

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch

Report No.: SHEM200600438101

Page: 1 of 68

TEST REPORT

Application No.: SHEM2006004381CR

FCC ID: 2AC8UA2001 **IC**: 21806-A2001

Applicant: Anhui Huami Information Technology Co., Ltd.

Address of Applicant: Room 1201, Building A4, National Animation Industry Base, No.800

Wangjiang West Road, Gaoxin District, Hefei, Anhui, China

Manufacturer: Anhui Huami Information Technology Co., Ltd.

Address of Manufacturer: Room 1201, Building A4, National Animation Industry Base, No.800

Wangjiang West Road, Gaoxin District, Hefei, Anhui, China

Factory: Hi-P (Suzhou) Electronics& Technology Co., Ltd.

Address of Factory: No. 86, Liufeng Road, Wuzhong District, Suzhou, Jiangsu Province,

P.R.China.

Equipment Under Test (EUT):

EUT Name: Amazfit Neo

Model No.: A2001

Standard(s): 47 CFR Part 15, Subpart C 15.247

RSS-247 Issue 2, February 2017 RSS-Gen Issue 5, April 2018

Date of Receipt: 2020-06-04

Date of Test: 2020-06-12 to 2020-06-24

Date of Issue: 2020-06-24

Test Result: Pass*

Man Zhan

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

会員を記している。 SGS-CSTC Manages Technical Services Application Training Contest Technical Services Application Co. Ltd. Training Contest Co. Ltd. Services Application Co. Ltd. Services App

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction sixuses defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

**Attention:10 check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443,

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SHEM200600438101

Page: 2 of 68

Revision Record									
Version Description Date Remark									
Original	2020-06-24	1							
	Description	Description Date							

Authorized for issue by:	
	Bril Wu
	Bill Wu / Project Engineer
	Parlam Zhan
	Parlam Zhan/ Reviewer

Report No.: SHEM200600438101

Page: 3 of 68

2 Test Summary

Radio Spectrum Technical Requirement							
Item FCC Requirement IC Requirement Method Res							
Antenna Requirement	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	RSS-Gen Clause 6.8	N/A	Customer Declaration			

N/A: Not applicable

Radio Spectrum Matter Part								
Item	FCC Requirement	IC Requirement	Method	Result				
Conducted Emissions at AC Power Line (150kHz-30MHz)	at AC Power Line 4/ CFR Part 15,		ANSI C63.10 (2013) Section 6.2	Pass				
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247a(2)	RSS-247 Clause 5.2(a)	ANSI C63.10 (2013) Section 11.8.1	Pass				
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247(b)(3)	RSS-247 Clause 5.4(d)	ANSI C63.10 (2013) Section 11.9.1	Pass				
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247(e)	RSS-247 Clause 5.2(b)	ANSI C63.10 (2013) Section 11.10.2	Pass				
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.13.3.2	Pass				
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.11	Pass				
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	RSS-247 Section 3.3 & RSS-Gen Section 8.9	ANSI C63.10 (2013) Section 6.10.5	Pass				
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	RSS-247 Section 3.3 & RSS-Gen Section 8.9	ANSI C63.10 (2013) Section 6.4,6.5,6.6	Pass				
99% Bandwidth	-	RSS-Gen Section 6.7	ANSI C63.10 Section 6.9.3	Pass				

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200600438101

Page: 4 of 68

3 Contents

			Page
1	CO	VER PAGE	1
2	TES	ST SUMMARY	3
3	COI	NTENTS	4
4		NERAL INFORMATION	
4	GEI		
	4.1	DETAILS OF E.U.T.	
	4.2	DESCRIPTION OF SUPPORT UNITS	5
	4.3	MEASUREMENT UNCERTAINTY	6
	4.4	TEST LOCATION	
	4.5	TEST FACILITY	
	4.6	DEVIATION FROM STANDARDS	
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS	7
5	EQI	UIPMENT LIST	8
6	RAI	DIO SPECTRUM TECHNICAL REQUIREMENT	9
	6.1	ANTENNA REQUIREMENT	g
7	RAI	DIO SPECTRUM MATTER TEST RESULTS	10
	7.1	MINIMUM 6DB BANDWIDTH	10
	7.2	CONDUCTED PEAK OUTPUT POWER	-
	7.3	POWER SPECTRUM DENSITY	12
	7.4	CONDUCTED BAND EDGES MEASUREMENT	13
	7.5	CONDUCTED SPURIOUS EMISSIONS	
	7.6	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7	RADIATED SPURIOUS EMISSIONS	
	7.8	99% BANDWIDTH	43
8	TES	ST SETUP PHOTOGRAPHS	44
9	EUT	Γ CONSTRUCTIONAL DETAILS	44
		NY Δ FOR SHEM200600438101	45
Δ	PPENI	UX A FUR SHEW/UU6UU43X1U1	45

Report No.: SHEM200600438101

Page: 5 of 68

4 General Information

4.1 Details of E.U.T.

Power supply: DC 3.8V 0.61Wh rechargeable battery

Serial Number: A200118360023

Firmware Version: V4.1.7
Test voltage: DC 3.8V

Cable: DC Cable 10cm

Antenna Gain: -2.8dBi

Antenna Type: Integral Antenna

Bluetooth Version: V5.0 LE

Date rate: 1Mbps & 2Mbps

Channel Spacing: 2MHz
Modulation Type: GFSK
Number of Channels: 40

Operation Frequency: 2402MHz to 2480MHz

4.2 Description of Support Units

Description	Description Manufacturer		Serial No.
BT test board	BT test board /		/
Laptop	Lenovo	ThinkPad X100e	/

Report No.: SHEM200600438101

Page: 6 of 68

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Timeout	2s
3	Duty Cycle	0.37%
4	Occupied Bandwidth	3%
5	RF Conducted Power	0.6dB
6	RF Power Density	2.9dB
7	Conducted Spurious Emissions	0.75dB
8	DC Dedicted Dower	5.1dB (Below 1GHz)
0	RF Radiated Power	4.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
9	Padiated Churique Emission Test	4.5dB (30MHz-1GHz)
9	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)
		5.4dB (Above 18GHz)
10	Temperature Test	1°C
11	Humidity Test	3%
12	Supply Voltages	1.5%
13	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM200600438101

Page: 7 of 68

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab 588 West Jindu Road, Xingiao, Songjiang, 201612 Shanghai, China

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (LAB CODE: 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

• FCC (Designation Number: CN5033)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

• ISED (CAB Identifier: CN0020)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. EMC Laboratory has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Page: 8 of 68

5 Equipment List

Equipment Manufacturer Model No Inventory No Cal Date Cal Due Date								
Conducted Emission at Mai			incomery ite	- Can 2 and	Call			
EMI test receiver	R&S	ESR7	SHEM162-1	2019-12-20	2020-12-19			
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2019-12-20	2020-12-19			
LISN	EMCO	3816/2	SHEM019-1	2019-12-20	2020-12-19			
Pulse limiter	R&S	ESH3-Z2	SHEM029-1	2019-12-20	2020-12-19			
Shielding Room	ZHONGYU	8*4*3M	SHEM079-2	2019-12-20	2020-12-19			
CE test Cable	/	CE01	/ /	2019-12-20	2020-12-19			
RF Conducted Test	/	CEUI	/	2019-12-20	2020-12-19			
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2019-12-20	2020-12-19			
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2019-12-20	2020-12-19			
Signal Generator	R&S	SMR20	SHEM006-1	2019-08-13	2020-08-12			
		N5182A	SHEM182-1	2019-08-13	2020-08-12			
Signal Generator	Agilent				1			
Communication Tester	R&S	CMW270	SHEM183-1	2019-08-13	2020-08-12			
Switcher	Tonscend	JS0806	SHEM184-1	2019-08-13	2020-08-12			
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2019-08-13	2020-08-12			
Splitter	Anritsu	MA1612A	SHEM185-1	/	/			
Coupler	e-meca	803-S-1	SHEM186-1	/	/			
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-25	2020-09-24			
AC Power Stabilizer	APC	KDF-31020T-V0-F0	SHEM216-1	2019-12-20	2020-12-19			
DC Power Supply	MCH	MCH-303A	SHEM210-1	2019-12-20	2020-12-19			
Conducted test Cable	/	RF01~RF04	/	2019-12-20	2020-12-19			
RF Radiated Test	ı	ı	ı	1	1			
EMI test Receiver	R&S	ESU40	SHEM051-1	2019-12-20	2020-12-19			
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2019-12-20	2020-12-19			
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2019-12-20	2020-12-19			
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2019-10-14	2021-10-13			
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM202-1	2019-04-30	2021-04-29			
Horn Antenna (1-18GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23			
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2019-10-14	2021-10-13			
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-10-31	2020-10-30			
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2019-08-13	2020-08-12			
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2019-08-13	2020-08-12			
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2019-12-19	2020-12-18			
Signal Generator	R&S	SMR40	SHEM058-1	2019-08-13	2020-08-12			
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/			
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/			
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/			
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/			
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/			
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/			
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21			
RE test Cable	/	RE01, RE02, RE06	/	2019-12-19	2020-12-18			

Report No.: SHEM200600438101

Page: 9 of 68

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Integral Antenna and no consideration of replacement. The best case gain of the antenna is -2.8dBi.

