

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 1 of 111

TEST REPORT

Application No.:	KSCR2311002168AT
FCC ID:	2AC8UA2324
IC:	21806-A2324
Applicant:	Anhui Huami Information Technology Co., Ltd.
Address of Applicant:	7/F, Building B2, Huami Global Innovation Center, No. 900, Wangjiang West Road, High-tech Zone, Hefei City, China (Anhui) Pilot Free Trade Zone(230088)
Manufacturer:	Anhui Huami Information Technology Co., Ltd.
Address of Manufacturer:	7/F, Building B2, Huami Global Innovation Center, No. 900, Wangjiang West Road, High-tech Zone, Hefei City, China (Anhui) Pilot Free Trade Zone(230088)
Equipment Under Test (EUT):	
EUT Name:	Smart Watch
Model No.:	A2324
Trade Mark:	AMAZFIT
Standard(s) :	47 CFR Part 15, Subpart C 15.247
	RSS-247 Issue 3, August 2023
	RSS-Gen Issue 5 Amendment 2 (February 2021)
Date of Receipt:	2023-11-29
Date of Test:	2024-01-20 to 2024-01-25
Date of Issue:	2024-01-30
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 2 of 111

Revision Record					
Version	Description	Date	Remark		
00	Original	2024-01-30	/		

Authorized for issue by:		
Tested By	Damon zhou	
	Damon_Zhou/Project Engineer	
Approved By	Verry Hon	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 3 of 111

2 Test Summary

Radio Spectrum Tech Item	FCC Requirement	IC Requirement	Method	Result
Antenna Requirement	47 CFR Part 15,	RSS-Gen Clause 6.8	N/A	Customer Declaration
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	RSS-247 Section 5.1(a)	N/A	Pass
N/A: Not applicable				
Radio Spectrum Matt	er Part			
Item	FCC Requirement	IC Requirement	Method	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.207	RSS-Gen Section 8.8	ANSI C63.10 (2013) Section 6	.2 Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247(b)(1)	RSS-247 Section 5.4(b)	ANSI C63.10 (2013) Section 7.8.5	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247(a)(1)	RSS-247 Section 5.1(a)	ANSI C63.10 (2013) Section 7.8.7	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247a(1)	RSS-247 Section 5.1(b)	ANSI C63.10 (2013) Section 7.8.2	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247a(1)(iii)	RSS-247 Section 5.1(d)	ANSI C63.10 (2013) Section 7.8.3	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247a(1)(iii)	RSS-247 Section 5.1(d)	ANSI C63.10 (2013) Section 7.8.4	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Section 5.5	ANSI C63.10 (2013) Section 7.8.6	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Section 5.5	ANSI C63.10 (2013) Section 7.8.8	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.205 & 15.209	RSS-247 Section 3.3 & RSS-Gen Section 8.9	ANSI C63.10 (2013) Section 6.10.5	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.205 & 15.209	RSS-247 Section 3.3 & RSS-Gen Section 8.9	ANSI C63.10 (2013) Section 6.4,6.5,6.6	Pass
99% Bandwidth	-	RSS-Gen Section 6.7	ANSI C63.10 Section 6.9.3	Pass

-CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 4 of 111

3 Contents

			Page
1	COV	/ER PAGE	1
2	Tes	t Summary	3
3	Cor	tents	4
4	Ger	eral Information	5
	4.1	Details of E.U.T.	5
	4.2	Power level setting using in test:	
	4.3	Description of Support Units	5
	4.4	Measurement Uncertainty	
	4.5	Test Location	
	4.6	Test Facility	
	4.7	Deviation from Standards	
	4.8	Abnormalities from Standard Conditions	7
5	Equ	ipment List	8
6	Rad	io Spectrum Technical Requirement	9
	6.1	Antenna Requirement	9
	6.2	Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	10
7	Rad	io Spectrum Matter Test Results	11
	7.1	Conducted Peak Output Power	11
	7.2	20dB Bandwidth	13
	7.3	Carrier Frequencies Separation	
	7.4	Hopping Channel Number	
	7.5	Dwell Time	
	7.6	Conducted Band Edges Measurement	
	7.7	Conducted Spurious Emissions	
	7.8 7.9	Radiated Emissions which fall in the restricted bands	
	7.9 7.10	Radiated Spurious Emissions Below 1GHz Radiated Spurious Emissions Above 1GHz	
	7.10	99% Bandwidth	
8		t Setup Photo	
9	FUI	Constructional Details (EUT Photos)	59
1	0 App	endix	60

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 5 of 111

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.87V by Rechargeable Li-ion Battery
	Battery model:PL502025 1ICP5/20/25 HTLIB
	Rated Capacity:3.87V/300mAh/1.16Wh
	Charging limit voltage:4.45V
Operation Frequency:	2402MHz to 2480MHz
Bluetooth Version:	V5.2 Dual mode
Modulation Type:	GFSK, pi/4DQPSK, 8DPSK
Number of Channels:	79
Channel Spacing:	1MHz
Spectrum Spread Technology:	Frequency Hopping Spread Spectrum(FHSS)
Antenna Type:	PIFA Antenna
Antenna Gain:	-5.49dBi (Provided by the manufacturer)
Serial Number:	E2330045
Firmware version:	V1.0

4.2 Power level setting using in test:

Channel	DH	2DH	3DH
Channel	Ant 1	Ant 1	Ant 1
0	default	default	default
39	default	default	default
78	default	default	default

4.3 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Notebook	Lenovo	/	/

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 6 of 111

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty	
1	Radio Frequency	8.4 x 10 ⁻⁸	
2	Timeout	2s	
3	Duty Cycle	0.37%	
4	Occupied Bandwidth	3%	
5	RF Conducted Power	0.6dB	
6	RF Power Density	2.9dB	
7	Conducted Spurious Emissions	0.75dB	
8	RF Radiated Power	5.2dB (Below 1GHz)	
0	KF Radiated Fower	5.9dB (Above 1GHz)	
		4.2dB (Below 30MHz)	
9	Radiated Spurious Emission Test	4.5dB (30MHz-1GHz)	
9		5.1dB (1GHz-18GHz)	
		5.4dB (Above 18GHz)	
10	Temperature Test	1°C	
11	Humidity Test	3%	
12	Supply Voltages	1.5%	
13	Time	3%	
Note: approx	The measurement uncertainty represents imately the 95% confidence level using a coverage		

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 7 of 111

4.5 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China.

Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1. SGS is not responsible for wrong test results due to incorrect information (e.g., max. internal working frequency, antenna gain, cable loss, etc) is provided by the applicant. (If applicable).

2. SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (If applicable).

3. Sample source: sent by customer.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 8 of 111

5 Equipment List

ltem	Equipment	Manufactur	er Model	Inventory No	Cal Date	Cal. Due Date
Conduc	ted Emission at Mains Term	inals (150kHz-30MH	z)			
1	EMI Test Receive	R&S	ESCI	KS301101	01/15/2024	01/14/2025
2	LISN	R&S	ENV216	KS301197	01/15/2024	01/14/2025
3	LISN	Schwarzbeck	NNLK 8129	KS301091	01/15/2024	01/14/2025
4	Pulse Limiter	R&S	ESH3-Z2	KUS1902E001	01/15/2024	01/14/2025
5	CE test Cable	Thermax	/	CZ301102	01/15/2024	01/14/2025
6	Test Software	Farad	EZ-EMC	/	N.C.R	N.C.R
RF Con	ducted Test					
1	Spectrum Analyzer	Keysight	N9020A	KUS1911E004-2	08/24/2023	08/23/2024
2	Spectrum Analyzer	Keysight	N9020A	KUS2001M001-2	08/24/2023	08/23/2024
3	Spectrum Analyzer	Keysight	N9030B	KSEM021-1	01/15/2024	01/14/2025
4	Signal Generator	R&S	SMBV100B	KSEM032	03/16/2023	03/15/2024
5	Signal Generator	R&S	SMW200A	KSEM020-1	08/24/2023	08/23/2024
6	Signal Generator	Agilent	N5182A	KUS2001M001-1	08/24/2023	08/23/2024
7	Radio Communication Test Station	Anritsu	MT8000A	KSEM001-1	08/24/2023	08/23/2024
8	Radio Communication Analyzer	Anritsu	MT8821C	KSEM002-1	03/16/2023	03/15/2024
9	Universal Radio Communication Tester	R&S	CMW500	KUS1911E004-1	08/24/2023	08/23/2024
10	Switcher	TST	FY562	KUS2001M001-4	01/15/2024	01/14/2025
11	AC Power Source	EXTECH	6605	KS301178	N.C.R	N.C.R
12	DC Power Supply	Aglient	E3632A	KS301180	N.C.R	N.C.R
13	Conducted Test Cable	Thermax	RF01-RF04	CZ301111- CZ301120	01/15/2024	01/14/2025
14	Temp. / Humidity Chamber	TERCHY	MHK-120AK	KS301190	08/24/2023	08/23/2024
15	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-5	03/22/2023	03/21/2024
16	Software	BST	TST-PASS	/	N/A	N/A
RF Radi	iated Test					
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024
2	Universal Radio Communication Tester	R&S	CMW500	KSEM009-1	03/16/2023	03/15/2024
3	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Bilog Antenna	SCHWARZBECK	VULB9160	CZ301016	04/13/2021	04/12/2024
7	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	08/24/2023	08/23/2024
8	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	02/21/2023	02/20/2024
9	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	02/26/2023	02/25/2024
10	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2024	01/14/2025
11	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/24/2023	08/23/2024
12	RE Test Cable	REBES MICROWAVE	/	CZ301097	08/24/2023	08/23/2024
13	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/22/2023	03/21/2024
14	Software	Faratronic	EZ_EMC-v 3A1	/	N/A	N/A
15	Software	ESE	E3_V 6.111221a	/	N/A	N/A

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 9 of 111

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA antenna and no consideration of replacement. The best case gain of the antenna is -5.49dBi.

Antenna location: Refer to internal photo.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 10 of 111

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

Standard Requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):

According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

> Number of shift register stages: 9

- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 11 of 111

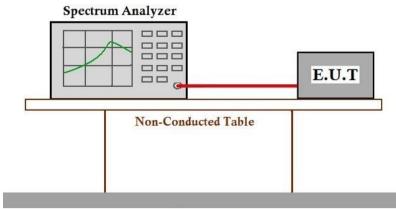
7 Radio Spectrum Matter Test Results

7.1 Conducted Peak Output Power

Test Requirement47 CFR Part 15, Subpart C 15.247(b)(1)Test Method:ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation


7.1.1 E.U.T. Operation

Operating Enviro	nment:					
Temperature:	20.6 °C	Humidity:	50.4 % RH	Atmospheric Pressure:	1010	mbar

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.1.3 Test Setup Diagram

Ground Reference Plane

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 12 of 111

7.1.4 Measurement Procedure and Data

Note: Since the verify power the same operating range bandwidth and smaller power can be covered by the higher power.

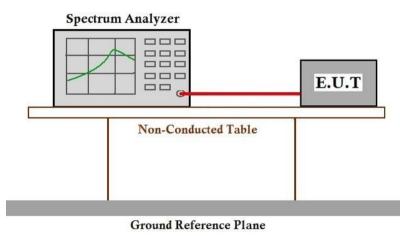
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 13 of 111

7.2 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.7

7.2.1 E.U.T. Operation


Operating Environment: Temperature: 20.6 °C Humidity: 50.4 % RH Atmospheric Pre

Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.2.3 Test Setup Diagram

7.2.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

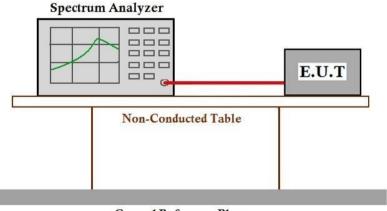
Report No.: KSCR231100216801 Page: 14 of 111

7.3 Carrier Frequencies Separation

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.2

Limit:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


7.3.1 E.U.T. Operation

Operating Environment:							
Temperature:	20.6 °C	Humidity:	50.4 % RH	Atmospheric Pressure:	1010	mbar	

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.3.3 Test Setup Diagram

Ground Reference Plane

7.3.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

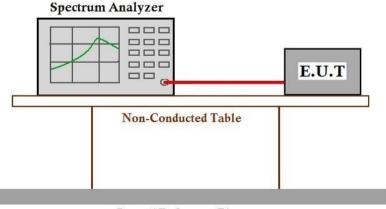
Report No.: KSCR231100216801 Page: 15 of 111

7.4 Hopping Channel Number

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method:	ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range(MHz)	Number of hopping channels (minimum)
002.028	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75


7.4.1 E.U.T. Operation

Operating Enviror	nment:					
Temperature:	20.6 °C	Humidity:	50.4 % RH	Atmospheric Pressure:	1010	mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.4.3 Test Setup Diagram

Ground Reference Plane

7.4.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

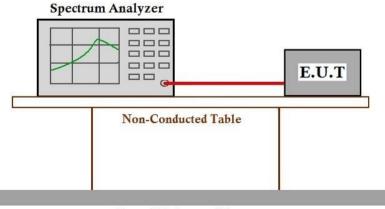
Report No.: KSCR231100216801 Page: 16 of 111

7.5 Dwell Time

Test Requirement	47 CFR Part 15, Subpart C 15.247a(1)(iii)
Test Method:	ANSI C63.10 (2013) Section 7.8.4

Limit:

Frequency(MHz)	Limit
902-928	0.4S within a 20S period(20dB bandwidth<250kHz)
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)
0400 0400 5	0.4S within a period of 0.4S multiplied by the number
2400-2483.5	of hopping channels
5725-5850	0.4S within a 30S period


7.5.1 E.U.T. Operation

Operating Enviro	onment:				
Temperature:	20.6 °C	Humidity:	50.4 % RH	Atmospheric Pressure: 1010	mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.5.3 Test Setup Diagram

Ground Reference Plane

7.5.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 17 of 111

7.6 Conducted Band Edges Measurement

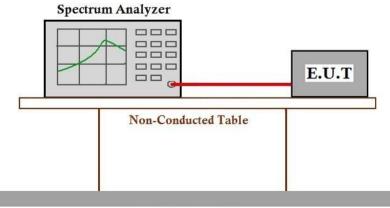
Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.6

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

7.6.1 E.U.T. Operation

Operating Environment: Temperature: 20.6 °C


Humidity: 50.4 % RH

Atmospheric Pressure: 1010 mbar

7.6.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.
Final test	01	TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.6.3 Test Setup Diagram

Ground Reference Plane

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 18 of 111

7.6.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 19 of 111

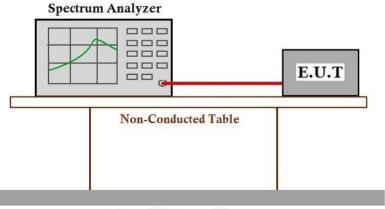
7.7 Conducted Spurious Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 7.8.8

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

7.7.1 E.U.T. Operation


Operating Environment: Temperature: 20.6 °C Humidity: 50.4 % RH Atmosph

Atmospheric Pressure: 1010 mbar

7.7.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.7.3 Test Setup Diagram

Ground Reference Plane

7.7.4 Measurement Procedure and Data

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 20 of 111

7.8 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Measurement Distance:	3M

Limit:

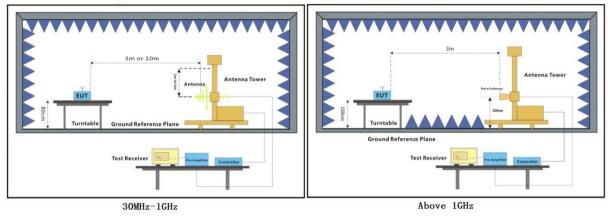
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.8.1 E.U.T. Operation

Operating Environment:						
Temperature:	23.2 °C	Humidity:	45.6 % RH	Atmospheric Pressure:	1010	mbar

