

FCC Test Report

FCC ID	:	2ACAHAC01
Equipment	:	AudioClip
Model No.	:	AC1A, AC1B (Please refer to section 1.1.1 for more details)
Applicant	:	SBO Hearing A/S
Address	:	Kongebakken 9 DK-2765 Smoerum, Denmark
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Sep. 04, 2017
Tested Date	:	Sep. 07 ~ Sep. 18, 2017

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ong Chei

Approved by:

Along Cheil / Assistant Manager Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	8
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Test Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3 3.1	TRANSMITTER TEST RESULTS	
-		12
3.1	Conducted Emissions	12 15
3.1 3.2	Conducted Emissions Unwanted Emissions into Restricted Frequency Bands	12 15 31
3.1 3.2 3.3	Conducted Emissions Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands	12 15 31 36
3.1 3.2 3.3 3.4	Conducted Emissions Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands Conducted Output Power	12 15 31 36 38
3.1 3.2 3.3 3.4 3.5	Conducted Emissions Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands Conducted Output Power Number of Hopping Frequency	12 15 31 36 38 40
3.1 3.2 3.3 3.4 3.5 3.6	Conducted Emissions Unwanted Emissions into Restricted Frequency Bands Unwanted Emissions into Non-Restricted Frequency Bands Conducted Output Power Number of Hopping Frequency 20dB and Occupied Bandwidth	12 31 36 38 40 42

Release Record

Report No.	Version	Description	Issued Date
FR790403AD	Rev. 01	Initial issue	Oct. 16, 2017

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.585MHz 33.69 (Margin -12.31dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 2324.00MHz	Pass
15.209	Radiated Emissions	47.00 (Margin -7.00dB) - AV	F 855
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: 7.04	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Summary of Test Results

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Model Name	Product Name	Description	
AC1A	AudioClin	For different housing design.	
AC1B	AudioClip		

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate		
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps		
2400-2483.5EDR2402-24800-78 [79]3 MbpsNote 1: RF output power specifies that Note 2: Bluetooth BR uses a GFSK.0-78 [79]3 MbpsNote 3: Bluetooth EDR uses a combination of π/4-DQPSK and 8DPSK.						

1.1.3 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	Inverted-F	5.8		

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5Vdc from adapter 5Vdc from host 3.7Vec from battery
-------------------	--

1.1.5 Accessories

	Accessories				
No.	Equipment	Description			
1	AC adapter	Brand: PHIHONG Model: AM05A-050A Power Rating: I/P: 100-240Vac, 50/60Hz, 0.2A O/P: 5Vdc, 1A Power Line: 1.8m non-shielded cable without core			
2	Battery	Brand: SYNERGY Model: AHB451730PC Power Rating: Rating: 3.7Vdc, 200mAh			
3	USB cable	1m shielded cable without core			

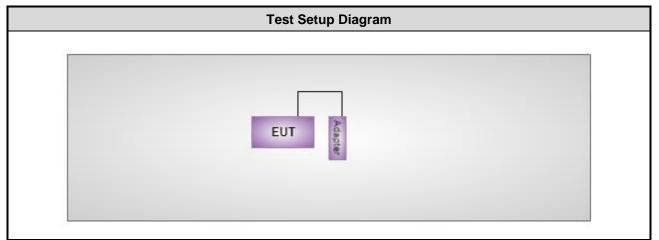
1.1.6 Channel List

	Frequency	band (MHz)			2400~2	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.7 Test Tool and Duty Cycle

Test Tool	NebulaDeveloper, Version: 3.2.0.0
-----------	-----------------------------------

1.1.8 Power Setting


Modulation Mode	Test Frequency (MHz)			
	2402	2441	2480	
GFSK/1Mbps	0xff7f	0xff7f	0xff7f	
л /4 QDPSK/2Mbps	0xff7f	0xff7f	0xff7f	
8DPSK/3Mbps	0xff7f	0xff7f	0xff7f	

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)			
1	Notebook	DELL	Latitude E6430	DoC				

1.3 Test Setup Chart

Note: The support notebook was disconnected from EUT and removed from test table when EUT is set to transmit continuously.

The Equipment List 1.4

Test Item	Conducted Emission				
Test Site	Conduction room 1 / (CO01-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Receiver	R&S	ESR3	101657	Dec. 21, 2016	Dec. 20, 2017
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 08, 2016	Nov. 07, 2017
RF Cable-CON	EMC	EMCCFD300-BM-B M-6000	50821	Dec. 20, 2016	Dec. 19, 2017
Measurement Software	AUDIX	e3	6.120210k	NA	NA
Note: Calibration Inter	rval of instruments liste	d above is one year.		•	

Test Item	Radiated Emission				
Test Site	966 chamber 3 / (03C	H03-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40	101486	Nov. 15, 2016	Nov. 14, 2017
Receiver	Agilent	N9038A	MY53290044	Oct. 06, 2016	Oct. 05, 2017
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 28, 2017	Apr. 27, 2018
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 09, 2017	Feb. 08, 2018
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 25, 2016	Oct. 24, 2017
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 10, 2016	Nov. 09, 2017
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 09, 2016	Dec. 08, 2017
Preamplifier	EMC	EMC02325	980187	Sep. 04, 2017	Sep. 03, 2018
Preamplifier	Agilent	83017A	MY53270014	Aug. 21, 2017	Aug. 20, 2018
Preamplifier	EMC	EMC184045B	980192	Aug. 22, 2017	Aug. 21, 2018
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 04, 2017	Feb. 03, 2018
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22600/4	Feb. 04, 2017	Feb. 03, 2018
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 04, 2017	Feb. 03, 2018
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Feb. 04, 2017	Feb. 03, 2018
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Feb. 04, 2017	Feb. 03, 2018
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Feb. 04, 2017	Feb. 03, 2018
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Mar. 15, 2017	Mar. 14, 2018
Power Meter	Anritsu	ML2495A	1241002	Oct. 06, 2016	Oct. 05, 2017
Power Sensor	Anritsu	MA2411B	1207366	Oct. 06, 2016	Oct. 05, 2017
DC POWER SOURCE	GW INSTEK	GPC-6030D	EM892433	Oct. 20, 2016	Oct. 19, 2017
AC POWER SOURCE	APC	AFC-500W	F312060012	Oct. 28, 2016	Oct. 27, 2017
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.90 dB
Radiated emission ≤ 1GHz	±3.66 dB
Radiated emission > 1GHz	±5.37 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 57%	Alex Huang
Radiated Emissions	03CH03-WS	24-25°C / 64-65%	Aska Huang Brand Wu
RF Conducted	TH01-WS	25°C / 65%	Felix Sung

➢ FCC Designation No.: TW0009

➢ FCC site registration No.: 207696

➢ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	GFSK	2441	1Mbps	
Radiated Emissions ≤ 1GHz	GFSK	2441	1Mbps	
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Conducted Output Power	GFSK л /4 QDPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	
Hopping Channel Separation 20dB and Occupied bandwidth	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Dwell Time	GFSK 8DPSK	2402 2402	1Mbps 3Mbps	

NOTE:

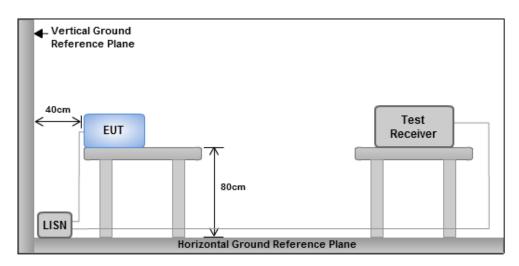
1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

2. S/N of test samples are as below 000016098300J2305570011 000016098300J2305570023 000016098300J2304263002

3. Two models AC1A and AC1B had been covered during the pretest. The worst model is **AC1B**, and only its data was record in this test report.