Antenna location: Refer to Appendix (Internal Photos)

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮編: 201612

Report No.: SHEM200600438101

Page: 10 of 68

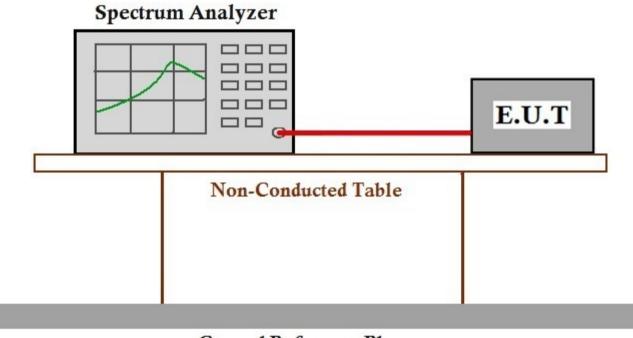
7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200600438101

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮編: 201612 t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200600438101

Page: 11 of 68

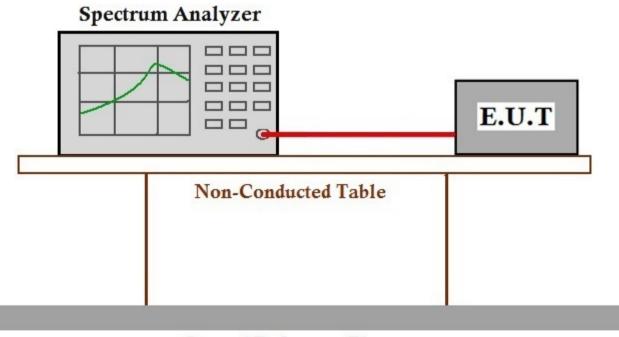
7.2 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method: ANSI C63.10 (2013) Section 11.9.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

7.2.1 E.U.T. Operation


Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200600438101

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮編: 201612 t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200600438101

Page: 12 of 68

7.3 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200600438101

Report No.: SHEM200600438101

Page: 13 of 68

7.4 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

§15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode Keep the EUT in continuously transmitting mode with GFSK

modulation

7.4.2 Test Setup Diagram

Spectrum Analyzer E.U.T Non-Conducted Table

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200600438101

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn 中国・上海・松江区金都西路588号 郎錦: 201612 t(86-21) 61915666 f(86-21) 61915678 e sgs. china@sgs. com

Report No.: SHEM200600438101

Page: 14 of 68

7.5 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.11

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition,

radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.5.2 Test Setup Diagram

Spectrum Analyzer E.U.T Non-Conducted Table

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200600438101

ghai,China 201612 tt(86-21) 61915666 ft(86-21) 61915678 www.sgsgroup.com.cn 邮编: 201612 tt(86-21) 61915666 ft(86-21) 61915678 e sgs.china@sgs.com

Member of the SGS Group (SGS SA)

Report No.: SHEM200600438101

Page: 15 of 68

7.6 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

Limit:

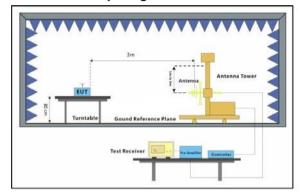
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

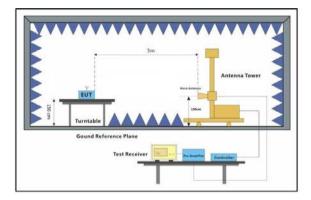
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

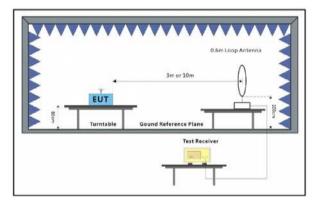
Report No.: SHEM200600438101

Page: 16 of 68

7.6.1 E.U.T. Operation


Operating Environment:


Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar


Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.6.2 Test Setup Diagram

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮編: 201612

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

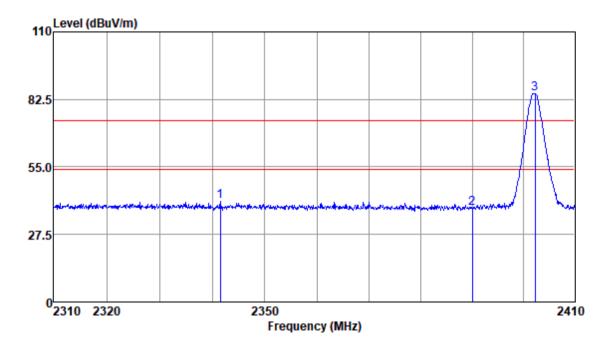
Report No.: SHEM200600438101

Page: 17 of 68

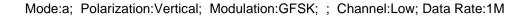
7.6.3 Measurement Procedure and Data

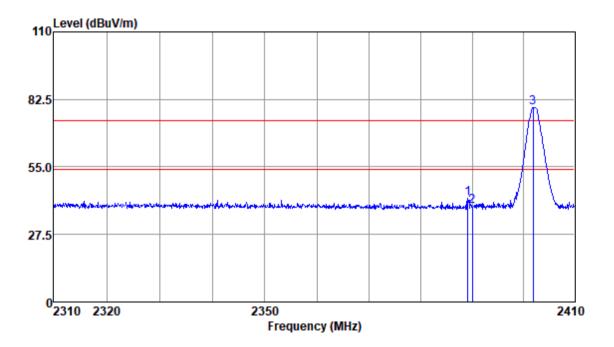
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

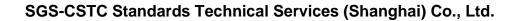
Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

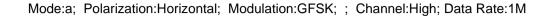

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

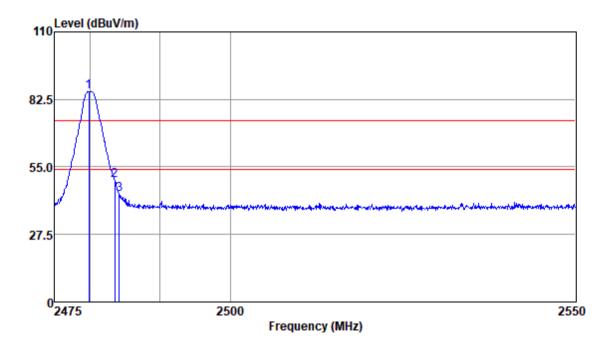
Page: 18 of 68


Antenna Polarity : HORIZONTAL

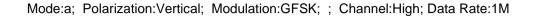

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
2341.54	49.20	25.96	3.08	40.87	74.00	-33.13	Peak
2390.00	46.21	26.03	3.15	37.99	74.00	-36.01	Peak
2402.25	93.08	26.05	3.14	84.87	74.00	10.87	Peak

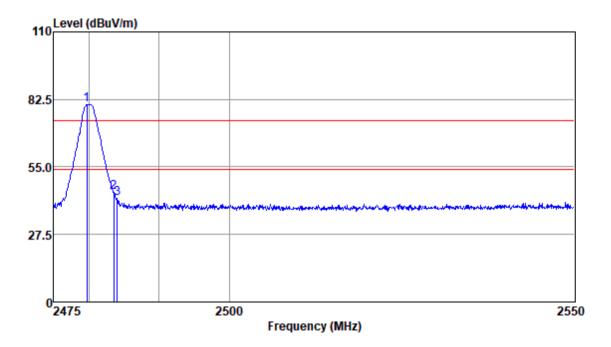

Page: 19 of 68


Antenna Polarity : VERTICAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
				42.30			Peak
2390.00	47.34	26.03	3.15	39.12	74.00	-34.88	Peak
2401.84	87.40	26.05	3.15	79.20	74.00	5.20	Peak

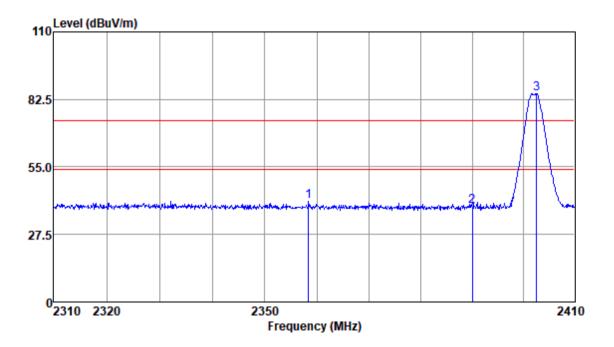
Page: 20 of 68


Antenna Polarity : HORIZONTAL

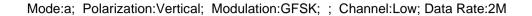

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
2479.81	93.87	26.17	3.14	85.61	74.00	11.61	Peak
2483.50	57.77	26.18	3.14	49.52	74.00	-24.48	Peak
2484.18	52.22	26.18	3.14	43.97	74.00	-30.03	Peak