7.8.2 Test Mode Description


Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 21 of 111

7.8.3 Test Setup Diagram

7.8.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

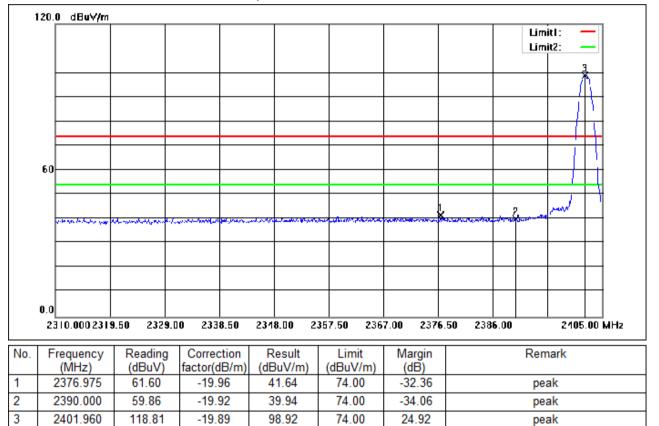
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

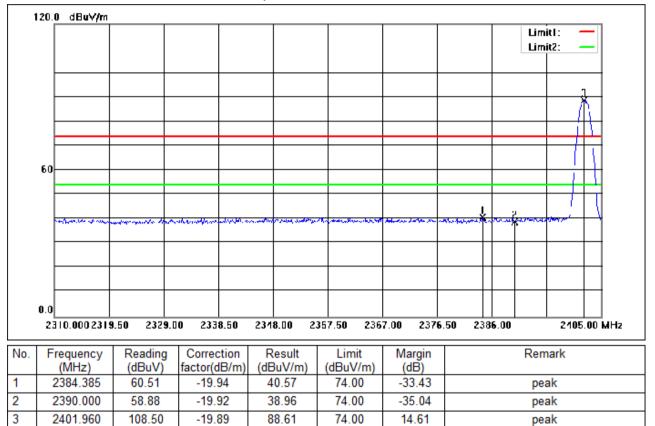
j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

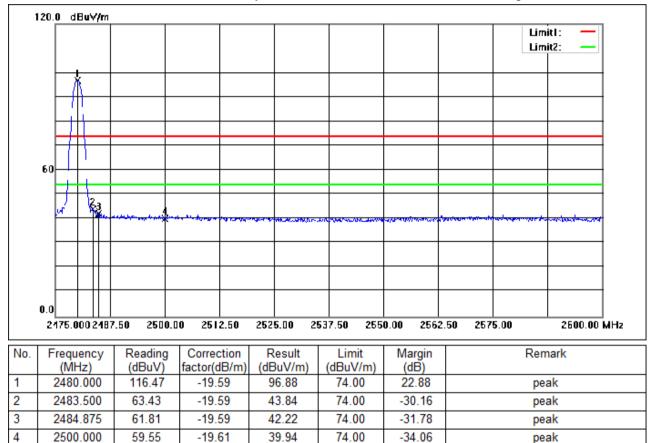
Report No.: KSCR231100216801 Page: 22 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

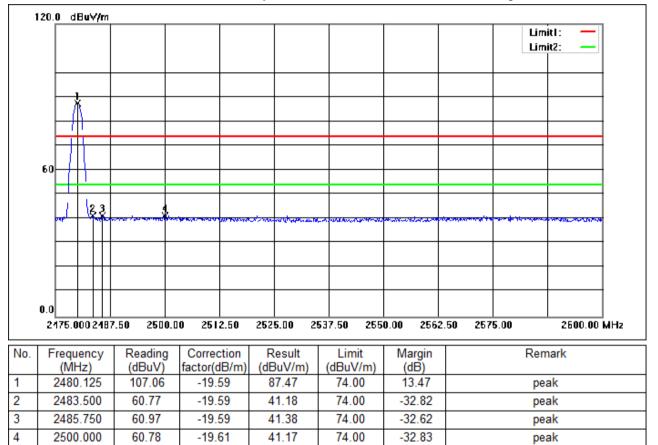
Report No.: KSCR231100216801 Page: 23 of 111



Test Mode: 00; Polarity: Vertical; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

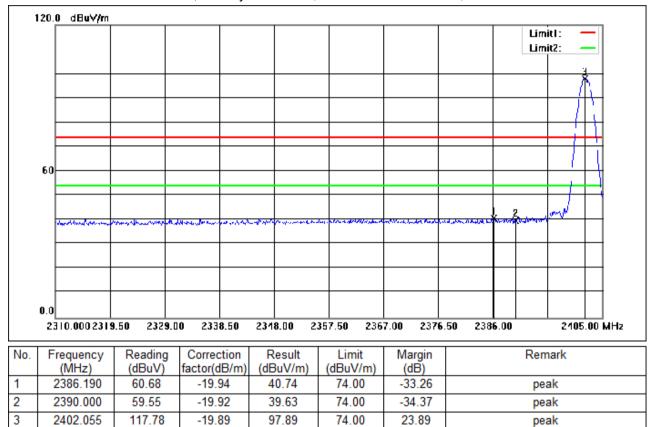
Report No.: KSCR231100216801 Page: 24 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

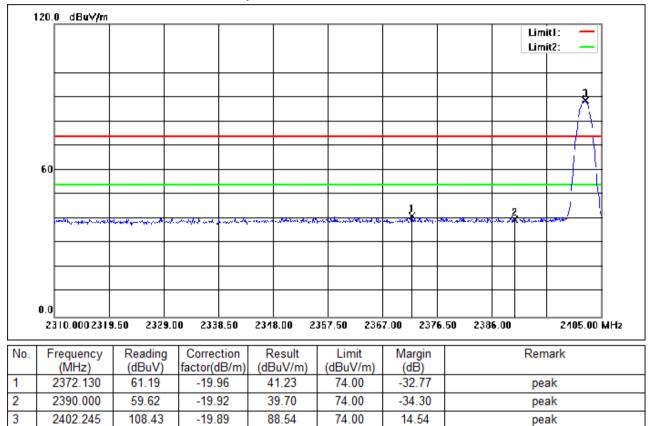
Report No.: KSCR231100216801 Page: 25 of 111



Test Mode: 00; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

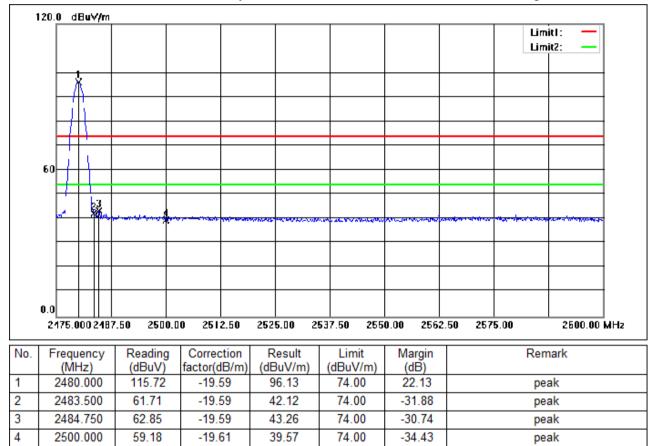
Report No.: KSCR231100216801 Page: 26 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

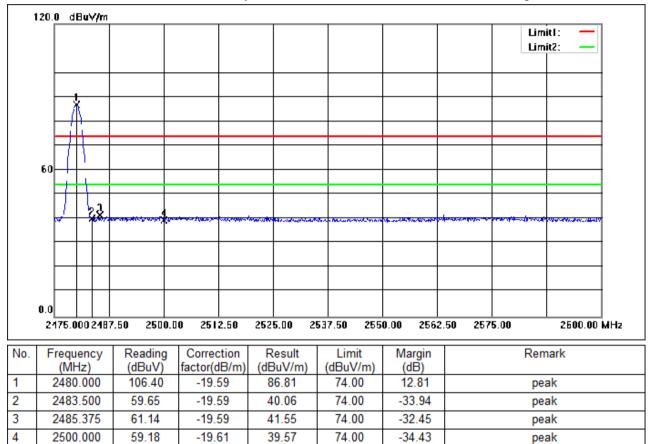
Report No.: KSCR231100216801 Page: 27 of 111



Test Mode: 00; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

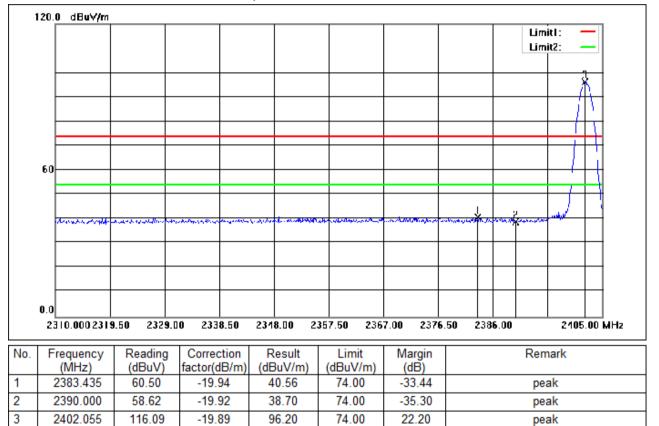
Report No.: KSCR231100216801 Page: 28 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

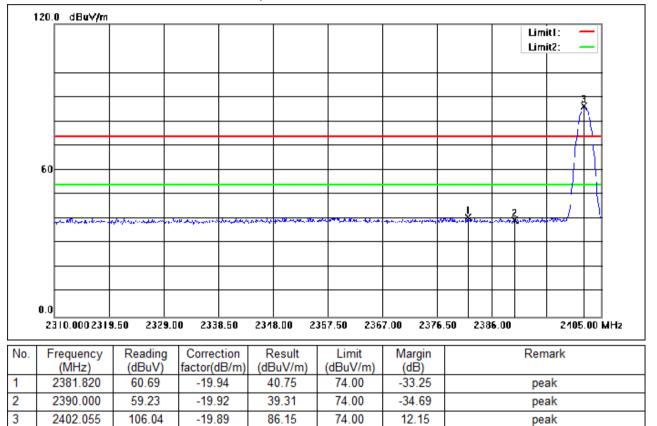
Report No.: KSCR231100216801 Page: 29 of 111



Test Mode: 00; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

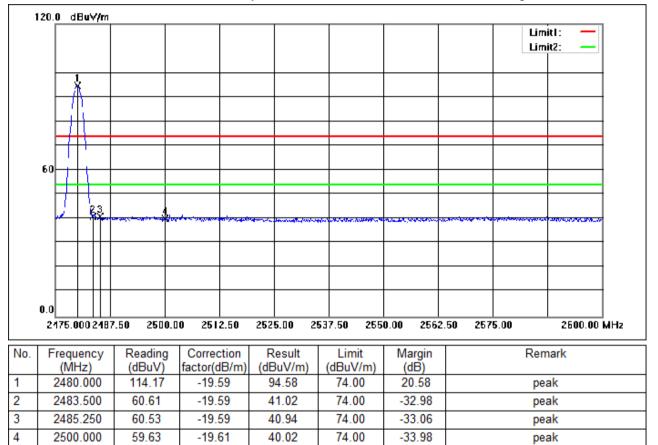
Report No.: KSCR231100216801 Page: 30 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

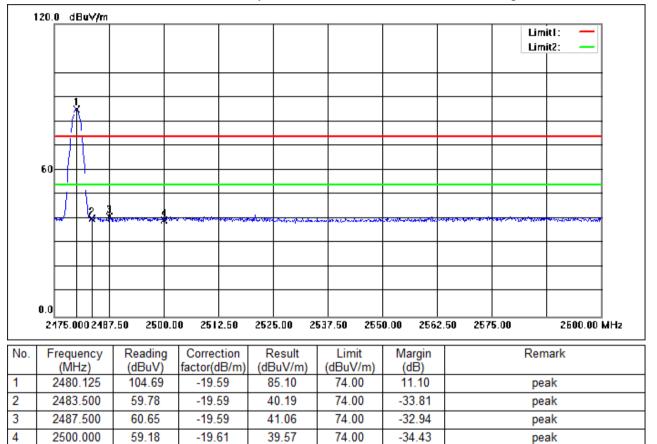
Report No.: KSCR231100216801 Page: 31 of 111



Test Mode: 00; Polarity: Vertical; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 32 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 33 of 111

Test Mode: 00; Polarity: Vertical; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

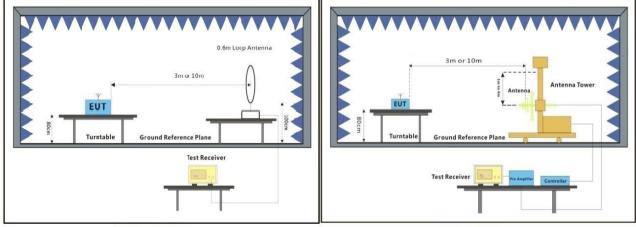
Report No.: KSCR231100216801 Page: 34 of 111

7.9 Radiated Spurious Emissions Below 1GHz

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5
Measurement Distance:	3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
960-1000	500	3


7.9.1 E.U.T. Operation

Operating Environment:									
Temperature:	23.2 °C	Humidity:	45.2 % RH	Atmospheric Pressure:	1010	mbar			

7.9.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.9.3 Test Setup Diagram

Below 30MHz

30MHz-1GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 35 of 111

7.9.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

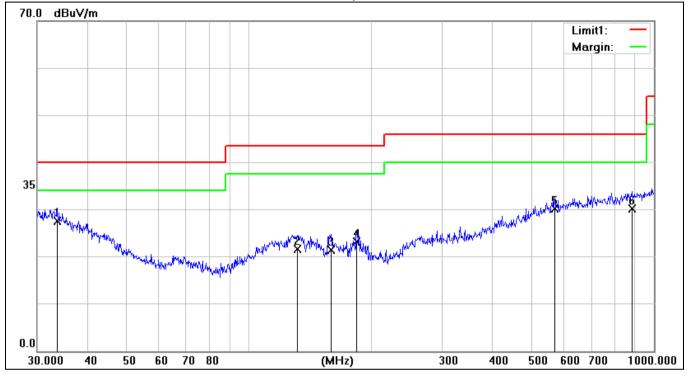
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

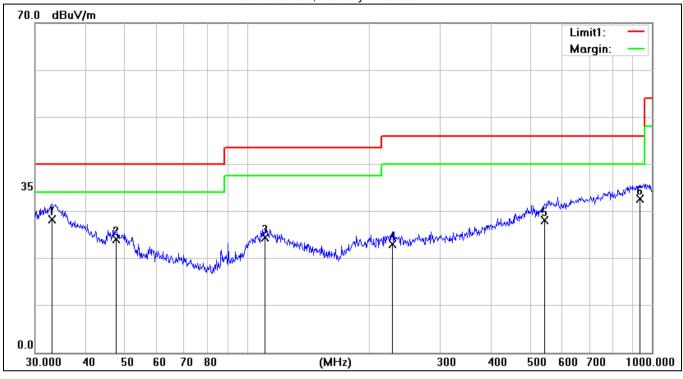
Remark:


1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 36 of 111


Test Mode: 00; Polarity: Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	33.5623	2.65	25.00	27.65	40.00	-12.35	200	215	QP
2	131.7576	2.35	19.34	21.69	43.50	-21.81	200	26	QP
3	159.7844	3.86	17.50	21.36	43.50	-22.14	100	33	QP
4	184.4898	6.73	16.49	23.22	43.50	-20.28	100	205	QP
5	568.6127	2.81	27.34	30.15	46.00	-15.85	100	358	QP
6	881.4067	2.36	27.76	30.12	46.00	-15.88	100	221	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 37 of 111

Test Mode: 00; Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	32.9791	3.27	25.08	28.35	40.00	-11.65	100	123	QP
2	47.4917	5.37	18.76	24.13	40.00	-15.87	100	36	QP
3	110.9570	5.71	18.64	24.35	43.50	-19.15	100	55	QP
4	228.4902	5.59	17.42	23.01	46.00	-22.99	100	69	QP
5	543.2740	1.34	26.80	28.14	46.00	-17.86	100	203	QP
6	935.5461	2.54	30.04	32.58	46.00	-13.42	100	158	QP