3 Transmitter Test Results

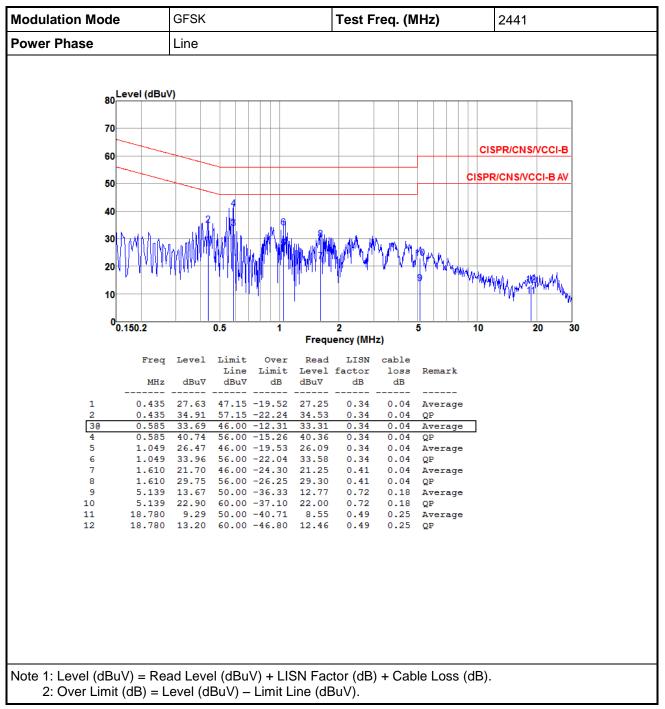
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

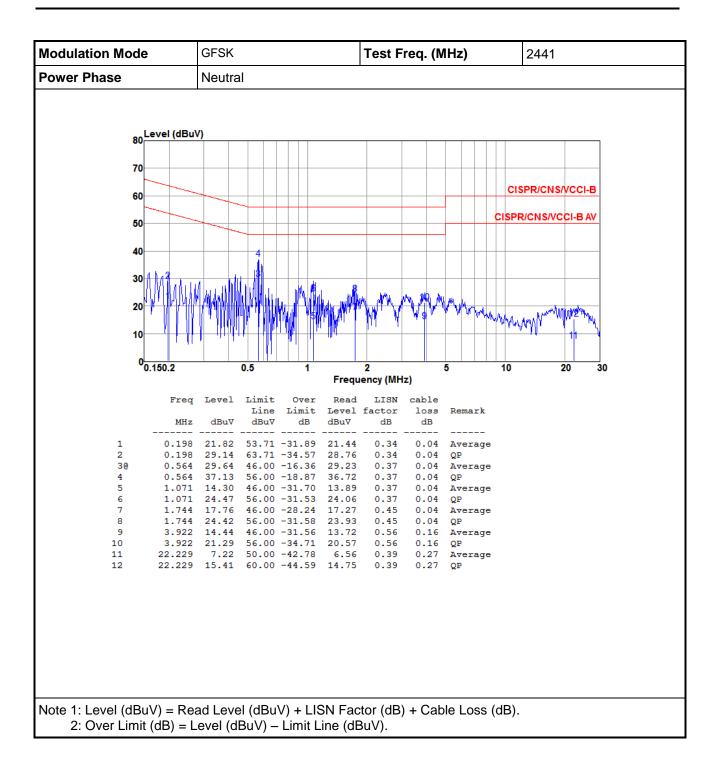
	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	nm of the frequency.	

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

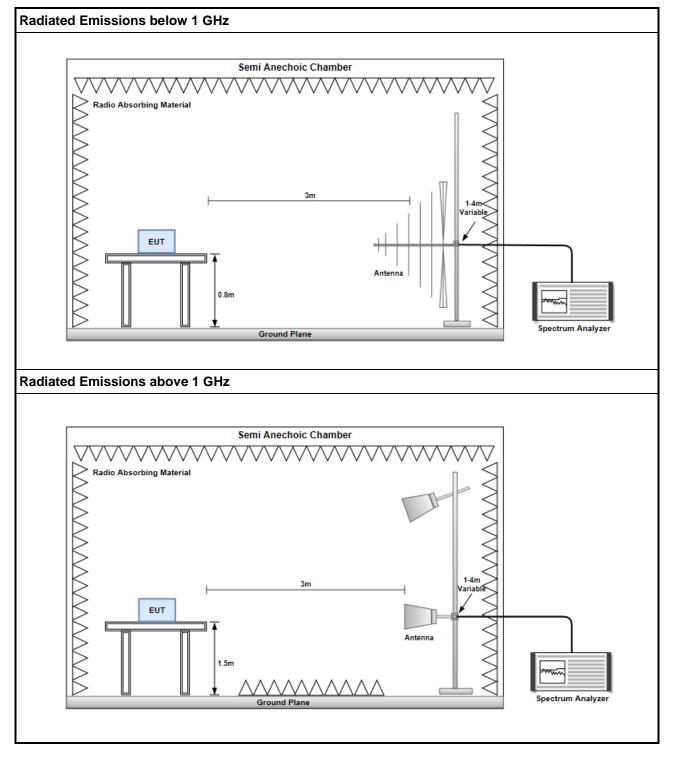
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

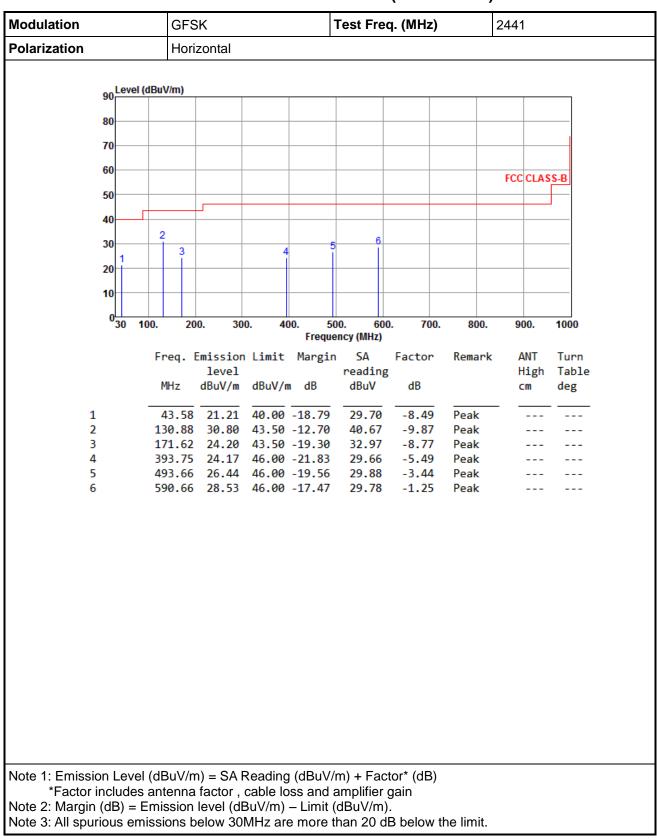
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

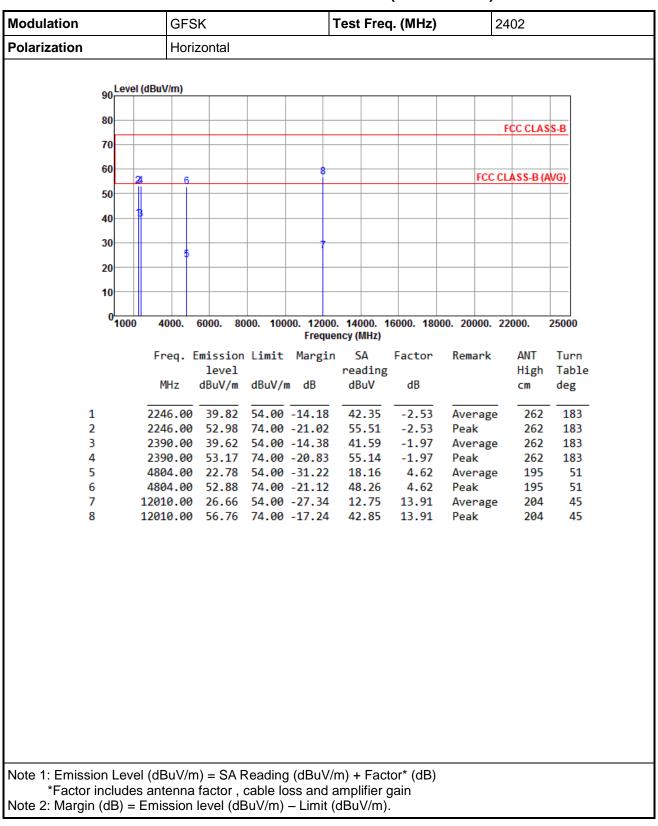
3.


