

Report No.: SHEM190701508601 Page: 1 of 66

TEST REPORT

Date of Issue: Test Result:	2019-08-07 Pass*		
Date of Test:	2019-07-16 to 2019-07-18		
Date of Receipt:	2019-07-12		
	RSS-Gen Issue 5, March 2019 Amendment 1		
	RSS-247 Issue 2, February 2017		
Standard(s) :	47 CFR Part 15, Subpart C 15.247		
Model No.:	A1931		
EUT Name:	Amazfit Band 5		
Equipment Under Test (EUT):			
Address of Factory:	No.86, Liufeng Road, Wuzhong District, Suzhou, Jiangsu Province, P.R.China.		
Factory:	Hi-P (Suzhou) Electronics&Technology Co., Ltd.		
Address of Manufacturer:	Room 1201, Building A4, National Animation Industry Base, No. 800 Wangjiang West Road, Gaoxin District, Hefei, Anhui, China		
Manufacturer:	Anhui Huami Information Technology Co., Ltd.		
Address of Applicant:	Room 1201, Building A4, National Animation Industry Base, No. 800 Wangjiang West Road, Gaoxin District, Hefei, Anhui, China		
Applicant:	Anhui Huami Information Technology Co., Ltd.		
IC:	21806-A1931		
FCC ID:	2AC8UA1931		
Application No.:	SHEM1907015086CR		

* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed
overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents,
subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is
advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of
Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a
transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced
except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or
appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the
results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

or email: <u>CN.Doccheck@sgs.com</u>)Co.Ltd. NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612

t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM190701508601 Page: 2 of 66

Revision Record			
Version	Description	Date	Remark
00	Original	2019-08-07	/

Authorized for issue by:		
	Bhl WN	
	Bill Wu / Project Engineer	
	parlam zhan	
	Parlam Zhan / Reviewer	

Report No.: SHEM190701508601 Page: 3 of 66

2 Test Summary

Radio Spectrum Technical Requirement				
ltem	FCC Requirement	IC Requirement	Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	RSS-Gen Clause 6.8	N/A	Customer Declaration
N/A: Not applicable				
Radio Spectrum Matt	er Part			
Item	FCC Requirement	IC Requirement	Method	Result
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247a(2)	RSS-247 Clause 5.2(a)	ANSI C63.10 (2013) Section 11.8.1	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247(b)(3)	RSS-247 Clause 5.4(d)	ANSI C63.10 (2013) Section 11.9.1	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247(e)	RSS-247 Clause 5.2(b)	ANSI C63.10 (2013) Section 11.10.2	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.13.3.2	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.11	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Section 3.3 & RSS- Gen Section 8.9	ANSI C63.10 (2013) Section 6.10.5	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Section 3.3 & RSS- Gen Section 8.9	ANSI C63.10 (2013) Section 6.4,6.5,6.6	Pass
99% Bandwidth	-	RSS-Gen Section 6.7	ANSI C63.10 Section 6.9.3	Pass
Frequency Stability	-	RSS-Gen Section 8.11	RSS-Gen Section 6.11	Pass

Note:

1. Frequency stability requested in RSS GEN S8.11 has been complied since the result of band edge can demonstrate.

Report No.: SHEM190701508601 Page: 4 of 66

3 Contents

			Page
1	CO	/ER PAGE	1
2	TES	T SUMMARY	3
3	CO	ITENTS	4
4	GEN	IERAL INFORMATION	5
	4.1	DETAILS OF E.U.T.	5
	4.2	DESCRIPTION OF SUPPORT UNITS	
	4.3	MEASUREMENT UNCERTAINTY	
	4.4	TEST LOCATION	6
	4.5	TEST FACILITY	
	4.6	DEVIATION FROM STANDARDS	
	4.7	Abnormalities from Standard Conditions	6
5	EQU	IIPMENT LIST	7
6	RAD	DIO SPECTRUM TECHNICAL REQUIREMENT	8
	6.1	ANTENNA REQUIREMENT	8
7	RAD	DIO SPECTRUM MATTER TEST RESULTS	9
	7.1	MINIMUM 6DB BANDWIDTH	9
	7.2	CONDUCTED PEAK OUTPUT POWER	10
	7.3	POWER SPECTRUM DENSITY	
	7.4	CONDUCTED BAND EDGES MEASUREMENT	
	7.5	CONDUCTED SPURIOUS EMISSIONS	
	7.6	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.7	RADIATED SPURIOUS EMISSIONS	
	7.8	99% Bandwidth	-
8	TES	T SETUP PHOTOGRAPHS	33
9	EUT	CONSTRUCTIONAL DETAILS	33
A	PPEND	X A SHEM190701508601	34

Report No.: SHEM190701508601 Page: 5 of 66

4 General Information

4.1 Details of E.U.T.

DC 3.8V 125mAh rechargeable Li-ion battery
19314932999999
V1.0.1.02
DC 3.8V
USB Cable 50cm
0.01dBi
Monopole Antenna
2MHz
GFSK
BT5.0 BLE
1Mbps & 2Mbps
40
2402MHz to 2480MHz

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
BT test board	/	Test Plate 2	/
Laptop	Lenovo	ThinkPad X100e	/

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±8.4 x 10 ⁻⁸
2	Timeout	±2s
3	Duty cycle	±0.37%
4	Occupied Bandwidth	±3%
5	RF conducted power	±0.6dB
6	RF power density	±2.84dB
7	Conducted Spurious emissions	±0.75dB
8	DE Dedicted newer	±4.6dB (Below 1GHz)
0	RF Radiated power	±4.1dB (Above 1GHz)
		±4.2dB (Below 30MHz)
0	Dedicted Sourious emission test	±4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	±4.8dB (1GHz-18GHz)
		±5.2dB (Above 18GHz)
10	Temperature test	±1°C
11	Humidity test	±3%
12	Supply voltages	±1.5%
13	Time	±3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM190701508601 Page: 6 of 66

4.4 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678 No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC – Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC Registration No.: 8617A-1. CAB identifier: CN0020.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM190701508601 Page: 7 of 66

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Test					
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2018-12-20	2019-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2018-08-13	2019-08-12
Signal Generator	R&S	SMR20	SHEM006-1	2018-08-13	2019-08-12
Signal Generator	Agilent	N5182A	SHEM182-1	2018-08-13	2019-08-12
Communication Tester	R&S	CMW270	SHEM183-1	2018-08-13	2019-08-12
Switcher	Tonscend	JS0806	SHEM184-1	2018-08-13	2019-08-12
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2018-08-13	2019-08-12
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-25	2020-09-24
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2018-12-26	2019-12-25
DC Power Supply	MCN	MCH-303A	SHEM210-1	2018-12-26	2019-12-25
Conducted test Cable	/	RF01~RF04	/	2018-12-26	2019-12-25
Radiated Test					
EMI test Receiver	R&S	ESU40	SHEM051-1	2018-12-20	2019-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2018-12-20	2019-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	LAVIIO	BDLNA-0001	SHEM164-1	2018-08-13	2019-08-12
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2018-08-13	2019-08-12
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2018-12-20	2019-12-19
Signal Generator	R&S	SMR40	SHEM058-1	2018-08-13	2019-08-12
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2018-12-26	2019-12-25

Report No.: SHEM190701508601 Page: 8 of 66

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

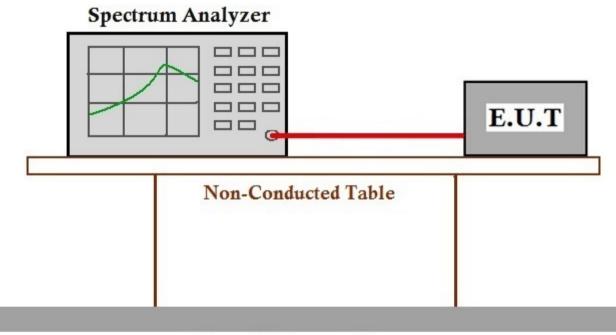
The monopole antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.01dBi.

Antenna location: Refer to Appendix(Internal Photos)

Report No.: SHEM190701508601 Page: 9 of 66

7 Radio Spectrum Matter Test Results

7.1 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:	20 °C Humidity:	50 % RH Atmospheric Pressure: 1010 mbar		
Test mode	a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation 1M rate			
	a1:TX mode_Keep the EUT modulation 2M rate.	in continuously transmitting mode with GFSK		

7.1.2 Test Setup Diagram

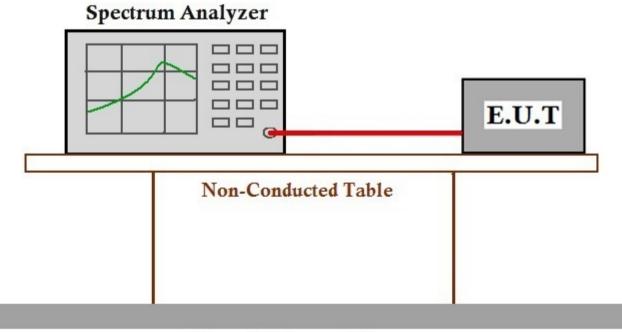
Ground Reference Plane

7.1.3 Measurement Procedure and Data

Report No.: SHEM190701508601 Page: 10 of 66

7.2 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method:	ANSI C63.10 (2013) Section 11.9.1
Limit:	


Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:	20	°C	Humidity:	50	% RH	Atmospheric Pressure: 1010	mbar
Test mode		X mode_Ke dulation 1M	•	in coi	ntinuousl	y transmitting mode with GFSK	
		TX mode_k dulation 2M	•	T in co	ontinuous	sly transmitting mode with GFSK	

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

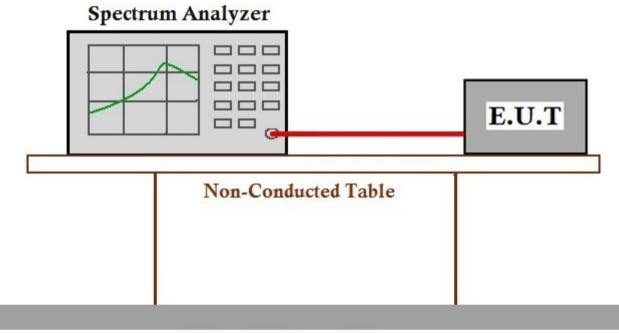
The detailed test data see: Appendix A SHEM190701508601