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

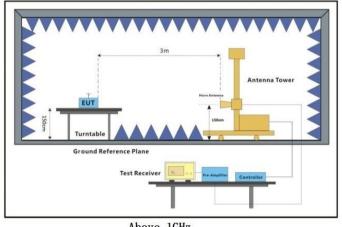
Report No.: KSCR231100216801 Page: 38 of 111

7.10 Radiated Spurious Emissions Above 1GHz

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.6
Measurement Distance:	3M

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
Above 1000	500	3


7.10.1 E.U.T. Operation

Operating Environment:									
Temperature:	23.4 °C	Humidity:	45.3 % RH	Atmospheric Pressure:	1010	mbar			

7.10.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.10.3 Test Setup Diagram

Above 1GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 39 of 111

7.10.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

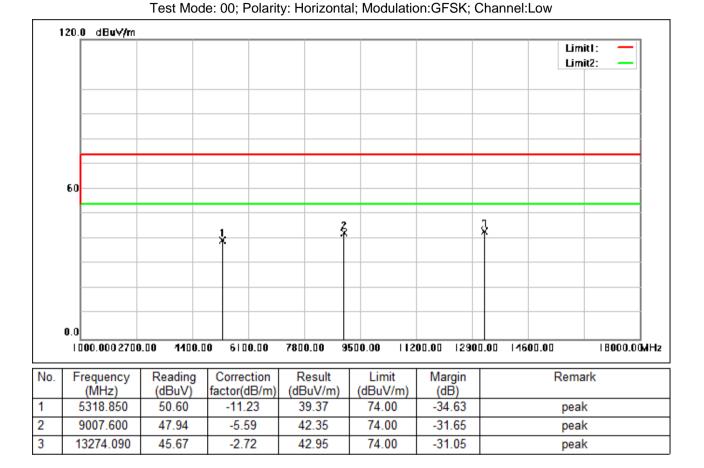
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

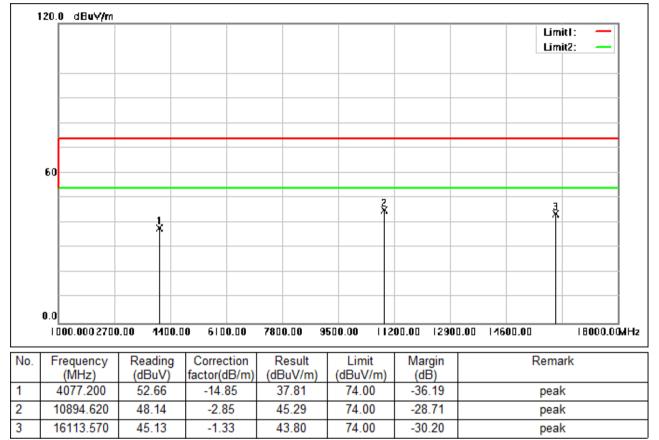
Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor


2. Scan from 1GHz to 25GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

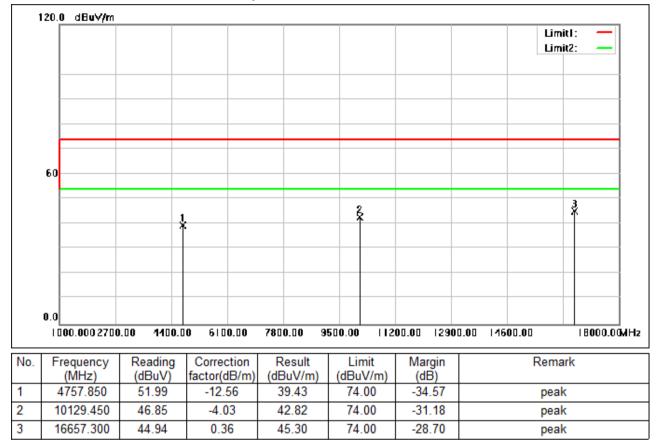
3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 40 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

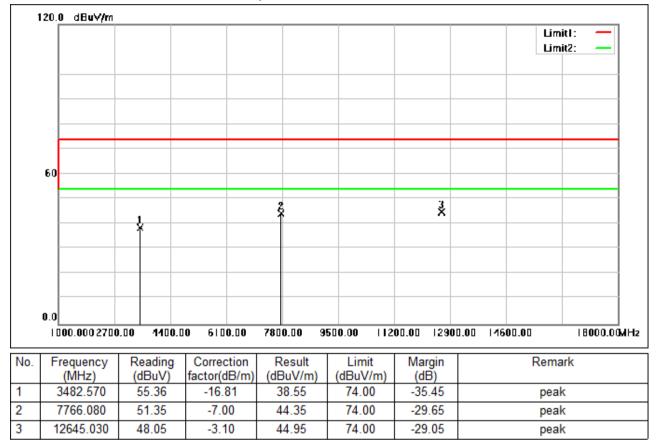
Report No.: KSCR231100216801 Page: 41 of 111



Test Mode: 00; Polarity: Vertical; Modulation:GFSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

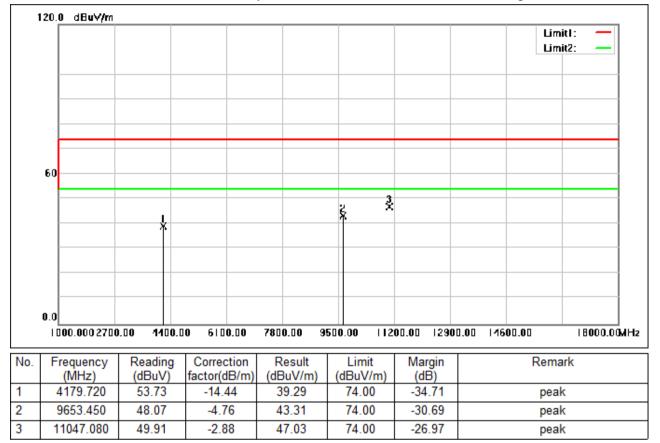
Report No.: KSCR231100216801 Page: 42 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:GFSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

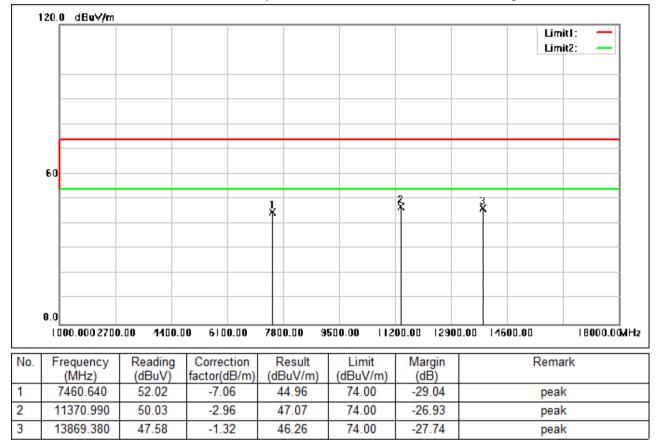
Report No.: KSCR231100216801 Page: 43 of 111



Test Mode: 00; Polarity: Vertical; Modulation:GFSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

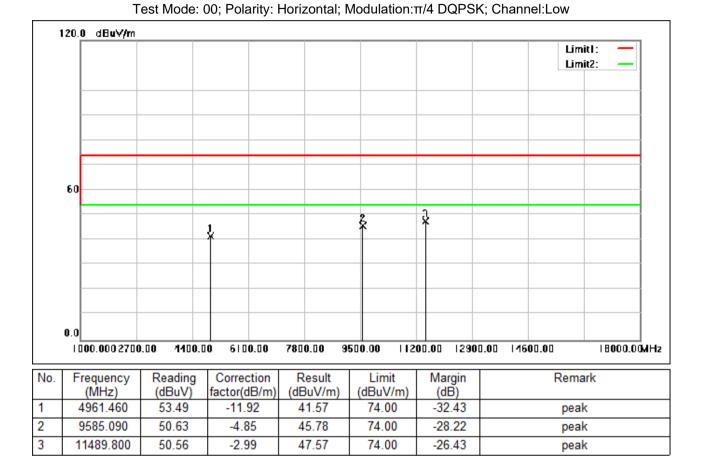
Report No.: KSCR231100216801 Page: 44 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:GFSK; Channel:High

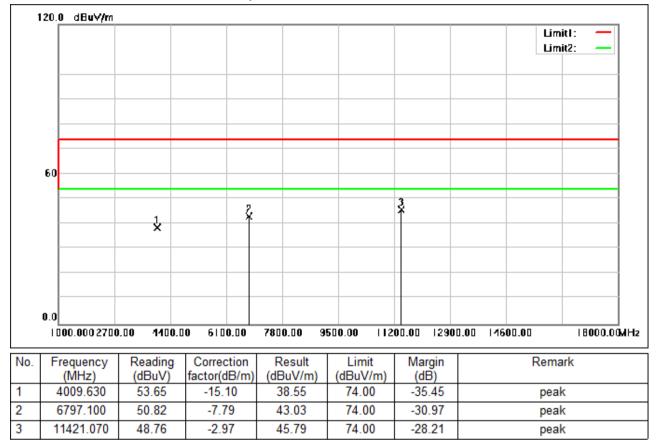
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 45 of 111



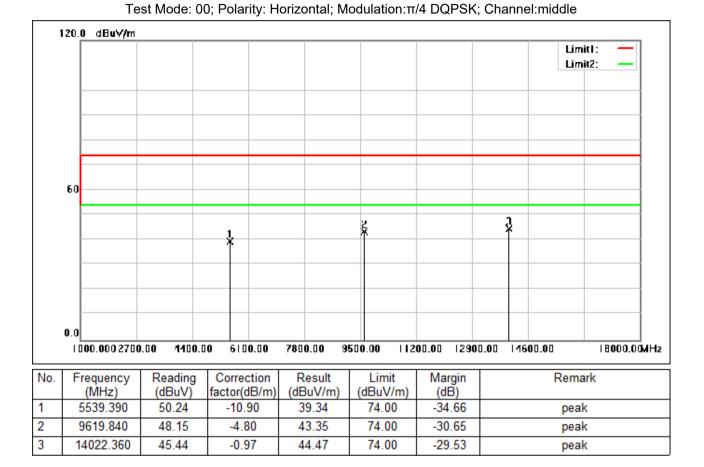
Test Mode: 00; Polarity: Vertical; Modulation:GFSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 46 of 111

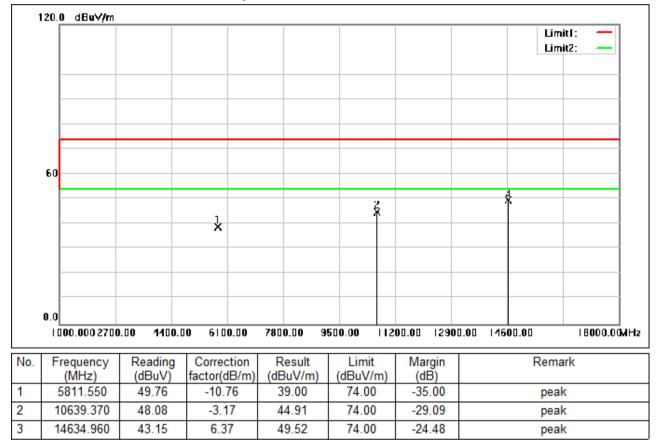
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 47 of 111



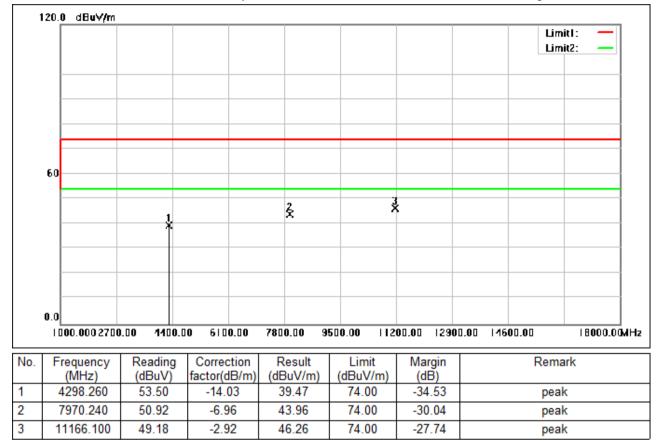
Test Mode: 00; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 48 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

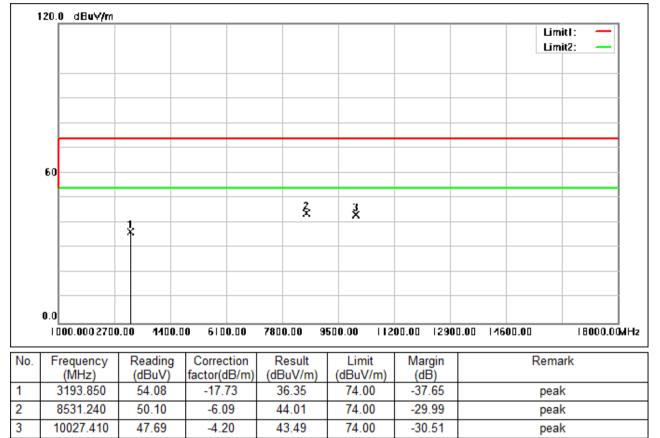
Report No.: KSCR231100216801 Page: 49 of 111



Test Mode: 00; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

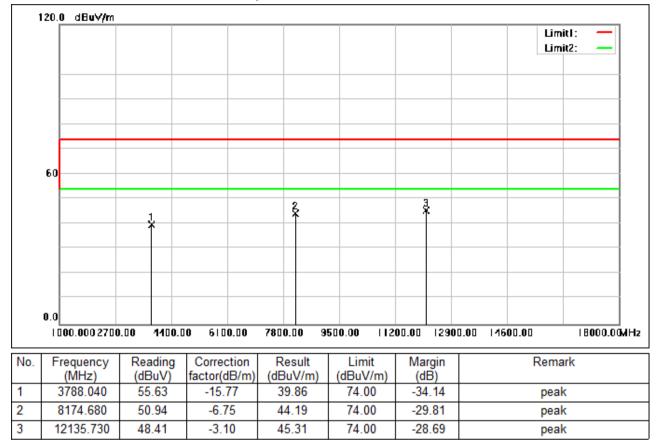
Report No.: KSCR231100216801 Page: 50 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

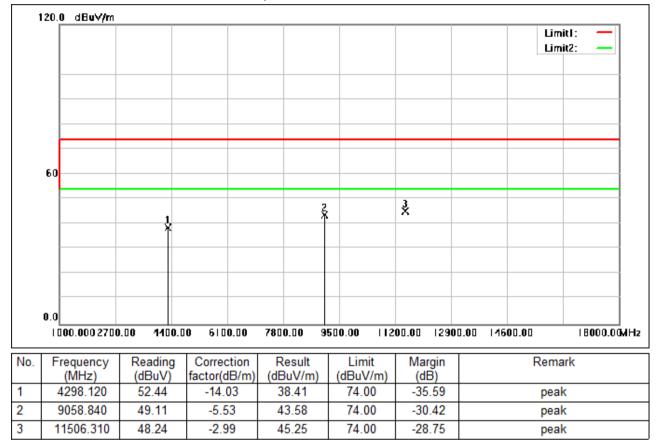
Report No.: KSCR231100216801 Page: 51 of 111



Test Mode: 00; Polarity: Vertical; Modulation:π/4 DQPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

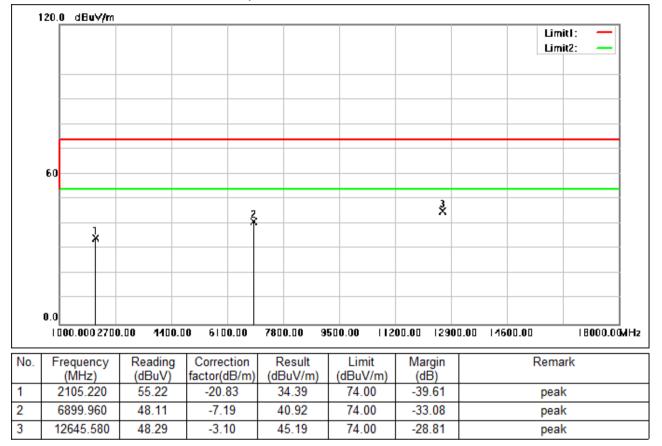
Report No.: KSCR231100216801 Page: 52 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