20log (Duty cycle) = 20log
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

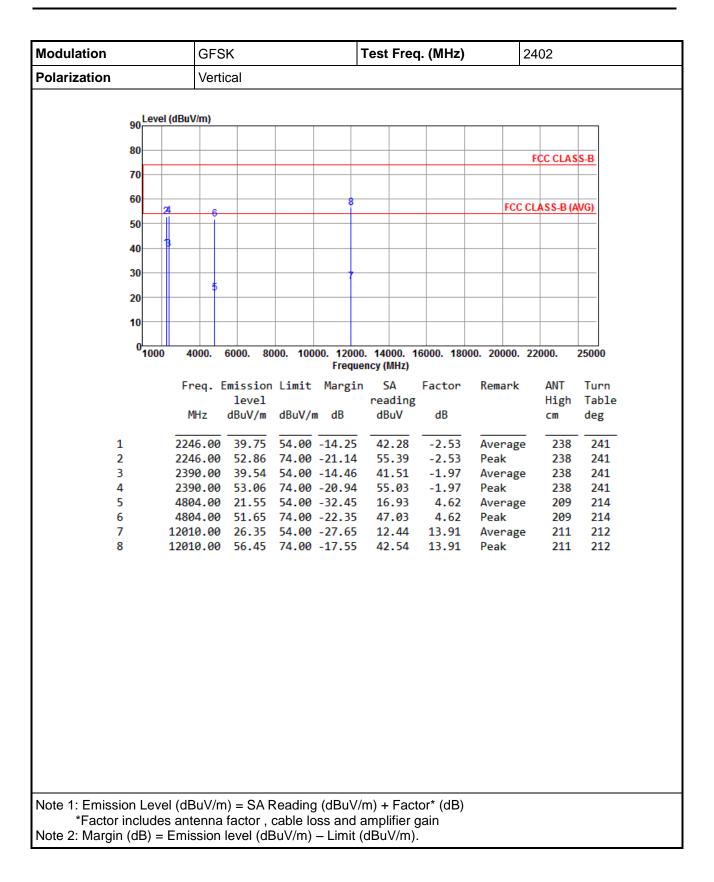
Radiated emission above 1GHz / Average value for other emissions

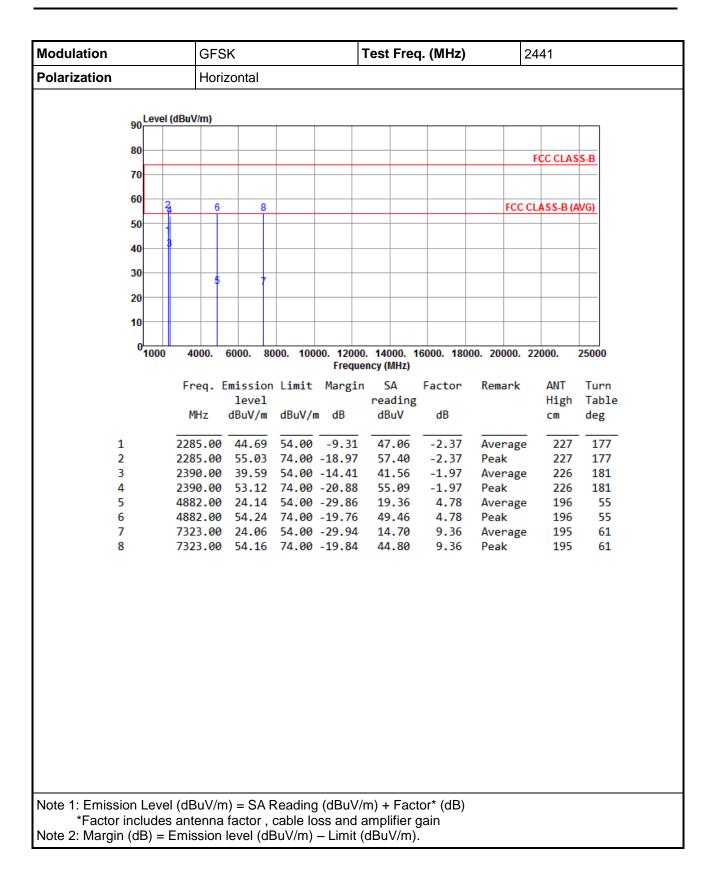

4. RBW=1MHz, VBW=1/T and Peak detector

3.2.3 Test Setup

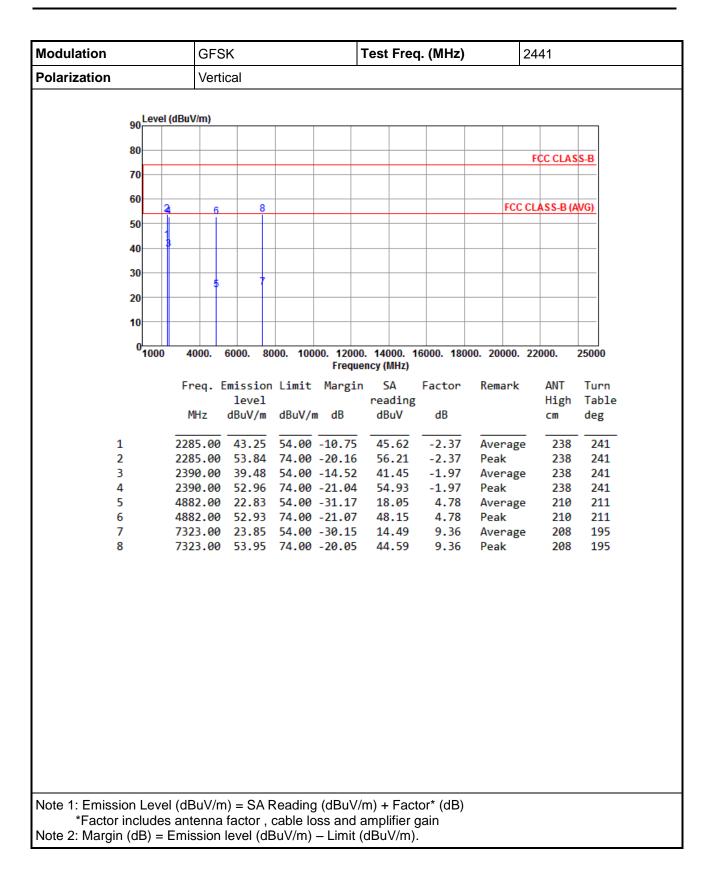


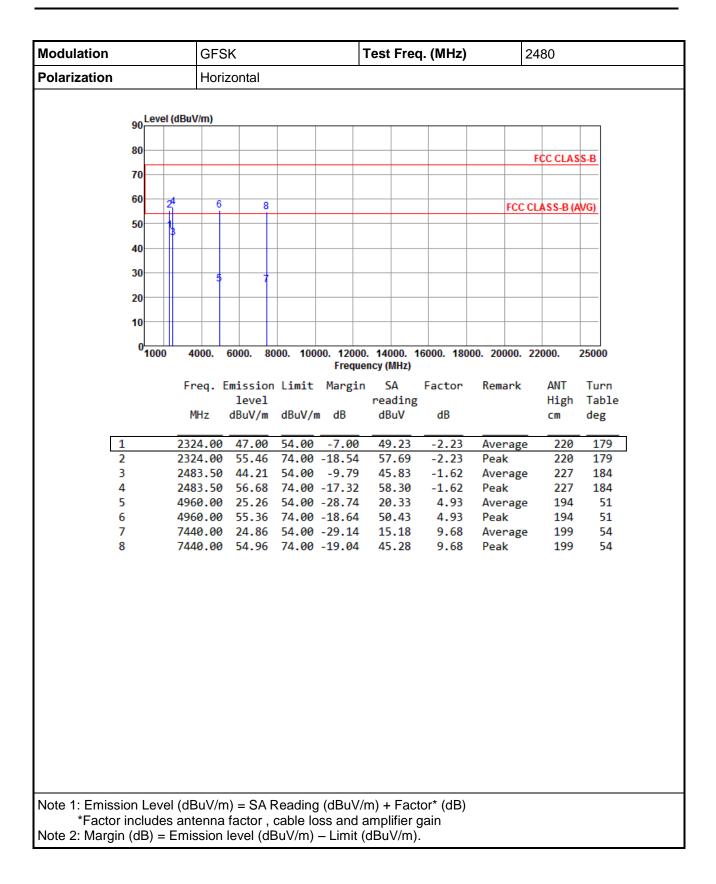
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