NO.588 West Jin	du Road, Songjiang District, Shangl	ai,China	201612
中国・上海・	松江区金都西路588号	邮编:	201612

t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM190701508601 Page: 11 of 66

7.3 Power Spectrum Density


Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	\leq 8dBm in any 3 kHz band during any time interval of continuous transmission

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	20 °C	Humidity:	50	% RH	Atmospheric Pressure: 1010	mbar
Test mode	a:TX mode_K modulation 1M		in cor	ntinuously	r transmitting mode with GFSK	
	a1:TX mode_ modulation 2M	•	r in co	ontinuous	ly transmitting mode with GFSK	

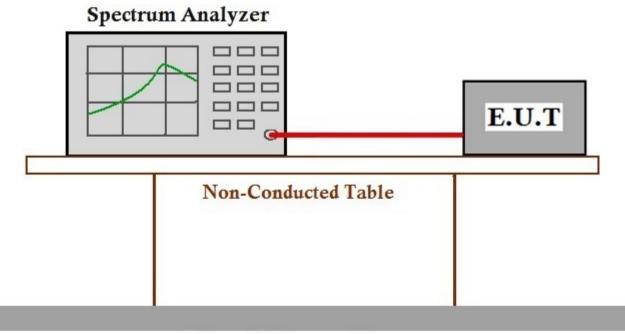
7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

Report No.: SHEM190701508601 Page: 12 of 66

7.4 Conducted Band Edges Measurement


	-
Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.13.3.2
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:	20 °C	Humidity:	50	% RH	Atmospheric Pressure: 1010	mbar
Test mode	a:TX mode_k modulation 11		in coi	ntinuously	<pre>rtransmitting mode with GFSK</pre>	
	a1:TX mode_ modulation 2		Г in co	ontinuous	ly transmitting mode with GFSK	

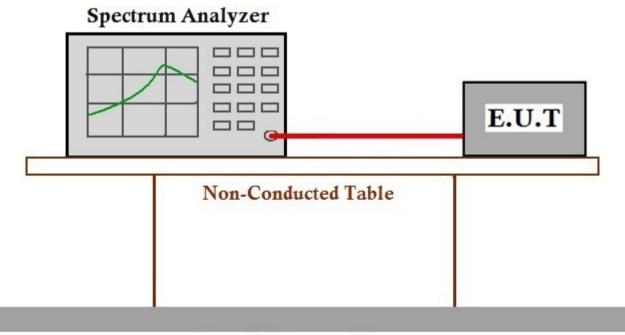
7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Report No.: SHEM190701508601 Page: 13 of 66

7.5 Conducted Spurious Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:	20 °C	Humidity:	50	% RH	Atmospheric Pressure: 1010	mbar
Test mode	a:TX mode_k modulation 11		in coi	ntinuously	r transmitting mode with GFSK	
	a1:TX mode_ modulation 2		Г in co	ontinuous	ly transmitting mode with GFSK	

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

Report No.: SHEM190701508601 Page: 14 of 66

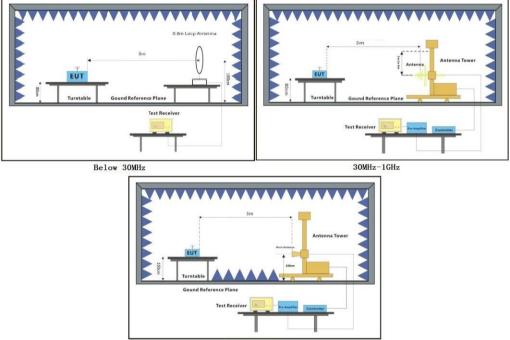
7.6 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SHEM190701508601 Page: 15 of 66


7.6.1 E.U.T. Operation

Operating Environment:

Temperature:	20 °C Humi	dity: 50 % RH	Atmospheric Pressure: 1010	mbar
Test mode	a:TX mode_Keep the modulation 1M rate	EUT in continuously	/ transmitting mode with GFSK	
	a1:TX mode_Keep the	EUT in continuous	ly transmitting mode with GFSK	

a1:1X mode_Keep the EUT in continuously transmitting mode with GFSK modulation 2M rate.

7.6.2 Test Setup Diagram

Above 1GHz

Report No.: SHEM190701508601 Page: 16 of 66

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

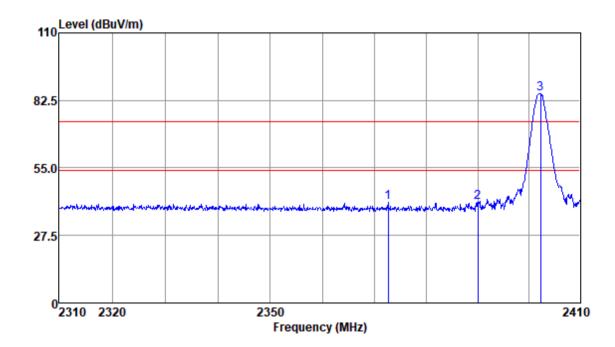
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

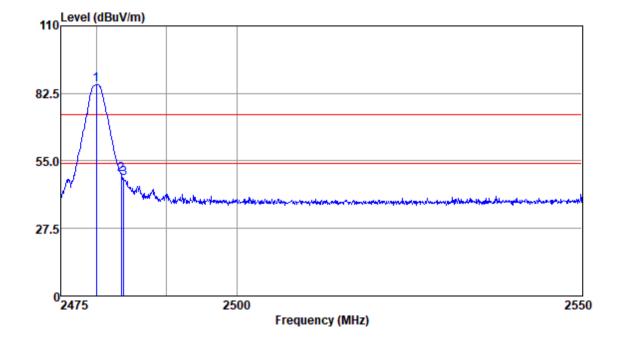
Report No.: SHEM190701508601 Page: 17 of 66


Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2372.61	49.05	26.01	3.17	37.39	40.84	74.00	-33.16	Peak
2390.00	49.16	26.03	3.15	37.40	40.94	74.00	-33.06	Peak
2402.25	93.52	26.05	3.14	37.40	85.31	74.00	11.31	Peak

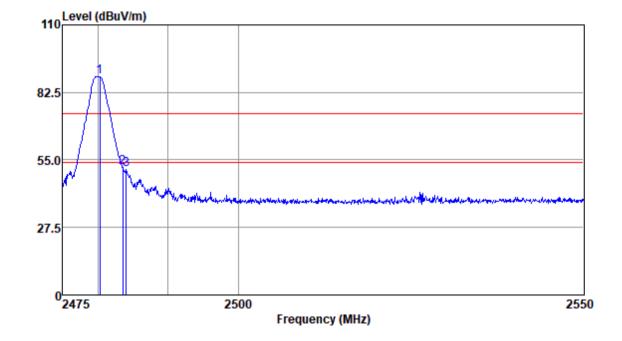
Report No.: SHEM190701508601 Page: 18 of 66


Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2388.14	50.09	26.03	3.15	37.40	41.87	74.00	-32.13	Peak
2390.00	48.80	26.03	3.15	37.40	40.58	74.00	-33.42	Peak
2402.25	96.12	26.05	3.14	37.40	87.91	74.00	13.91	Peak

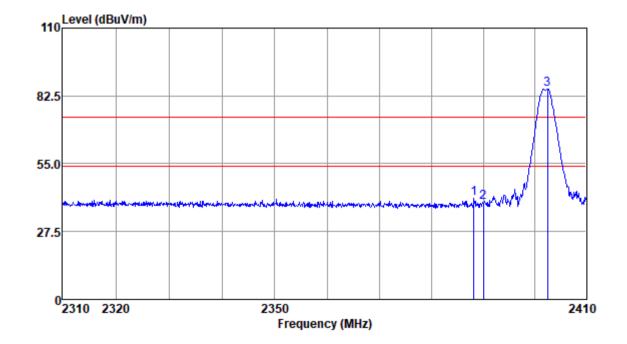
Report No.: SHEM190701508601 Page: 19 of 66


Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.96	94.29	26.17	3.14	37.57	86.03	74.00	12.03	Peak
2483.50	57.67	26.18	3.14	37.57	49.42	74.00	-24.58	Peak
2483.88	56.34	26.18	3.14	37.57	48.09	74.00	-25.91	Peak

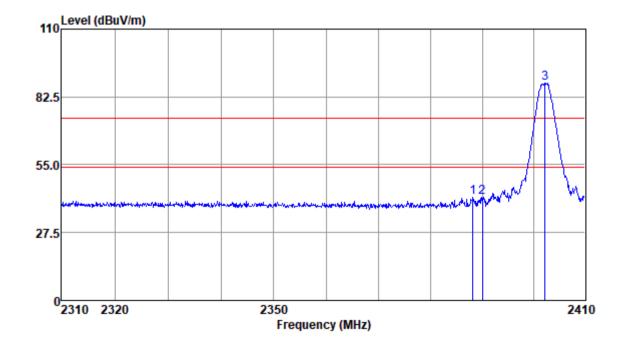
Report No.: SHEM190701508601 Page: 20 of 66


Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
2480.25 2483.50	97.13 60.14	26.17 26.18	3.14 3.14	37.57 37.57	dBuv/m 88.87 51.89 51.13	74.00 74.00	14.87 -22.11	Peak

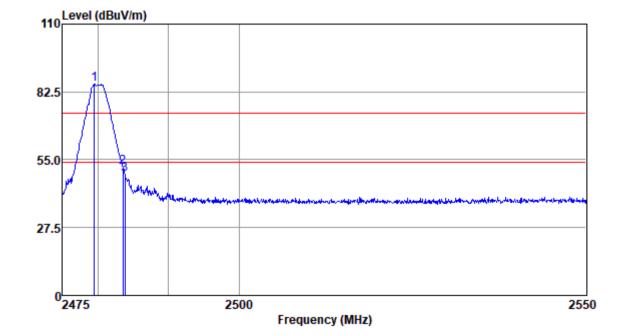
Report No.: SHEM190701508601 Page: 21 of 66


