

TEST REPORT

Test report no.: 1-7810/19-11-02

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadyanced.com

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

ABITRON Control Systems GmbH

Wiesnerstr. 20

4950 Altheim / AUSTRIA

Phone: +43 (0) 7723 44 860 700

Contact: Mathias Friedl

e-mail: mathias.friedl@abitronremote.com

Phone: +43 (0) 7723 44860 161

Manufacturer

ABITRON Control Systems GmbH

Wiesnerstr. 20

4950 Altheim / AUSTRIA

Test standard/s

CFR47 Part 90 Part 90 – Private land mobile radio services For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: 456 MHz Radio module

Model name: CS456TRT-1 FCC ID: 2AC8P-456TR1

Frequency: 456.3 MHz – 457.8 MHz

Technology tested: Proprietary
Antenna: External antenna

Power supply: 3.0 V to 5.5 V DC by external power supply

Temperature range: -20°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
p.o.	p.o.
Christoph Schneider Lab Manager Radio Communications & EMC	Sumit Kumar Testing Manager Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gene	al information	3
	2.1	Notes and disclaimer	3
	2.2	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	standard/s and references	
4		nvironment	
5		tem	
3			
	5.1 5.2	General description	
6	Descr	iption of the test setup	6
	6.1	Shielded semi anechoic chamber	
	6.2	Shielded fully anechoic chamber	
	6.3	Conducted measurements normal and extreme conditions	
	6.4	AC conducted	
7	Seque	ence of testing	11
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	44
	7.1	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
8	Measi	rement uncertainty	14
9	Sumn	nary of measurement results	15
10	Mea	surement results	16
. •			
	10.1 10.2	Radiated output powerOccupied bandwidth	
	10.2	Spectrum Mask	
	10.3	Transient frequency behaviour	
	10.5	Frequency stability	
	10.6	Transmitter spurious emissions conducted	
	10.7	Transmitter spurious emissions (radiated) above 1 GHz	
	10.8	Spurious emissions radiated 30 MHz to 1 GHz	
	10.9	Spurious emissions radiated < 30 MHz	
	10.10	Receiver spurious emissions (radiated)	
	10.11	Spurious emissions conducted < 30 MHz	
11	Obs	servations	53
Anr	nex A	Glossary	54
Anr	nex B	Document history	5
۸nr	ov C	Accreditation Cartificate - D-PL-12076-01-05	51

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2019-07-24
Date of receipt of test item: 2019-07-31
Start of test: 2019-08-02
End of test: 2019-08-07

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 55

3 Test standard/s and references

Test standard	Date	Description
CFR47 Part 90	-/-	Part 90 – Private land mobile radio services

Guidance	Version	Description
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Accreditation	Description	
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

© CTC advanced GmbH Page 4 of 55

4 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+23 °C during room temperature tests +60 °C during high temperature tests -20 °C during low temperature tests
Relative humidity content	:		64 %
Barometric pressure	:		1008 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.6 V DC by external power supply5.5 V3.0 V

5 Test item

5.1 General description

Kind of test item :	456 MHz Radio module
Type identification :	CS456TRT-1
S/N serial number :	-/-
Hardware status :	STD 302 S 456 MHz
Software status :	CS456TRR-1K2_190723
Firmware status :	-/-
Frequency band :	456.3 MHz – 457.8 MHz Lowest Channel – 456.3 MHz Middle Channel – 457.1 MHz Highest Channel – 457.8 MHz
Type of radio transmission: Use of frequency spectrum:	OFDM
OCW :	25 kHz
Type of modulation :	-/-
Number of channels :	32
Antenna :	External antenna
Power supply :	3.0 V to 5.5 V DC by external power supply
Temperature range :	-20°C to +60°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: Photos 456 MHz Radio module certification.pdf 1-7810/19-11-01_AnnexD