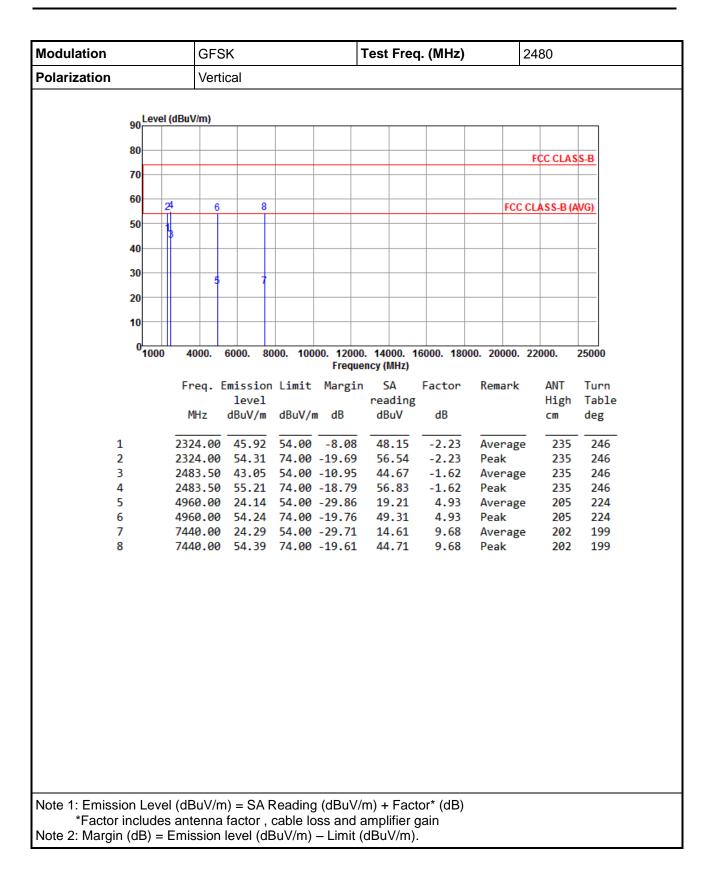

Modulation	GFS	SK		1	Test Fre	q. (l	MHz)		2441	
Polarization	Vert	ical								
Lovel (r	lBuV/m)									
90 Lever (C	ibuv/iii)									
80										
70										
60										
									FCC CL	ASS-B
50										
40										
30	2					; (6			
1			3	Î						
20										
10										
0										
0 <mark> </mark> 30 10	0. 20	0. 30	0. 4	00. 50 Freque	0. 60 ncy (MHz)	0.	700.	800.	900.	1000
	Frea.	Emission	Limit	Margin		Fa	ctor	Remark	ANT	Turn
		level		_	reading	3			Hig	
	MHz	dBuV/m	dBuV/r	n dB	dBuV		dB		cm	deg
1	45.52	23.00	40,00	-17.00	31.36		8.36	Peak		
2		32.69			42.56		9.87	Peak		
3		23.99			29.48		5.49	Peak		
4				-19.45	29.99		3.44	Peak		
5 6				-17.46 -16.16	29.49 30.17		0.95 0.33	Peak Peak		
0	050.02	29.04	40.00	-10.10	50.17	-	0.55	reak		
Note 1: Emission Level										
*Factor includes							า			
Note 2: Margin (dB) = E	mission	ievel (de	∃uv/m)	– Limit (aBuV/m)				

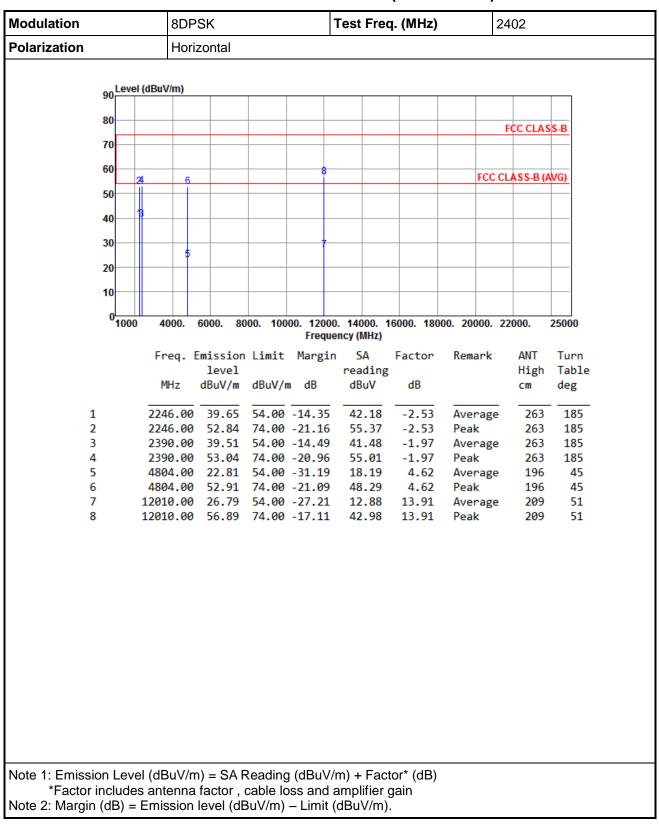


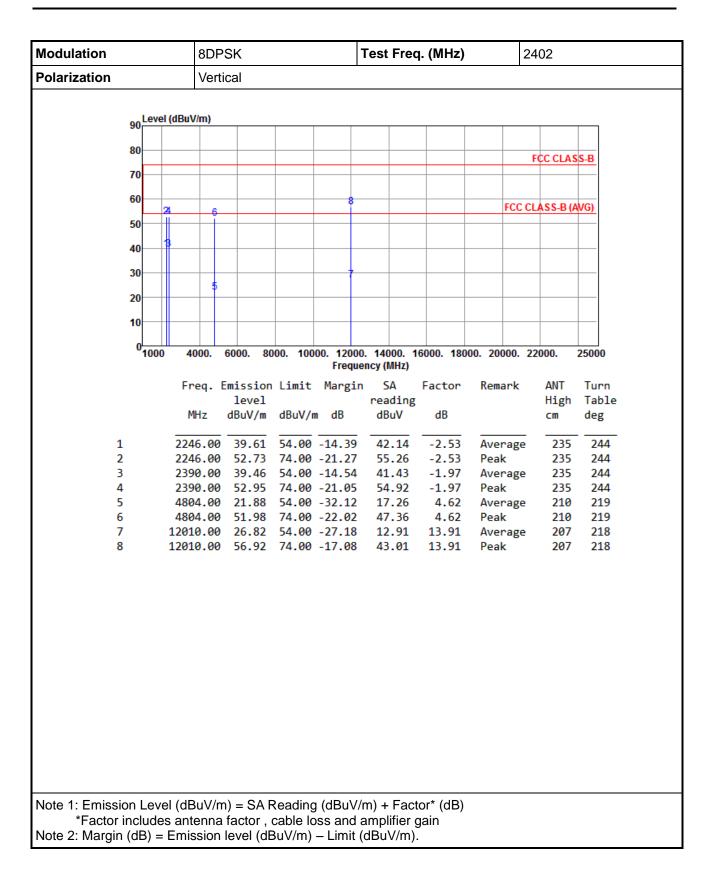
3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