Mode:a1; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2388.14	49.05	26.03	3.15	37.40	40.83	74.00	-33.17	Peak
2390.00	47.60	26.03	3.15	37.40	39.38	74.00	-34.62	Peak
2402.45	93.54	26.05	3.14	37.40	85.33	74.00	11.33	Peak

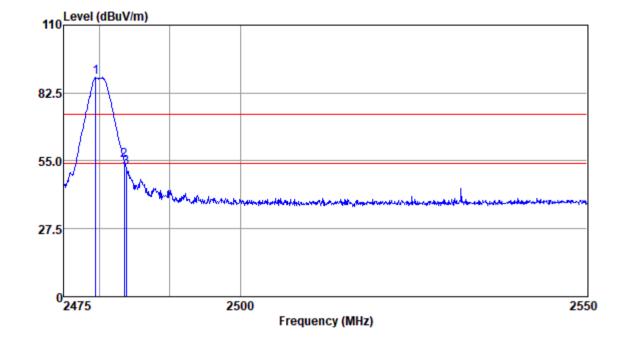
Report No.: SHEM190701508601 Page: 22 of 66


Mode:a1; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2388.14	49.91	26.03	3.15	37.40	41.69	74.00	-32.31	Peak
2390.00	50.14	26.03	3.15	37.40	41.92	74.00	-32.08	Peak
2402.15	96.14	26.05	3.14	37.40	87.93	74.00	13.93	Peak

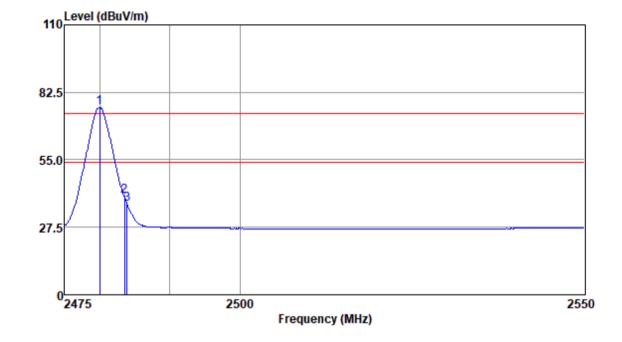
Report No.: SHEM190701508601 Page: 23 of 66


Mode:a1; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Antenna Polarity :HORIZONTAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2479.51	93.75	26.17	3.14	37.57	85.49	74.00	11.49	Peak
2483.50	60.40	26.18	3.14	37.57	52.15	74.00	-21.85	Peak
2483.81	57.21	26.18	3.14	37.57	48.96	74.00	-25.04	Peak

Report No.: SHEM190701508601 Page: 24 of 66


Mode:a1; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
					88.71			Peak
2483.50	63.61	26.18	3.14	37.57	55.36	74.00	-18.64	Peak
2483.81	60.67	26.18	3.14	37.57	52.42	74.00	-21.58	Peak

Report No.: SHEM190701508601 Page: 25 of 66

Mode:a1; Polarization:Vertical; Modulation:GFSK; ; Channel:High

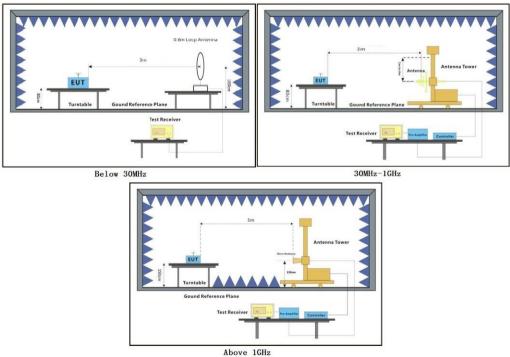
Antenna Polarity :VERTICAL

Freq					Emission Level			Remark
 MH7	dBuv	dB/m	 dR	dB	dBuy/m	dBuv/m		
					76.48			Average
2483.50					39.99			Average
2483.88	45.30	26.18	3.14	37.57	37.05	54.00	-16.95	Average

Report No.: SHEM190701508601 26 of 66 Page:

7.7	Radiated Spurious Emissions										
	Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.	209								
	Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6									
	Limit:										
	Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)								
	0.009-0.490	2400/F(kHz)	300								
	0.490-1.705	24000/F(kHz)	30								
	1.705-30.0	30	30								
	30-88	100	3								
	88-216	150	3								
	216-960	200	3								
	Above 960	500	3								

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.7.1 E.U.T. Operation

Operating Environment:

Temperature:	20 °C I	Humidity: 50	% RH	Atmospheric Pressure:	1010 mbar
Test mode	a:TX mode_Kee modulation 1M ra		ontinuously	transmitting mode with GF	SK
	a1:TV mode Key	on the EUT in a	ontinuouch	v transmitting mode with Cl	ECK

a1:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation 2M rate.

7.7.2 Test Setup Diagram

NO.588 West	Jiı	ndu Road, Songjiang District, Shan	ghai,China	201612
中国・上海	•	松江区金都西路588号	邮编:	201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM190701508601 Page: 27 of 66

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

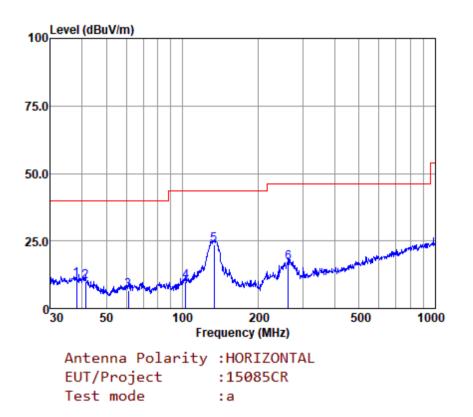
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

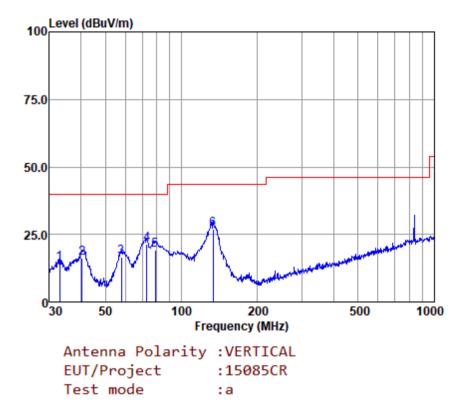
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown

Report No.: SHEM190701508601 Page: 28 of 66

Below 1GHz: Mode:a; Polarization:Horizontal



	Freq		Antenna Factor						Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	38.078	36.30	16.14	0.46	42.34	10.56	40.00	-29.44	QP
2	41.422	36.72	15.37	0.34	42.33	10.10	40.00	-29.90	QP
3	61.132	35.85	12.45	0.59	42.32	6.57	40.00	-33.43	QP
4	103.080	41.67	9.53	1.14	42.31	10.03	43.50	-33.47	QP
5	133.619	52.21	12.27	1.41	42.26	23.63	43.50	-19.87	QP
6	262.896	44.80	11.95	2.21	42.11	16.85	46.00	-29.15	QP

Report No.: SHEM190701508601 Page: 29 of 66

Mode:a; Polarization:Vertical

		Read	Antenna	Cable	Preamp	Emission	n Limit	0ver	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	32.979	40.80	15.64	0.36	42.36	14.44	40.00	-25.56	QP
2	40.417	42.31	15.95	0.32	42.33	16.25	40.00	-23.75	QP
3	57.999	46.13	12.20	0.58	42.33	16.58	40.00	-23.42	QP
4	73.103	52.65	10.34	0.66	42.26	21.39	40.00	-18.61	QP
5	78.965	52.50	8.35	0.75	42.27	19.33	40.00	-20.67	QP
6	133.619	55.43	12.27	1.41	42.26	26.85	43.50	-16.65	QP

Report No.: SHEM190701508601 Page: 30 of 66

Above 1GHz						
Mode:a; Pol						
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	40.03	6.18	46.21	54	-7.79	peak
7206	33.26	10.63	43.89	54	-10.11	peak
9608	33.22	14.38	47.6	54	-6.4	peak
Mode:a; Pol	arization:V	ertical; Mo	odulation:GF	SK; ; Cha	nnel:Low	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4804	35.28	6.18	41.46	54	-12.54	peak
7206	38.3	10.63	48.93	54	-5.07	, peak
9608	34.71	14.38	49.09	54	-4.91	peak
						P
Mode:a; Pol						
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4880	38.33	6.97	45.3	54	-8.7	peak
7320	35.36	11.12	46.48	54	-7.52	peak
9760	35.88	14.35	50.23	54	-3.77	peak
Mode:a; Pol	arization:V	ertical: Mo	dulation GE	SK Cha	nnel·middle	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Dotootor
4880	35.13	6.97	42.1	54	-11.9	peak
7320	38.41	11.12	49.53	54	-4.47	peak
			49.55 49.46	54 54	-4.47 -4.54	•
9760	35.11	14.35	49.40	54	-4.04	peak
Mode:a; Pol	arization:H	orizontal;	Modulation:	GFSK; ; C	-	
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	40.01	7.49	47.5	54	-6.5	peak
7440	36.95	11.65	48.6	54	-5.4	peak
9920	37.57	14.4	51.97	54	-2.03	peak
Mode:a; Pol	arization·V	ertical: Mo	odulation GE	SK Cha	nnel Hiah	
Frequency	RX R	Factor	Emission	Limit	Over Limit	Detector
	_					Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	naale
4960	34.48	7.49	41.97	54	-12.03	peak
7440	39.04	11.65	50.69	54	-3.31	peak
9920	36.76	14.4	51.16	54	-2.84	peak

Report No.: SHEM190701508601 Page: 31 of 66

Mode:a1; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low									
Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector			
MHz	dBuV	dB	dBuV/m	dBuV/m	dB				
4804	35.97	6.18	42.15	54	-11.85	peak			
7206	37.27	10.63	47.9	54	-6.1	peak			
9608	36.12	14.38	50.5	54	-3.5	peak			

Mode:a1; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
4804	39	6.18	45.18	54	-8.82	peak	
7206	37.93	10.63	48.56	54	-5.44	peak	
9608	36.05	14.38	50.43	54	-3.57	peak	