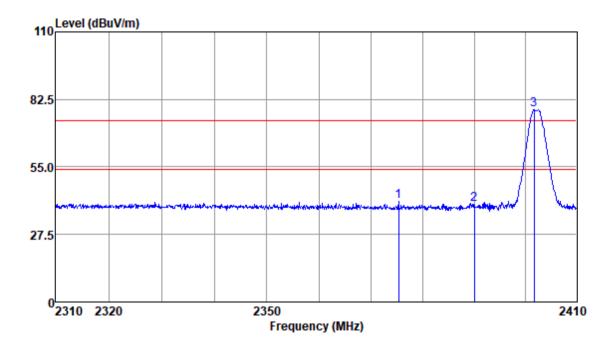
Page: 21 of 68

Antenna Polarity : VERTICAL


	Freq				Emission Level			Remark
	MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
2	479.73	88.69	26.17	3.14	80.43	74.00	6.43	Peak
2	483.50	52.70	26.18	3.14	44.45	74.00	-29.55	Peak
2	484.03	50.40	26.18	3.14	42.15	74.00	-31.85	Peak

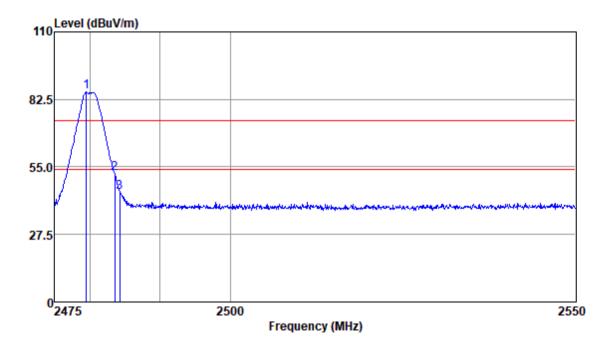
Page: 22 of 68


Antenna Polarity : HORIZONTAL

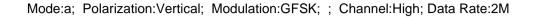

Freq				Emission Level			Remark
MHz	dRuy	dR/m	dR	dBuv/m	dBuy/m	dR	
2358.37	49.15	25.99	3.12	40.88	74.00	-33.12	Peak
2390.00	47.17	26.03	3.15	38.95	74.00	-35.05	Peak
2402.56	93.01	26.05	3.14	84.77	74.00	10.77	Peak

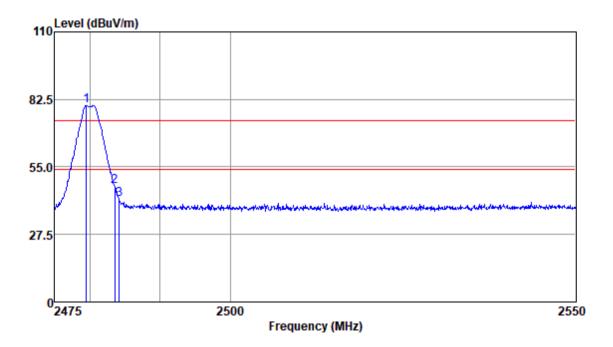
Page: 23 of 68


Antenna Polarity : VERTICAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
2375.32	49.20	26.01	3.17	40.99	74.00	-33.01	Peak
2390.00	48.14	26.03	3.15	39.92	74.00	-34.08	Peak
2401.64	86.41	26.05	3.15	78.21	74.00	4.21	Peak

Page: 24 of 68


Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
2479.51	93.71	26.17	3.14	85.45	74.00	11.45	Peak
2483.50	60.51	26.18	3.14	52.26	74.00	-21.74	Peak
2484.25	52.98	26.18	3.14	44.73	74.00	-29.27	Peak

Page: 25 of 68

Antenna Polarity : VERTICAL

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
2479.51	88.29	26.17	3.14	80.03	74.00	6.03	Peak
2483.50	55.46	26.18	3.14	47.21	74.00	-26.79	Peak
2484.18	50.16	26.18	3.14	41.91	74.00	-32.09	Peak

Report No.: SHEM200600438101

Page: 26 of 68

7.7 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Limit:

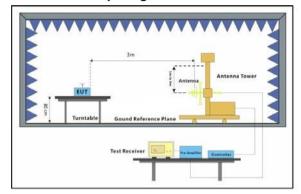
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

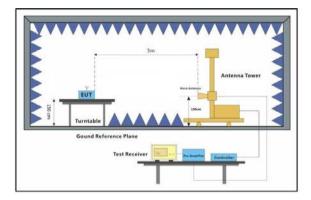
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

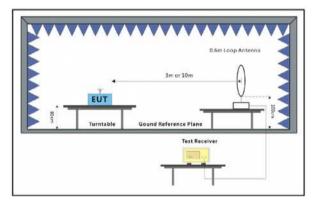
Report No.: SHEM200600438101

Page: 27 of 68

7.7.1 E.U.T. Operation


Operating Environment:


Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar


Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.7.2 Test Setup Diagram

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮編: 201612

SGS

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.

Report No.: SHEM200600438101

Page: 28 of 68

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

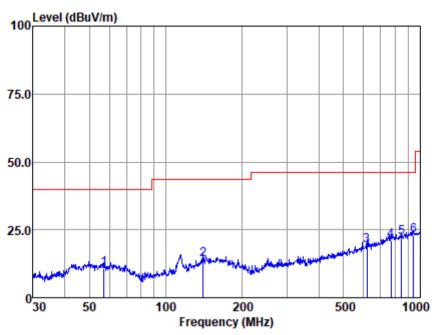
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown



Report No.: SHEM200600438101

Page: 29 of 68

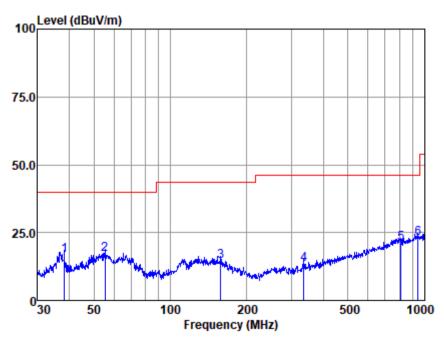
30MHz-1GHz

Mode:a; Polarization:Horizontal

Antenna Polarity : HORIZONTAL

Test mode :a

		Read	Antenna	Cable	Preamp	Emission	ı Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	57.191	38.80	13.26	1.10	42.33	10.83	40.00	-29.17	QP
2	140.342	42.16	12.52	1.63	42.25	14.06	43.50	-29.44	QP
3	618.537	37.91	19.87	3.27	41.69	19.36	46.00	-26.64	QP
4	768.748	37.19	22.18	3.65	41.99	21.03	46.00	-24.97	QP
5	848.056	37.42	22.58	3.79	41.79	22.00	46.00	-24.00	QP
6	942.131	36.35	23.92	4.00	41.44	22.83	46.00	-23.17	OP


Note:Emission Level=Read Level+Antenna Factor+Cable loss-Preamp Factor

Page: 30 of 68

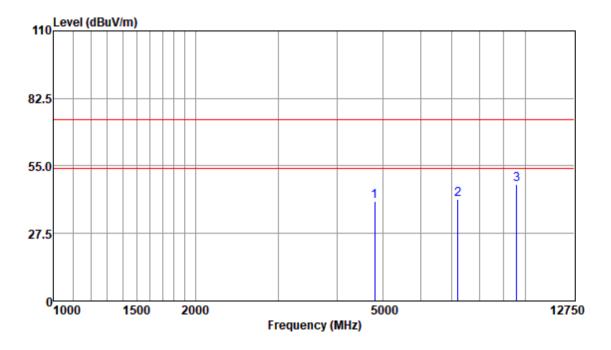
Mode:a; Polarization:Vertical

Antenna Polarity : VERTICAL

Test mode :a

		Read	Antenna	Cable	Preamp	Emission	n Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	38.212	44.89	12.93	0.94	42.34	16.42	40.00	-23.58	QP
2	55.221	44.74	13.38	1.08	42.33	16.87	40.00	-23.13	QP
3	158.112	41.62	13.15	1.77	42.22	14.32	43.50	-29.18	QP
4	336.035	38.77	14.14	2.51	41.99	13.43	46.00	-32.57	QP
5	807.429	36.80	22.35	3.73	41.95	20.93	46.00	-25.07	QP
6	945.440	36.29	23.96	4.00	41.44	22.81	46.00	-23.19	QP

Note: Emission Level=Read Level+Antenna Factor+Cable loss-Preamp Factor

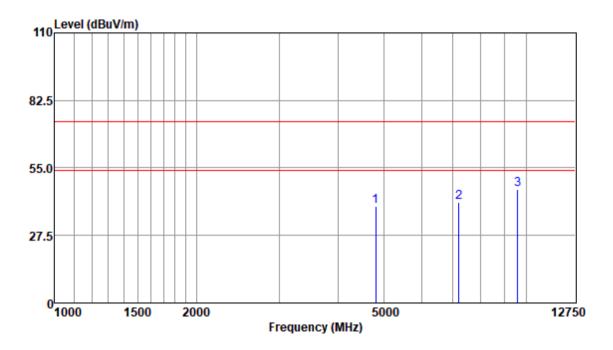


Page: 31 of 68

Above 1GHz

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low; Date Rate:1Mbps

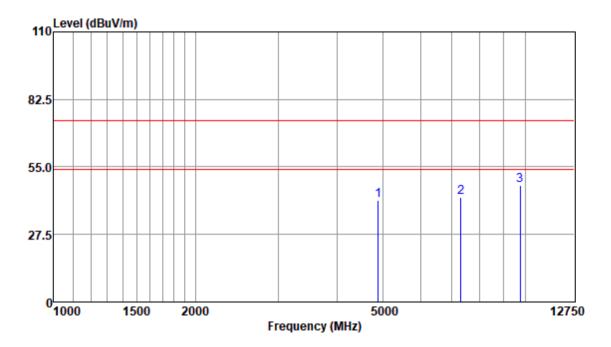
Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4804.00	43.21	30.87	5.09	40.46	74.00	-33.54	Peak
7206.00	39.36	33.35	5.75	41.28	74.00	-32.72	Peak
9608.00	39.56	35.16	6.78	47.32	74.00	-26.68	Peak