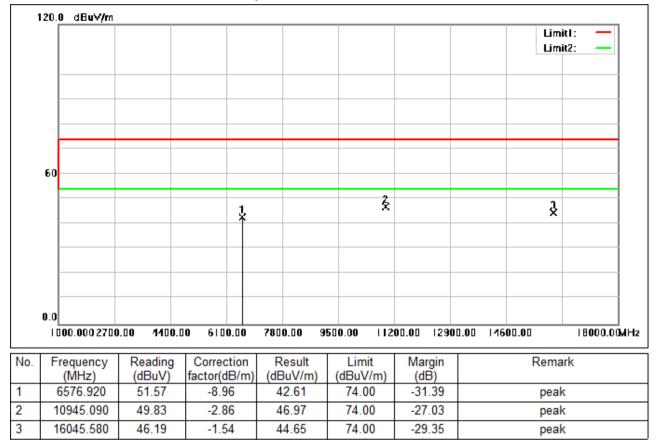
Report No.: KSCR231100216801 Page: 53 of 111



Test Mode: 00; Polarity: Vertical; Modulation:8DPSK; Channel:Low

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

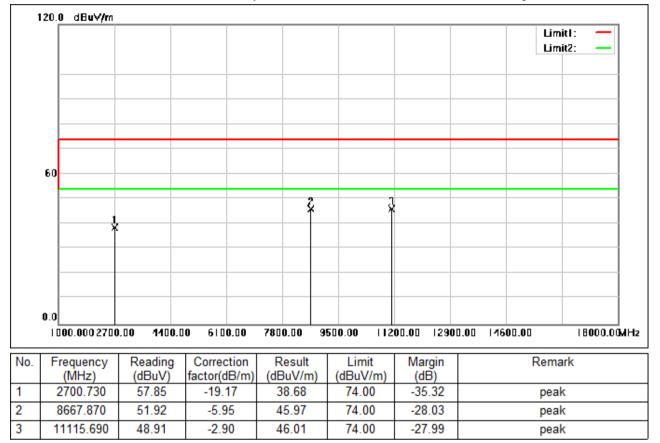
Report No.: KSCR231100216801 Page: 54 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:8DPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

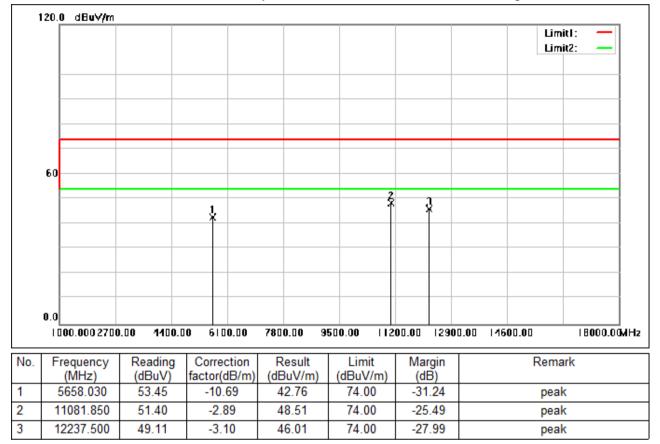
Report No.: KSCR231100216801 Page: 55 of 111



Test Mode: 00; Polarity: Vertical; Modulation:8DPSK; Channel:middle

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 56 of 111



Test Mode: 00; Polarity: Horizontal; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 57 of 111

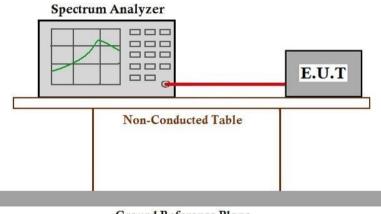
Test Mode: 00; Polarity: Vertical; Modulation:8DPSK; Channel:High

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 58 of 111

7.11 99% Bandwidth

Test Requirement	RSS-Gen Section 6.7
Test Method:	ANSI C63.10 (2013) Section 6.9.3


7.11.1 E.U.T. Operation

Operating Environment:Temperature:20.4 °CHumidity:50.3 % RHAtmospheric Pressure:1010mbar

7.11.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	00	TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, Pi/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report.

7.11.3 Test Setup Diagram

Ground Reference Plane

7.11.4 Measurement Procedure and Data

Please Refer to Appendix for Details

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 59 of 111

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2311002168AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2311002168AT

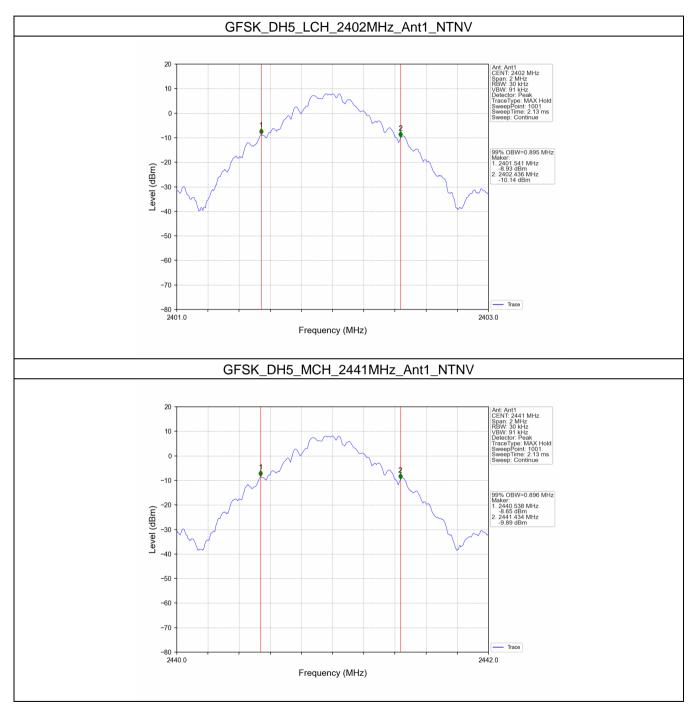
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 60 of 111

10 Appendix

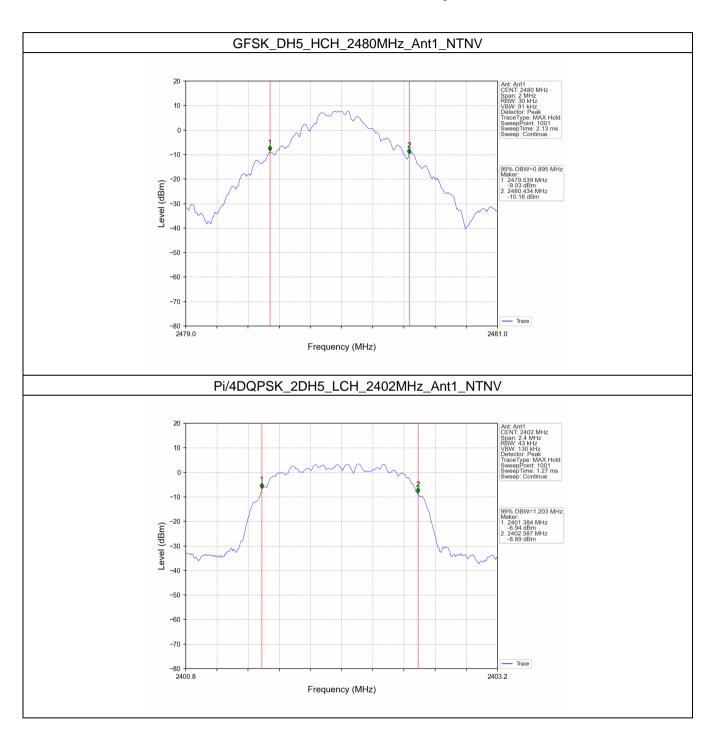
- 1. Bandwidth
- 1.1 OBW

1.1.1 Test Result

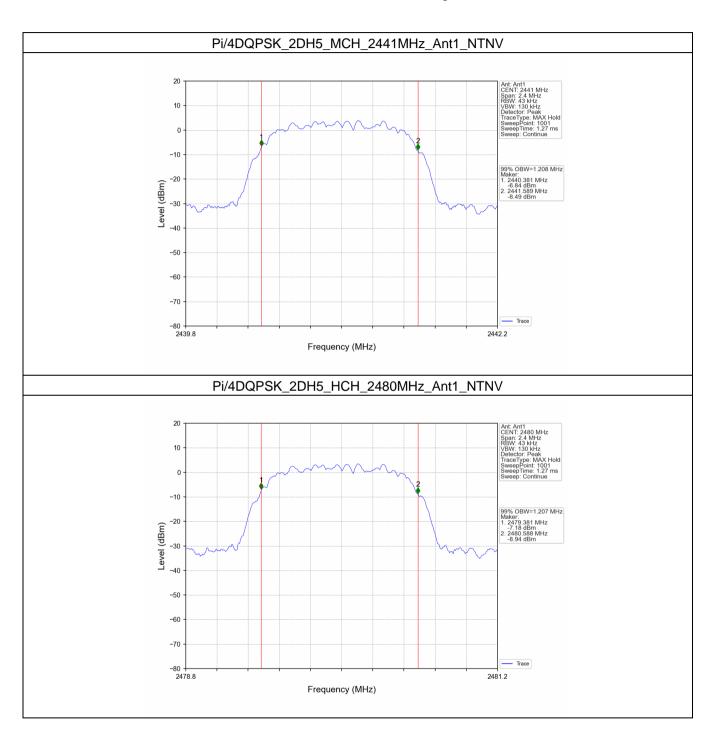

Mode	ТХ Туре	Frequency	Packet Type ANT		99% Occupied E	Verdict	
wode		(MHz)		ANT	Result	Limit	verdict
		2402	DH5	1	0.895	/	Pass
GFSK	SISO	2441	DH5	1	0.896	/	Pass
		2480	DH5	1	0.895	/	Pass
	SISO	2402	2DH5	1	1.203	/	Pass
Pi/4DQPSK		2441	2DH5	1	1.208	/	Pass
		2480	2DH5	1	1.207	/	Pass
		2402	3DH5	1	1.206	/	Pass
8DPSK	SISO	2441	3DH5	1	1.206	/	Pass
		2480	3DH5	1	1.206	/	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

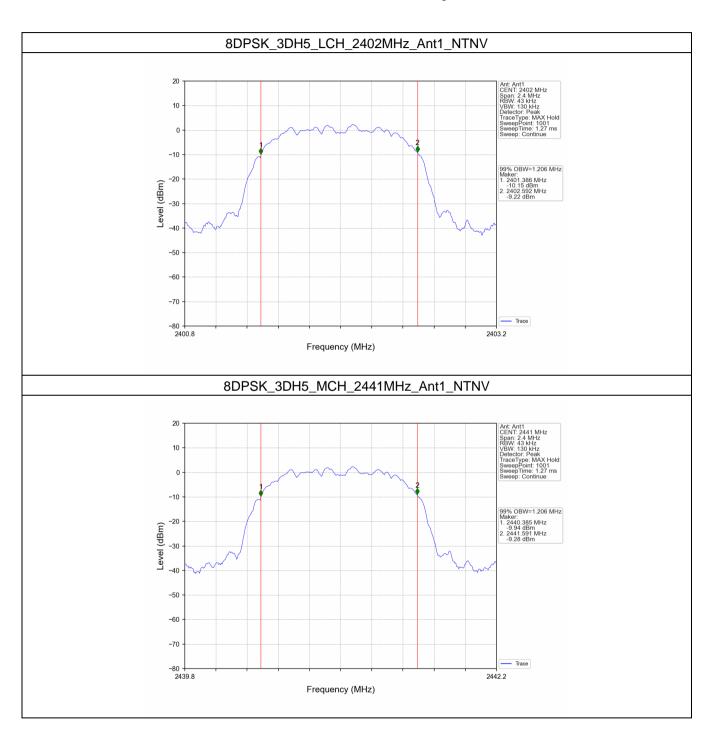
Report No.: KSCR231100216801 Page: 61 of 111


1.1.2 Test Graph

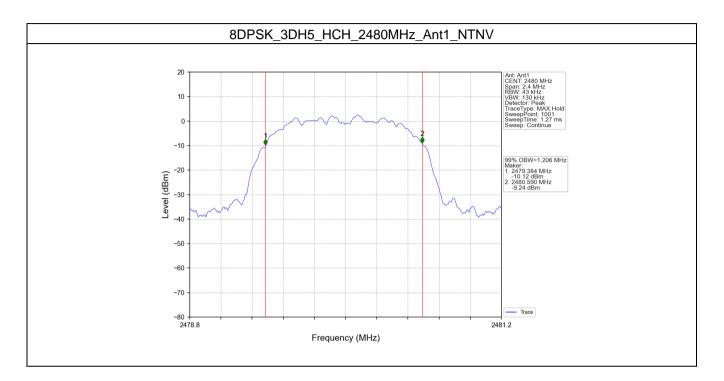
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 62 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 63 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 64 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

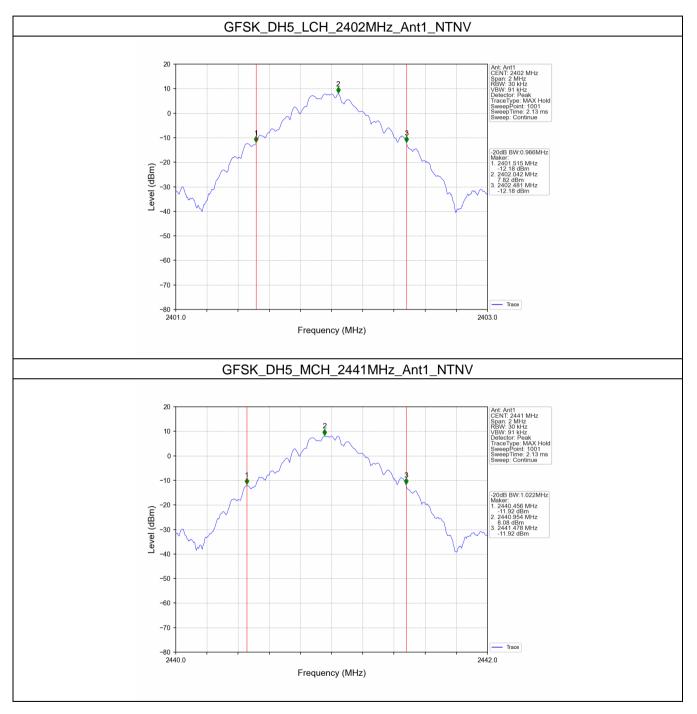
Report No.: KSCR231100216801 Page: 65 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 66 of 111