Mode:a1; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4880	36.08	6.97	43.05	54	-10.95	peak
7320	34.25	11.12	45.37	54	-8.63	peak
9760	32.85	14.35	47.2	54	-6.8	peak
Madava1, D	alari z ation.\/	artical Mar	dulation (CEC)	/ Chann	مارسناطام	

Mode:a1; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB		
4880	36.11	6.97	43.08	54	-10.92	peak	
7320	39.37	11.12	50.49	54	-3.51	peak	
9760	33.28	14.35	47.63	54	-6.37	peak	

Mode:a1; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	38.54	7.49	46.03	54	-7.97	peak
7440	37.51	11.65	49.16	54	-4.84	peak
9920	35.77	14.4	50.17	54	-3.83	peak

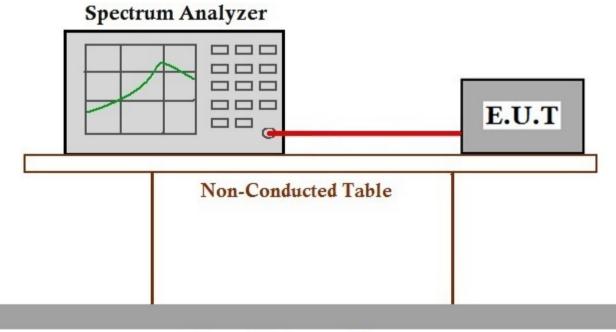
Mode:a1; Polarization:Vertical; Modulation:GFSK; ; Channel:High

Frequency	RX_R	Factor	Emission	Limit	Over Limit	Detector
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
4960	37.03	7.49	44.52	54	-9.48	peak
7440	39.2	11.65	50.85	54	-3.15	peak
9920	34.38	14.4	48.78	54	-5.22	peak

Report No.: SHEM190701508601 Page: 32 of 66

7.8 99% Bandwidth

Test RequirementRSS-Gen Section 6.7Test Method:ANSI C63.10 Section 6.9.3


7.8.1 E.U.T. Operation

Operating Environment:

Temperature:20 °CHumidity:50 % RHAtmospheric Pressure:1010 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulation 1M rate

a1:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation 2M rate.

7.8.2 Test Setup Diagram

Ground Reference Plane

7.8.3 Measurement Procedure and Data

Report No.: SHEM190701508601 Page: 33 of 66

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

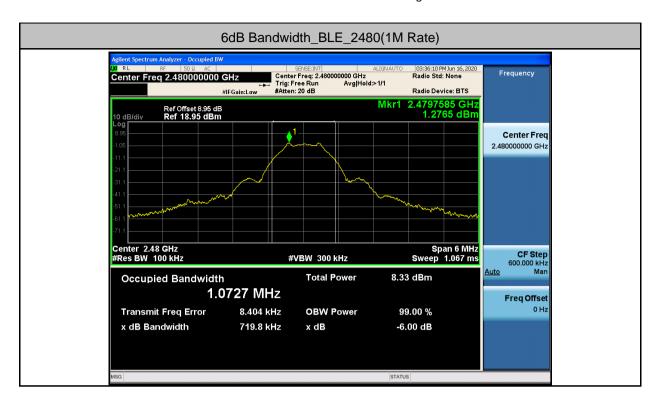
9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

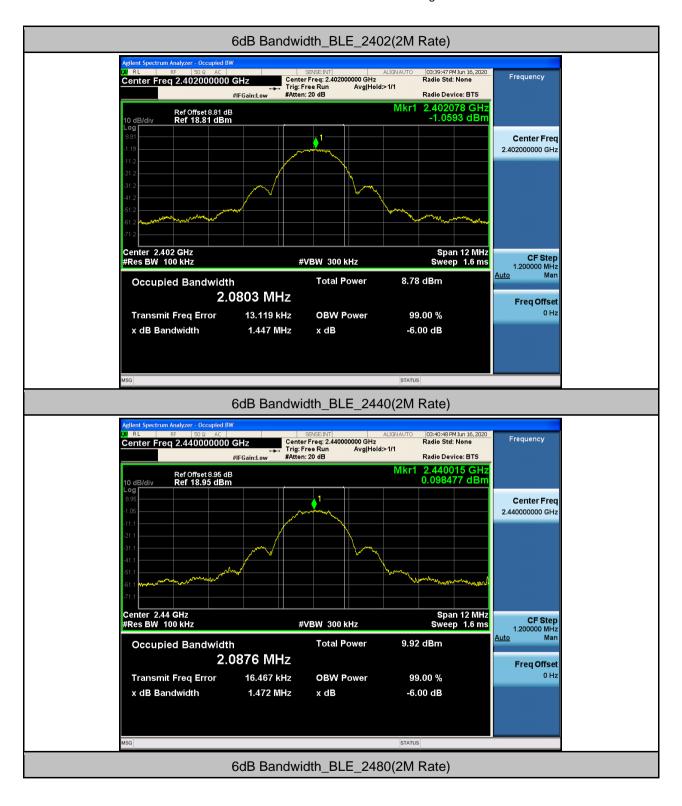
Report No.: SHEM190701508601 Page: 34 of 66

Appendix A SHEM190701508601

1.6dB Bandwidth


TestMade	Test Channel		EBW[MHz]				Verdiet
Test Mode		1M Rate	1.5*BW	2M Rate	1.5*BW	Limit	Verdict
BLE	2402	0.718	1.077	1.447	2.171	0.5	PASS
BLE	2440	0.713	1.069	1.472	2.208	0.5	PASS
BLE	2480	0.720	1.080	1.451	2.177	0.5	PASS

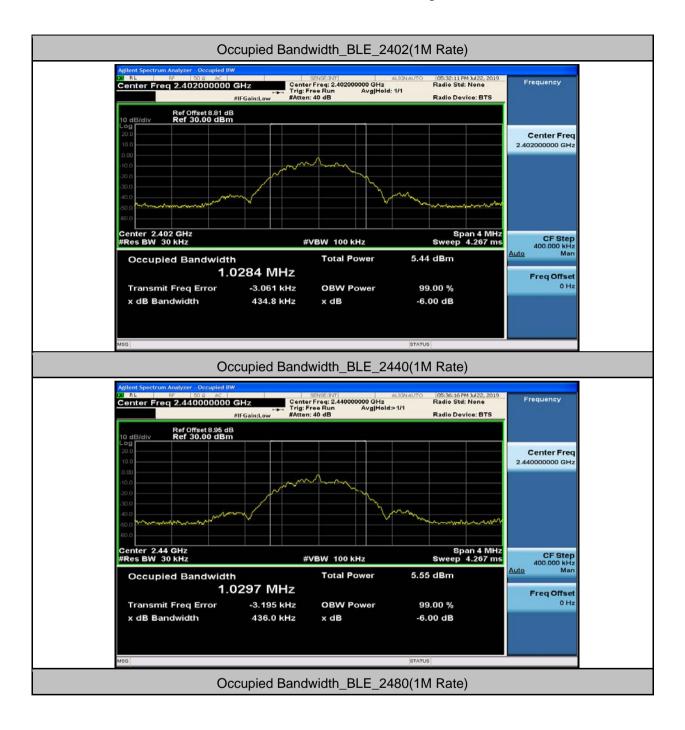
NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com



Report No.: SHEM190701508601 Page: 35 of 66

Report No.: SHEM190701508601 Page: 36 of 66

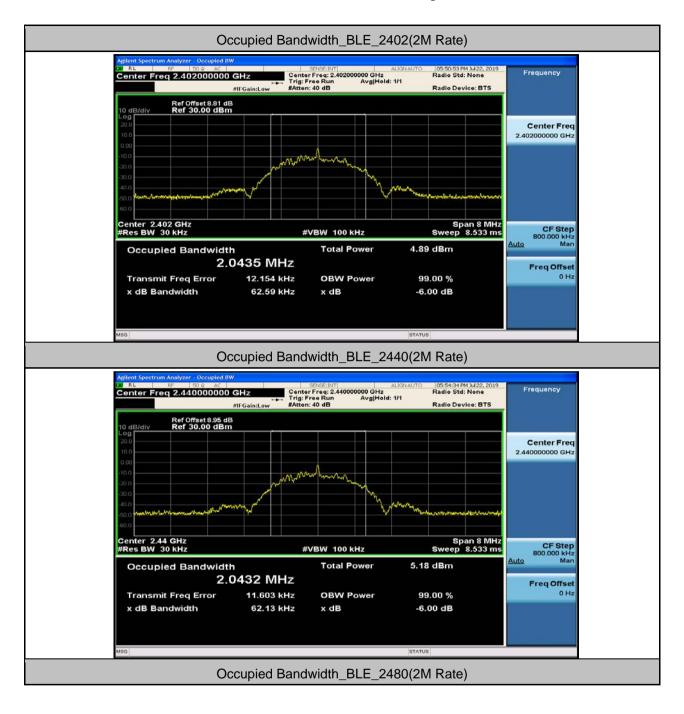
Report No.: SHEM190701508601 Page: 37 of 66


Report No.: SHEM190701508601 Page: 38 of 66

2.Occupied Bandwidth

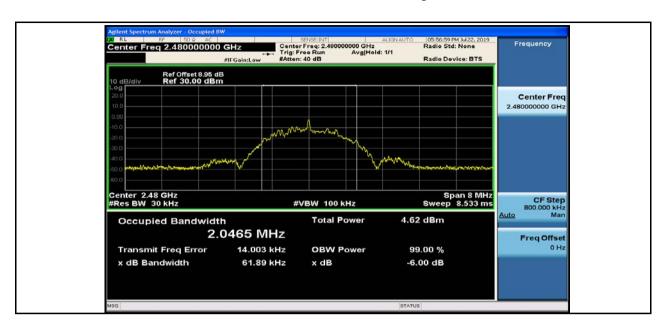
Test Made	Tast Observal	OBW	[MHz]	L ::::::::::::::::::::::::::::::::::::) (a nali a t
Test Mode	Test Channel	1M Rate	2M Rate	Limit[MHz]	Verdict
BLE	2402	1.03	2.04		PASS
BLE	2440	1.03	2.04		PASS
BLE	2480	1.03	2.05		PASS