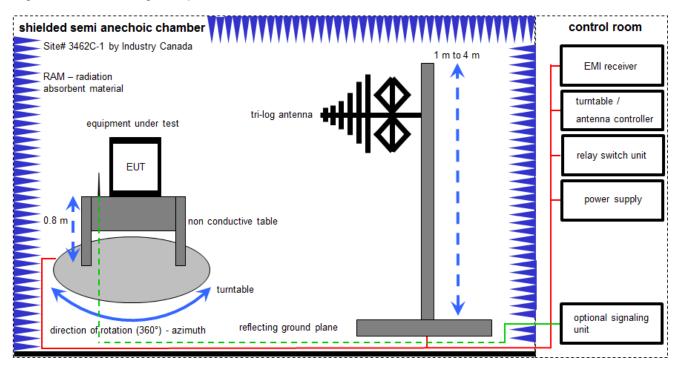
© CTC advanced GmbH Page 5 of 55

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 55

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

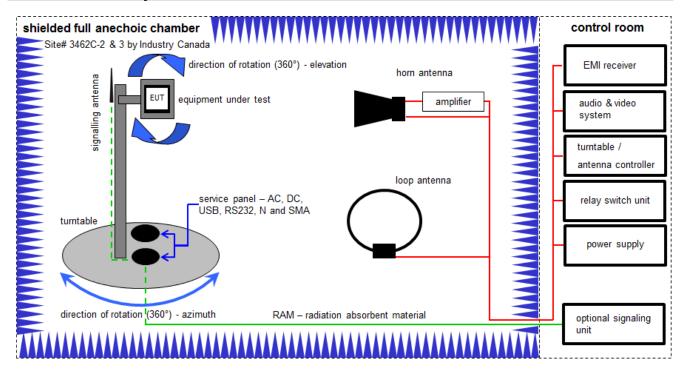
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 7 of 55

6.2 Shielded fully anechoic chamber

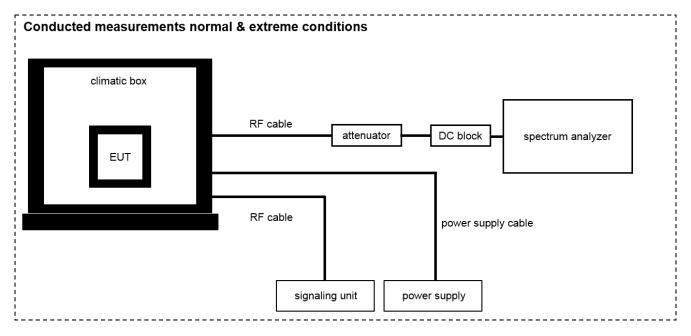
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	07.07.2017	06.07.2019
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019
3	A,B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04590	300001041	vIKI!	14.12.2017	13.12.2020
4	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
5	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
6	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
7	A,B	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
8	A,B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
9	A,B	Anechoic chamber		TDK		300003726	ne	-/-	-/-
10	A,B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	19.12.2018	18.12.2019

© CTC advanced GmbH Page 8 of 55

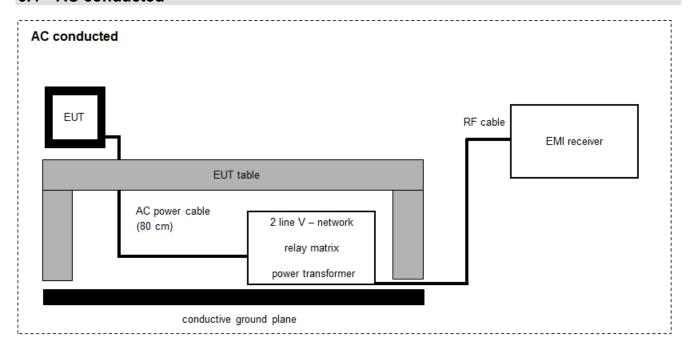
6.3 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Power Supply	2X30V	Zentro	870008	300000830	NK!	-/-	-/-
2	А	Signal- and Spectrum Analyzer 2 Hz - 26 GHz	FSW26	R&S	101455	300004528	k	19.12.2018	18.12.2019
3	Α	Coaxial Attenuator	WA23-20-34	Weinschel Ass	B4661	400001130	ev	-/-	-/-
4	А	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	-/-	-/-
5	А	Climatic Box	VT 4011	Voetsch Industrietechnik	5856623060001 0	300005363	ev	07.05.2018	06.05.2020
6	А	Arbitrary Function Generator	33220A	Agilent Technologies	MY44051717	300004164	vIKI!	11.12.2017	10.12.2019