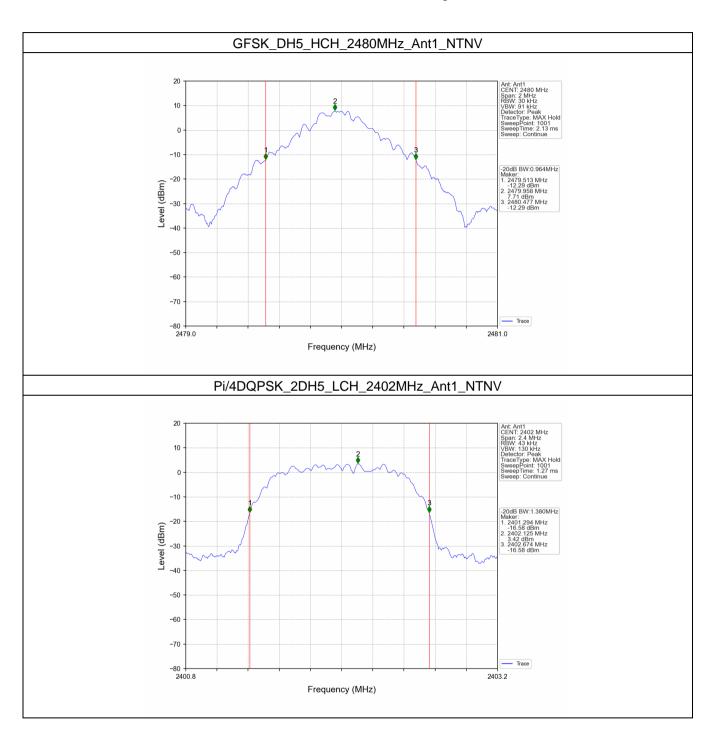
1.2 20dB BW

1.2.1 Test Result

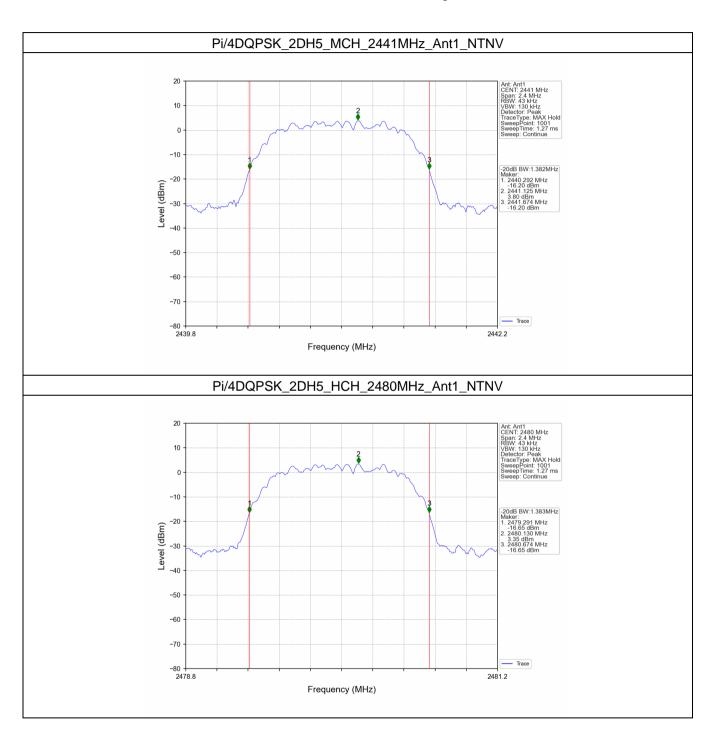

Mode	ТХ Туре	Frequency	Packet	ANT	20dB Bandwidth (MHz)		Verdict
		(MHz)	Туре	Result	Limit	verdict	
		2402	DH5	1	0.966	/	Pass
GFSK	SISO	2441	DH5	1	1.022	/	Pass
		2480	DH5	1	0.964	/	Pass
	SISO	2402	2DH5	1	1.380	/	Pass
Pi/4DQPSK		2441	2DH5	1	1.382	/	Pass
		2480	2DH5	1	1.383	/	Pass
		2402	3DH5	1	1.358	/	Pass
8DPSK	SISO	2441	3DH5	1	1.363	/	Pass
		2480	3DH5	1	1.361	/	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

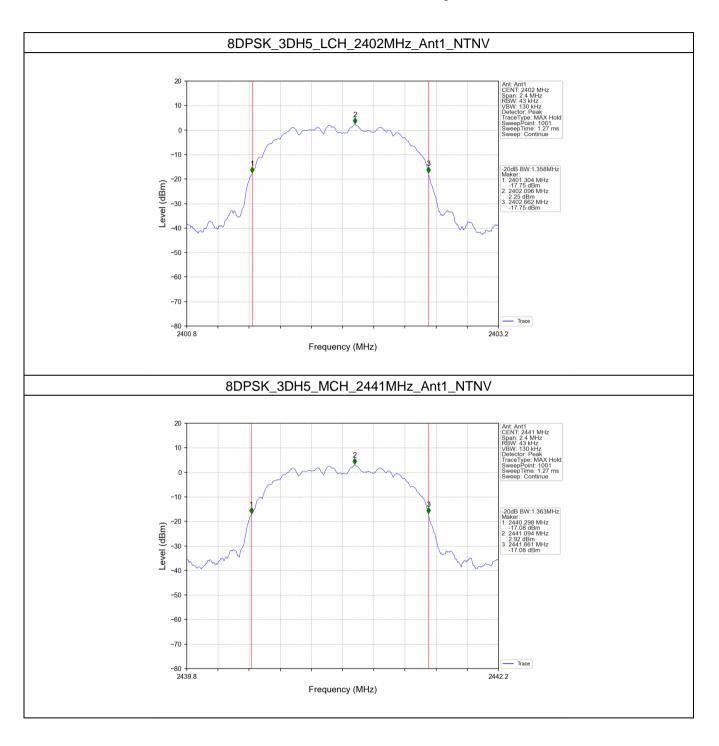
Report No.: KSCR231100216801 Page: 67 of 111


1.2.2 Test Graph

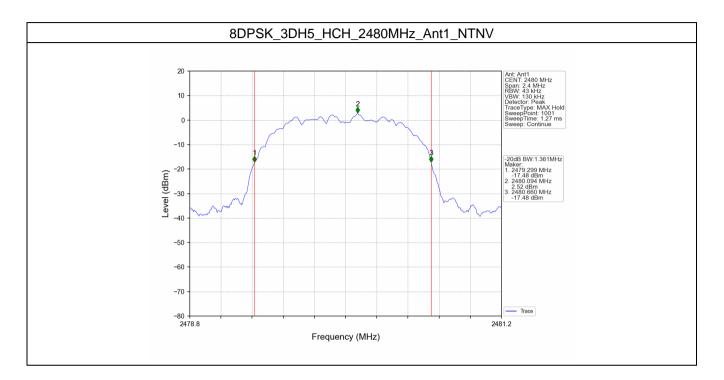
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 68 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 69 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 70 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 71 of 111

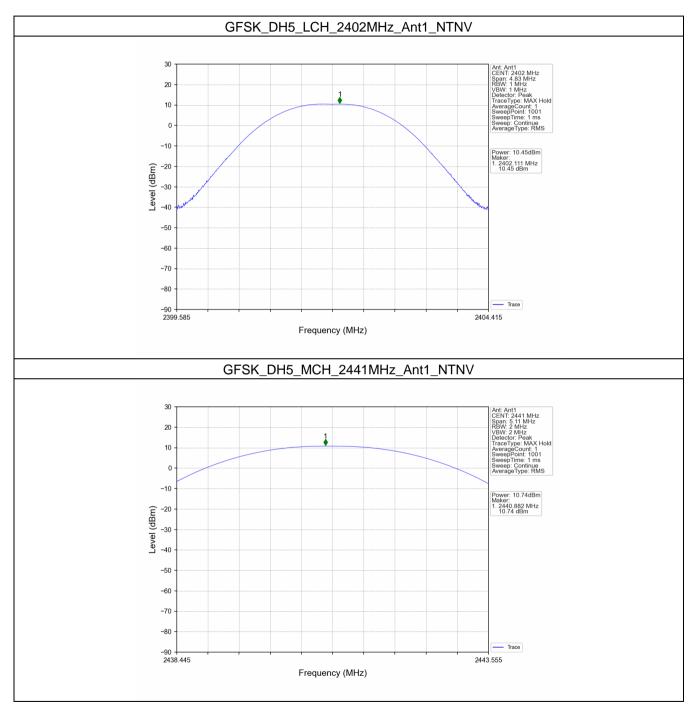
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 72 of 111

2. Maximum Conducted Output Power

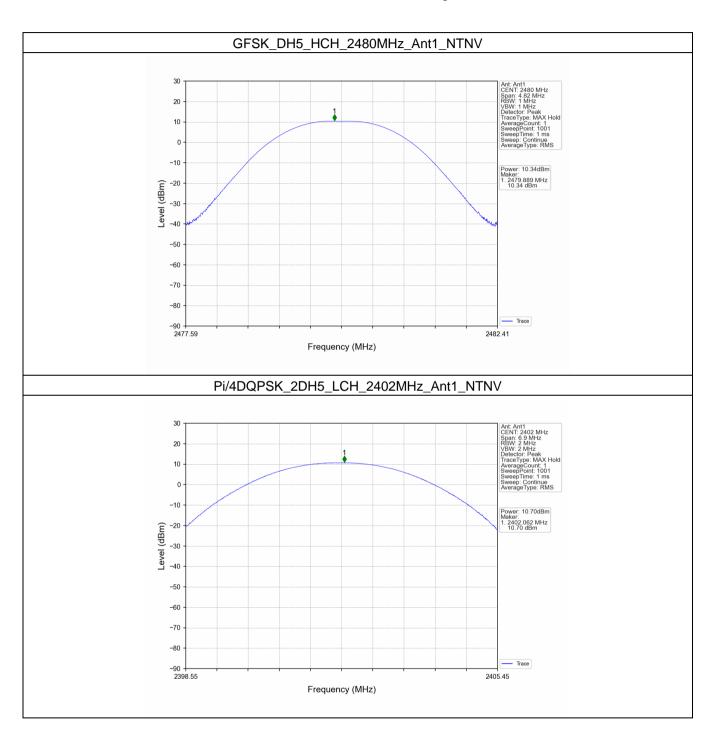
2.1 Power

2.1.1 Test Result

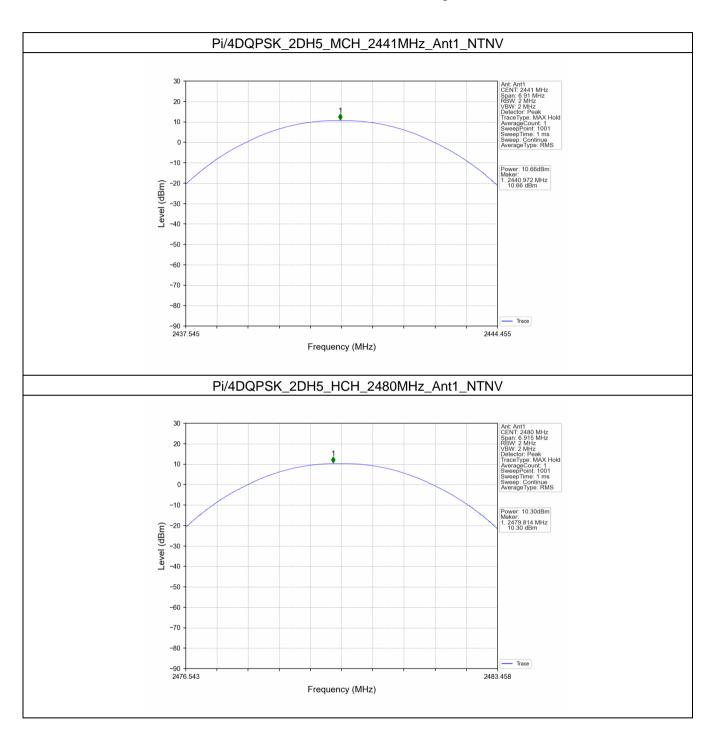

Mode	TX		Packet	Maximum Peak Cond (dE	Verdict				
	Туре	(MHz)	Туре	ANT1	Limit				
		2402	DH5	10.45	<=20.97	Pass			
GFSK	SISO	2441	DH5	10.74	<=20.97	Pass			
		2480	DH5	10.34	<=20.97	Pass			
	SISO	2402	2DH5	10.70	<=20.97	Pass			
Pi/4DQPSK		2441	2DH5	10.66	<=20.97	Pass			
		2480	2DH5	10.30	<=20.97	Pass			
		2402	3DH5	9.16	<=20.97	Pass			
8DPSK	SISO	2441	3DH5	9.64	<=20.97	Pass			
		2480	3DH5	9.25	<=20.97	Pass			
Note1: Antenr	Note1: Antenna Gain: Ant1: -5.49dBi;								

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

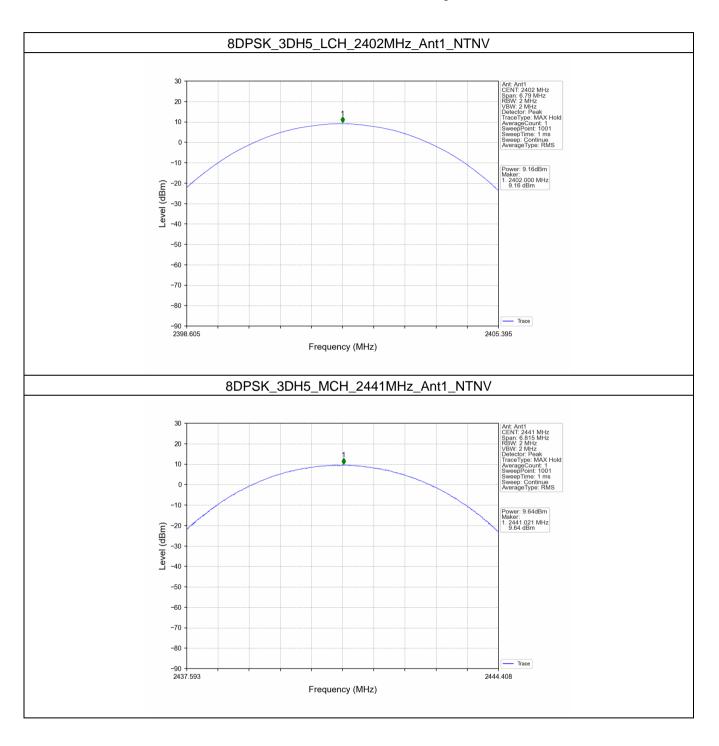
Report No.: KSCR231100216801 Page: 73 of 111


2.1.2 Test Graph

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 74 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 75 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 76 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 77 of 111

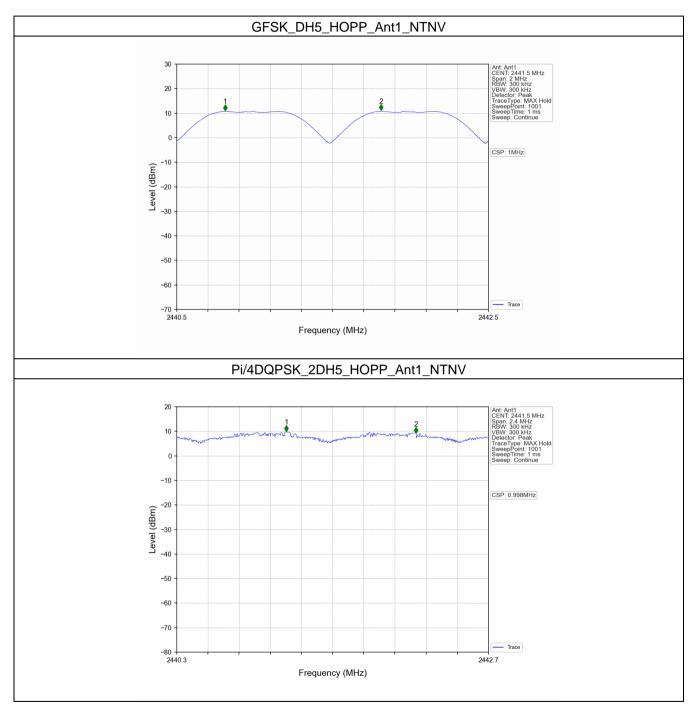
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 78 of 111

3. Carrier Frequency Separation

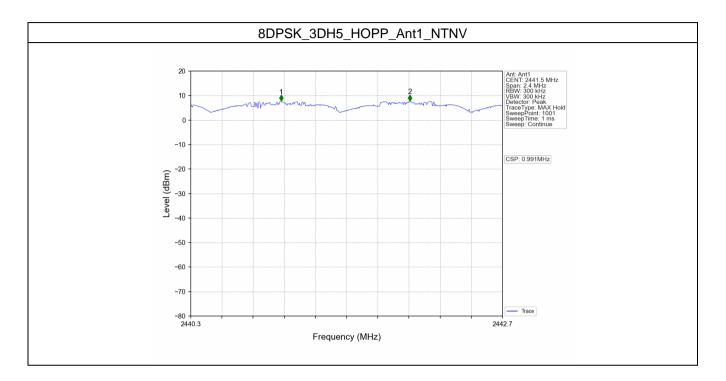
3.1 Ant1

3.1.1 Test Result


Ant1									
Mode	ТХ Туре	Frequency (MHz)	Packet Type	Channel Separation (MHz)	20dB Bandwidth (MHz)	Limit (MHz)	Verdict		
GFSK	SISO	HOPP	DH5	1.000	1.022	>=0.681	Pass		
Pi/4DQPSK	SISO	HOPP	2DH5	0.998	1.383	>=0.922	Pass		
8DPSK	SISO	HOPP	3DH5	0.991	1.363	>=0.909	Pass		