Report No.: SHEM190701508601 Page: 39 of 66



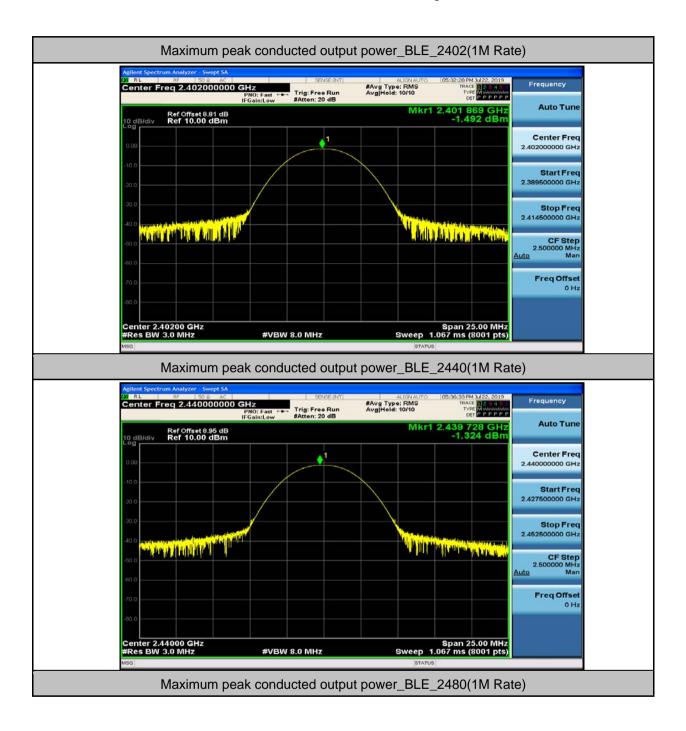
Report No.: SHEM190701508601 Page: 40 of 66

IM RL RF 50.9 AC Center Freq 2.480000000	Trig: F	SENSE:INT In Freq: 2.480000000 GHz Free Run Avg Hold h: 40 dB	ALIGNAUTO 05:38:39 PM 3u/22, 2019 Radio Std: None 1/1 Radio Device: BTS	Frequency
Ref Offset 8.95 de 10 dB/div Ref 30.00 dBm	s 			
20.0 10.0 0.00				Center Freq 2.480000000 GHz
-10.0	mm	Am		
-30.0 -40.0 -50.0	~		man and a second	
©.0 Center 2.48 GHz #Res BW 30 kHz		VBW 100 kHz	Span 4 MHz Sweep 4.267 ms	CF Step
Occupied Bandwidt		Total Power	5.04 dBm	400.000 kHz <u>Auto</u> Man
Transmit Freq Error	-4.088 kHz	OBW Power	99.00 %	Freq Offset 0 Hz
x dB Bandwidth	433.2 kHz	x dB	-6.00 dB	
MSG			STATUS	



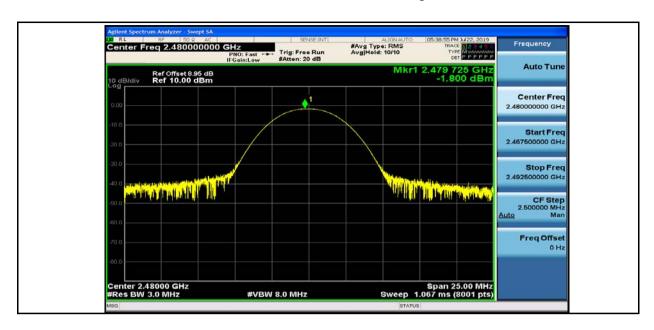
Report No.: SHEM190701508601 Page: 41 of 66

Report No.: SHEM190701508601 Page: 42 of 66

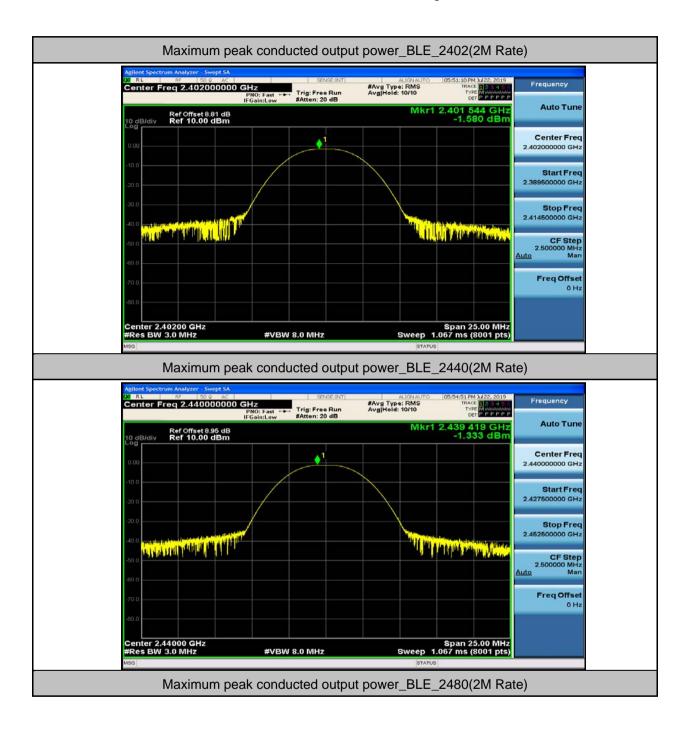

Report No.: SHEM190701508601 Page: 43 of 66

Test Made	Test Channel	Power	r[dBm]	Lineit[dDne]	\/ardiat
Test Mode	Test Channel	1M Rate	2M Rate	Limit[dBm]	Verdict
BLE	2402	-1.49	-1.58	30	PASS
BLE	2440	-1.32	-1.33	30	PASS
BLE	2480	-1.8	-1.8	30	PASS

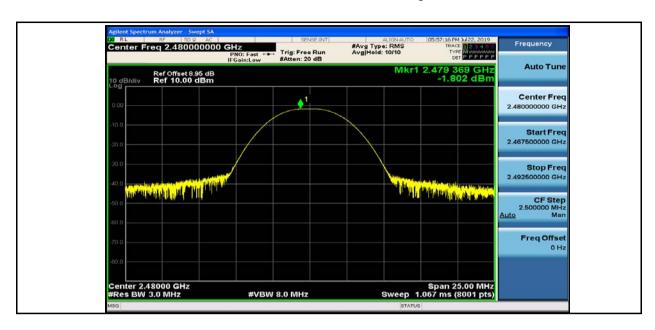
3.Maximum peak conducted output power



Report No.: SHEM190701508601 Page: 44 of 66

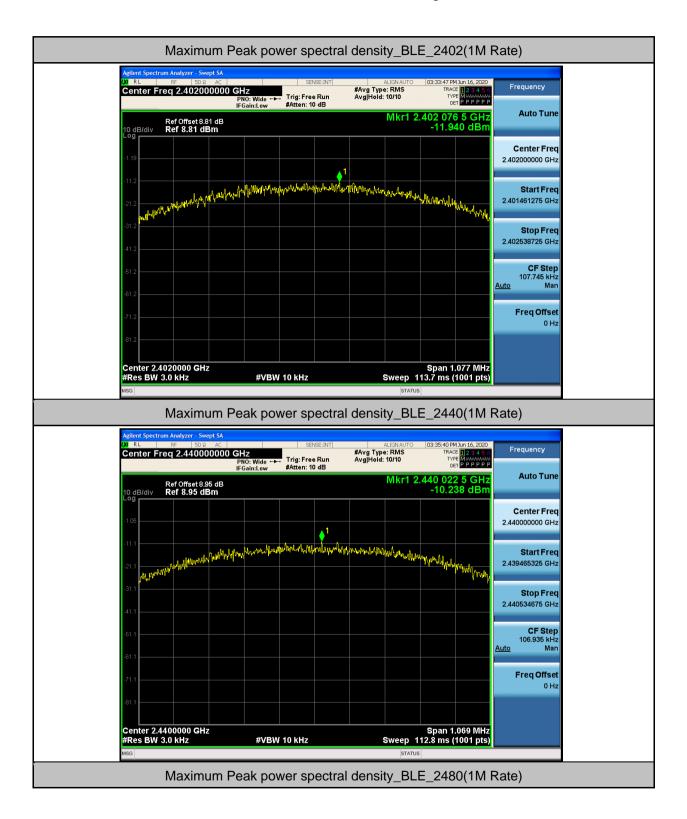


Report No.: SHEM190701508601 Page: 45 of 66



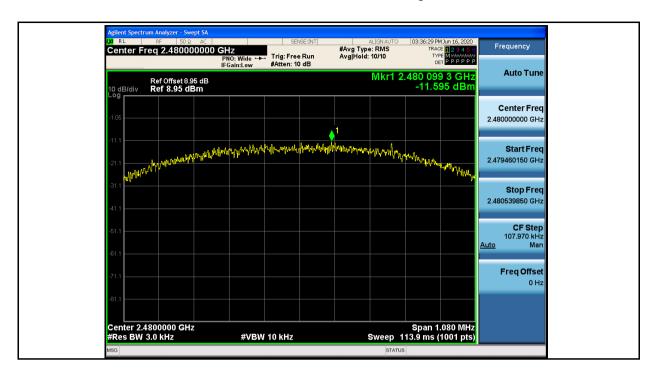
Report No.: SHEM190701508601 Page: 46 of 66