Page: 32 of 68

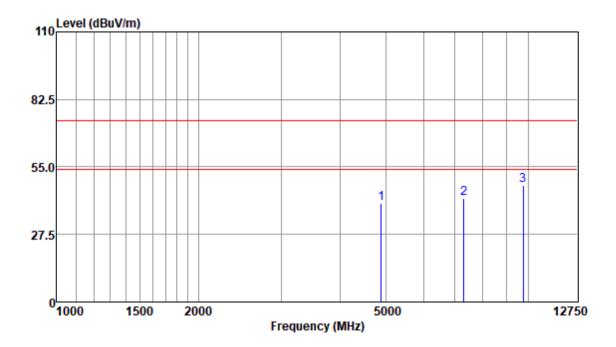
Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:Low; Date Rate:1Mbps

Antenna Polarity : VERTICAL

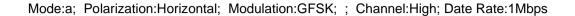

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4804.00	42.08	30.87	5.09	39.33	74.00	-34.67	Peak
7206.00	39.28	33.35	5.75	41.20	74.00	-32.80	Peak
9608.00	38.63	35.16	6.78	46.39	74.00	-27.61	Peak

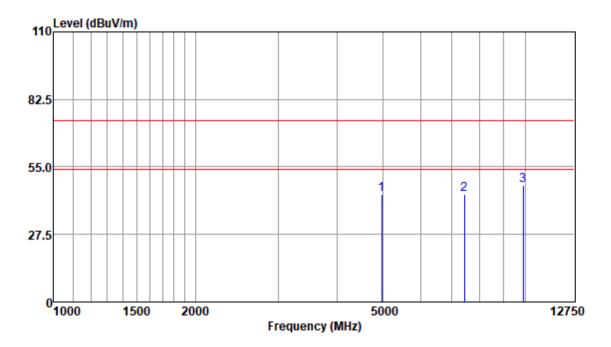
Page: 33 of 68

Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4880.00	44.52	31.06	4.48	41.28	74.00	-32.72	Peak
7320.00	40.56	33.50	5.80	42.76	74.00	-31.24	Peak
9760.00	39.87	35.10	6.48	47.30	74.00	-26.70	Peak

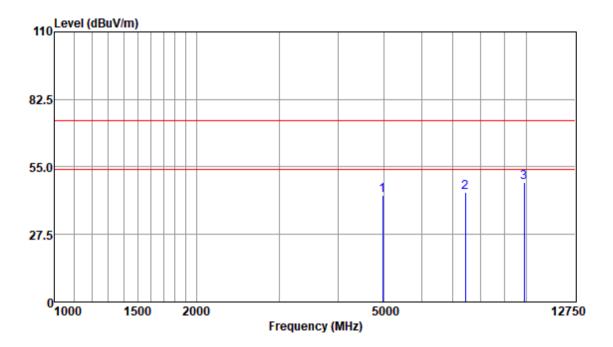
Page: 34 of 68


Antenna Polarity : VERTICAL

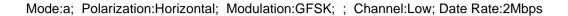

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4880.00	43.57	31.06	4.48	40.33	74.00	-33.67	Peak
7320.00	40.10	33.50	5.80	42.30	74.00	-31.70	Peak
9760.00	40.19	35.10	6.48	47.62	74.00	-26.38	Peak

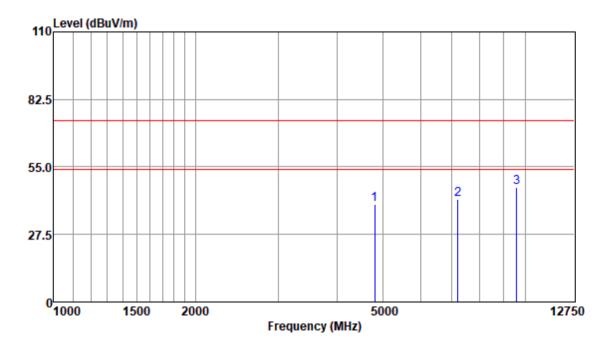
Page: 35 of 68

Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4960.00	46.28	31.29	5.04	43.74	74.00	-30.26	Peak
7440.00	41.36	33.62	6.09	44.04	74.00	-29.96	Peak
9920.00	40.11	35.03	6.53	47.56	74.00	-26.44	Peak

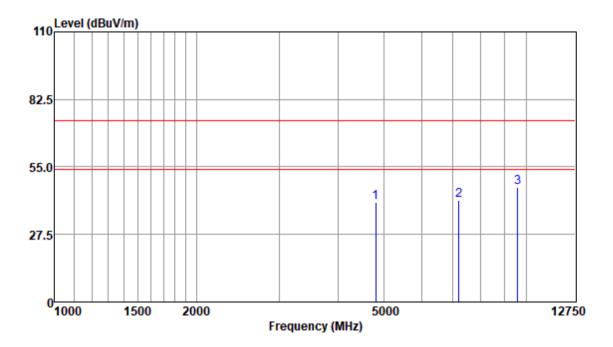
Page: 36 of 68


Antenna Polarity : VERTICAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4960.00	45.91	31.29	5.04	43.37	74.00	-30.63	Peak
7440.00	41.93	33.62	6.09	44.61	74.00	-29.39	Peak
9920.00	41.12	35.03	6.53	48.57	74.00	-25.43	Peak

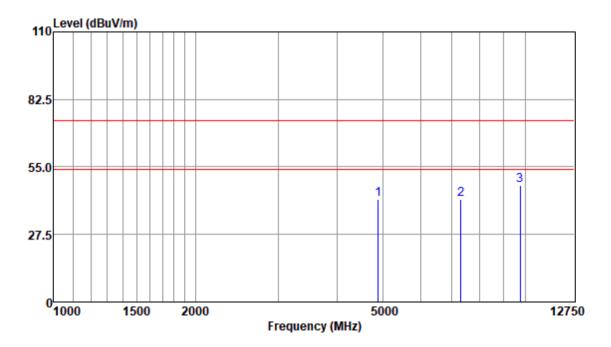
Page: 37 of 68

Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4804.00	42.35	30.87	5.09	39.60	74.00	-34.40	Peak
7206.00	39.95	33.35	5.75	41.87	74.00	-32.13	Peak
9608.00	39.02	35.16	6.78	46.78	74.00	-27.22	Peak

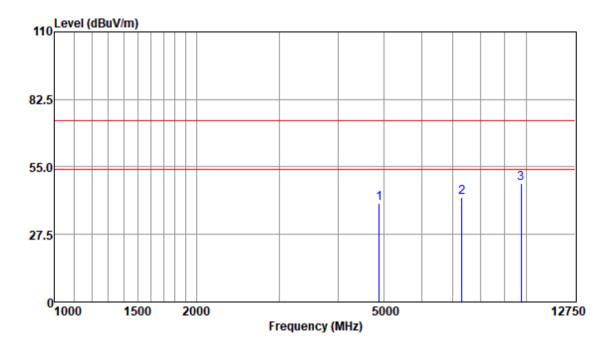
Page: 38 of 68

Antenna Polarity : VERTICAL

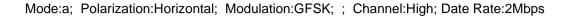

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4804.00	43.23	30.87	5.09	40.48	74.00	-33.52	Peak
7206.00	39.45	33.35	5.75	41.37	74.00	-32.63	Peak
9608.00	39.09	35.16	6.78	46.85	74.00	-27.15	Peak

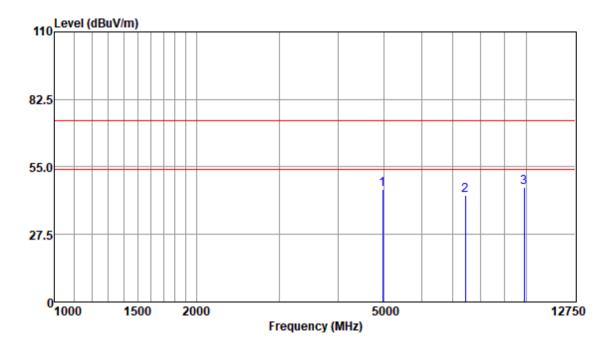
Page: 39 of 68

Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4880.00	45.08	31.06	4.48	41.84	74.00	-32.16	Peak
7320.00	39.53	33.50	5.80	41.73	74.00	-32.27	Peak
9760.00	40.09	35.10	6.48	47.52	74.00	-26.48	Peak