© CTC advanced GmbH Page 9 of 55

6.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

© CTC advanced GmbH Page 10 of 55

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 11 of 55

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 55

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 55

8 Measurement uncertainty

Measurement uncertainty						
Occupied channel bandwidth	±5 %					
RF power, conducted	±1.5 dB					
Conducted spurious emission of transmitter, valid up to 6 GHz	±3 dB					
Conducted emission of receivers	±3 dB					
Radiated emission of transmitter, valid up to 6 GHz	±6 dB					
Radiated emission of receiver, valid up to 6 GHz	±6 dB					
RF level uncertainty for a given BER	±1.5 dB					
Occupied channel bandwidth	±5 %					
Temperature	±2.5 °C					
Humidity	±10 %					

© CTC advanced GmbH Page 14 of 55

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 2 47 CFR Part 90	See table	2019-12-17	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	С	NC	NA	NP	Remark
FCC 47 CFR § 2.1046 § 90.205(h)	Transmitter output power	Nominal	Nominal	\boxtimes				-/-
FCC 47 CFR § 90.203 (j)(3)/(7)	Spectrum efficiency	Nominal	Nominal			\boxtimes		One way transmitter
FCC 47 CFR § 2.1049 (c) § 90.209 (b)(5)	Occupied bandwidth	Nominal	Nominal					-/-
FCC 47 CFR § 90.210 (a)(b)(c)(d) § 90.217 (a)	Spectrum Mask	Nominal	Nominal	\boxtimes				
FCC 47 CFR § 90.214	Transient frequency behaviour	Nominal	Nominal					-/-
FCC 47 CFR	Frequency stability	Nominal Extreme		Exemption from			-/-	
§ 90.217	Troqueriey elability	Extreme	Nominal	technical standards			,	
FCC 47 CFR § 2.1051 § 90.210	Transmitter spurious emissions conducted	Nominal	Nominal	\boxtimes				-/-
FCC 47 CFR § 2.1051 § 90.210	Transmitter spurious emissions (radiated)	Nominal	Nominal	\boxtimes				-/-
FCC 47 CFR § 15.209	Receiver spurious emissions (radiated)	Nominal	Nominal	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	Nominal	Nominal					-/-

Note: С

= Compliant= Not compliant NC NA = Not applicable
NP = Not performed

© CTC advanced GmbH Page 15 of 55

10 Measurement results

10.1 Radiated output power

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	1 MHz			
Span:	5 MHz			
Trace-Mode:	Max Hold			
Used equipment:	See chapter 6.3 A			
Measurement uncertainty:	See chapter 8			

Limits:

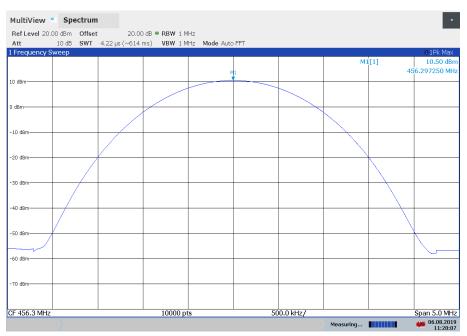
FCC 47 CFR § 90.205 (h)										
		Service area radius (km)								
	3	8	13	16	24	32	40 ⁴	48 ⁴	64 ⁴	80 ⁴
Maximum ERP (w) ¹	2	100	² 500							
Up to reference HAAt (m) ³	15	15	15	27	63	125	250	410	950	2700

¹Maximum ERP indicated provides for a 39 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 29 (See §73.699, Fig. 10 b)

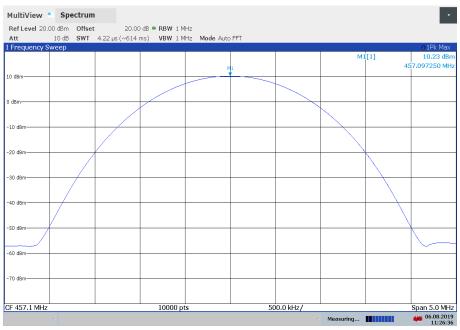
Result:

Frequency (channel)	Radiated output power
Rated output power by manufacturer	10 dBm / 0.010 W nominal
456.3 MHz	10.50 dBm / 0.011 W
457.1 MHz	10.23 dBm / 0.010 W
457.8 MHz	10.05 dBm / 0.010 W

© CTC advanced GmbH Page 16 of 55


²Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 39 dBu ³When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation: ERP_{allow} = ERP_{max} × (HAAT_{ref} / HAAT_{actual})².