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 79 of 111


3.1.2 Test Graph

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 80 of 111

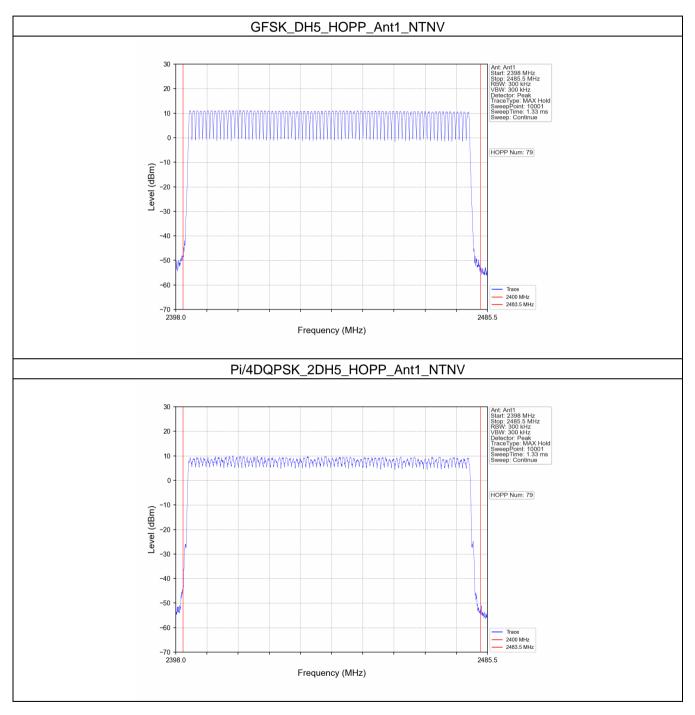
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 81 of 111

4. Number of Hopping Frequencies

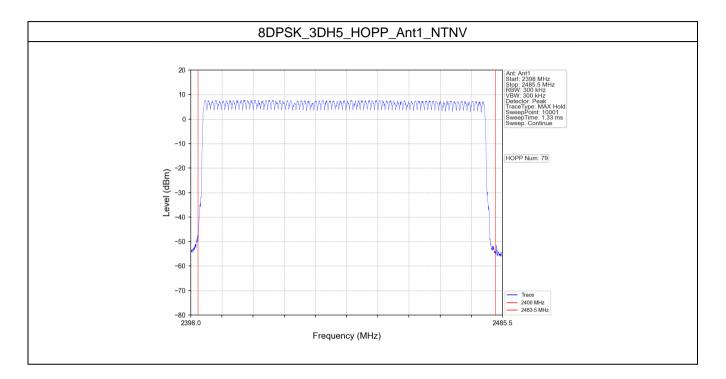
4.1 HoppNum

4.1.1 Test Result


Mode	ТΧ	Frequency (MHz)	Packet Type	Num of Hoppir	Vardiat	
	Туре			ANT1	Limit	Verdict
GFSK	SISO	HOPP	DH5	79	>=15	Pass
Pi/4DQPSK	SISO	HOPP	2DH5	79	>=15	Pass
8DPSK	SISO	HOPP	3DH5	79	>=15	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 82 of 111


4.1.2 Test Graph

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 83 of 111

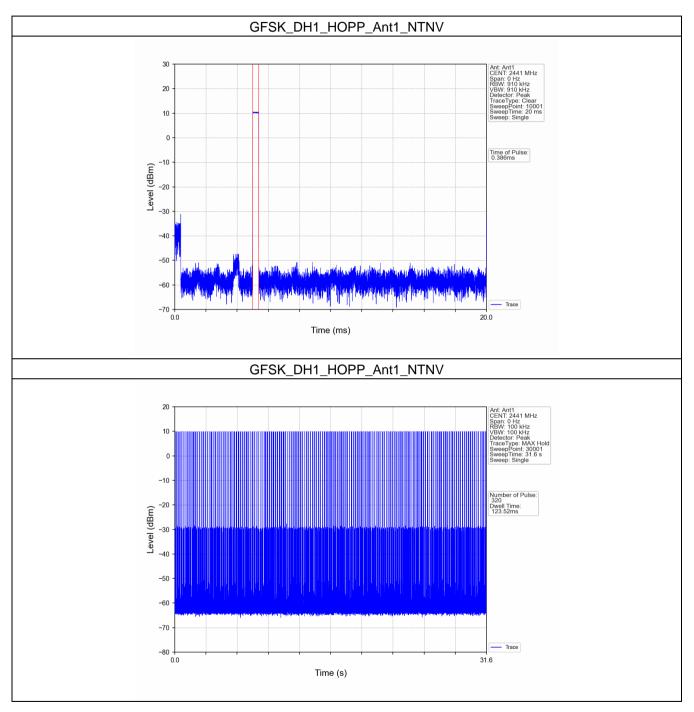
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 84 of 111

5. Time of Occupancy (Dwell Time)

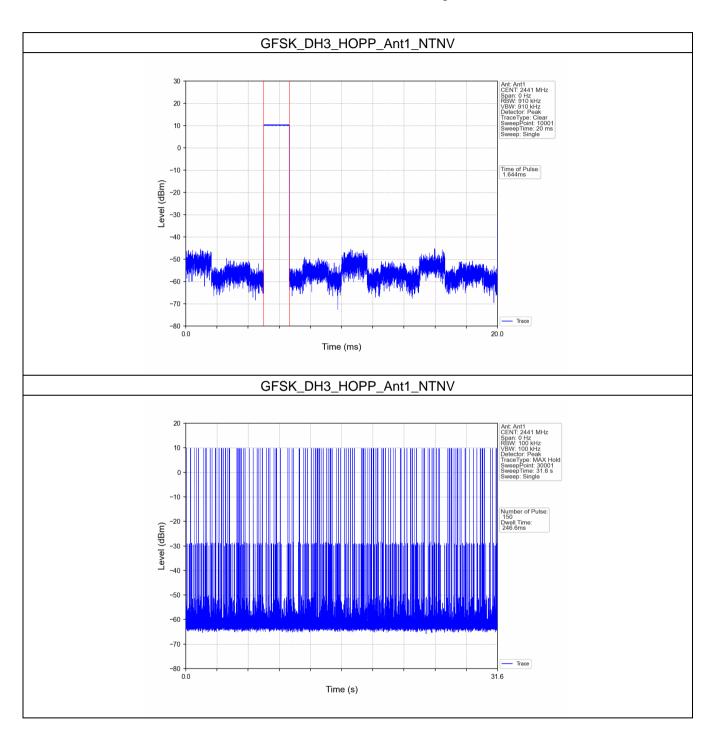
5.1 Ant1

5.1.1 Test Result

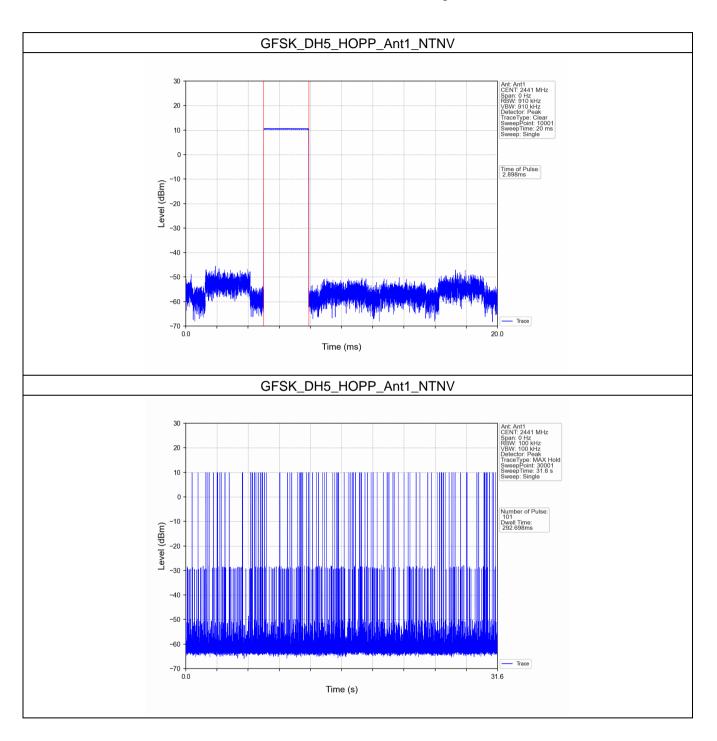

Ant1									
Mode	TX Type	Frequency (MHz)	Packet Type	Duration of Single Pulse (ms)	Observation Period (s)	Num of Pulse in Observation Period	Dwell Time (ms)	Limit (ms)	Verdict
GFSK SIS		ISO HOPP	DH1	0.386	31.600	320	123.520	<=400	Pass
	SISO		DH3	1.644	31.600	150	246.600	<=400	Pass
			DH5	2.898	31.600	101	292.698	<=400	Pass
Pi/4DQPSK S			2DH1	0.396	31.600	320	126.720	<=400	Pass
	SISO	SO HOPP	2DH3	1.648	31.600	158	260.384	<=400	Pass
			2DH5	2.904	31.600	118	342.672	<=400	Pass
8DPSK S	SISO	О НОРР	3DH1	0.396	31.600	320	126.720	<=400	Pass
			3DH3	1.648	31.600	160	263.680	<=400	Pass
			3DH5	2.898	31.600	112	324.576	<=400	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

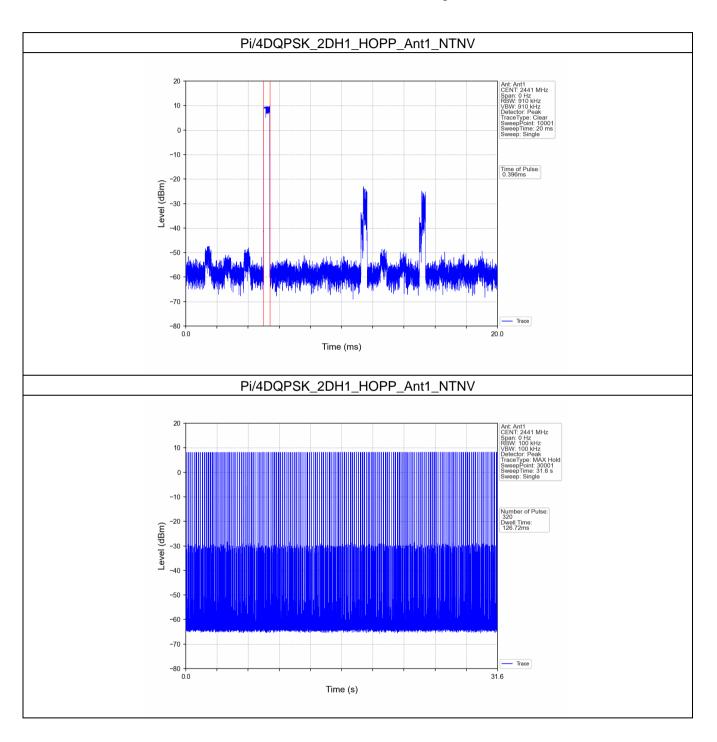
Report No.: KSCR231100216801 Page: 85 of 111


5.1.2 Test Graph

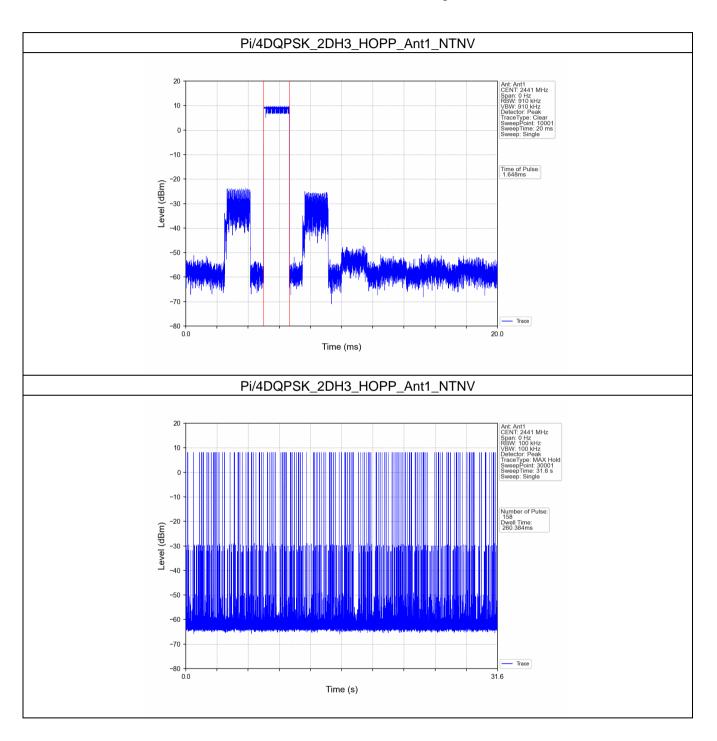
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 86 of 111

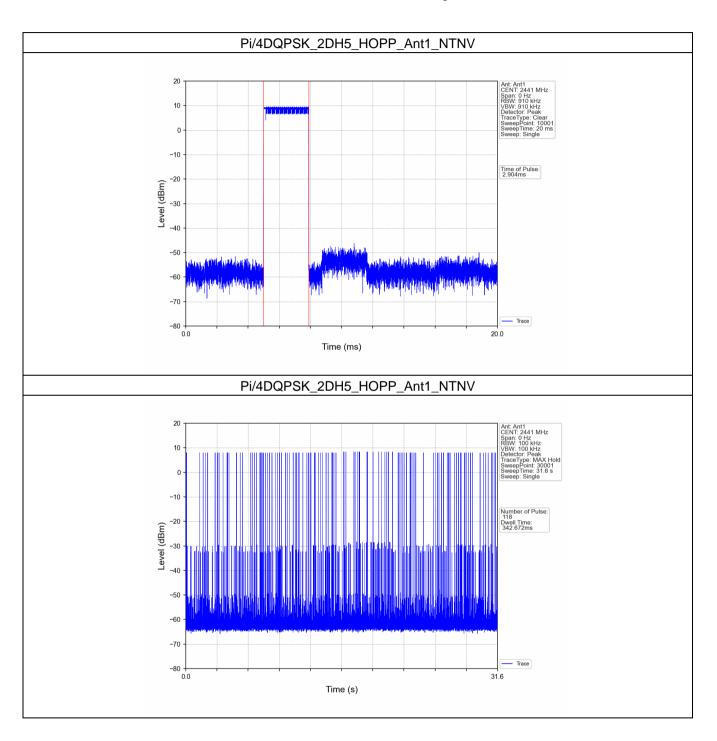
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 87 of 111

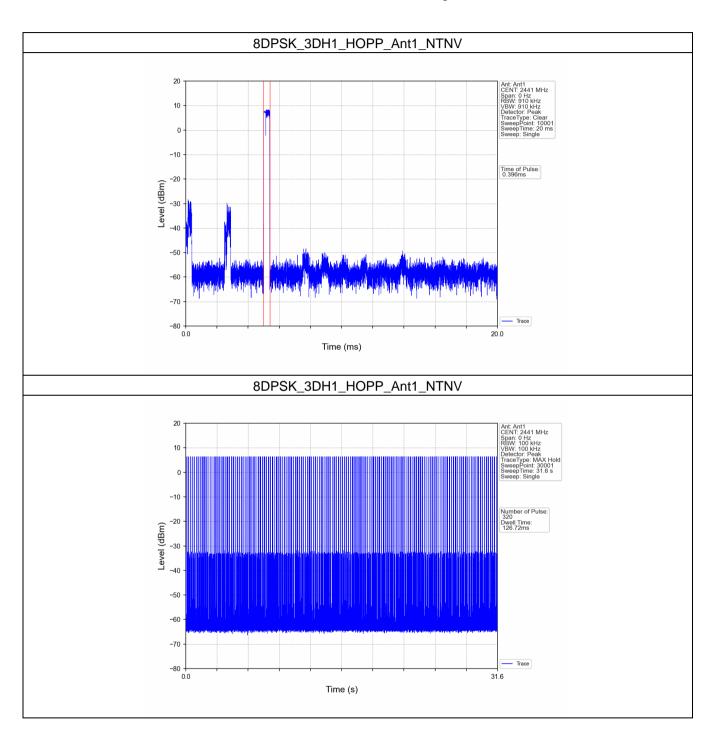
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 88 of 111