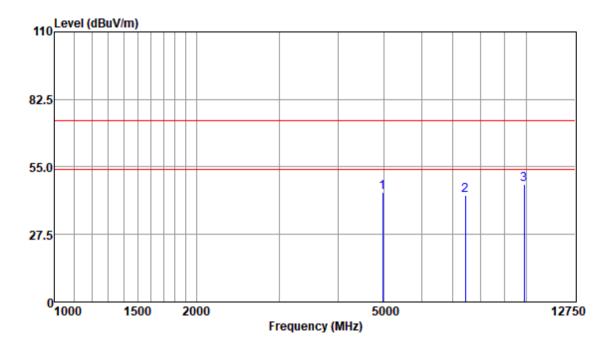
Page: 40 of 68


Antenna Polarity : VERTICAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4880.00	43.49	31.06	4.48	40.25	74.00	-33.75	Peak
7320.00	40.55	33.50	5.80	42.75	74.00	-31.25	Peak
9760.00	40.71	35.10	6.48	48.14	74.00	-25.86	Peak

Page: 41 of 68

Antenna Polarity : HORIZONTAL


Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4960.00	48.51	31.29	5.04	45.97	74.00	-28.03	Peak
7440.00	40.62	33.62	6.09	43.30	74.00	-30.70	Peak
9920.00	39.23	35.03	6.53	46.68	74.00	-27.32	Peak

Page: 42 of 68

Antenna Polarity : VERTICAL

Freq				Emission Level			Remark
MHz	dBuv	dB/m	dB	dBuv/m	dBuv/m	dB	
4960.00	47.02	31.29	5.04	44.48	74.00	-29.52	Peak
7440.00	40.71	33.62	6.09	43.39	74.00	-30.61	Peak
9920.00	40.48	35.03	6.53	47.93	74.00	-26.07	Peak

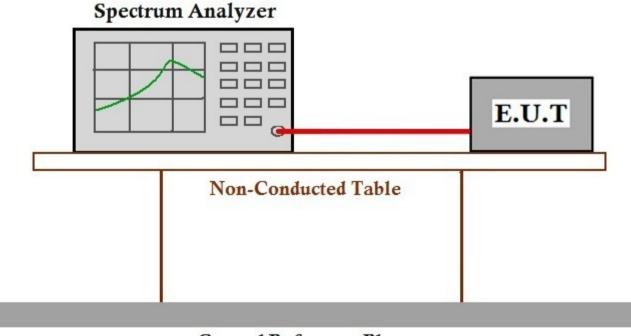
Report No.: SHEM200600438101

Page: 43 of 68

7.8 99% Bandwidth

Test Requirement RSS-Gen Section 6.7
Test Method: ANSI C63.10 Section 6.9.3

7.8.1 E.U.T. Operation


Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK

modulation

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

The detailed test data see: Appendix A for SHEM200600438101

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮編: 201612

Report No.: SHEM200600438101

Page: 44 of 68

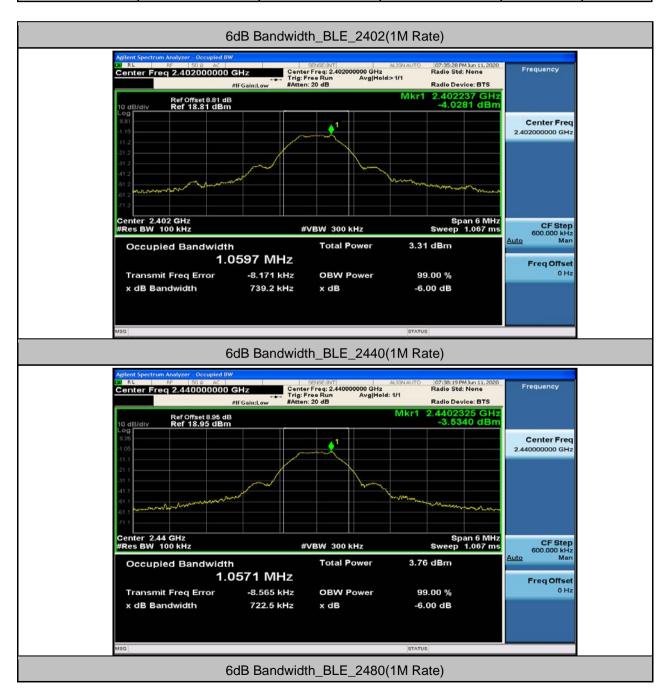
8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

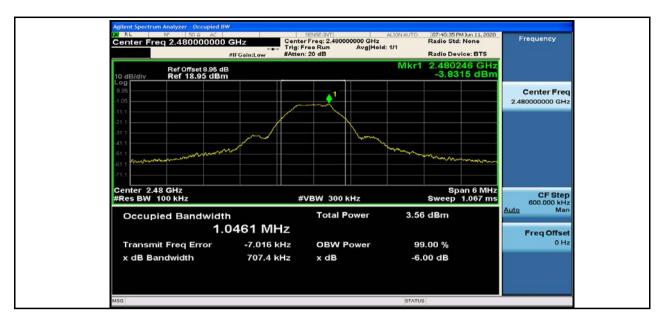
NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com



Page: 45 of 68

Appendix A for SHEM200600438101

1.6dB Bandwidth


Tost Modo	Tast Obarral	EBW	Limit	Vandiat		
Test Mode	Test Channel	1M Rate	2M Rate	Limit	Verdict	
BLE	2402	0.74	1.37	0.5	PASS	
BLE	2440	0.72	1.37	0.5	PASS	
BLE	2480	0.71	1.39	0.5	PASS	

