

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1504RSU03002 Report Version: Issue Date: 05-18-2015

RF Exposure Evaluation Declaration

FCC ID: 2AC9MDSL100FNT1V2

APPLICANT: Wuxi Mitrastar Technology Co., Ltd

Application Type: Certification

Product: Modem BHS MINI Mitrastar

Model No.: DSL-100FN-T1 v2

Trademark: MitraStar

FCC Classification: Digital Transmission System (DTS)

Reviewed By : Robin Wu (Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description Issue [
1504RSU03002	Rev. 01	Initial report	05-18-2015

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Modem BHS MINI Mitrastar
Model No.	DSL-100FN-T1 v2
Frequency Range	802.11b/g/n-HT20: 2412 ~ 2462 MHz
	802.11n-HT40: 2422 ~ 2452 MHz
Maximum Output Power	802.11b: 19.49dBm
	802.11g: 17.89dBm
	802.11n-HT20: 20.36dBm
	802.11n-HT40: 19.73dBm
Type of Modulation	802.11b: DSSS
	802.11g/n: OFDM

1.2. Antenna Description

Antenna Type	Frequency Band (GHz)	T _X Paths	Max Peak Gain (dBi)	Directional Gain (dBi)
PCB Antenna	2.4	2	Ant 0: 3.2 Ant 1: 3.1	3.2

Note: Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			f/1500	6
1500-100,000			1	30

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	Nodem BHS MINI Mitrastar	
Test Item	RF Exposure Evaluation	

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 3.2dBi for 2.4GHz in logarithm scale.

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
802.11b	2412 ~ 2462	19.49	0.0370	1
802.11g	2412 ~ 2462	17.89	0.0256	1
802.11n-HT20	2412 ~ 2462	20.36	0.0452	1
802.11n-HT40	2422 ~ 2452	19.73	0.0391	1

Report No.: 1504RSU03002

CONCULISON:

The WLAN 2.4GHz Band can transmit simultaneously. Therefore, the Max Power Density at R (20 cm) = $0.0452 \text{mW/cm}^2 < 1 \text{mW/cm}^2$.

So the EUT complies with the requirement.

The End	
— 1116 =110	