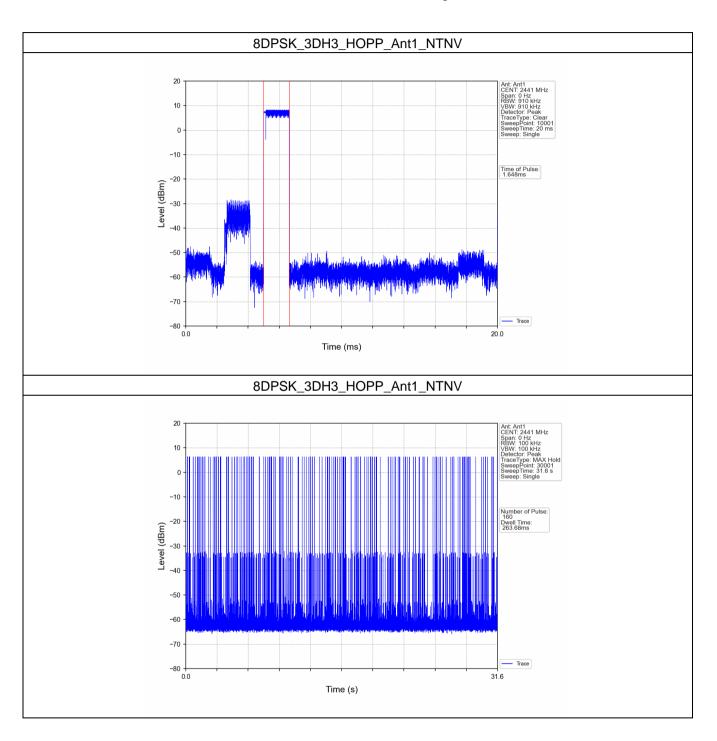
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 89 of 111

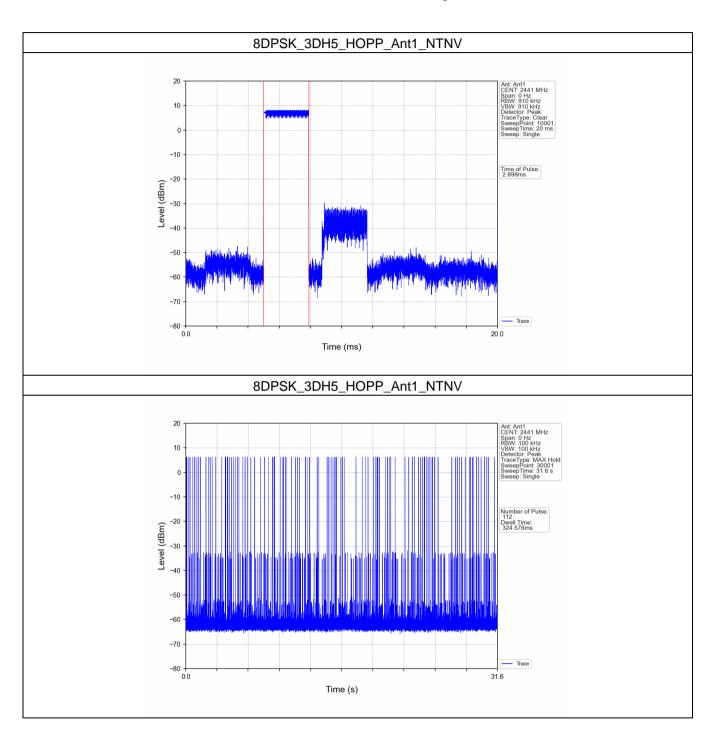
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 90 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 91 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 92 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 93 of 111

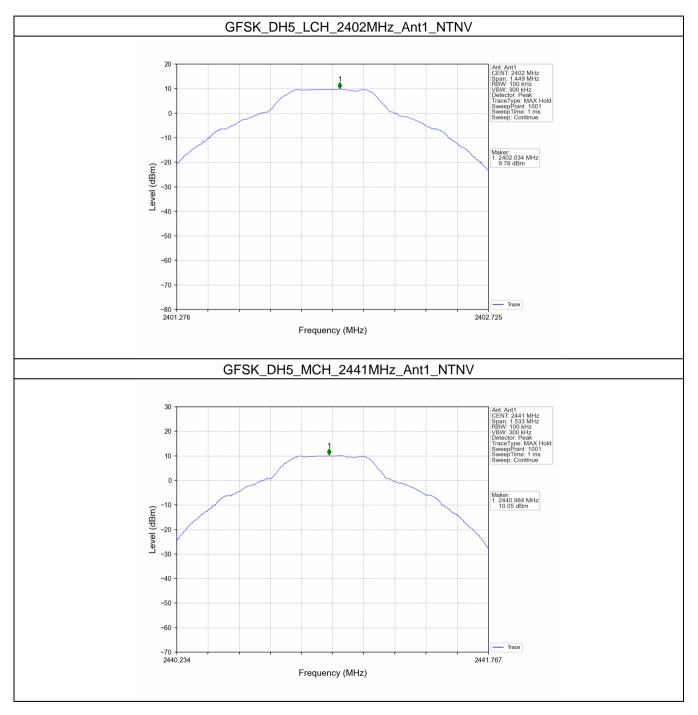
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 94 of 111

6. Unwanted Emissions In Non-restricted Frequency Bands

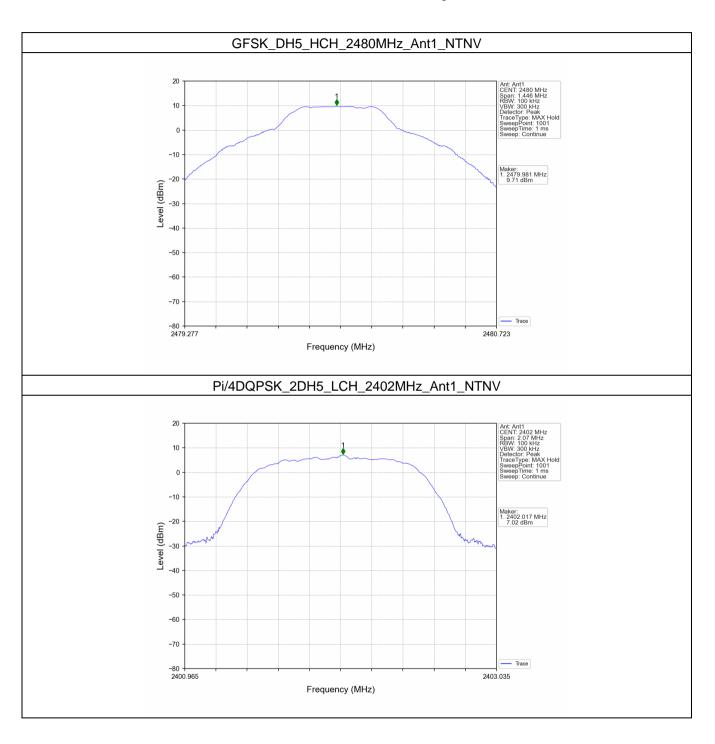
6.1 Ref

6.1.1 Test Result

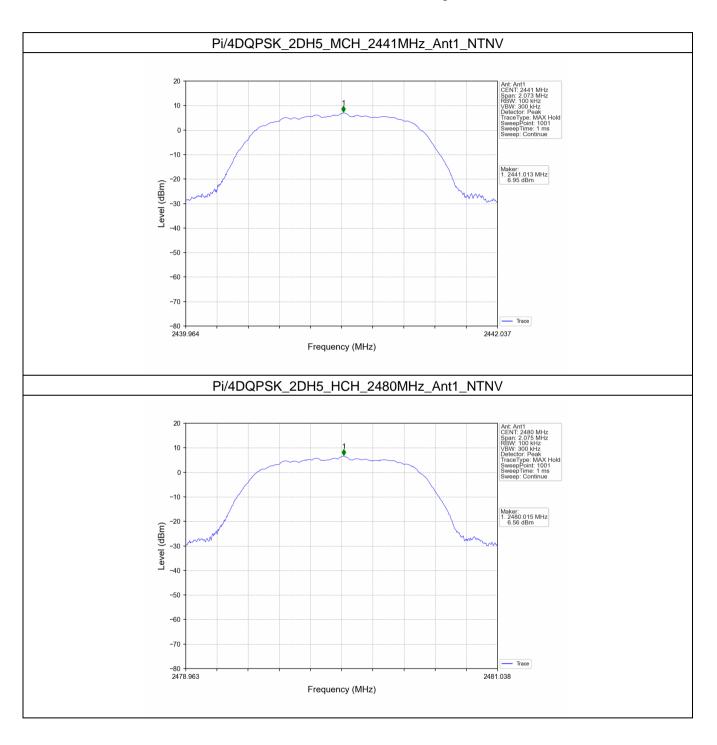

Mode	ТХ Туре	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)		
		2402	DH5	1	9.78		
GFSK	SISO	2441	DH5	1	10.05		
		2480	DH5	1	9.71		
		2402	2DH5	1	7.02		
Pi/4DQPSK	SISO	2441	2DH5	1	6.95		
		2480	2DH5	1	6.56		
		2402	3DH5	1	4.58		
8DPSK	SISO	2441	3DH5	1	5.17		
		2480	3DH5	1	4.77		
Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.							

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

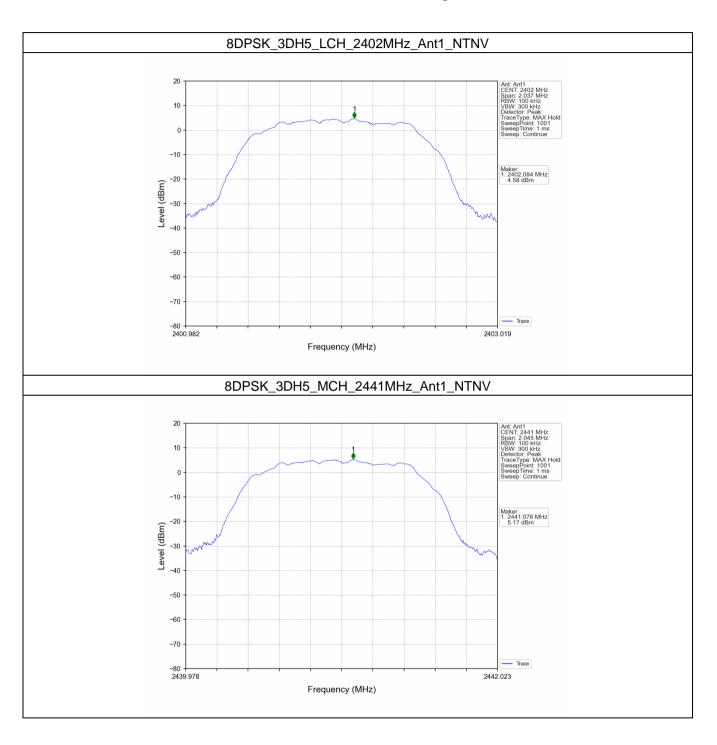
Report No.: KSCR231100216801 Page: 95 of 111


6.1.2 Test Graph

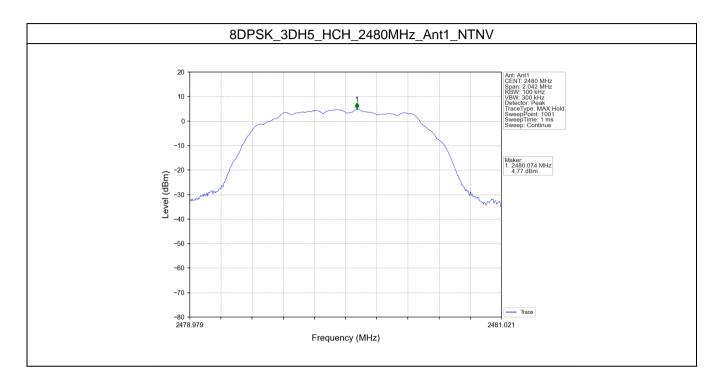
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 96 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 97 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 98 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

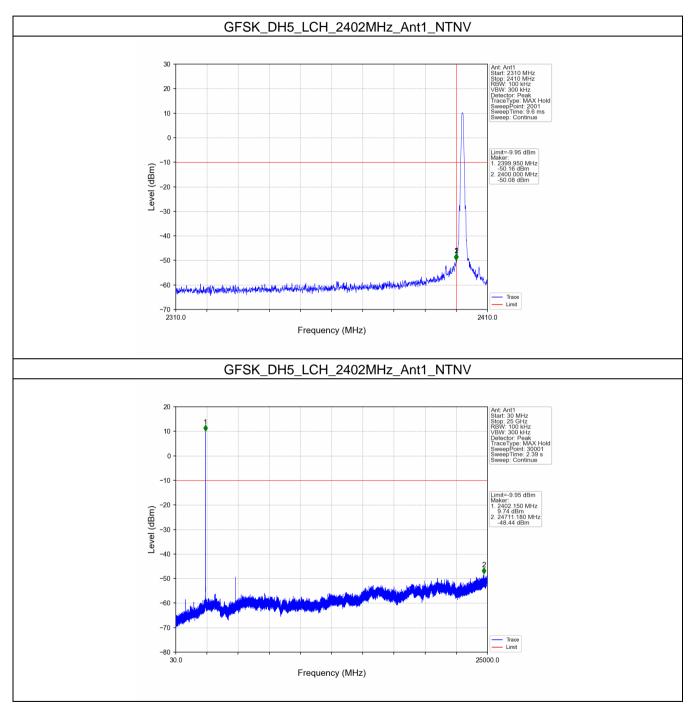
Report No.: KSCR231100216801 Page: 99 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 100 of 111