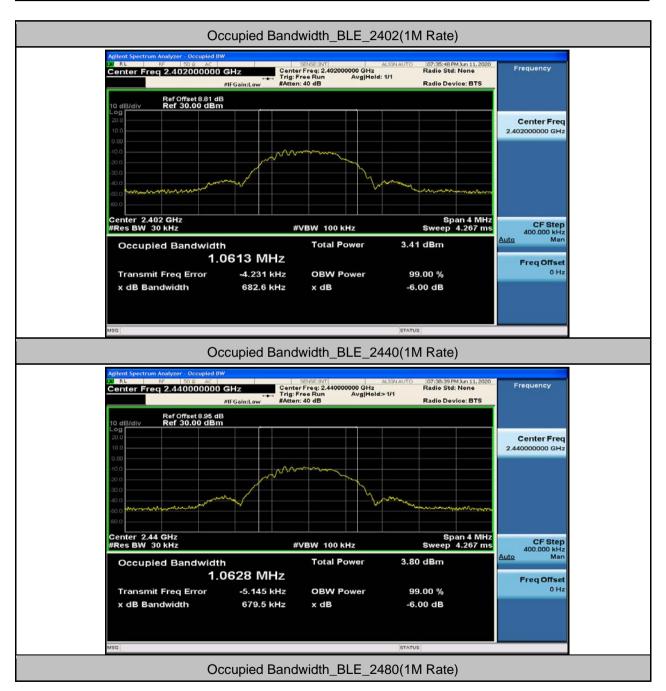


Report No.: SHEM200600438101

Page: 46 of 68

Report No.: SHEM200600438101

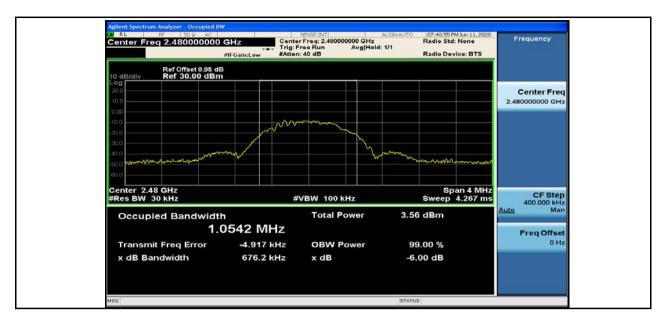
Page: 47 of 68

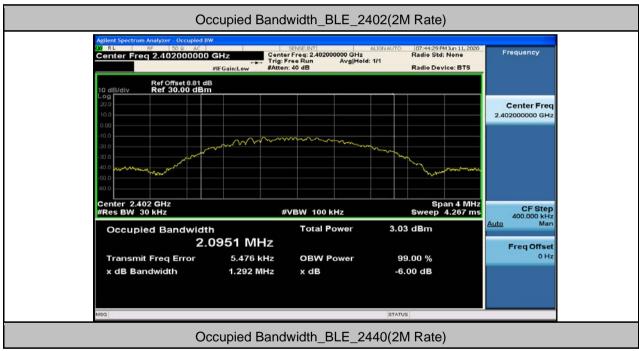


Report No.: SHEM200600438101

Page: 48 of 68

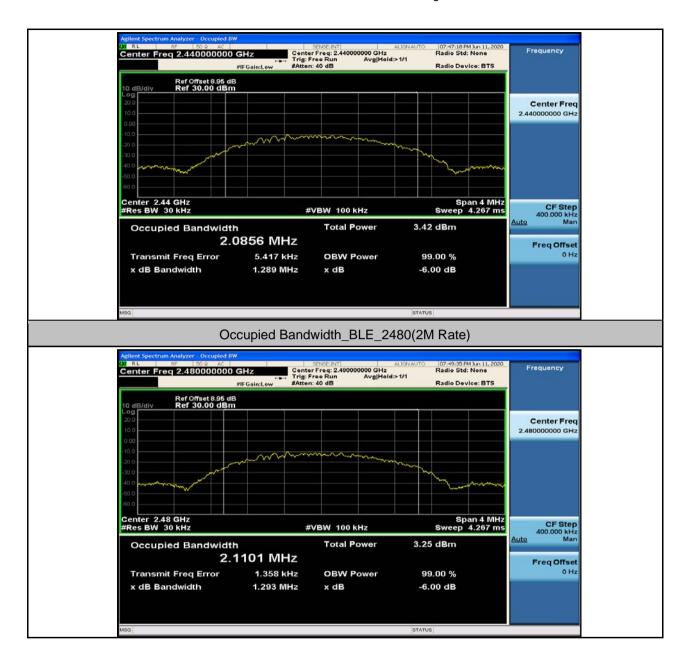
2.Occupied Bandwidth


Toot Made	Took Channal	OBW	[MHz]	I : :4[N /I I =-]	Voudiat	
Test Mode	Test Channel	1M Rate	2M Rate	Limit[MHz]	Verdict	
BLE	2402	1.06	2.10		PASS	
BLE	2440	1.06	2.09		PASS	
BLE	2480	1.05	2.11		PASS	



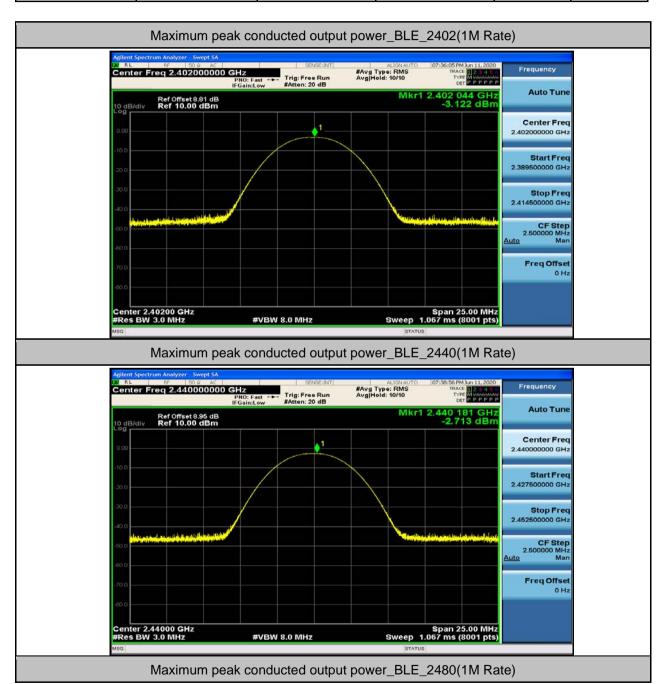
Report No.: SHEM200600438101

Page: 49 of 68



Report No.: SHEM200600438101

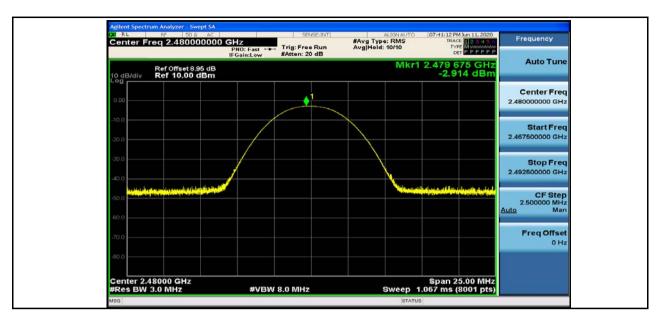
Page: 50 of 68

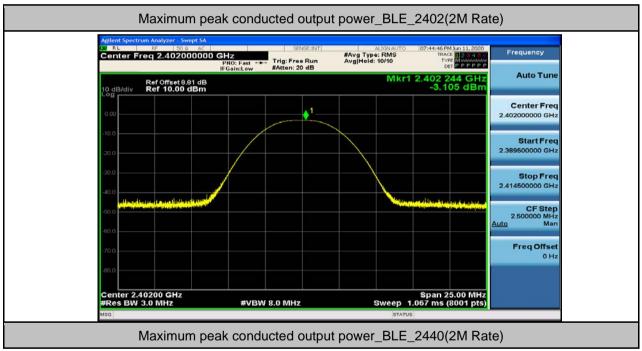


Report No.: SHEM200600438101

Page: 51 of 68

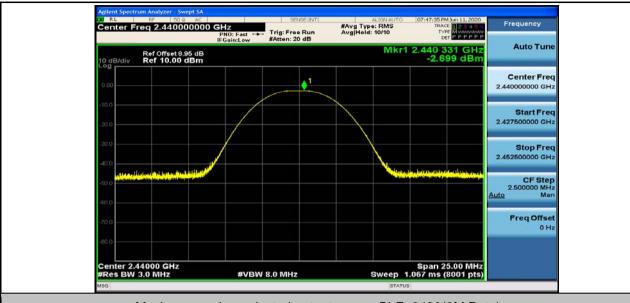
3.Maximum peak conducted output power

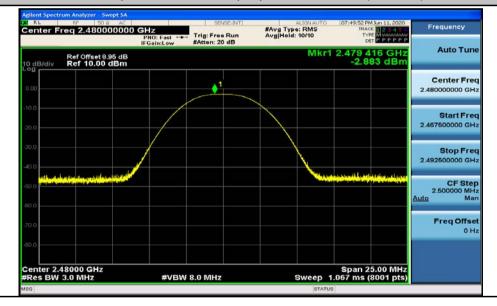

Toot Mode	Took Channal	Power	Line:#[alDine]	Voudiet		
Test Mode	Test Channel	1M Rate	2M Rate	Limit[dBm]	Verdict	
BLE	2402	-3.12	-3.11	30	PASS	
BLE	2440	-2.71	-2.7	30	PASS	
BLE	2480	-2.91	-2.88	30	PASS	



Report No.: SHEM200600438101

Page: 52 of 68

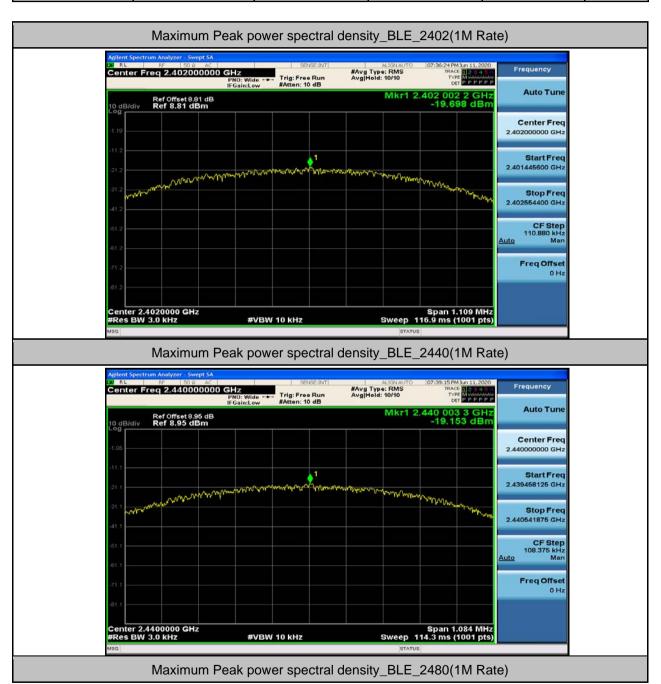




Report No.: SHEM200600438101

Page: 53 of 68

Maximum peak conducted output power_BLE_2480(2M Rate)

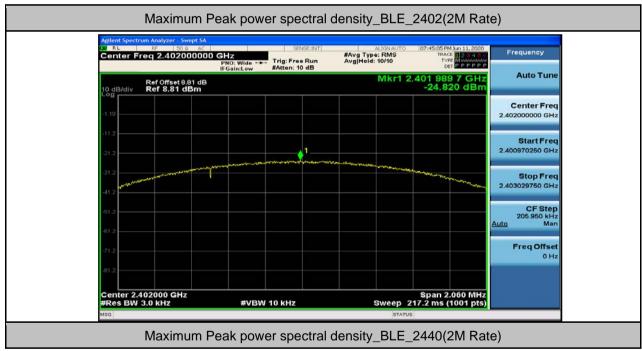


Report No.: SHEM200600438101

Page: 54 of 68

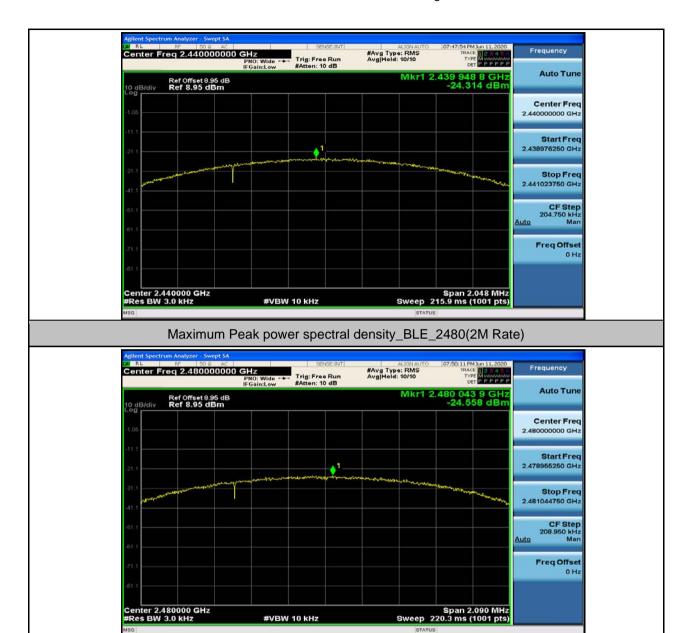
4. Maximum Peak power spectral density

	one epecual action	· /				
Took Mode	Took Channal	PSD[dB	m/3kHz]	Line it [dDree /Old]=1	\/o.v.d:.o.t	
Test Mode	Test Channel	1M Rate	2M Rate	Limit[dBm/3kHz]	Verdict	
BLE	2402	-19.7	-24.82	8.00	PASS	
BLE	2440	-19.15	-24.31	8.00	PASS	
BLE	2480	-18.96	-24.56	8.00	PASS	