⁴Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 39 dBu.


Plots:

Plot 1: Lowest channel

11:20:08 06.08.2019

Plot 2: Middle channel



11:26:37 06.08.2019

© CTC advanced GmbH Page 17 of 55

Plot 3: Highest channel

11:27:25 06.08.2019

© CTC advanced GmbH Page 18 of 55

10.2 Occupied bandwidth

Measurement:

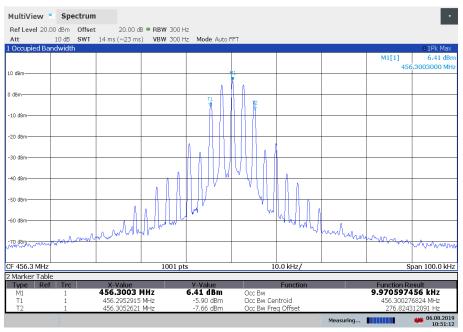
Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	See Plots			
Video bandwidth	See plots			
Span	See plots			
Measurement procedure:	OBW 99 %			
Trace mode	Max hold			
Test setup	See sub clause 6.3 A			
Measurement uncertainty	See sub clause 8			

Limits:

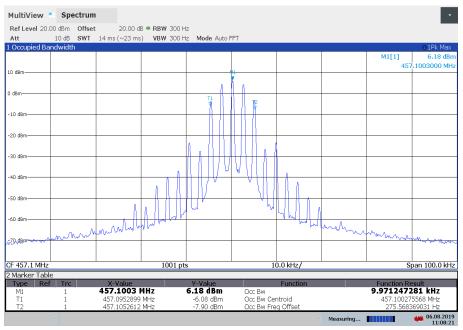
FCC 47 CFR§ 90.209 (b)(5)

a) Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth

Result:


Test Conditions		99% BANDWIDTH [kHz]			
		Low channel	Middle channel	High channel	
T_{nom}	V_{nom}	9.97	9.97	9.96	

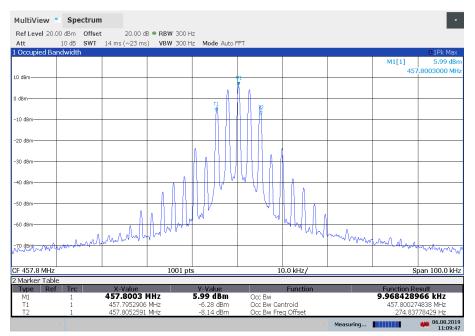
© CTC advanced GmbH Page 19 of 55


Plots:

Plot 1: Lowest Channel

10:51:13 06.08.2019

Plot 2: Middle Channel



11:08:21 06.08.2019

© CTC advanced GmbH Page 20 of 55

Plot 3: Highest Channel

11:09:48 06.08.2019

© CTC advanced GmbH Page 21 of 55

10.3 Spectrum Mask

Measurement:

Measurement parameter for emission mask				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	300 Hz			
Video bandwidth:	300 Hz			
Span:	200 kHz			
Trace-Mode:	Max. hold			
Test setup	See sub clause 6.3 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC 47 CFR § 90.210 (d)

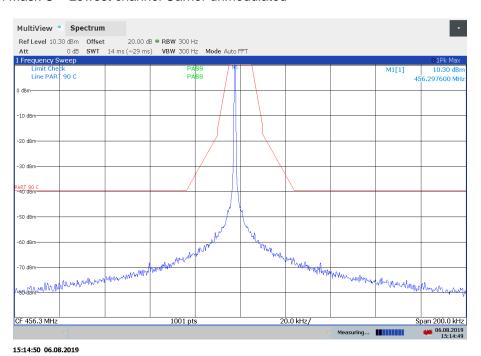
Emission Mask C

For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

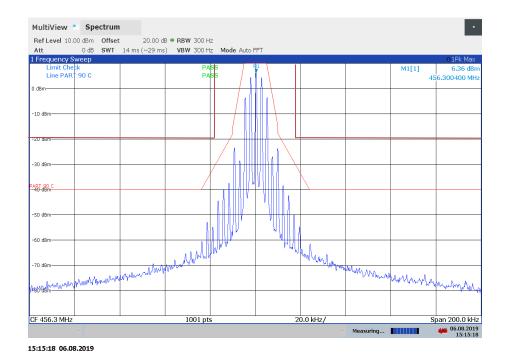
- a) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_din kHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (f_d/5) dB.
- b) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_din kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (f_d²/11) dB or 50 dB, whichever is the lesser attenuation.
- c) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

