

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-7810/19-03-05-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: + 49 681 5 98 - 9075 Fax:

Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

ABITRON Control Systems GmbH

Wiesnerstr. 20

4950 Altheim / AUSTRIA

Phone: +43 (0) 7723 44 860 700

Contact: Mathias Friedl

e-mail: mathias.friedl@abitronremote.com

Phone: +43 (0) 7723 44860 161

Manufacturers

ABITRON Austria GmbH

Wiesnerstr. 20

4950 Altheim / AUSTRIA

ABITRON Germany GmbH

Adalbert-Stifter-Straße 2

D-84085 Langquaid / GERMANY

Test standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: RF module Model name: CMB-1 FCC ID: 2AC8P-CMB1 IC: 12310A-CMB1 Frequency: 902 MHz - 928 MHz Technology tested: **Proprietary FHSS** Antenna: External antenna Power supply: 3.6 V DC

Temperature range: -40°C to +70°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Christoph Schneider	Tobias Wittenmeier	

Lab Manager **Radio Communications**

Tobias Wittenmeier Testing Manager Radio Communications

1 Table of contents

1	Table of	contents	2
2	General	information	
		otes and disclaimer	
		pplication details	
		est laboratories sub-contracted	
3	Test sta	ndard/s, references and accreditations	ļ
4		ironment	
5	Test iter	n	6
		eneral description	
	5.2 A	dditional information	6
6	Descript	ion of the test setup	
	6.1 S	hielded semi anechoic chamber	8
		hielded fully anechoic chamber	
		onducted measurements	
		C conducted	
7	Seguena	ee of testing	13
•	-	-	
		equence of testing radiated spurious 9 kHz to 30 MHz	
		equence of testing radiated spurious 30 MHz to 1 GHz	
		equence of testing radiated spurious 1 GHz to 12.75 GHz	
8	Measure	ment uncertainty	16
9	Summai	y of measurement results	17
10	RF me	easurements	19
	10.1	Additional comments	19
11	Meası	ırement results	20
	11.1	Antenna gain	
	11.2	Carrier Frequency Separation	
	11.3	Number of Hopping Channels	
	11.4	Average Time of Occupancy (dwell time)	
	11.5	Spectrum bandwidth of a FHSS system	
	11.6	Maximum Output Power	
	11.7	Detailed spurious emissions @ the band edge – conducted and radiated	34
	11.8	Spurious Emissions Conducted	37
	11.9	Spurious Emissions Radiated < 30 MHz	40
	11.10	Spurious Emissions Radiated > 30 MHz	
	11.10.1	Spurious emissions radiated 30 MHz to 1 GHz	
	11.10.2	Spurious emissions radiated above 1 GHz	
	11.11	Spurious emissions conducted below 30 MHz (AC conducted)	52
12	Obser	vations	5
13	Gloss	ary	56

14	Document history	57
15	Accreditation Certificate - D-PL-12076-01-04	57
16	Accreditation Certificate - D-PL-12076-01-05	58

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7810/19-03-05 and dated 2020-04-16.

2.2 Application details

Date of receipt of order:2019-06-07Date of receipt of test item:2020-03-02Start of test:2020-03-16End of test:2020-03-20

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 58

3 Test standard/s, references and accreditations

Test standard	Date	Description		
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices		
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices		
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus		
Guidance	Version	Description		
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices		
Accreditation	Description	n		
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf DakkS Deutsche Akkreditierung D-PL-12076-01-04.pdf			
D-PL-12076-01-05		Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf		

© CTC advanced GmbH Page 5 of 58

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No tests under extreme environmental conditions required No tests under extreme environmental conditions required		
Relative humidity content :			55 %		
Barometric pressure		•	1021 hpa		
Power supply		V_{nom} V_{max} V_{min}	3.6 V DC by external power supply (conducted) 3.6 V DC by NiMH battery pack (radiated) No tests under extreme environmental conditions required No tests under extreme environmental conditions required		

5 Test item

5.1 General description

Kind of test item :	RF module
Model name :	CMB-1
HMN :	n/a
PMN :	CMB-1
HVIN :	CMB-1
FVIN :	n/a
S/N serial number :	B00004
Hardware status :	V02.03
Software status :	Texas Instruments SmartRF Studio 7 v2.16.0
Firmware status :	Texas Instruments SIMPLELINK-CC13X2-26X2-SDK_3.40.00.02
Frequency band :	902 MHz – 928 MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK
Number of channels :	50
Antenna :	External dipole antenna
Power supply :	3.1-5.5 V DC
Temperature range :	-40°C to +70°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-7810/19-03-01_AnnexA

1-7810/19-03-01_AnnexB 1-7810/19-03-01_AnnexD

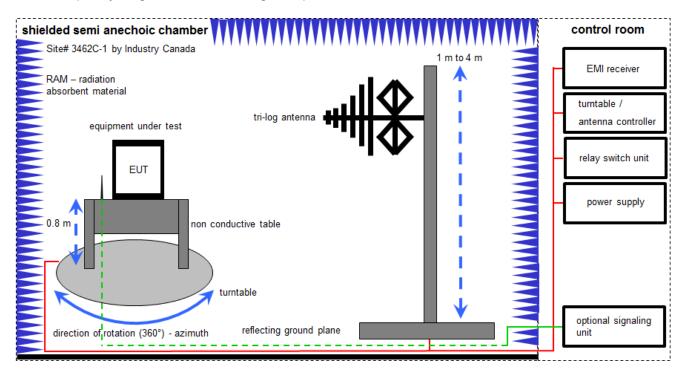
© CTC advanced GmbH Page 6 of 58

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 58

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.30.0

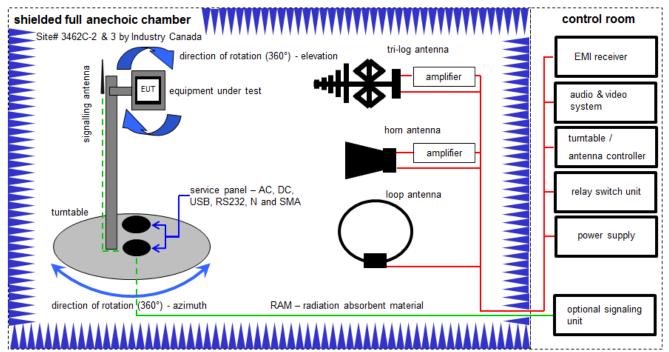
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