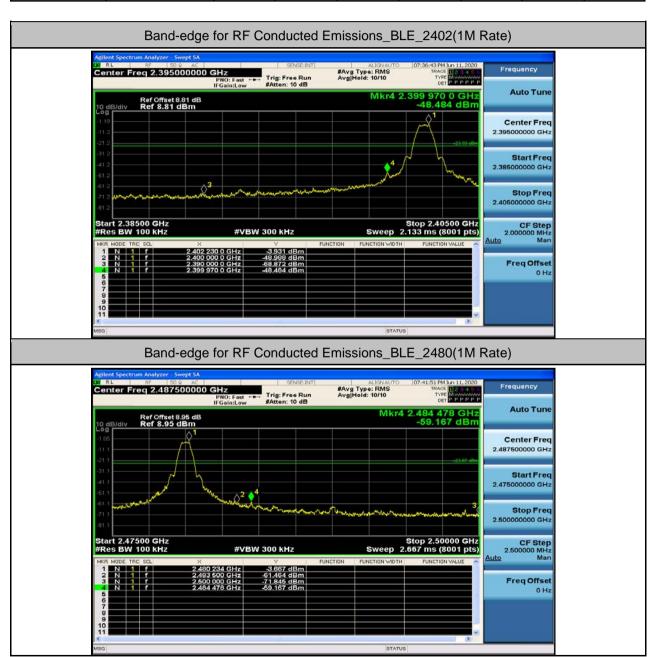
Report No.: SHEM200600438101

Page: 55 of 68



Report No.: SHEM200600438101

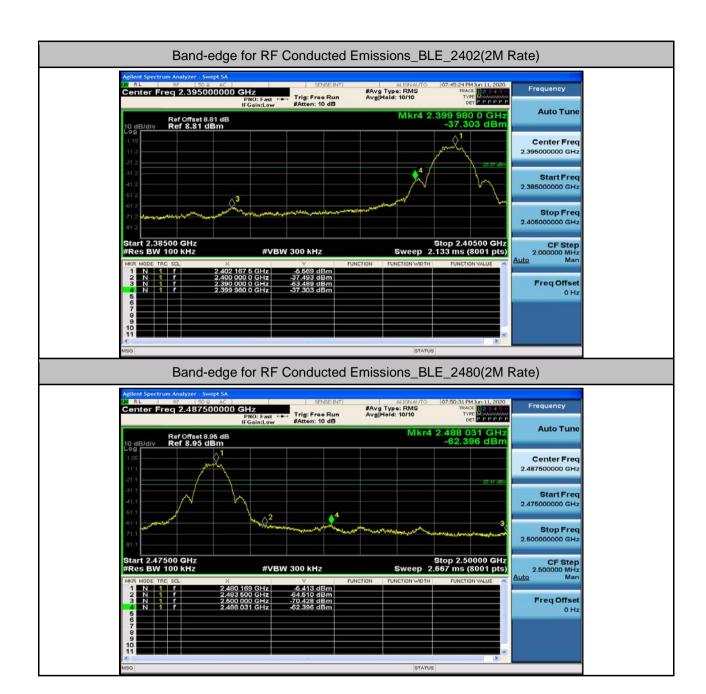
Page: 56 of 68



Report No.: SHEM200600438101

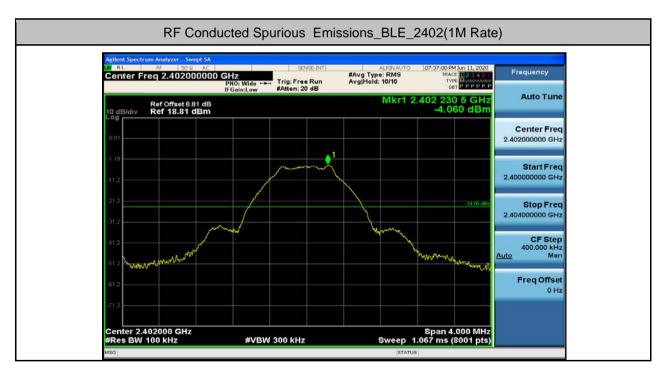
Page: 57 of 68

5.Band-edge for RF Conducted Emissions


	Test Channel	Carrier Power[dBm]		Max. Spurious Level [dBm]		Lir [dE	Verdict	
		1M Rate	2M Rate	1M Rate	2M Rate	1M Rate	2M Rate	
BLE	2402	-3.93	-5.57	-48.48	-37.30	-23.93	-25.57	PASS
BLE	2480	-3.67	-5.41	-59.17	-62.40	-23.67	-25.41	PASS

Report No.: SHEM200600438101

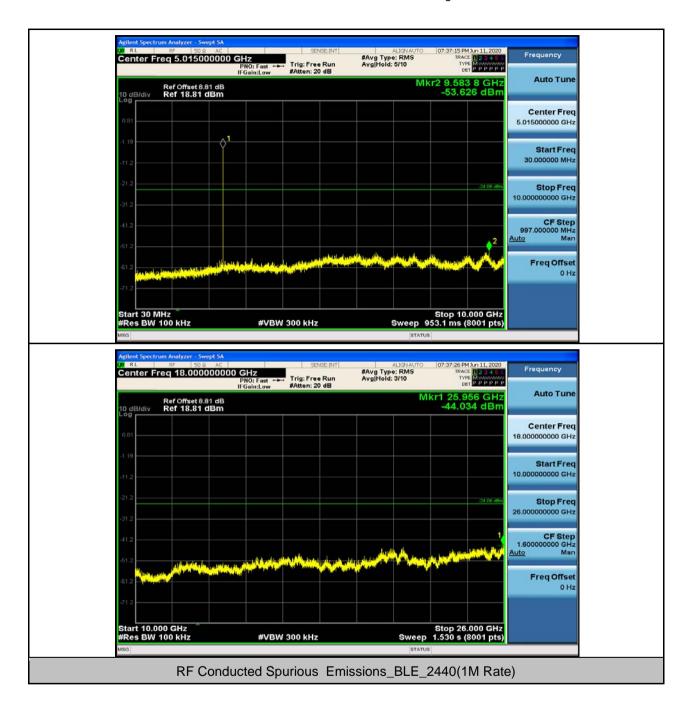
Page: 58 of 68



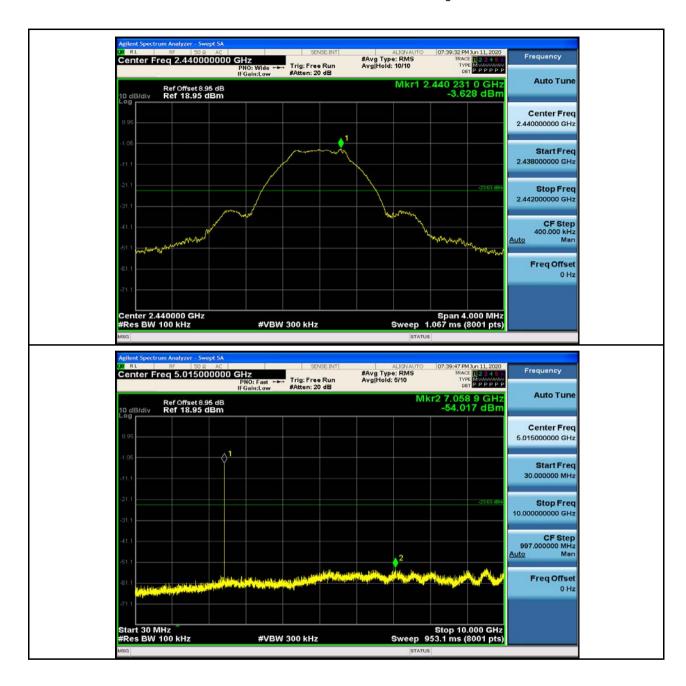
Report No.: SHEM200600438101

Page: 59 of 68

6.RF Conducted Spurious Emissions


Test	Test	StartFre	StopFre	RBW	RBW VBW		dBml I				nit m]	Verdict
Mode	Channel	[MHz]	[MHz]	[kHz]	[kHz]	1M Rate	2M Rate	1M Rate	2M Rate	1M Rate	2M Rate	. Graiot
BLE	2402	30	10000	100	300	-4.06	-6.06	-53.63	-53.61	<- 24.06	<- 26.06	PASS
BLE	2402	10000	26000	100	300	-4.06	-6.061	- 44.034	- 44.179	<- 24.06	<- 26.061	PASS
BLE	2440	30	10000	100	300	-3.63	-5.69	-54.02	-54.31	<- 23.63	<- 25.69	PASS
BLE	2440	10000	26000	100	300	-3.628	-5.693	- 43.439	- 43.912	<- 23.628	<- 25.693	PASS
BLE	2480	30	10000	100	300	-3.81	-5.93	-53.22	-53.83	<- 23.81	<- 25.93	PASS
BLE	2480	10000	26000	100	300	-3.806	-5.931	- 43.653	- 44.176	<- 23.806	<- 25.931	PASS

