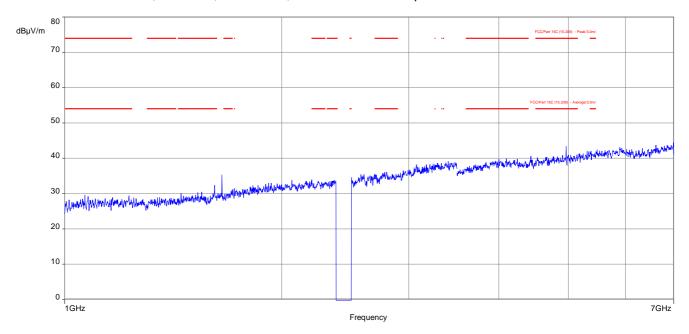
Plot 5: 1 GHz to 7 GHz, TX mode, channel 39, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

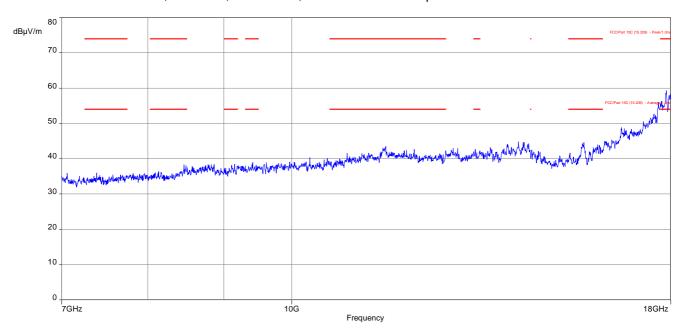
Plot 6: 7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization



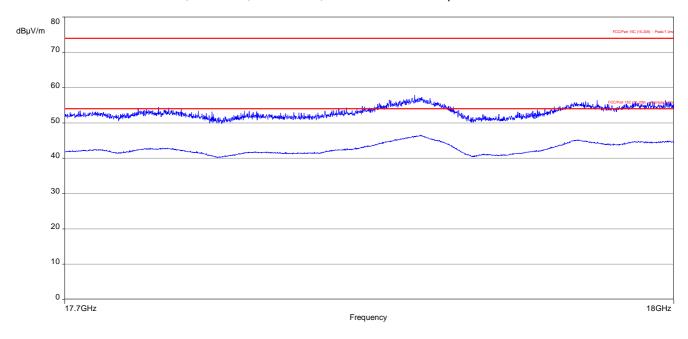
Plot 7: 17.7 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization



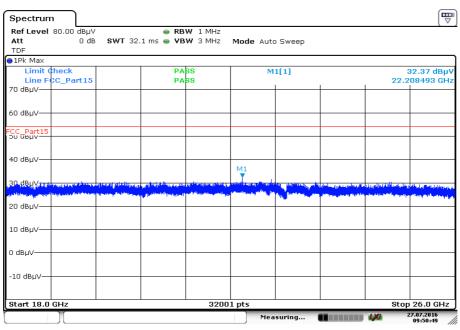
Plot 8: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization



Plot 9: 1 GHz to 7 GHz, TX mode, channel 78, vertical & horizontal polarization

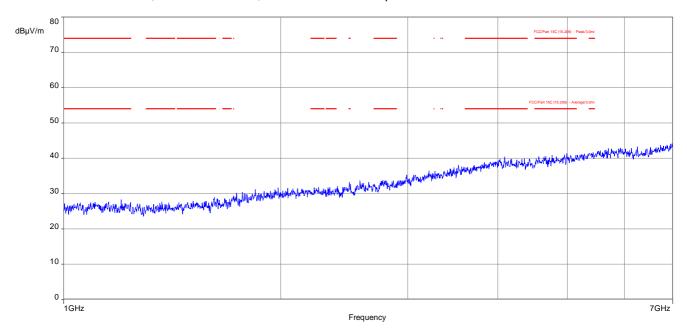

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 10: 7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

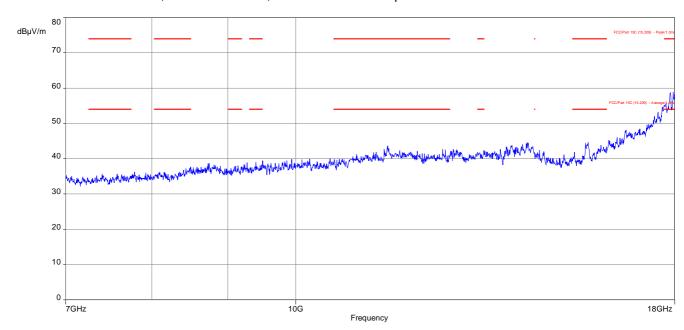


Plot 11: 17.7 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

Plot 12: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

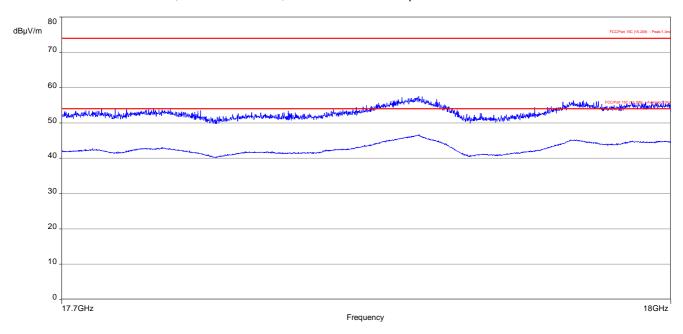


Date: 27.JUL.2016 09:50:49

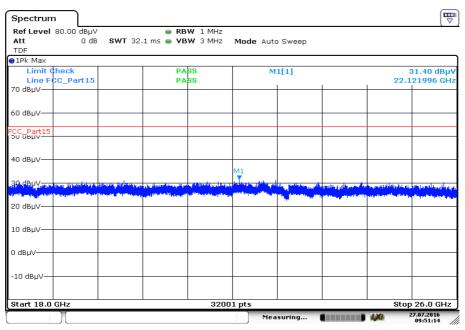


Plots: Receiver mode

Plot 1: 1 GHz to 7 GHz, RX / idle – mode, vertical & horizontal polarization



Plot 2: 7 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization



Plot 3: 17.7 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 27.JUL.2016 09:51:14

1	3	<u></u>	bservations
	.)	u	uservanuns

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-08-17

Annex B Further information

Glossary

SW

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number

PMN - Product marketing name HMN - Host marketing name

Software

HVIN - Hardware version identification number FVIN - Firmware version identification number

Annex C Accreditation Certificate

Pront side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Beichnen gemäß § A Abset A Addreiterungsstelle GmbH

Beichnen gemäß § A Bast A Addreiterungsstelle GmbH

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH

Deutsche Akkreditierungsstelle GmbH

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH

Die Deutsche Akkred

Note:

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.