© CTC advanced GmbH Page 8 of 58


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	17.01.2020	16.01.2022
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
8	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020

© CTC advanced GmbH Page 9 of 58

6.2 Shielded fully anechoic chamber

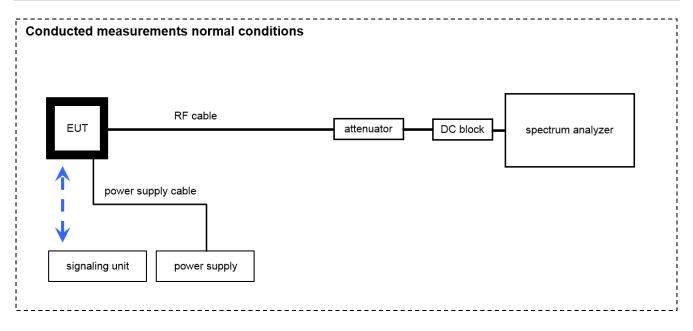
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2021
3	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
5	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
7	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
10	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A,B,C	NEXIO EMV- Software	BAT EMC V3.19.1.19	EMCO		300004682	ne	-/-	-/-
12	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-

© CTC advanced GmbH Page 10 of 58

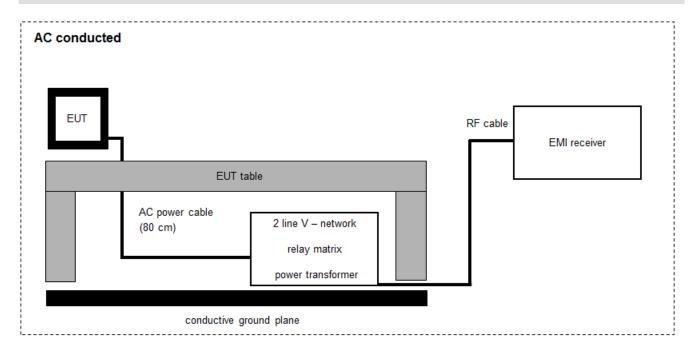
6.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Power Supply	2X30V	Zentro	870008	300000830	NK!	-/-	-/-
2	Α	Signal- and Spectrum Analyzer 2 Hz - 26 GHz	FSW26	R&S	101455	300004528	k	24.02.2020	23.02.2021
3	А	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	-/-	-/-

© CTC advanced GmbH Page 11 of 58

6.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vlKI!	11.12.2019	10.12.2021
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	10.12.2019	09.12.2020
4	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-

© CTC advanced GmbH Page 12 of 58

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 13 of 58

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 58

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 58

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

© CTC advanced GmbH Page 16 of 58

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2020-04-20	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (b)	Antenna gain	Nominal	Nominal	Single channel	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	TX hopping	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	TX hopping	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	TX hopping	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	Single channel	×		0		-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	Single channel	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hopping	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-			×		No restricted band nearby
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	Single channel	×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	Single channel	×		0	0	-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	Single channel	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	Single channel	×				-/-

© CTC advanced GmbH Page 17 of 58

§15.107(a) Emissions below 30 MHz (AC conducted)	ominal Single channel		/-
--	-----------------------	--	----

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 18 of 58

10 RF measurements

10.1 Additional comments

Reference documents: None

Special test descriptions: For the single channel measurements the following frequencies were used:

Lowest channel: 902.2 MHz Middle channel: 915.0 MHz Highest channel: 927.8 MHz

The AC conducted emission test was performed with a reference power supply

(Power Supply HCPS-27.0-2250).

Configuration descriptions: The power setting 14 was used for all tests.

The radiated tests were performed with an external DiPol_STP-868 antenna.

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 19 of 58

11 Measurement results

11.1 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in ERP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 B (radiated)		
rest setup	See sub clause 6.3 A (conducted)		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC
Antenna gain	

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power [dBm]	12.5	12.2	11.7
Radiated power [dBm]	12.7	12.2	10.7
Gain [dBi] Calculated	+0.2	0.0	-1.0

© CTC advanced GmbH Page 20 of 58

11.2 Carrier Frequency Separation

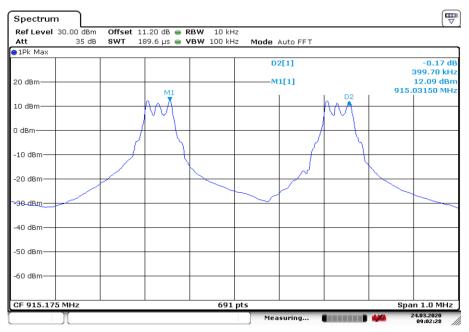
Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the 20 dB bandwidth for IC is only valid for the ISM band 2400 – 2483.5 MHz.		


Result: The channel separation is 399.7 kHz.