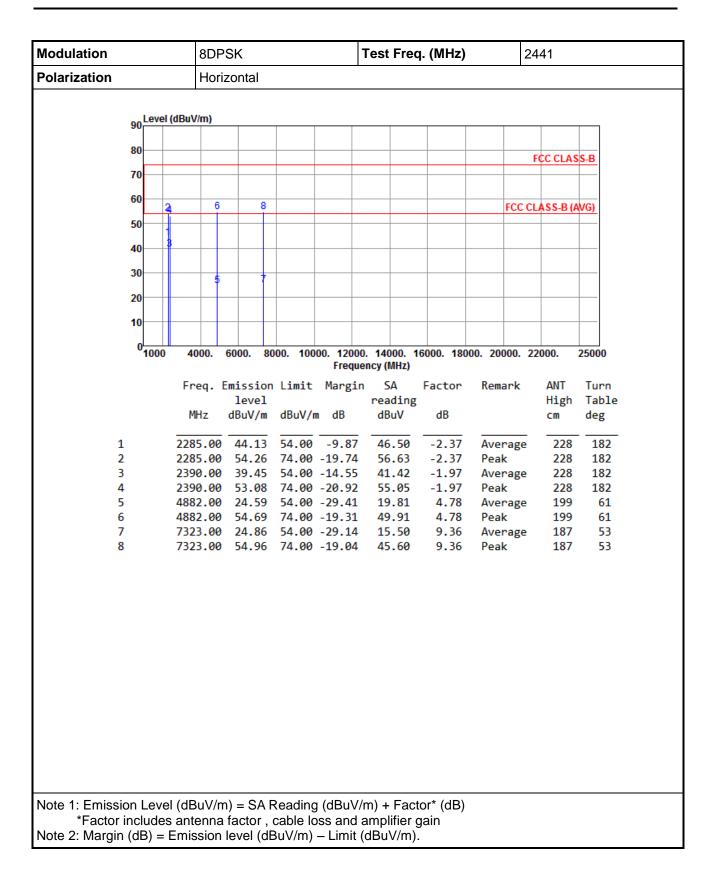




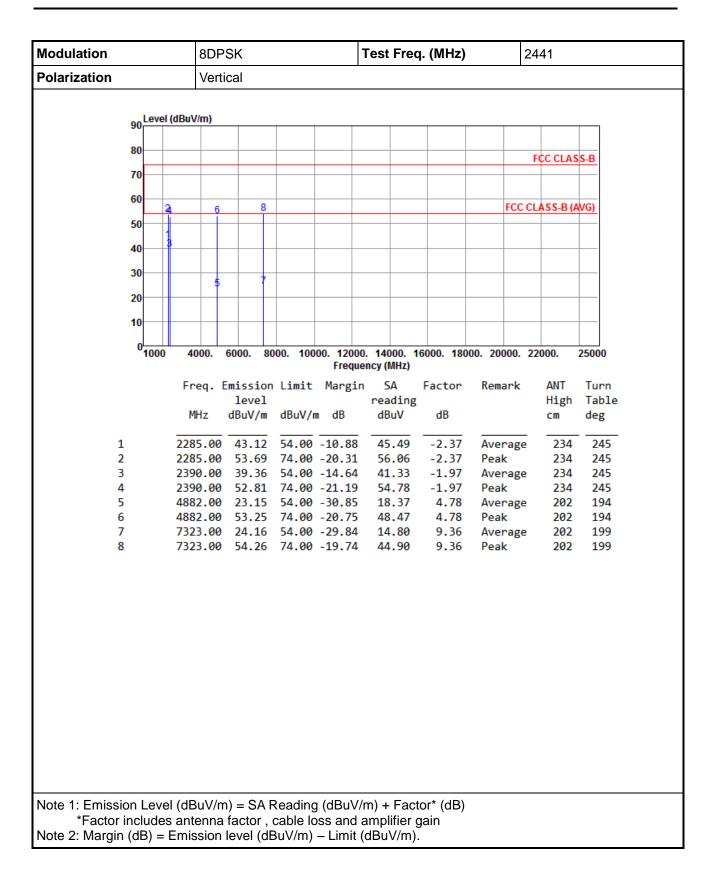


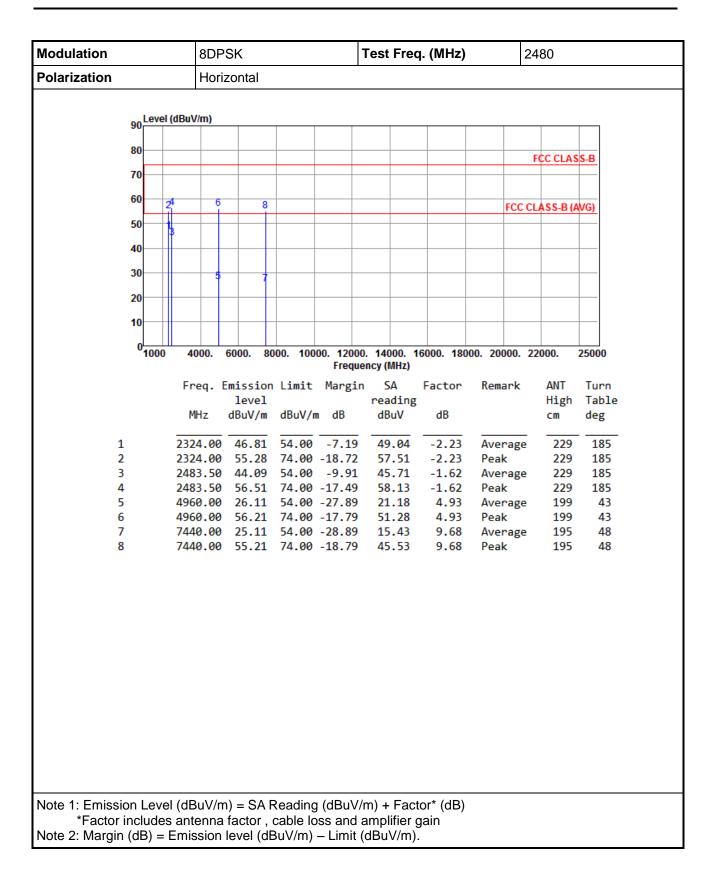


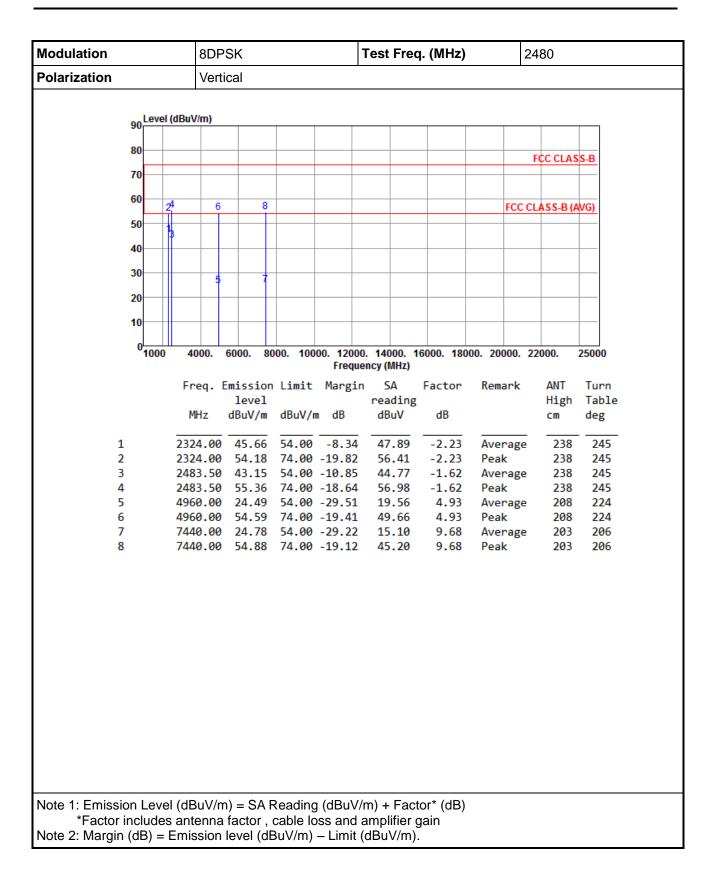




3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK





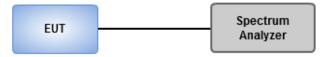


3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.3.2 Test Procedures

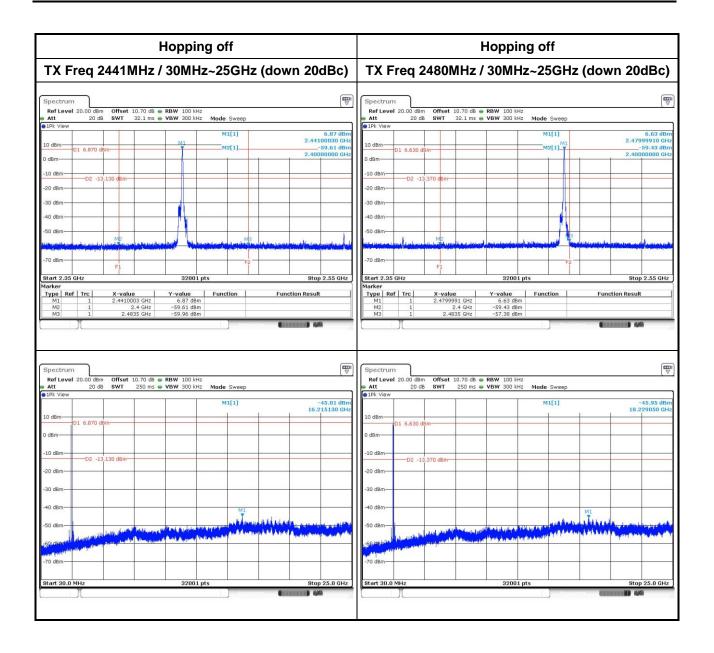

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

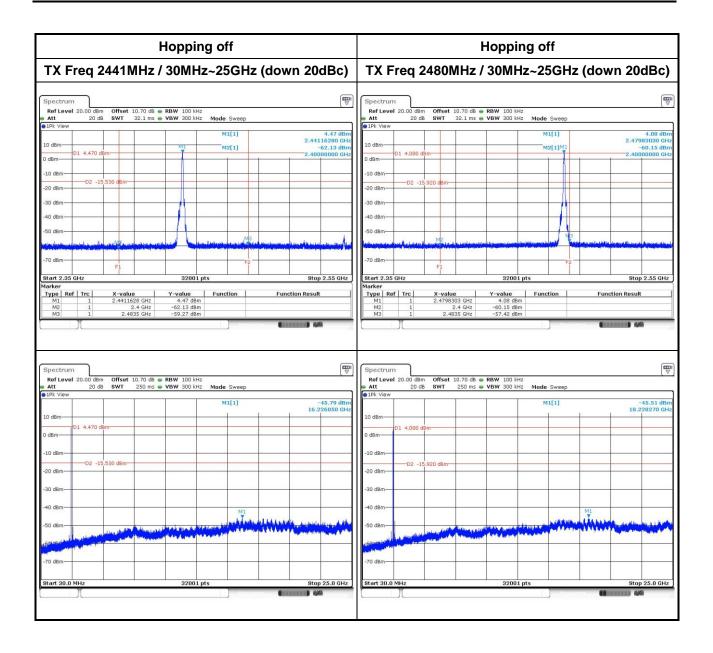
3.3.3 Test Setup



3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

F	lopping on	1					Норр	ing of	f			
30MHz~2	5GHz (dow	n 20dBc)		TX Fre	eq 2402	2MHz	/ 30M	Hz~25	5GHz	z (dov	vn 20	dBc)
Spectrum Ref Level 20.00 dBm Offset 10.70 dB 👄	RBW 100 kHz			Spectrum Ref Level 20	0.00 dBm Offs	et 10.70 dB	RBW 100	kHz				
Att 20 dB SWT 32.1 ms	VBW 300 kHz Mode S	Sweep		Att 1Pk View	20 dB SWT	32.1 ms	VBW 300 I	kHz Mode	Sweep			
10 dBm-	M1	[1] [1]	6.93 dBm 2.45699980 GHz -47.40 dBm 2.4000000 GHz	10 dBm-	6.190 dBm	1			1[1] 2[1]			6.19 dB 216400 GF -38.55 dB 000000 GF
-10 dBm	AUTO-AUTO-A	nių –		0 dBm	-D2 -13,810 der	m						
-20 dBm				-20 dBm	M							
-40 dBm		Barrier toul	in a state of the	-40 dBm					I _{M3}			1
-70 dBmF1		F2	ALLO ANY MANUALLA LA CALLA	-70 dBm	F1				F2 -			
	32001 pts		Stop 2.55 GHz	Start 2.35 GH			3200	01 pts	4		Sto	p 2.55 GHz
				Marker								lt
arker	Y-value Functi 6.93 dBm -47.40 dBm -47.40 dBm -59.38 dBm	on Fund	ction Result	Type Ref M1 M2 M3	1 2.4	alue 102164 GHz 2.4 GHz 2.4835 GHz	Y-value 6.19 d -38.55 d -58.10 d	Bm)	Fur	nction Resu	19
arkar Type Ref Trc X-value M2 1 2.459998 GH2 M3 1 2.459998 GH2 M3 1 2.46935 GH2 Spectrum Ref Level 20.00 dBm Offset 10.70 dB & Att 20 dB SWT 250 ms &	6.93 dBm -47.40 dBm -59.38 dBm	Model Constant		Type Ref M1 M2 M3 M3 Spectrum Ref Level 20 Att M3		et 10.70 dB	6.19 d -38.55 d	8m 8m 8m 8m 9m]	Fur	nction Resu	MA
Spectrum Offset 0.000 (0.000)	6.93 dBm -47.40 dBm -59.38 dBm	Monatorion (Type Ref M1 M2 M2 M3 Spectrum Ref Level 20 Att P1Pk View	1 2.4 1 1 2	et 10.70 dB	6.19 d -38.55 d -58.10 d	8m Bm]	Fur L		-45.76 dB
Spectrum Offset 10.70 dB m Ref Level 20.00 dBm Offset 10.70 dB e Na 1 2.4835 GHz	6.93 dBm -47.40 dBm -59.38 dBm -5	Monatorion (-45.92 dBm	Type Ref M1 M2 M2 M3 Spectrum Ref Level 20 Att 10 dbm	1 2.4 1 1 2	et 10.70 dB	6.19 d -38.55 d -58.10 d	8m Bm) Minani Sweep			-45.76 dB)
Spectrum Offset 10.70 dBm Ref Level 20.00 dBm 0ffset 10.70 dB 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	6.93 dBm -47.40 dBm -59.38 dBm -5	Monatorion (-45.92 dBm	Type Ref M1 M1 M2 M3 M3 M3 Spectrum Ref Level 20 Att IPk View 10 dBm 01	1 2.4 1 1 1 2 0.00 dBm Offs 20 dB SWT 6.190 dBm	et 10.70 dB	6.19 d -38.55 d -58.10 d	8m Bm) Minani Sweep			-45.76 dB)