Report No.: SHEM200600438101

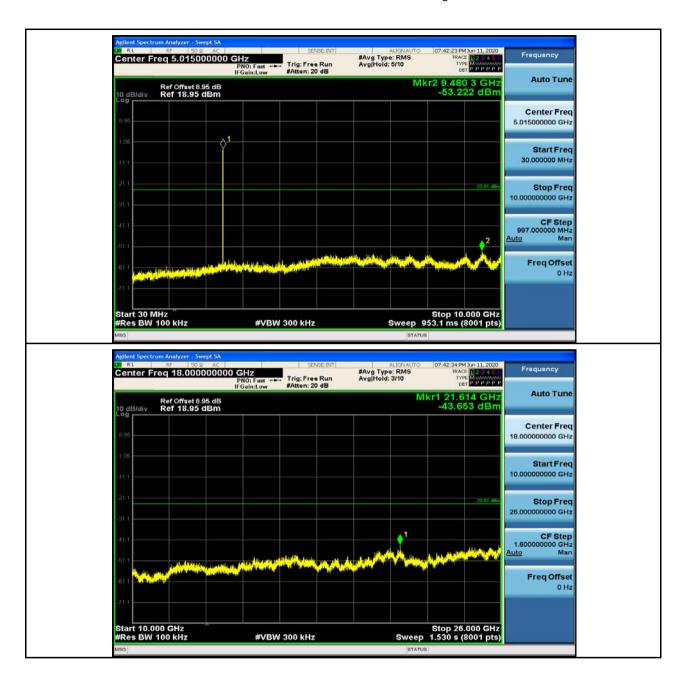

Page: 60 of 68

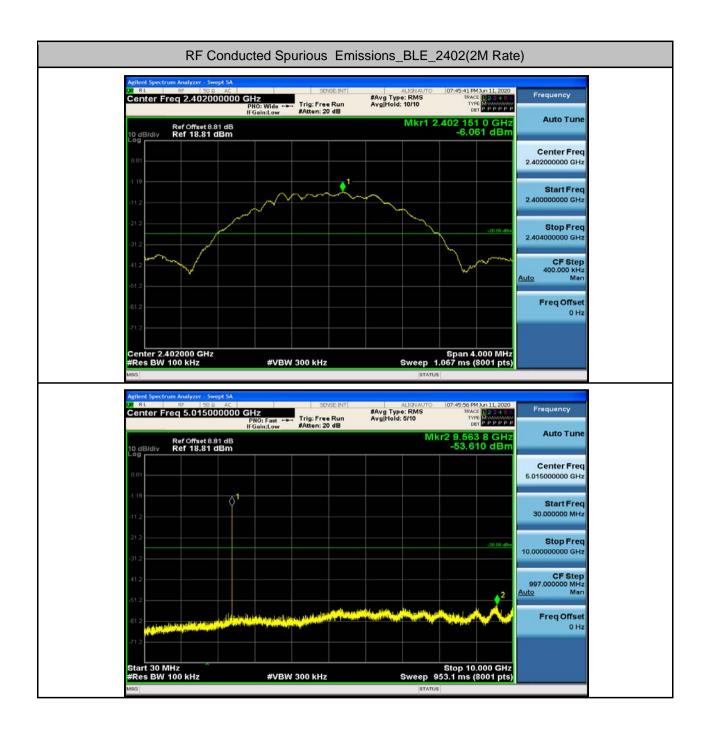
Report No.: SHEM200600438101

Page: 61 of 68

Report No.: SHEM200600438101

Page: 62 of 68


RF Conducted Spurious Emissions_BLE_2480(1M Rate)

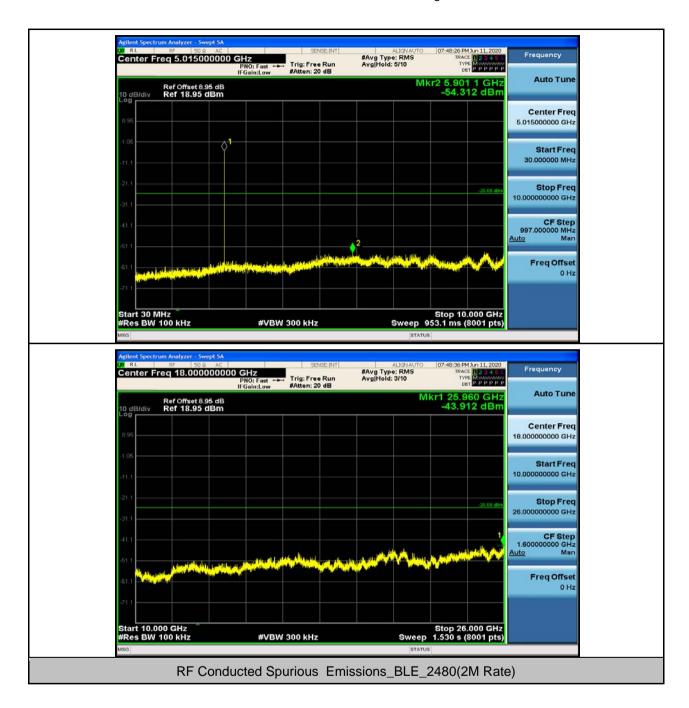

Report No.: SHEM200600438101

Page: 63 of 68

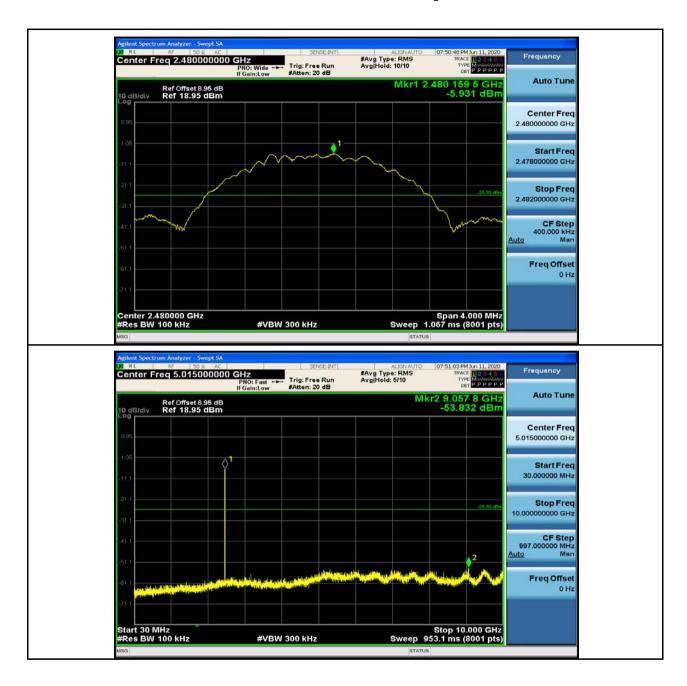
Report No.: SHEM200600438101 Page: 64 of 68

Report No.: SHEM200600438101

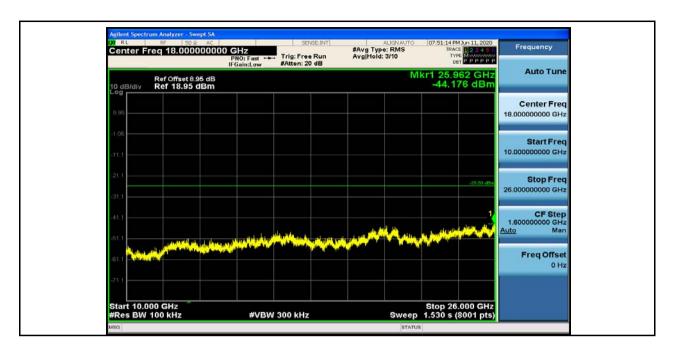
Page: 65 of 68


RF Conducted Spurious Emissions_BLE_2440(2M Rate)

Report No.: SHEM200600438101


Page: 66 of 68

Report No.: SHEM200600438101


Page: 67 of 68

Report No.: SHEM200600438101

Page: 68 of 68

- End of the Report -