© CTC advanced GmbH Page 21 of 58

Plots:

Plot 1: Frequency separation

Date: 24.MAR.2020 09:02:28

© CTC advanced GmbH Page 22 of 58

11.3 Number of Hopping Channels

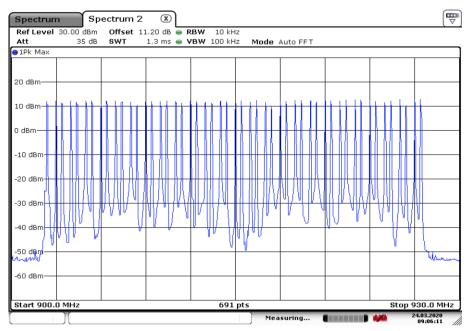
Description:

Measurement of the total number of used hopping channels.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
Number of hopping channels			
At least 15 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.			


Result: The EUT uses 50 channels.

© CTC advanced GmbH Page 23 of 58

Plots:

Plot 1: Number channels

Date: 24.MAR.2020 09:06:11

© CTC advanced GmbH Page 24 of 58

11.4 Average Time of Occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the used channels is allocated more than 0.4 seconds within a 10 seconds interval.

Limits:

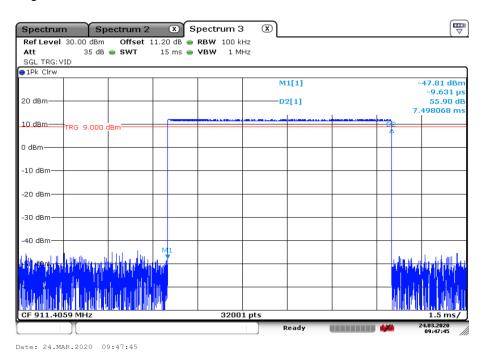
FCC	IC			
Average time of occupancy				

For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

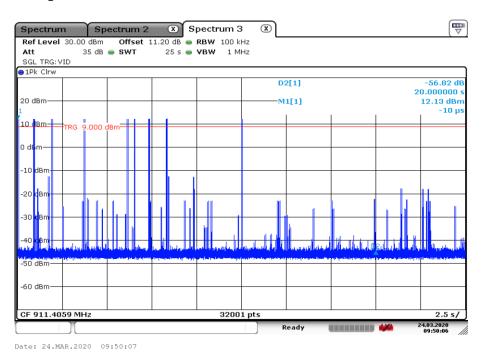
Result: The time slot length is = 7.5 ms

Number of hops / channel @ 20 s = 18 (worst case)

Within 20s period, the average time of occupancy = 18 * 7.5 ms = 135 ms


→ The average time of occupancy = 135 ms

© CTC advanced GmbH Page 25 of 58



Plots:

Plot 1: Time slot length = 7.5 ms

Plot 2: hops / channel @ 20s = 18

© CTC advanced GmbH Page 26 of 58

11.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

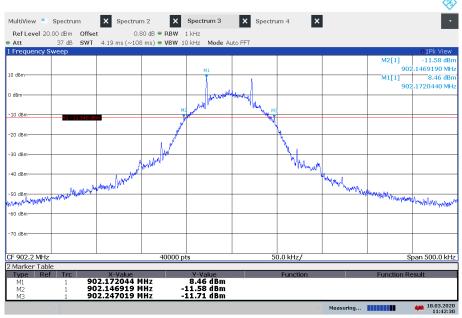
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	1 kHz	
Video bandwidth	10 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

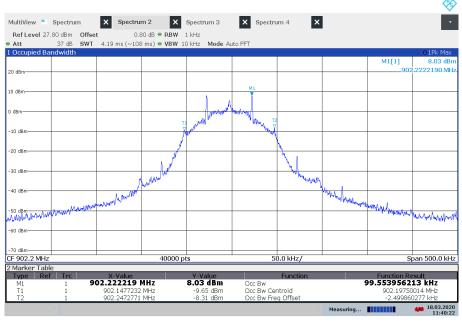
FCC	IC	
Spectrum bandwidth of a FHSS system		
OBW /20 dB-bandwidth < 1500 kHz		

Result:

Total Complinions		20dB BANDWIDTH [kHz]		
l est Co	nditions	Low channel Middle channel High channe		High channel
T _{nom}	V _{nom}	100.1	102.5	100.0


Test Co	nditions	Ç	99% BANDWIDTH [kHz]
1651 00	nuttons	Low channel Middle channel High channe		High channel
T _{nom}	V _{nom}	99.55	98.75	98.74

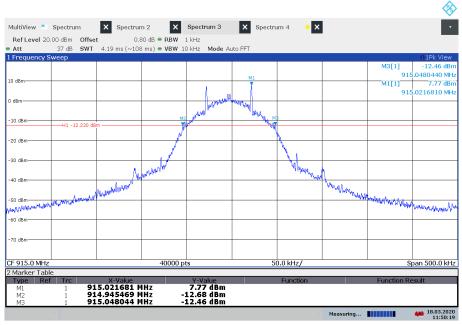
© CTC advanced GmbH Page 27 of 58


Plots:

Plot 1: Low Channel; 20 dB-bandwidth

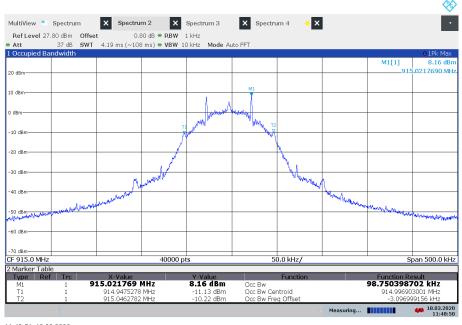
11:42:31 18.03.2020

Plot 2: Low Channel; OBW99



11:40:23 18.03.2020

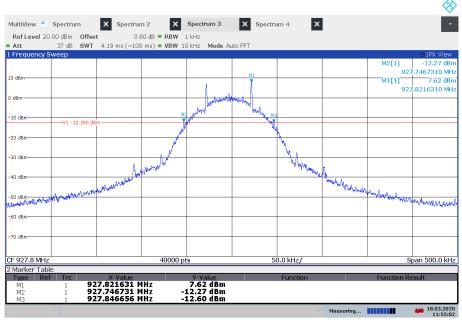
© CTC advanced GmbH Page 28 of 58



Plot 3: Middle Channel; 20 dB-bandwidth

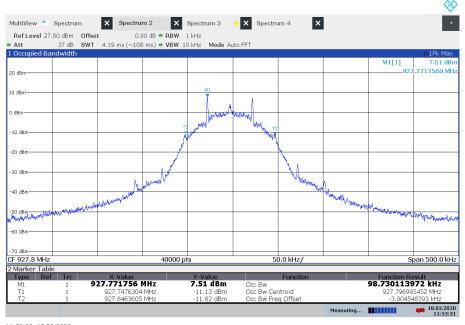
11:50:19 18.03.2020

Plot 4: Middle Channel; OBW99



11:48:51 18.03.2020

© CTC advanced GmbH Page 29 of 58



Plot 5: High Channel; 20 dB-bandwidth

11:55:02 18.03.2020

Plot 6: High Channel; OBW99

11:53:32 18.03.2020

© CTC advanced GmbH Page 30 of 58

11.6 Maximum Output Power

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max Hold	
Used equipment:	See chapter 7.3 A	
Measurement uncertainty:	See chapter 8	

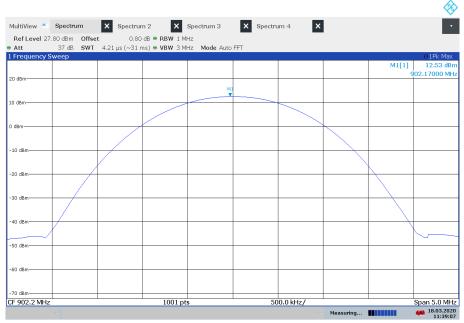
Limits:

FCC	IC	
Maximum Output Power Conducted		
For frequency benning systems energing in the 002-029 MHz hand; 1 wett (20 dPm) for systems employing		

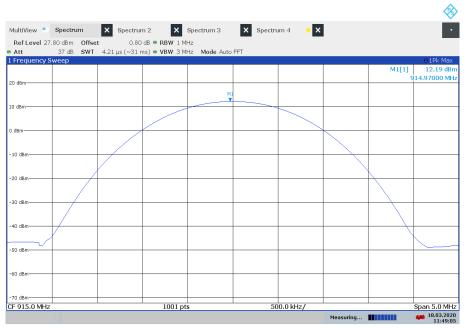
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		Maximum Output Power Conducted [dBm]		
rest conditions		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	12.5	12.2	11.7


Test Conditions		ERP [dBm]		
1000 00	Training T	Low channel Middle channel High channel		High channel
T _{nom}	V _{nom}	12.7	12.2	10.7

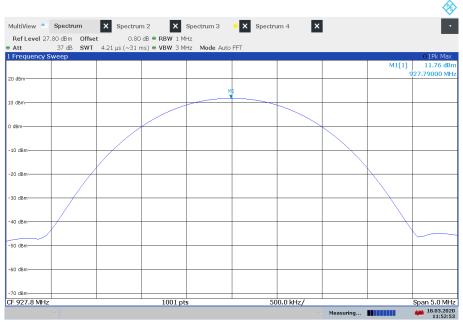
© CTC advanced GmbH Page 31 of 58


Plots:

Plot 1: Low Channel

11:39:08 18.03.2020

Plot 2: Middle Channel



11:49:05 18.03.2020

© CTC advanced GmbH Page 32 of 58

Plot 3: High Channel

11:52:53 18.03.2020

© CTC advanced GmbH Page 33 of 58

11.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode.

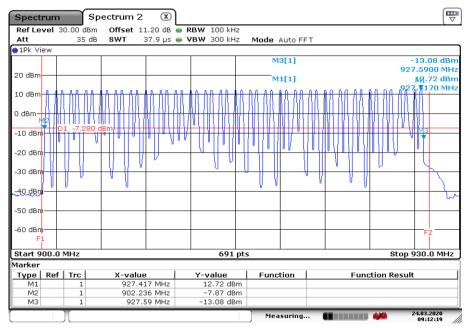
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results conducted:

Scenario	Spurious band edge conducted [dB]	
	lowest channel	lowest channel
Lower band edge – hopping on	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB
Lower band edge – hopping off	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB


NOTE: The analyser is in max hold mode. First the EUT is transmitting only on the lowest channel. Then at the highest channel. Finally the EUT is transmitting in hopping mode. Therefore the plot below represents both modes (hopping on and hopping off).