M1 1 2.459999 6Hz M2 1 2.4 6Hz M3 1 2.4835 GHz Spectrum 0ffset 10.70 dB 10.70 dB Att 20 dB SWT 250 ms 10 dBm 01 6.930 dBm 01 6.930 dBm 0	6.93 dBm -47.40 dBm -59.38 dBm -5	Monatorian (-45.92 dBm	Type Ref M1 M1 M2 M3 M3 M3 Spectrum Ref Level 20 Att IPk View 10 dBm D1 0 dBm D1	1 2.4 1 2 0.00 dBm Offs 20 dB SWT	et 10.70 dB	6.19 d -38.55 d -58.10 d	8m Bm) Minani Sweep			-45.76 dB)
tarker Type Ref Trc X-value M1 1 2.4569908 GH2 M2 1 2.4669908 GH2 M3 1 2.4635 GH2 M3 1 2.4635 GH2 Spectrum Ref Level 20.00 dBm Offset 10.70 dB ● Att 20 dB SWT 250 ms ● 10 dBm 01 6.930 dBm 01 0 dBm 02 -13,070 dBm	6.93 dBm -47.40 dBm -59.38 dBm -5	Monatorian (-45.92 dBm	Type Ref M1 M1 M2 M3 M3 Spectrum Rof Lovel 20 Att ● 1Pk View 10 dBm 10 dBm 01	1 2.4 1 1 1 2 0.00 dBm Offs 20 dB SWT 6.190 dBm	et 10.70 dB	6.19 d -38.55 d -58.10 d	8m Bm) Minani Sweep			-45.76 dBi
Spectrum Offset 10.70 dBm 10 dBm 01 6.930 dBm 02 -13.070 dBm 0.00 dBm 0.02 -13.070 dBm 0.00 dBm	6.93 dBm -77.40 dBm -59.38 d	Monatorian (-45.92 dBm	Type Ref M1 M1 M2 M3 M3 Spectrum Ref Level 20 Att ● 1Pk View 10 dBm 10 dBm 01 -10 dBm	1 2.4 1 2 0.00 dBm Offs: 20 dB SWT 6.190 dBm -D2 -13.810 dBm	et 10.70 dB 2.4 GHz 2.4 GHz 2.4835 GHz 2.4835 GHz 2.00 ms	6.19 d -38.55 d -59.10 d	kH2 KH2 KH2 M3	Sweep	Fur		-45.76 dB
Jarker Trc X-value M1 1 2.4569996 GH2 M2 1 2.4635 GH2 M3 1 2.4635 GH2 Spectrum 20 dB SWT 10 dBm 01 6.930 dBm 10 dBm 02 -13.070 dBm 20 dBm 30 dBm 30 dBm	6.93 dBm -47.40 dBm -59.38 dBm -5	Monatorian (-45.92 dBm	Type Ref M1 M1 M2 M2 M3 M3 Spectrum Ref Level 20 Att ID4 New IO dBm 01 0 dBm 01 -20 dBm -30 dBm	1 2.4 1 2 0.00 dBm Offs: 20 dB SWT 6.190 dBm	et 10.70 dB 250 ms	6.19 d -38.55 d -58.10 d	Att2 Att2 Att2 Att2 Att2 Att2 Att2 Att2	Sweep		18.	-45.76 dB
Iarker Type Ref Trc X-value M1 1 2.4569906 GH2 M2 M2 1 2.4635 GH2 M3 M3 1 2.4635 GH2 M3 Spectrum Ref Level 20.00 dBm Offset 10.70 dB • M1 Att 20 dB SWT 250 ms • 10 dBm 01 6.930 dBm 0 0 0 dBm 02 -13.070 dBm 0 0 30 dBm 04 dBm 04 dBm 04 dBm 04 dBm	6.93 dBm -77.40 dBm -59.38 d	Monatorian (-45.92 dBm	Type Ref M1 M1 M2 M3 M3 Spectrum Ref Level 20 Att ● 1Pk View 10 dBm 10 dBm 01 -10 dBm	1 2.4 1 2 0.00 dBm Offs: 20 dB SWT 6.190 dBm	et 10.70 dB 250 ms	6.19 d -38.55 d -58.10 d	Att2 Att2 Att2 Att2 Att2 Att2 Att2 Att2	Sweep	M1	18.	-45.76 dB
Jarker X-value Type Ref Trc X-value M2 1 2.459996 GH2 M2 M2 1 2.459996 GH2 M2 M3 1 2.4635 GH2 M2 Spectrum GH2 M2 M2 Ref Level 20.00 dBm Offset 10.70 dB • Att 20 dB • JDk View 0 Bm 0 0 dBm 0 dBm D1 6.930 dBm 0 0 0 -10 dBm -D2 -13.070 dBm - - - -20 dBm - - - - - -30 dBm -	6.93 dBm -77.40 dBm -59.38 d	Monatorian (-45.92 dBm	Type Ref M1 M1 M2 M2 M3 M3 Spectrum Ref Level 20 Att ID 4Bm ID 4Bm D1 0 dBm 01 -20 dBm -30 dBm -30 dBm -50 dBm	1 2.4 1 2 0.00 dBm Offs: 20 dB SWT 6.190 dBm -D2 -13.810 dBm -D2 -13.810 dBm	et 10.70 dB 250 ms	6.19 d -38.55 d -59.10 d -59.1	Att2 Att2 Att2 Att2 Att2 Att2 Att2 Att2	Sweep	M1		-45.76 dB