Report No.: SHEM190701508601 Page: 47 of 66

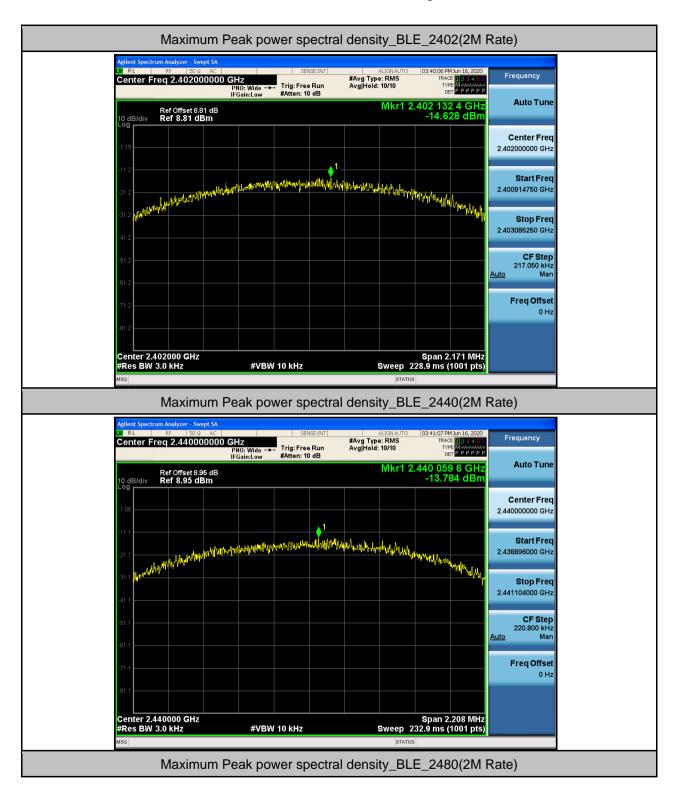

Report No.: SHEM190701508601 Page: 48 of 66

4.Maximum Peak power spectral density

Test Made	Test Channel	PSD[dB	m/3kHz]	Linsit[dDms/2]/L]=1	Verdiet
Test Mode	Test Channel	1M Rate	2M Rate	Limit[dBm/3kHz]	Verdict
BLE	2402	-11.94	-14.63	8.00	PASS
BLE	2440	-10.24	-13.78	8.00	PASS
BLE	2480	-11.60	-13.43	8.00	PASS



Report No.: SHEM190701508601 Page: 49 of 66

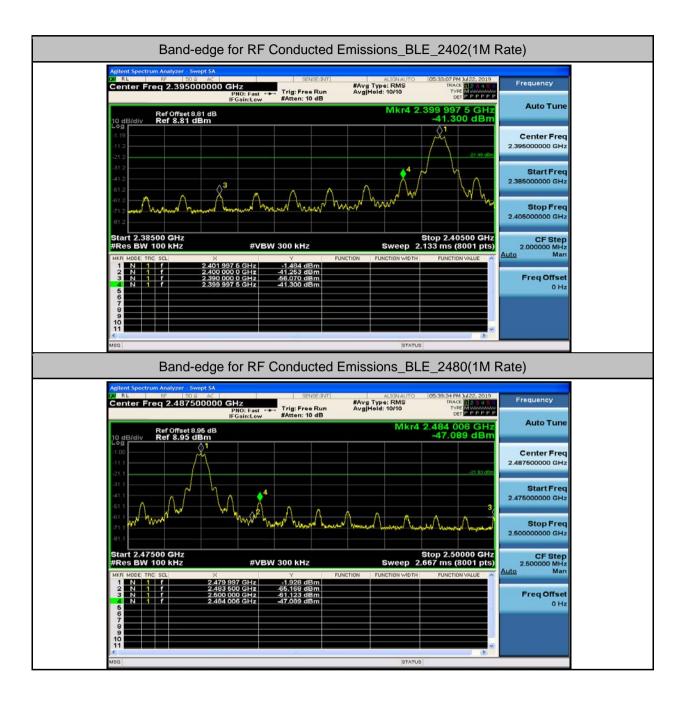


Report No.: SHEM190701508601 Page: 50 of 66



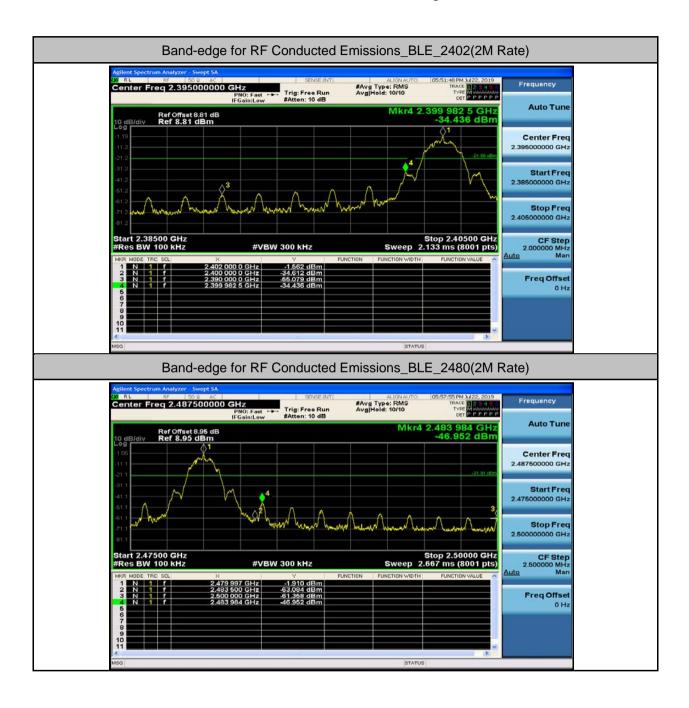
Report No.: SHEM190701508601 Page: 51 of 66

Report No.: SHEM190701508601 Page: 52 of 66


Report No.: SHEM190701508601 Page: 53 of 66

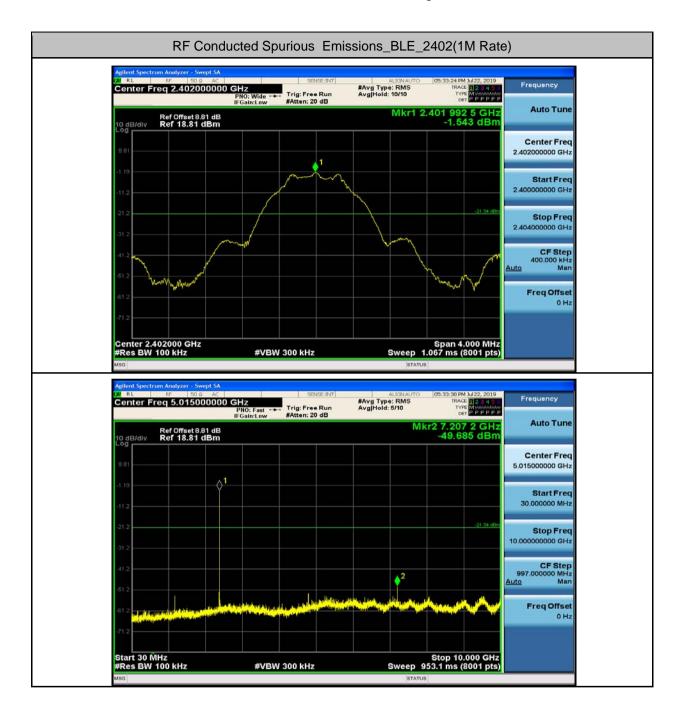
5.Band-edge for RF Conducted Emissions

Test Mode	Test Channel	Car Power	rier [dBm]	Le	purious vel 8m]		nit 3m]	Verdict
		1M Rate	2M Rate	1M Rate	2M Rate	1M Rate	2M Rate	
BLE	2402	-1.48	-1.56	-41.25	-34.44	-21.48	-21.56	PASS
BLE	2480	-1.93	-1.91	-47.09	-46.95	-21.93	-21.91	PASS



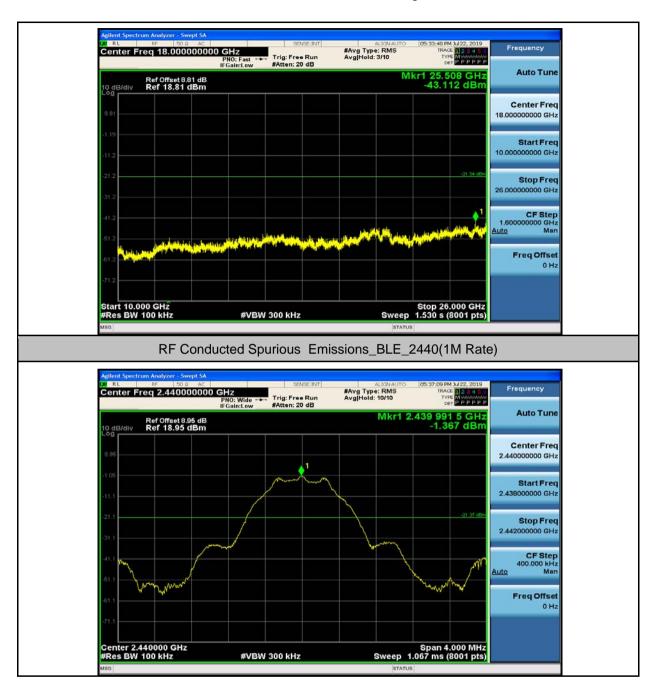
Report No.: SHEM190701508601 Page: 54 of 66