© CTC advanced GmbH Page 34 of 58

Plots:

Plot 1: 20 dB - hopping on / hopping off

Date: 24.MAR.2020 09:12:19

© CTC advanced GmbH Page 35 of 58

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 36 of 58

11.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

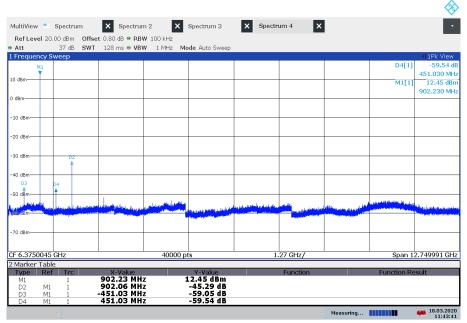
Measureme	nt parameter
Detector:	Peak
Sweep time:	Auto
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz
Span:	9 kHz to 12.75 GHz
Trace-Mode:	Max Hold
Used equipment:	See chapter 7.3A
Measurement uncertainty:	See chapter 8

Limits:

FCC	IC			
TX spurious emissions conducted				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Result:


	Emission Limitation							
Channel	Amplitude of	Limit max.	actual attenuation	Verdict				
	emission	allowed emission	below frequency of					
	[dBm]	power	operation [dB]					
Lowest	12.45	24 dBm						
		-20 dBc		Complies				
Middle	12.12	24 dBm	Can plata					
		-20 dBc	See plots	Complies				
Highest	11.74	24 dBm						
		-20 dBc		Complies				

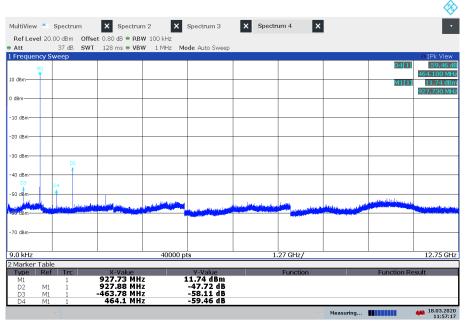
© CTC advanced GmbH Page 37 of 58

Plots:

Plot 1: Low channel, 9 kHz - 12.75 GHz BSP!

11:43:42 18.03.2020

Plot 2: Middle channel, 9 kHz - 12.75 GHz



11:51:13 18.03.2020

© CTC advanced GmbH Page 38 of 58

Plot 3: High channel, 9 kHz - 12.75 GHz

11:57:18 18.03.2020

© CTC advanced GmbH Page 39 of 58

11.9 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

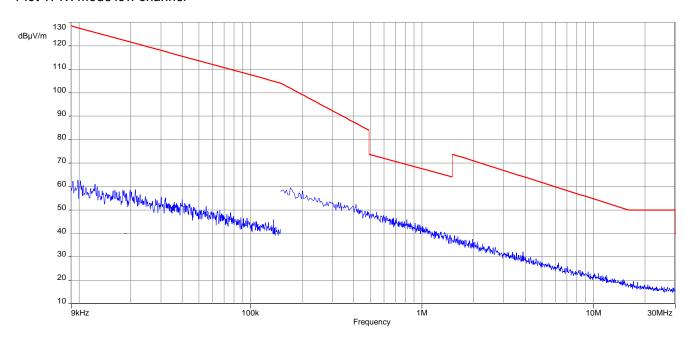
Measurement:

Measureme	nt parameter
Detector:	Peak / Quasi Peak
Sweep time:	Auto
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz
Span:	9 kHz to 30 MHz
Trace-Mode:	Max Hold
Used equipment:	See chapter 6.2 B
Measurement uncertainty:	See chapter 8

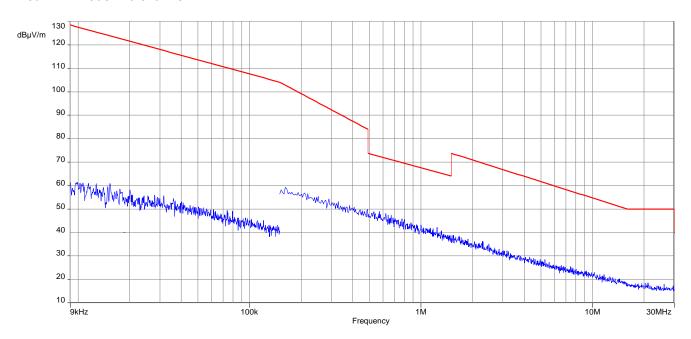
Limits:

FCC			IC	
TX spurious emissions radiated < 30 MHz				
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance	
0.009 - 0.490	2400/F(kHz)		300	
0.490 - 1.705	24000/F(kHz)		30	
1.705 – 30.0	3	0	30	

Result:

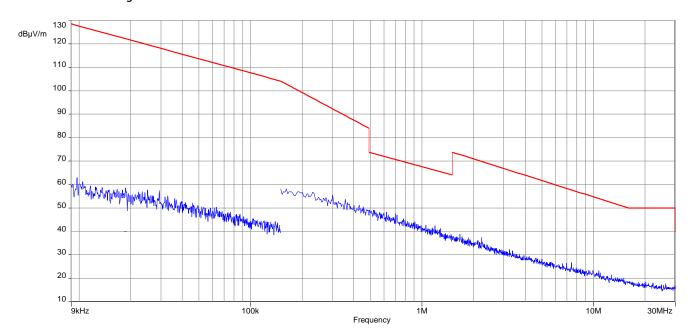

SPURIOUS EMISSIONS LEVEL [dBµV/m]								
Le	Lowest channel			Middle channel		Highest channel		nel
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency Detector Level [dBµV/m]		Frequency [MHz]	· · · I Detector I		
	All emissions were more than 10 dB below the limit.							