8DPSK

Hopping on	Hopping off	
30MHz~25GHz (down 20dBc)	TX Freq 2402MHz / 30MHz~25GHz (down 200	dBc)
Spectrum Ref Level 20.00 dBm Offset 10.70 dB ● RBW 100 kHz	Image: Spectrum Spectrum Ref Level 20.00 dBm Offset 10.70 dB ● RBW 100 kHz	
Att 20 dB SWT 32.1 ms VBW 300 kHz Mode Sweep	Att 20 dB SWT 32.1 ms VBW 300 kHz Mode Sweep	
01 4.910 dBm	9920 GHz 1.93 dBm 10 dBm <u>(1 M2[1]</u> -3 1000 GHz - 2.4000 2.4000	3.54 dBn 00150 GH 35.29 dBn 00000 GH
-10 dBm	0 dBm	
-20 dBm	-30 dBm-	-
40 dBm	+40 dbm	
-70 dBm F1 F2	-70 dBm F1 F2	i Vnamisljuk
		2.55 GHz
M2 1 2.4 GHz -41.93 dBm M3 1 2.4835 GHz -59.62 dBm	M2 1 2.4 GHz -35.29 dBm M3 1 2.4935 GHz -59.69 dBm)
M3 1 2.4835 GHz -58.62 dBm		
M3 1 2.4835 GHz -59.62 dBm Spectrum	M3 1 2,4935 GHz -58.68 dBm TW Spectrum Ref Level 20.00 dBm Offset 10.70 dB RBW 100 kHz Att 20 dB SWT 250 ms VBW 300 kHz Mode Sweep 4.84 dBm Image: Second Sweep M1[1] -4	45.93 dBr
M3 1 2.4835 GHz -59.62 dBm Spectrum RefLevel 20.00 dBm Offset 10.70 dB • RBW 100 kHz RefLevel 20.00 dBm Offset 10.70 dB • RBW 100 kHz Att 20 dB SWT 250 ms • VBW 300 kHz JDPk View M1[1]	M3 1 2,4935 GHz -58,69 dbm Image: Spectrum Spectrum Image: Spectrum Image: Spectrum Ref Level 20.00 dbm Offset 10,70 db RBW 100 kHz Image: Spectrum Att 20 db SWT 250 ms VBW 300 kHz Image: Image: Image: Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Image: Image: Image: Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Image: Image: Image: Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Image: Image: Image: Spectrum Image: Spectrum Image: Spectrum Image: Spectrum Image: Image: Image: Image: Image: Spectrum Image: Image: Image: Spectrum Image: Image: Spectrum Image: Image: Spectrum Image: I	(▼ 45.93 dBm 35250 GH
M3 1 2.4835 GHz -59.62 dBm Spectrum Ref Loval 20.00 dBm Offset 10.70 dB @ RBW 100 kHz Made Sweep IV VBW 300 kHz Made Sweep 17.80 IV VBW 10 dBm 17.80 0 dBm 01 4.910 dBm 0 17.80 -10 dBm 02 -15.000 dBm 0 0 0	M3 1 2,4935 GHz -58,69 dBm Image: Control of the state of the st	45.93 dBn
M3 1 2.4835 GHz -59.62 dBm Spectrum	M3 1 2.4935 GHz -58.69 dBm Image: Spectrum Ref Level 20.00 dBm Ref Level 20.00 dBm Image: Spectrum R	45.93 dBn
M3 1 2.4825 GHz -59.62 dBm Spectrum Ref Level 20.00 dBm Offset 10.70 dB • RBW 100 kHz Made Sweep 10 Hz 20 dB SWT 250 ms • VBW 300 kHz Made Sweep 10 Hz 01 4.910 dBm 01 4.910 dBm 17.08 10 dBm 01 4.910 dBm 0 0 -10 dBm 02 -15.090 dBm 0 0 -30 dBm 0 0 0 0	M3 1 2,4935 GHz -58,69 dBm Image: Spectrum Spectrum Ref Level 20.00 dBm Offset 10.70 dB RBW 100 kHz Att 20 dB SWT 250 ms VBW 300 kHz Mode Sweep Image: Bit Stress of the st	45.93 dBn
M3 1 2.4835 GHz -58.62 dBm Spectrum Ref Level 20.00 dBm Offset 10.70 dB • RBW 100 kHz Att 20 dB • SWT 250 ms • VBW 300 kHz MdB 0 dBm 12.2.80 10 dBm 0 dBm 12.2.80 -00 dBm -02 -15.090 dBm -01	M3 1 2,4935 GHz -58,69 dBm Image: Spectrum Spectrum Ref Level 20.00 dBm Offset 10.70 dB RBW 100 kHz Att 20 dB SWT 250 ms VBW 300 kHz Mode Sweep 0 lPk View M1[1] -40 10 dBm 01 3.540 dBm 01 3.540 dBm 01 3.540 dBm -10 dBm 02 -16,460 dBm 0 0 -30 dBm 02 -16,460 dBm 0 0	
M3 1 2.4835 GHz -59.62 dBm Spectrum Ref Level 20.00 dBm Offset 10.70 dB RBW 100 kHz Att 20 dB SWT 250 ms VBW 300 kHz I0 dBm 01 4.910 dBm M1[1] 7.86 00 dBm 01 4.910 dBm M1[1] 7.86 -20 dB 02 -15.090 dBm 0 0 0 -30 dBm 02 -15.090 dBm 0 0 0 0 -70 dBm 0 0 0 0 0 0 0 0 -70 dBm 0 0 0 0 0 0 0 0 0 0 0	M3 1 2.4935 GHz -58.69 dBm Spectrum Ref Level 20.00 dBm Offset 10.70 dB RBW 100 HHz Att 20 dB SWT 250 ms VBW 300 HHz I.84 dBm M11 1.5.70 M11 -7 I.84 dBm Oldsm D1 3.540 dBm M11 -7 I.04 dBm O2 -16.460 dBm M11 M11 M11 -30 dBm	45.93 dBn

3.4 Conducted Output Power

3.4.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

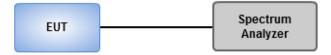
Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	4.25	6.28	125
GFSK	2441	5.06	7.04	125
GFSK	2480	4.84	6.85	125
л /4 DQPSK	2402	3.06	4.86	125
л /4 DQPSK	2441	3.77	5.76	125
л /4 DQPSK	2480	3.22	5.08	125
8DPSK	2402	3.32	5.21	125
8DPSK	2441	4.13	6.16	125
8DPSK	2480	3.66	5.64	125