Report No.: SHEM190701508601 Page: 55 of 66

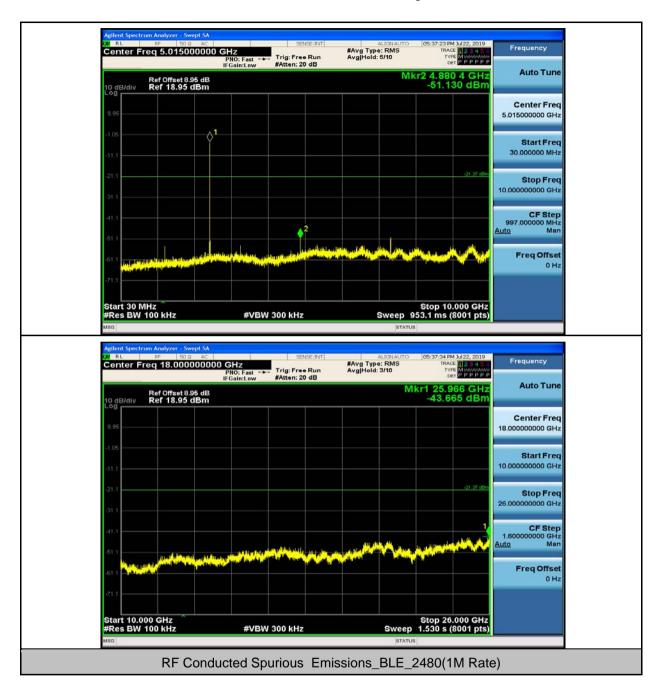

Report No.: SHEM190701508601 Page: 56 of 66

6.RF Conducted Spurious Emissions

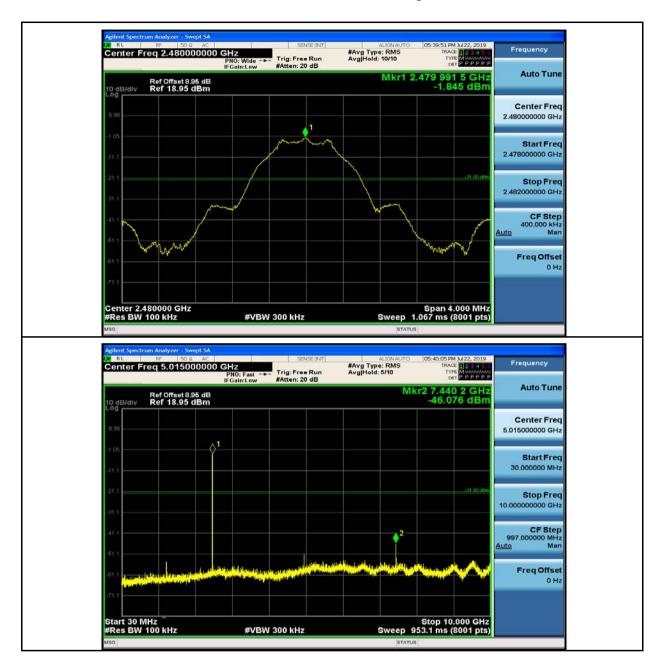
Test	Test	StartFre	StopFre	RBW	VBW	Pref[dBm]	Max. [dB		Lin [dB		Verdict
Mode	Channel	[MHz]	[MHz]	[kHz]	[kHz]	1M Rate	2M Rate	1M Rate	2M Rate	1M Rate	2M Rate	verdict
BLE	2402	30	10000	100	300	-1.54	-1.61	-49.69	-52.07	<- 21.54	<- 21.61	PASS
BLE	2402	10000	26000	100	300	-1.543	-1.613	- 43.112	- 44.278	<- 21.543	<- 21.613	PASS
BLE	2440	30	10000	100	300	-1.37	-1.36	-51.13	-51.04	<- 21.37	<- 21.36	PASS
BLE	2440	10000	26000	100	300	-1.367	-1.355	- 43.665	- 42.565	<- 21.367	<- 21.355	PASS
BLE	2480	30	10000	100	300	-1.85	-1.82	-46.08	-51.13	<- 21.85	<- 21.82	PASS
BLE	2480	10000	26000	100	300	-1.845	-1.818	- 43.881	- 43.071	<- 21.845	<- 21.818	PASS