© CTC advanced GmbH Page 40 of 58



Plots:

Plot 1: TX-Mode low channel


Plot 2: TX-Mode mid channel

© CTC advanced GmbH Page 41 of 58

Plot 3: TX-Mode high channel

© CTC advanced GmbH Page 42 of 58

11.10 Spurious Emissions Radiated > 30 MHz

11.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	3 x VBW			
Video bandwidth	120 kHz			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Measured modulation	Single channel mode			
Test setup	See sub clause 6.1 A			
Measurement uncertainty	See sub clause 8			

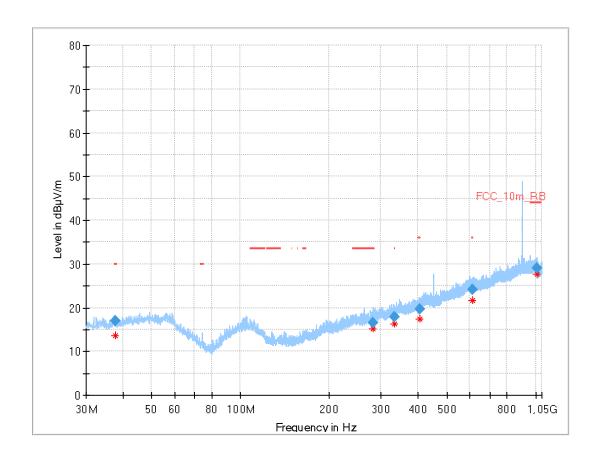
Limits:

FCC	IC		
Band-edge Compliance of conducted and radiated emissions			

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

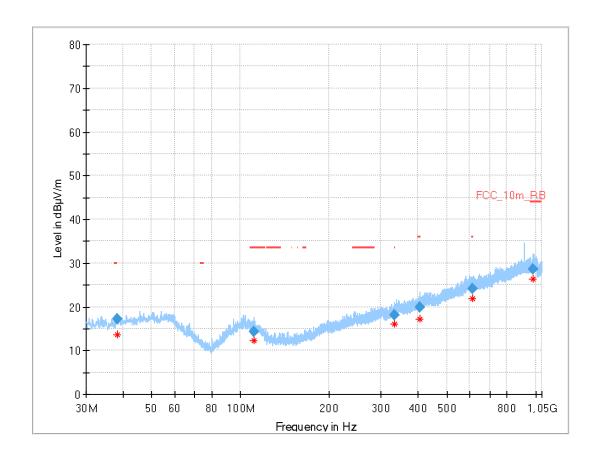
Result:


See result table below the plots.

© CTC advanced GmbH Page 43 of 58

Plots:

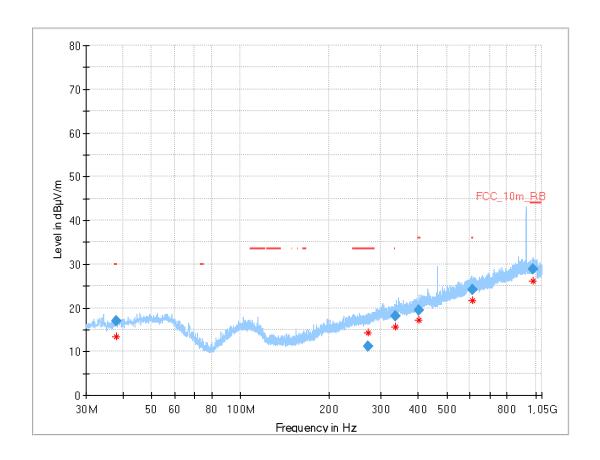
Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
37.716	17.04	30.0	13.0	1000	120	170.0	Н	67	13
280.796	16.48	33.5	17.0	1000	120	137.0	V	292	14
333.601	17.88	33.5	15.6	1000	120	98.0	V	247	15
403.984	19.71	36.0	16.3	1000	120	160.0	V	67	17
612.201	24.10	36.0	11.9	1000	120	170.0	Н	-22	21
1009.741	28.96	44.0	15.0	1000	120	170.0	Н	-22	24

© CTC advanced GmbH Page 44 of 58

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
38.275	17.10	-	_	1000	120	156.0	V	187	13
111.524	14.27	33.5	19.2	1000	120	165.0	Ι	157	12
333.578	18.04	33.5	15.5	1000	120	101.0	V	67	15
404.799	19.79	36.0	16.2	1000	120	170.0	Н	3	17
611.202	24.15	36.0	11.9	1000	120	122.0	Ι	281	21
980.144	28.62	44.0	15.4	1000	120	104.0	V	-22	24

© CTC advanced GmbH Page 45 of 58

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
37.927	17.09	30.0	12.9	1000	120	170.0	Н	274	13
271.825	11.12	33.5	22.4	1000	120	170.0	Н	249	13
335.197	18.12	33.5	15.4	1000	120	170.0	V	292	15
401.190	19.53	36.0	16.5	1000	120	170.0	Н	-22	17
611.193	24.08	36.0	11.9	1000	120	170.0	Н	-22	21
981.478	28.75	44.0	15.3	1000	120	170.0	V	67	24

© CTC advanced GmbH Page 46 of 58

11.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 x RBW		
Span	1 GHz to 12.75 GHz		
Trace mode	Max hold		
Measured modulation	Single channel mode		
Test setup	See sub clause 6.2 C (1 GHz – 12.75 GHz)		
Measurement uncertainty	See sub clause 8		

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10

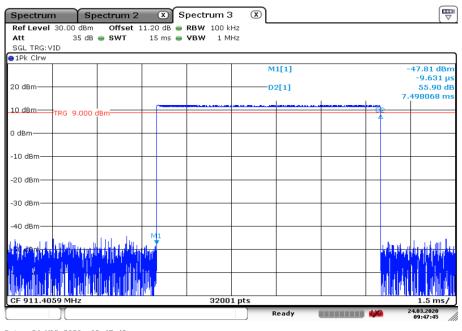
The average emission shall be determined by using RMS detector. If the dwell time of the hopping signal is less than 100 ms (per channel), the RMS reading may be adjusted by a factor: $F = 20\log \text{ (dwell time/100 ms)}$