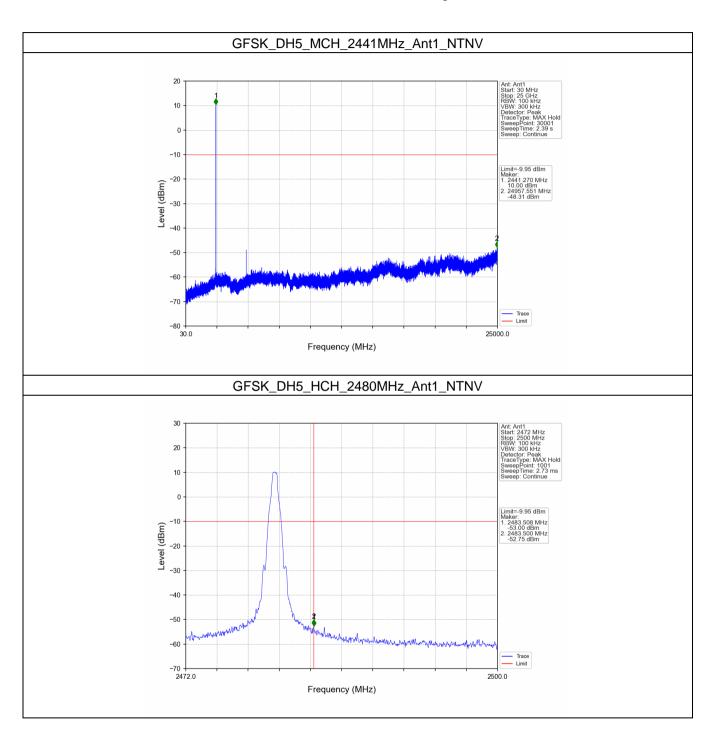
6.2 CSE

6.2.1 Test Result

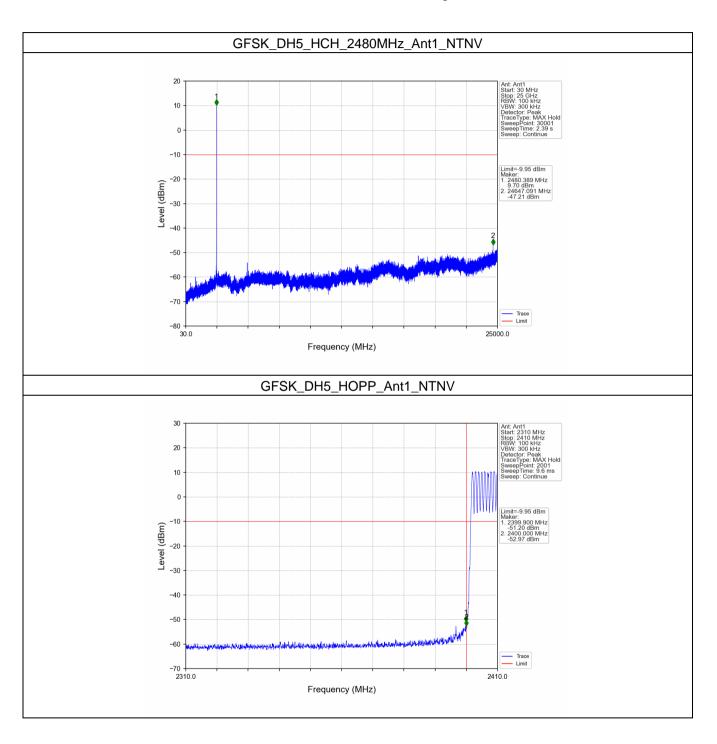

Mode	ТХ Туре	Frequency (MHz)	Packet Type	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict
GFSK	SISO	2402	DH5	1	10.05	-9.95	Pass
		2441	DH5	1	10.05	-9.95	Pass
		2480	DH5	1	10.05	-9.95	Pass
			DUE	4	10.05	-9.95	Pass
		HOPP	DH5	1	10.05	-9.95	Pass
Pi/4DQPSK	SISO	2402	2DH5	1	7.02	-12.98	Pass
		2441	2DH5	1	7.02	-12.98	Pass
		2480	2DH5	1	7.02	-12.98	Pass
		HOPP	2DH5	1	7.02	-12.98	Pass
					7.02	-12.98	Pass
		2402	3DH5	1	5.17	-14.83	Pass
	SISO	2441	3DH5	1	5.17	-14.83	Pass
8DPSK		2480	3DH5	1	5.17	-14.83	Pass
		HOPP 3E	00115	1	5.17	-14.83	Pass
			3DH5		5.17	-14.83	Pass
Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2013, the channel contains the maximum PSD level was used to establish the reference level.							

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

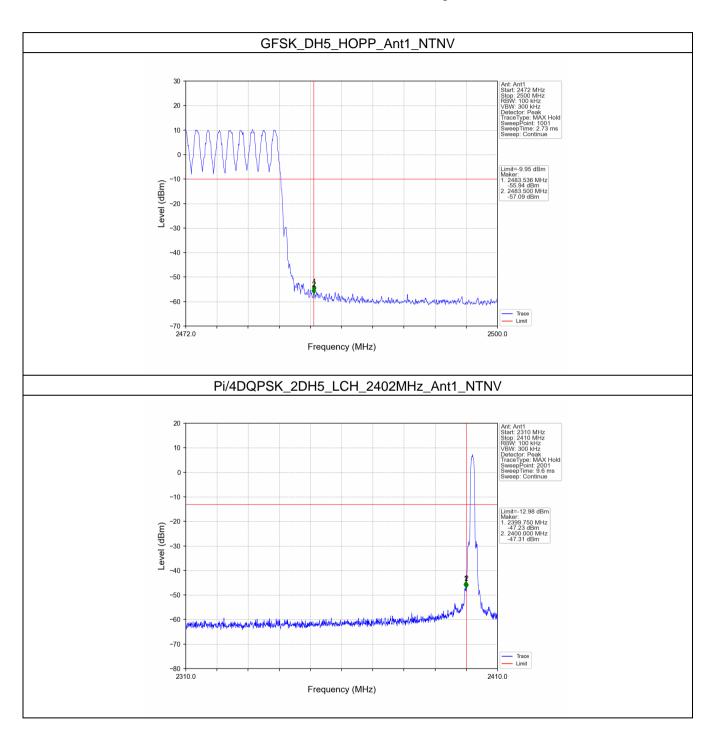
Report No.: KSCR231100216801 Page: 101 of 111


6.2.2 Test Graph

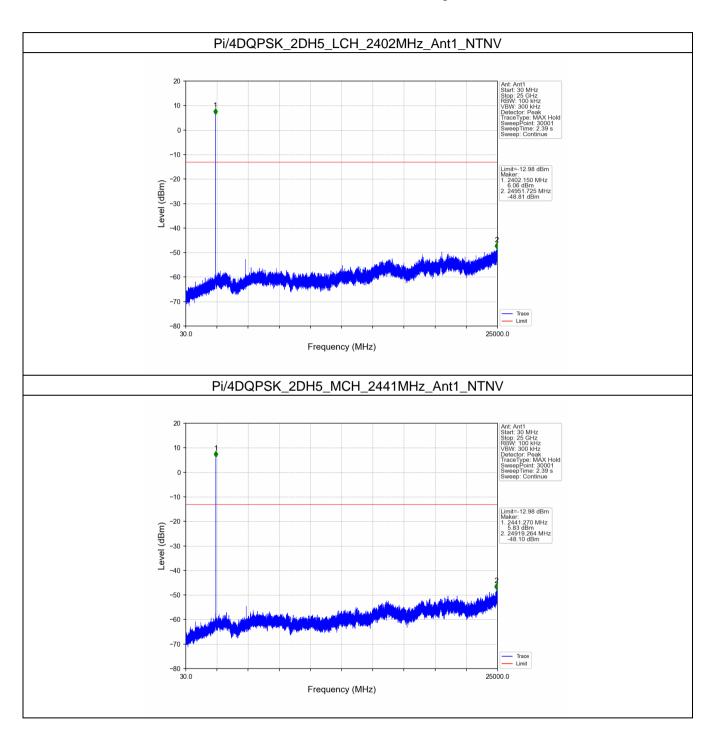
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 102 of 111

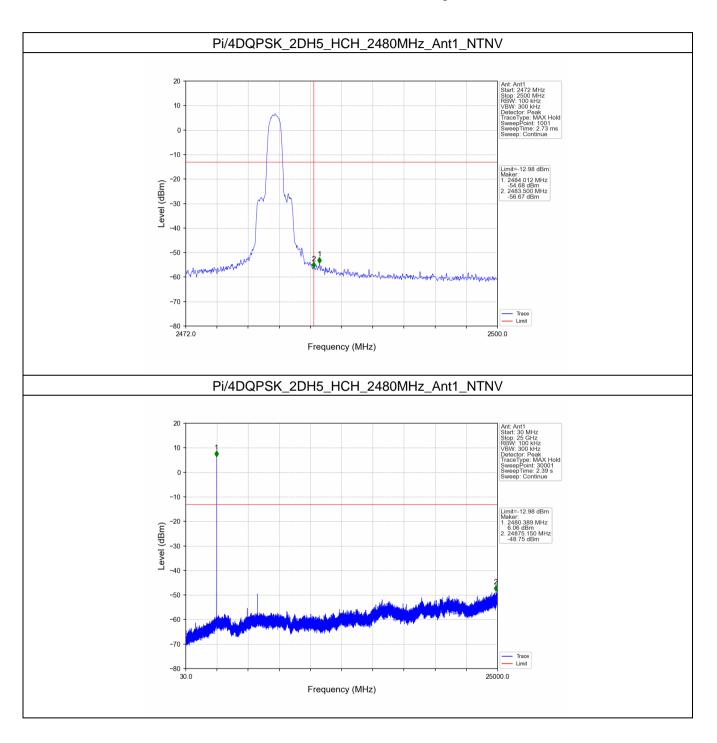
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 103 of 111

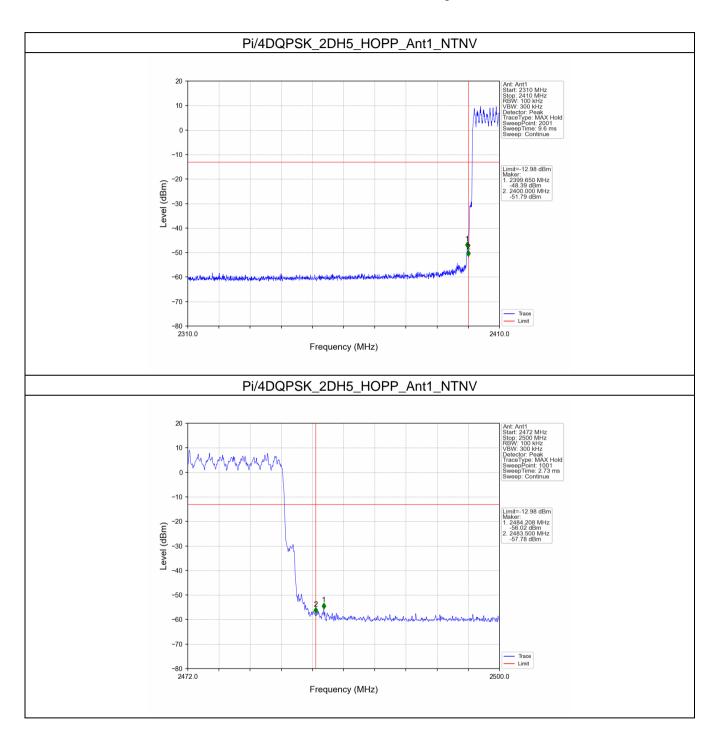
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 104 of 111

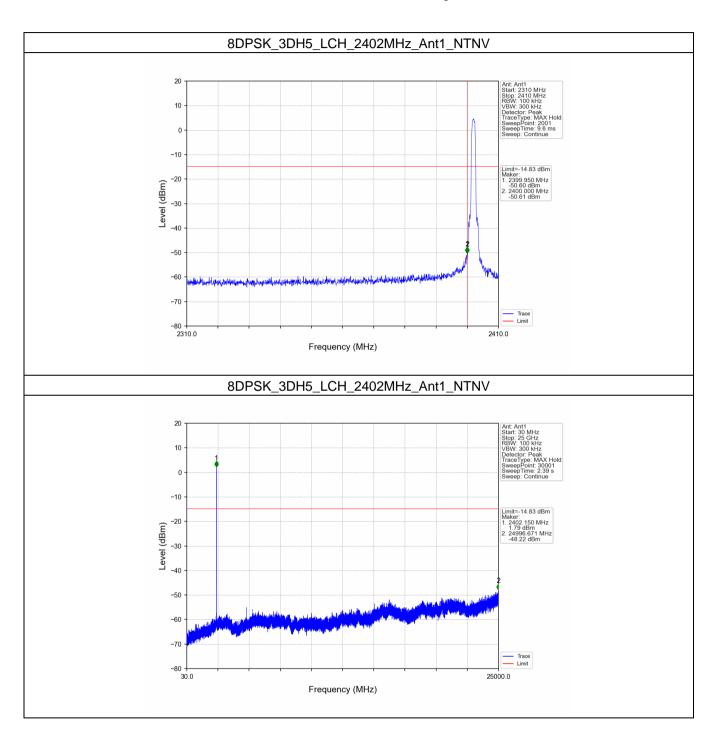
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 105 of 111

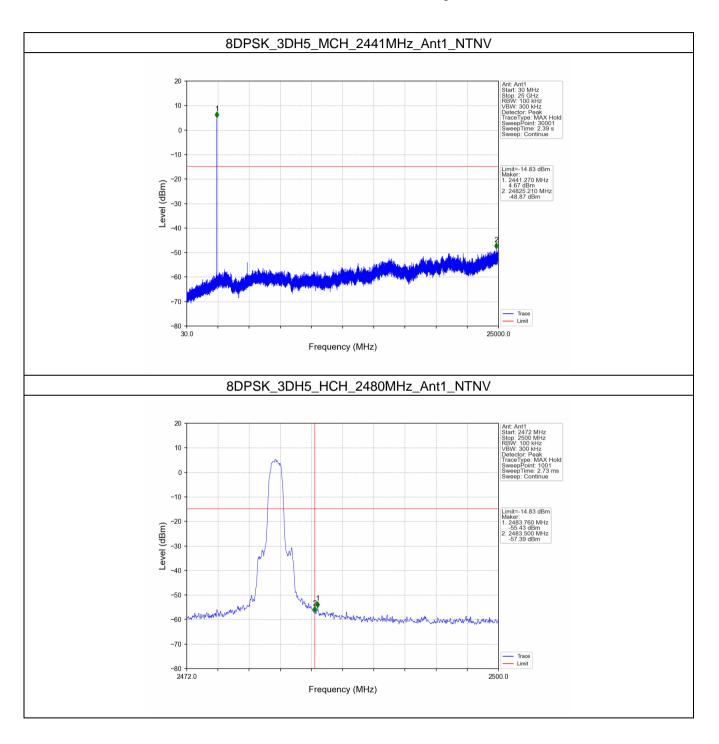
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 106 of 111

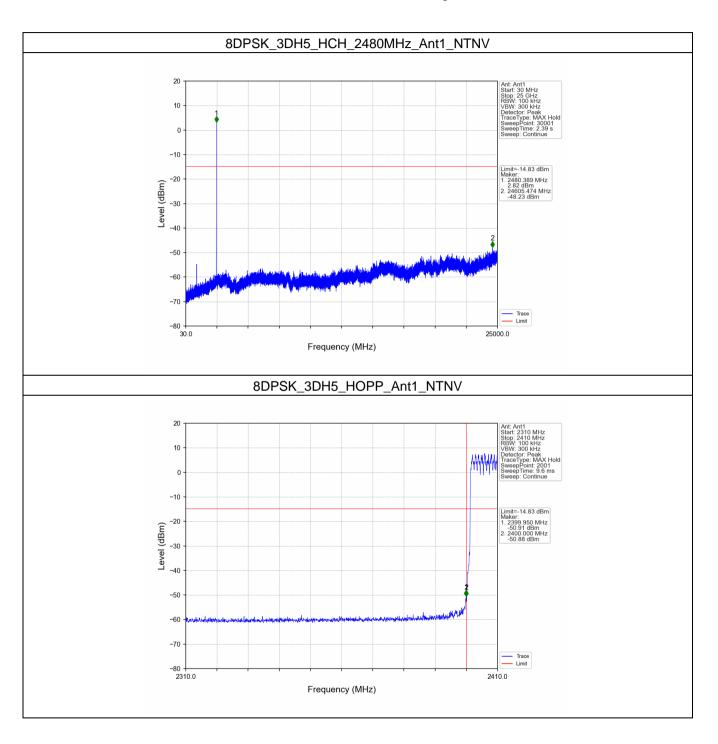
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 107 of 111

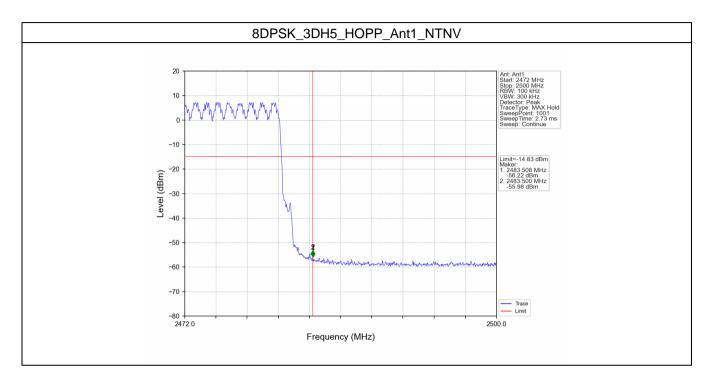
CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 108 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 109 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR231100216801 Page: 110 of 111

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR231100216801 Page: 111 of 111

- End of the Report -