3.4.4 Test Result of Conducted Output Power

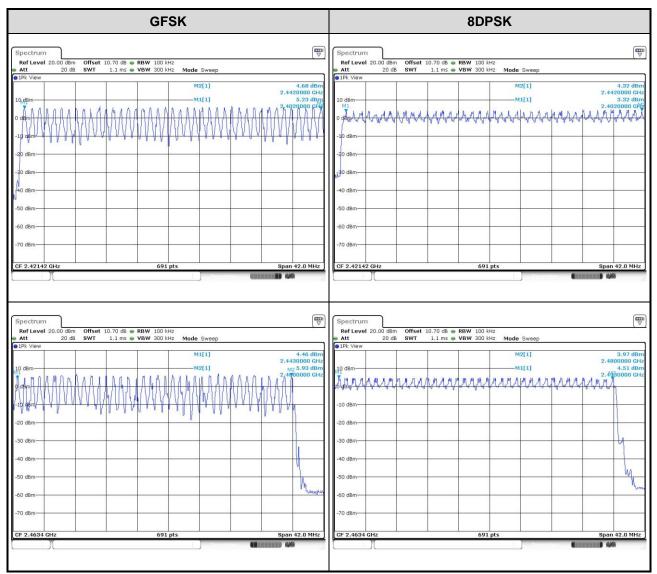
Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	4.02	6.04
GFSK	2441	4.83	6.84
GFSK	2480	4.60	6.63
л /4 DQPSK	2402	1.82	2.59
л /4 DQPSK	2441	2.30	3.61
л /4 DQPSK	2480	1.91	2.81
8DPSK	2402	1.82	2.60
8DPSK	2441	2.31	3.63
8DPSK	2480	2.05	3.11

Note: Average power is for reference only.

3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


3.5.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.5.3 Test Setup

3.5.4 Test Result of Number of Hopping Frequency

3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures


20dB Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

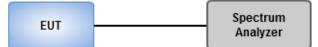
3.6.2 Test Setup

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	0.943	0.868
GFSK	2441	0.935	0.858
GFSK	2480	0.935	0.860
8DPSK	2402	1.261	1.168
8DPSK	2441	1.257	1.173
8DPSK	2480	1.257	1.172

3.6.3 Test result of 20dB and Occupied Bandwidth

Worst Plot of 20dB Bandwi	Worst Plot of Occupied Bandwidth							
Spectrum Ref Level 20.00 dBm Offset 10.70 dB RBW 30 kHz Att 20 dB SWT 1.1 ms VBW 100 kHz Mode Sweep DFV Kiew DFV Kiew DFV Kiew DFV Kiew DFV Kiew DFV Kiew		Spectrum Ref Level 2 Att	0.00 dBm 20 dB	Offset 10.70 dB SWT 3 ms	 RBW 30 kHz VBW 100 kHz 	Mode Sweep		(q
10 dBm 01 2.432 dBm 01 01 00000000000000000000000000000000	-17.50 dBm 2:40135217 GHz 1.167872648 MHz 0.35 dB -1.26087 MHz	10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	~~~~		me me	M1[1]		3.55 (d) 2.440997500 G 1.173090000 M
-50 dBm		-70 dBm	2		3000 pt	5		Span 3.0 MH
-70 dBm - F1 - F2	Span 3.0 MHz	Marker Type Ref M1 T1 T2 T2	Trc	X-value 2.4409975 GHz 2.4404015 GHz 2.4415745 GHz	Y-value 3.55 dBm -15.30 dBm -13.32 dBm	Function Occ Bw	Fund	ction Result 1.173 MH:
07 2.702 012 091 pts	Span 3.0 MHZ		(and and and a	10.06 00III			1000 B 449

3.7 Channel Separation


3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

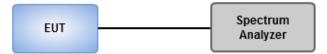
3.7.3 Test Setup

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.003	0.943	0.629
GFSK	2441	1.003	0.935	0.623
GFSK	2480	1.003	0.935	0.623
8DPSK	2402	1.003	1.261	0.841
8DPSK	2441	1.003	1.257	0.838
8DPSK	2480	1.003	1.257	0.838

3.7.4 Test result of Channel Separation

Worst Plot						
Spectrum						
Ref Level 20.00 dBm	Offset 10.70 dB 🖷 F	RBW 100 kHz		(*)		
	🖷 SWT 10 ms 🖷 V	VBW 300 kHz Mode	: Sweep			
●1Pk View●2Pk View						
		D2	2[2]	0.00 dB 1.00290 MHz		
10 dBm		M	1[1]	4.56 dBm		
	M1			2.44083140 GHz		
0 dBm						
-10 dBm		/				
-20 dBm-		\leftarrow				
-30 dBm			have the second			
-50 dBm				hun warden have		
-60 dBm						
-70 dBm						
CF 2.4415 GHz		691 pts		Span 3.0 MHz		
			Measuring	444		

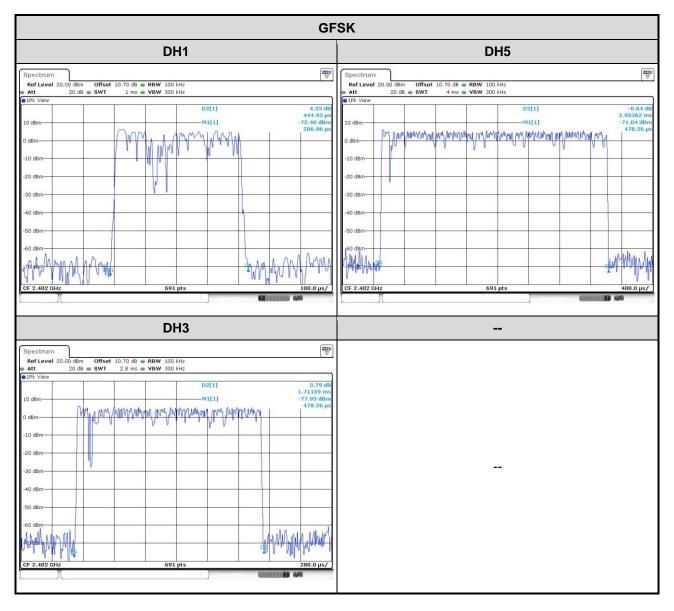
3.8 Number of Dwell Time

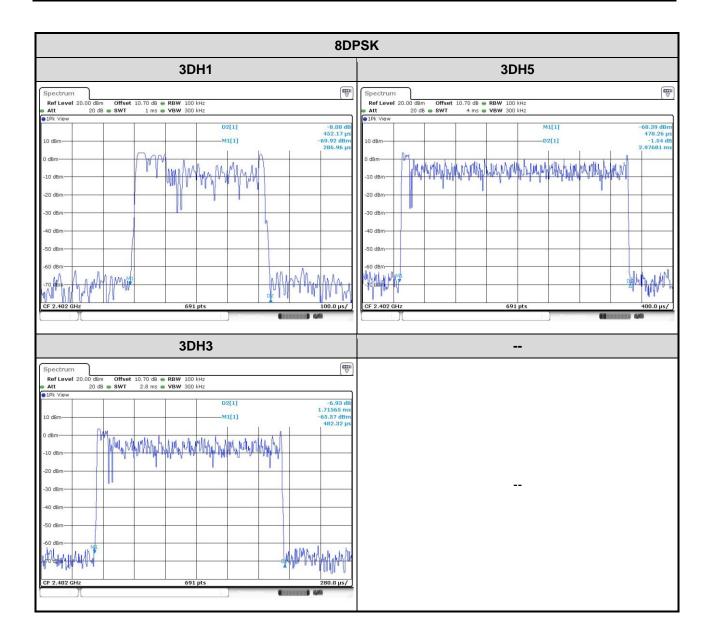

3.8.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.8.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- 5 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds


3.8.3 Test Setup



3.8.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 31.6 (79 Hopping*0.4)	Result (s)	Limit (s)
GFSK-DH1	2402	0.44493	320	0.142	0.4
GFSK-DH3	2402	1.71159	160	0.274	0.4
GFSK-DH5	2402	2.95362	106.6	0.315	0.4
8DPSK-DH1	2402	0.45217	320	0.145	0.4
8DPSK-DH3	2402	1.71565	160	0.275	0.4
8DPSK-DH5	2402	2.97681	106.6	0.317	0.4

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—