FCC	IC	
TX spurious emissions radiated		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.209				
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance		
Above 960	54.0 (average) 74.0 (peak)	3		

© CTC advanced GmbH Page 47 of 58

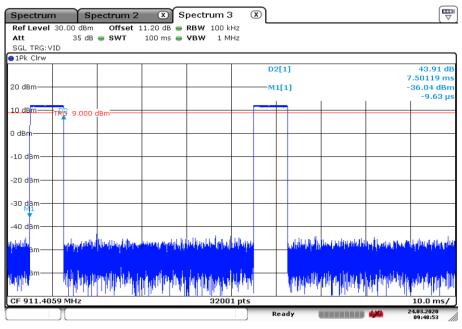


Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to ANSI C63.10 the average emission shall be determined by using RMS detector. If the dwell time of the hopping signal is less than 100 ms (per channel), the RMS reading may be adjusted by a factor:

In a period of 100 ms, we have a maximum of 2 transmissions and that gives the correction factor for spurious measurement.

Plot 1: Time slot length = 7.5 ms

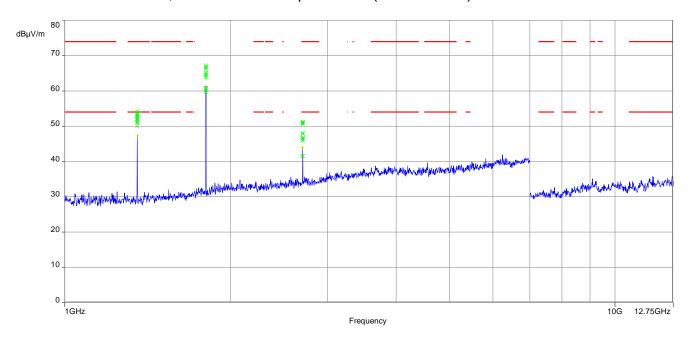


Date: 24.MAR.2020 09:47:45

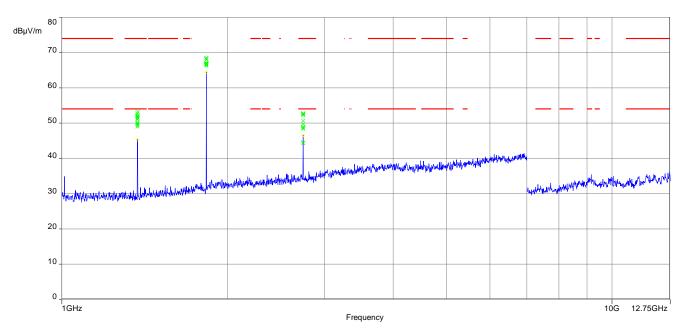
© CTC advanced GmbH Page 48 of 58

Plot 2: Number of hopping channels in 100ms = 2

Date: 24.MAR.2020 09:48:54

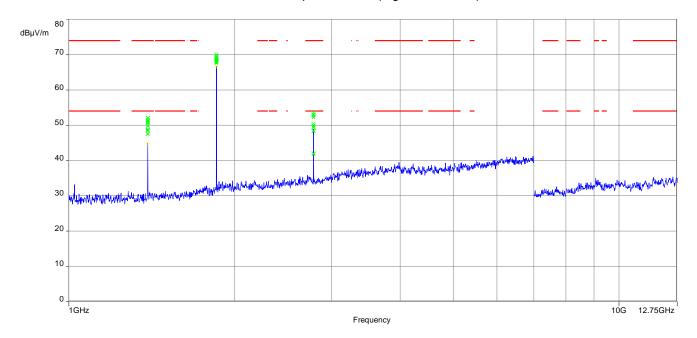

	TX spurious emissions radiated [dBμV/m]							
Lowest channel Middle channel			Lowest channel Middle channel High			ighest chani	nel	
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
1353.4	Peak	54.2	1372.6	Peak	53.2	1391.7	Peak	52.1
1333.4	AVG	37.1	1372.0	AVG	36.1	1391.1	AVG	35.1
	Peak	No		Peak	No		Peak	No
1804.4	AVG	restricted band	1830.0	AVG	restricted band	1855.4	AVG	restricted band
2706.6	Peak	51.3	2744.9	Peak	52.7	2783.2	Peak	53.5
2700.0	AVG	34.2	2144.9	AVG	35.6	2103.2	AVG	36.4

© CTC advanced GmbH Page 49 of 58



Plots:

Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 50 of 58

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 51 of 58

11.11 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to channel 6. This measurement is repeated for DSSS and OFDM modulation. If peaks are found channel 1 and channel 11 will be measured too. The measurement is performed with the data rate producing the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

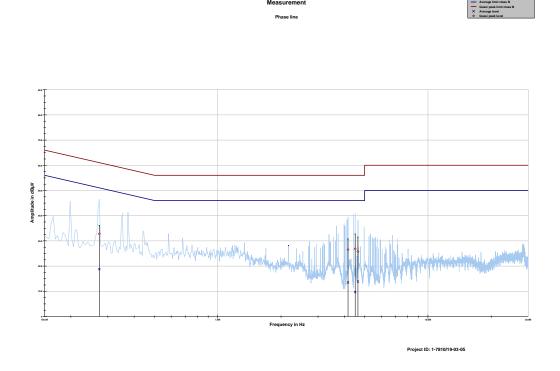
Measurement parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 6.4 - A			
Measurement uncertainty:	See sub clause 8			

Limits:

FCC			IC		
Frequency (MHz)	Quasi-Peak	κ (dBμV/m)	Average (dBμV/m)		
0.15 - 0.5	66 to 56*		56 to 46*		
0.5 – 5	56		56		46
5 – 30.0	6	0	50		