Report No.: SHEM190701508601 Page: 57 of 66

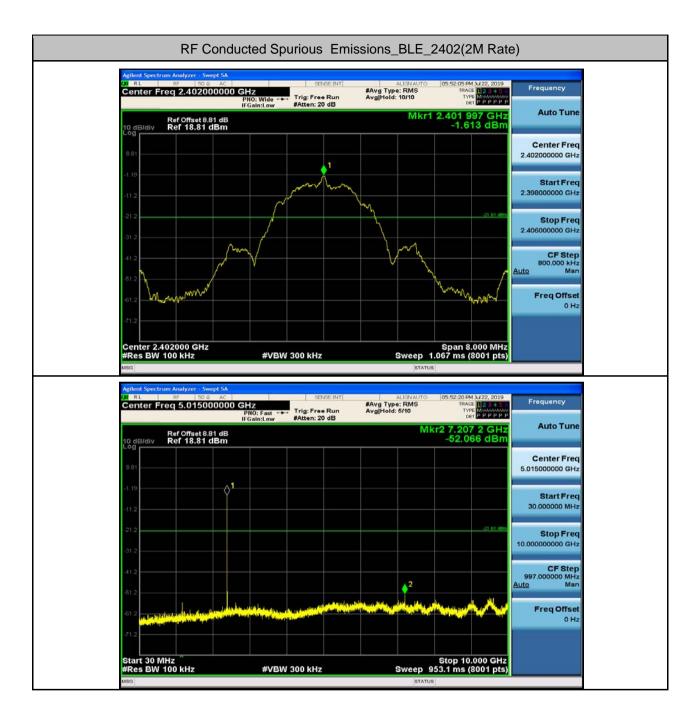


Report No.: SHEM190701508601 Page: 58 of 66

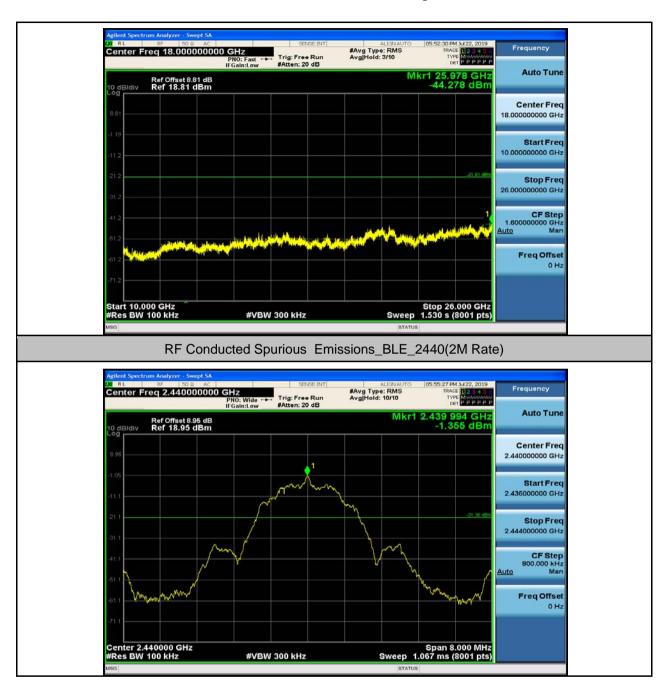


Report No.: SHEM190701508601 Page: 59 of 66

Report No.: SHEM190701508601 Page: 60 of 66



Report No.: SHEM190701508601 Page: 61 of 66

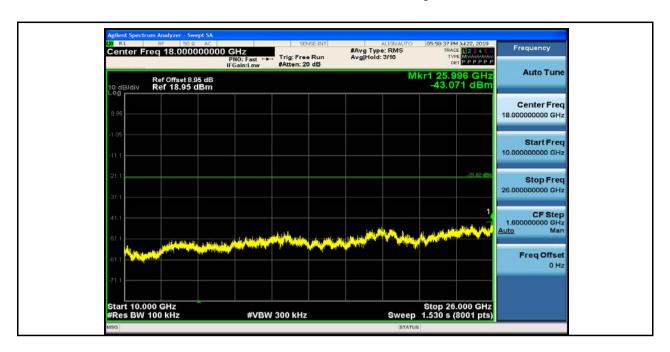


Report No.: SHEM190701508601 Page: 62 of 66

Report No.: SHEM190701508601 Page: 63 of 66

Report No.: SHEM190701508601 Page: 64 of 66

Center	Freq 5.015	Р	NO: Fast	Trig: Fre #Atten: 2	e Run 0 dB	Avg[Hold:	2: RMS 5/10	TYI	E 23450 MMMMMMM TPPPPPP	Frequency
10 dB/div	Ref Offset Ref 18.9	8.95 dB 5 dBm					Mk	r2 7.32 -51.0	1 8 GHz 43 dBm	Auto Tune
8.95										Center Fred 5.015000000 GHz
-1.05										5.015000000 GH:
		¢1								Start Free 30.000000 MH
-11.1									-21.36 dDm	
-21.1										Stop Fred 10.00000000 GH:
-31.1										CF Step
-41.1							¢ ²			997.000000 MH: Auto Mar
-51.1			han seeding .	1. All and a state				Salar day a start	الد والمحرب	Freq Offse
-61.1	te de la		Contraction of the local division of the loc	And States				The second second		0 H:
-71.1										
Start 30	~							Otom 40		
#Res BV	MHz V 100 kHz		#VBW	300 kHz		5	Sweep 9	53.1 ms (.000 GHz 8001 pts)	
#Res BV MSG Agilent Spe UV RL	MHz V 100 kHz trum Analyzer - RP 50 Freq 18.00	0000000 G	GHz	SB	NSE:INT	#Avg Type	STATUS	53.1 ms (8001 pts)	Frequency
#Res BV MSG Agilent Spe X RL Center	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB			NSE:INT		STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	8001 pts)	Frequency Auto Tune
#Res BV Agilent Spe 27 RL Center	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	SØ	NSE:INT	#Avg Type	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	8001 pts)	
#Res BV MSG Agilent Spe JX RL Center	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	SØ	NSE:INT	#Avg Type	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	8001 pts)	Auto Tune
Agilent Spe // RL Center 10 dB/dlv 8.95	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	SØ	NSE:INT	#Avg Type	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	8001 pts)	Auto Tune Center Free 18.00000000 GH: Start Free
#Res Bi Msci Agilent Spec 20 RL Center 10 dB/div 8.95 -10.05	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	SØ	NSE:INT	#Avg Type	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	4 <u>M22, 2019</u> 4 <u>M22, 2019</u> 4 <u>M23, 2019</u> 4 <u>M24, 2019</u> 4 <u>M25, 2019</u> 4 <u>M25</u>	Auto Tune Center Frec 18.00000000 GHa
#Res B) MSG Agitent Spe 21 RL Center 10 dB/div 8.95 -11.1 -21.1	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	SØ	NSE:INT	#Avg Type	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	8001 pts)	Auto Tune Center Free 18.00000000 GH: Start Free
#Res Bi Msc Aglient Spe 20 RL Center 10 dB/dlv -1.05 -1.05 -21.1 -31.1	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	SØ	NSE:INT	#Avg Type	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	4 <u>M22, 2019</u> 4 <u>M22, 2019</u> 4 <u>M23, 2019</u> 4 <u>M24, 2019</u> 4 <u>M25, 2019</u> 4 <u>M25</u>	Auto Tune Center Frec 18.000000000 GH2 Start Frec 10.00000000 GH2 Stop Frec 26.00000000 GH2
#Res B\ Agilent Spe 200 RL Center 10 dB/div -1.05 -11.1 -21.1 -31.1	trum Analyzer - 1 Freq 18.00	00000000 G P IF 8.95 dB	GHz	Trig:Free #Atten: 2/	• Run • Run • dB	#Avg Type Avg Hold:	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	4 <u>M22, 2019</u> 4 <u>M22, 2019</u> 4 <u>M23, 2019</u> 4 <u>M24, 2019</u> 4 <u>M25, 2019</u> 4 <u>M25</u>	Auto Tune Center Frec 18.00000000 GH2 Start Frec 10.00000000 GH2 Stop Frec
#Res Bi Msc Agilent Spe 20 RL Center 10 48.0 -1.05 -1.05 -1.05 -1.1 -31.1 -41.1 -41.1	trum Analyzer - 1 Freq 18.00	0 0 AC 0000000 C P 8.95 dB 5 dBm	GHz	Trig:Free #Atten: 2/	NSE:INT	#Avg Type Avg Hold:	STATUS ALIGN AUTO 5: RMS 3/10	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	4.422, 2019 4.422, 2019 4.422, 2019 4.423, 2019 4.425, 2019 6.00 GHz 6.5 dBm 21.55 dBm 1.4	Auto Tune Center Frec 18.000000000 GH2 Start Frec 10.00000000 GH2 Stop Frec 25.000000000 GH2 1.600000000 GH2 Auto Mar
#Res Bi Agilent Spe 200 RL Center 10 dB/div 0.95 -1.05 -11.1 -21.1 -31.1 -51.1	trum Analyzer - Freq 18.00 Ref Offset Ref 18.93	0 0 AC 0000000 C P 8.95 dB 5 dBm	GHz	Trig:Free #Atten: 2/	• Run • Run • dB	#Avg Type Avg Hold:	STATUS ALIGNAUTO 2: RMS 3/10 M	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	4.422, 2019 4.422, 2019 4.422, 2019 4.423, 2019 4.425, 2019 6.00 GHz 6.5 dBm 21.55 dBm 1.4	Auto Tune Center Frec 18.00000000 GH: Start Frec 10.00000000 GH: Stop Frec 26.00000000 GH: CF Step 1.600000000 GH:
#Res Bi Msc Agilent Spe 20 RL Center 10 48.0 -1.05 -1.05 -1.05 -1.1 -31.1 -41.1 -41.1	trum Analyzer - Freq 18.00 Ref Offset Ref 18.93	0 0 AC 0000000 C P 8.95 dB 5 dBm	GHz	Trig:Free #Atten: 2/	• Run • Run • dB	#Avg Type Avg Hold:	STATUS ALIGNAUTO 2: RMS 3/10 M	53.1 ms (05:55:52 Pf TRAC TY 0 kr1 25.9	4.422, 2019 4.422, 2019 4.422, 2019 4.423, 2019 4.425, 2019 6.00 GHz 6.5 dBm 21.55 dBm 1.4	Auto Tune Center Frec 18.000000000 GH: Start Frec 10.00000000 GH: Stop Frec 26.00000000 GH: 1.50000000 GH: 1.50000000 GH: Auto Mar
#Res Bi Aglient Spe 20 RL Center 10 dB/dlv 8.95 -1.05 -1.1 -31.1 -51.1 -51.1 -51.1 -51.1 -51.1 -51.1 -51.1 -51.1	trum Analyzer - Freq 18.00 Ref Offset Ref 18.93	0 0 AC 0000000 C P 8.95 dB 5 dBm	Hz Gain:Low	Trig:Free #Atten: 2/	NSE INT	#Avg Type Avg Hold:	ALIGNAUTO 2: RMS 3/10 M	05:55:52 PT TRAC TYPE Kr1 25:5 -42:5	4 M22, 2019 H 12 3 4 3 H 12	Auto Tune Center Frec 18.000000000 GH: Start Frec 10.00000000 GH: Stop Frec 26.00000000 GH: 1.50000000 GH: 1.50000000 GH: Auto Mar



Report No.: SHEM190701508601 Page: 65 of 66

Center	Freq 2.480000000	PNO: Wide	Trig: Free Run #Atten: 20 dB	#Avg Type: RMS Avg Hold: 10/10	05:58:12 PM 3/22, 2019 TRACE 1 2 3 4 5 TYPE MULTINE DET P P P P P	Frequency
10 dB/div Log	Ref Offset 8.95 dB Ref 18.95 dBm	IFGain:Low	Atten: 20 dB	Mkr	1 2.479 992 GHz -1.818 dBm	Auto Tune
8.95						Center Freq 2.48000000 GHz
-1.05			1			Start Freq
-11.1		INT	and proved	m		2.476000000 GHz
-21.1				<u></u>	-21.62 dBm	Stop Freq 2.484000000 GHz
-41,1	M	m/		Jun		CF Step 800.000 kHz
-61.1	. Max 1				him /	Auto Man
-61.1	A man and				mur many m	Freq Offset 0 Hz
-71.1						
Center 2	2.480000 GHz V 100 kHz	#VBW 3	00 kHz	Sween	Span 8.000 MHz 1.067 ms (8001 pts)	
and the second se	V 100 KHZ					
MSG				STATU		
MSG Agilent Spec	trum Analyzer - Swept SA RF 50 Ω AC Freq 5.015000000		SENSE:INT	STATU	05-50-27 PM 1/22 2019	Frequency
Agilent Spec	trum Analyzer - Swept SA RF 50 9 AC Freq 5.015000000		SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	18	Frequency Auto Tune
MSG Agilent Spec	trum Analyzer - Swept SA RF 50 9 AC Freq 5.015000000		SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	05:58:27 PM 3/22, 2019 TRACE 12 - 4 C TYPE DET PP PP PP kr2 7:441 4 GHz	Auto Tune Center Freq
Agilent Spec Da RL Center	trum Analyzer - Swept SA RF 50 9 AC Freq 5.015000000	GHZ PNO: Fast IFGain:Low	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	05:58:27 PM 3/22, 2019 TRACE 12 - 4 C TYPE DET PP PP PP kr2 7:441 4 GHz	Auto Tune Center Freq 5.015000000 GHz
Agilent Spec UK RL Center 10 dB/div 8.95	trum Analyzer - Swept SA NP 50.8 AC Freq 5.015000000 Ref Offset 8.95 dB Ref 18.95 dBm	GHZ PNO: Fast IFGain:Low	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	05:50:27 PM M/22, 2019 TRACE 12 2019 TYPE PP PP P kr2 7.441 4 GHz -51.134 dBm	Auto Tune Center Freq
Agilent Spec 30 RL Center 10 dB/div 8.95 -11.05 -11.1 -21.1	trum Analyzer - Swept SA NP 50.8 AC Freq 5.015000000 Ref Offset 8.95 dB Ref 18.95 dBm	GHZ PNO: Fast IFGain:Low	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	05:58:27 PM 3/22, 2019 TRACE 12 - 4 C TYPE DET PP PP PP kr2 7:441 4 GHz	Auto Tune Center Freq 5.01500000 GHz Start Freq
Agilent Spec 24 RL Center I 10 dB/div 0 dB/div 0 dB/div 0 dB/div 0 dB/div	trum Analyzer - Swept SA NP 50.8 AC Freq 5.015000000 Ref Offset 8.95 dB Ref 18.95 dBm	GHZ PNO: Fast IFGain:Low	SENSE:INT	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	05:50:27 PM M/22, 2019 TRACE 12 2019 TYPE PP PP P kr2 7.441 4 GHz -51.134 dBm	Auto Tune Center Freq 5.015000000 GHz Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz CF Step
Agilent Spec Gg RL Center 10 dB/div 8.95 -1.05 -11.1 -21.1	trum Analyzer - Swept SA NP 50.8 AC Freq 5.015000000 Ref Offset 8.95 dB Ref 18.95 dBm	GHZ PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run #Atten: 20 dB	ALISMAUTO #Avg Type: RMS Avg]Hold: 5/10	05:50:27 PM M/22, 2019 TRACE 12 2019 TYPE PP PP P kr2 7.441 4 GHz -51.134 dBm	Auto Tune Center Freq 5.01500000 GHz Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz CF Step 997.000000 MHz Auto Man
Usa Agilent Spec QC RL Center 10 10 dB/dlv 8.95 -1.05 -1.11 -21.1 -31.1 -41.1 -1.05	trum Analyzer - Swept SA NP 50.8 AC Freq 5.015000000 Ref Offset 8.95 dB Ref 18.95 dBm	GHZ PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run #Atten: 20 dB	ALIGNAUTO #Avg Type: RMS Avg Hold: 5/10	05:50:27 PM M/22, 2019 TRACE 12 2019 TYPE PP PP P kr2 7.441 4 GHz -51.134 dBm	Auto Tune Center Freq 5.01500000 GHz Start Freq 30.000000 MHz Stop Freq 10.00000000 GHz CF Step 997.00000 MHz
Aglient Spec QC RL Center 10 dB/dlv 0.95 -11.05 -11.1 -21.1 -31.1 -41.1	trum Analyzer - Swept SA NP 50 & AC Freq 5.015000000 Ref Offset 8.95 dB Ref 18.95 dBm	GHZ PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run #Atten: 20 dB	ALISMAUTO #Avg Type: RMS Avg]Hold: 5/10	05:50:27 PM M/22, 2019 TRACE 12 2019 TYPE PP PP P kr2 7.441 4 GHz -51.134 dBm	Auto Tune Center Freq 5.015000000 GHz Start Freq 30.000000 MHz Stop Freq 10.000000000 GHz 997.000000 MHz Auto Man

Report No.: SHEM190701508601 Page: 66 of 66

- End of the Report -