^{*}Decreases with the logarithm of the frequency

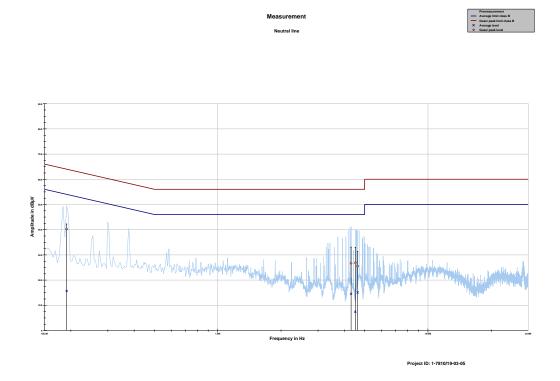
Results:


See result table below the plots.

© CTC advanced GmbH Page 52 of 58

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Final_Result

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.273131	32.82	28.20	61.022	18.75	33.74	52.482
4.168556	26.52	29.48	56.000	13.49	32.51	46.000
4.508100	26.84	29.16	56.000	9.66	36.34	46.000
4.646156	25.77	30.23	56.000	13.85	32.15	46.000

© CTC advanced GmbH Page 53 of 58

Plot 2: 150 kHz to 30 MHz, neutral line

Final_Result

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.191044	40.21	23.78	63.991	15.64	39.19	54.827
4.310344	26.67	29.33	56.000	14.53	31.47	46.000
4.511831	26.87	29.13	56.000	7.42	38.58	46.000
4.631231	25.50	30.50	56.000	15.07	30.93	46.000

© CTC advanced GmbH Page 54 of 58

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 55 of 58

13 Glossary

I	Equipment under test
[DUT Device under test
	JUT Unit under test
	GNSS User Equipment
	TSI European Telecommunications Standards Institute
_	EN European Standard
-	FCC Federal Communications Commission
FC	
	IC Industry Canada
P	MN Product marketing name
	MN Host marketing name
	VIN Hardware version identification number
	VIN Firmware version identification number
	MC Electromagnetic Compatibility
	HW Hardware
	SW Software
Inv.	
S/N or	
3,11 01	C Compliant
	NC Not compliant
	NA Not applicable
	NP Not performed
	PP Positive peak
	QP Quasi peak
-	AVG Average
	OC Operating channel
0	CW Operating channel bandwidth
	BW Occupied bandwidth
	OB Out of band
	DFS Dynamic frequency selection
(CAC Channel availability check
	OP Occupancy period
N	IOP Non occupancy period
	DC Duty cycle
F	PER Packet error rate
	CW Clean wave
	MC Modulated carrier
WL	AN Wireless local area network
RI	AN Radio local area network
DS	Dynamic sequence spread spectrum
OF	DM Orthogonal frequency division multiplexing
FH	100 Farance and a main a second an artisman
	ISS Frequency hopping spread spectrum
	ISS Global Navigation Satellite System

© CTC advanced GmbH Page 56 of 58

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-04-16
Α	Manufacturer changed	2020-04-20

15 Accreditation Certificate - D-PL-12076-01-04

Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AMStellet in connection with Section 1 signatory to the Multitaleral Agreements of EA, ILAC and IAF for Multual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DNE N ISO/RC 17025-2005 to carry out tests in the following fedice: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The position of the cover sheet by the conforming assessment body mentioned ourised. No promotest under the terms of DNE N ISO/RC 17025-2005 to carry out tests in the following disassemations of the cover sheet by the conforming assessment body mentioned ourised. No promotest under the terms of DNE N ISO/RC 17025-2005 to carry out tests in the following disassemation of the cover sheet by the conforming assessment body mentioned ourised. No promotes that the accordiations are stream to Respect to the prior wenter approach by the conforming assessment body mentioned ourised. No promotes that the accordiations are stream to Respect to the prior wenter approach to the conforming assessment body mentioned ourised. No promotes that the accordiations are stream to Respect to the prior wenter approach to the conforming assessment body mentioned ourised. No promotes that the accordiations are stream to Respect to the prior wenter approach to the conforming assessment body mentioned ourised. No promotes that the accordiations are stream to Respect to the prior wenter approach to the conforming assessment body mentioned our rival. No promotes that the accordiations are stream to Respect to the prior wenter approach to scene of accordiations and the stream to the conforming assessment body mentioned our rival. No promotes that the promotes that the accordiations are stream to the conforming assessment body mentioned our rival. No promotes that the promotes that the ac	first page	last page
Comprises the cover sheet, the reverse side of the Cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 11.01.2019 The Add of Division EA: www.european-acceditation.org ILAE: www.laff.ru LAE: www.laff.ru	Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 11.01.2019	Office Berlin Office Frankfurt am Main Spittelmarkt 10 10117 Berlin G0327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Deutsche Akbrediterungsstelle GmbH (DikkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation states dey DikkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkSelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2005 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Line 12 & 89 July 2009, 8, 30), DakkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation Cooperation (LAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 57 of 58

16 Accreditation Certificate - D-PL-12076-01-05

first page	last page
DakkS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstele GmbH (DAAS). Exempted is the unchanged form of separate disseminations of the cover sheet by the confirming assessment body membread overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2629) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). DAASS is a signation to the Multilateral Agreements for Nutural Recognition of the European co-peration for Accreditation (EA). International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognise each other's accreditations.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 1.101.2019 Frankfurt am Main, 1.101.2019	The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.lib.corg (AF: www.laf.nu
for core control.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 58 of 58