FCC 47 CFR § 90.217 (a)

Except as noted herein, transmitters used at stations licensed below 800 MHz on any frequency listed in subparts B and C of this part or licensed on a business category channel above 800 MHz which have an output power not exceeding 120 milliwatts are exempt from the technical requirements set out in this subpart, but must instead comply with the following:

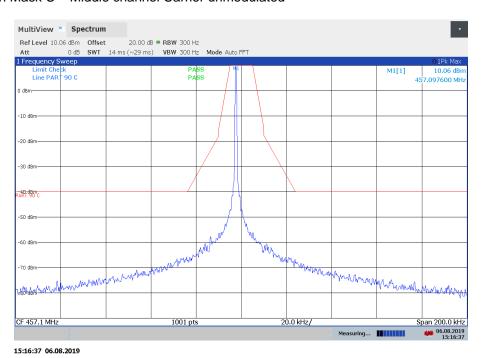

(a) For equipment designed to operate with a 25 kHz channel bandwidth, the sum of the bandwidth occupied by the emitted signal plus the bandwidth required for frequency stability shall be adjusted so that any emission appearing on a frequency 40 kHz or more removed from the assigned frequency is attenuated at least 30 dB below the unmodulated carrier.

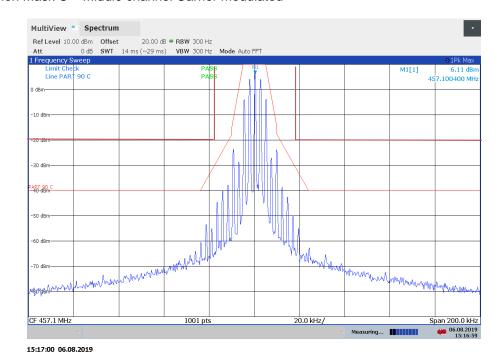
© CTC advanced GmbH Page 22 of 55



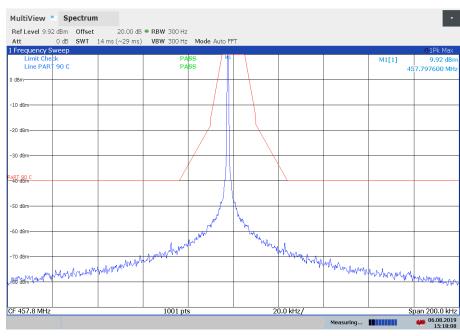
Plots:

Plot 1: Emission Mask C - Lowest channel Carrier unmodulated

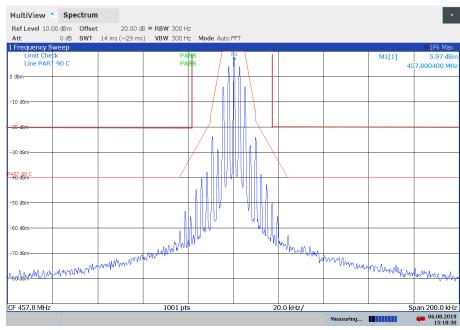

Plot 2: Emission Mask C – Lowest channel Carrier modulated


© CTC advanced GmbH Page 23 of 55

Plot 3: Emission Mask C - Middle channel Carrier unmodulated


Plot 4: Emission Mask C – Middle channel Carrier modulated

© CTC advanced GmbH Page 24 of 55



Plot 5: Emission Mask C - Highest channel Carrier unmodulated

15:18:09 06.08.2019

Plot 6: Emission Mask C – Highest channel Carrier modulated

15:18:31 06.08.2019

© CTC advanced GmbH Page 25 of 55

10.4 Transient frequency behaviour

Measurement:

The first plot shows the measurement of the carrier signal to show that a clean carrier is transmitted which results in a measured bandwidth of nearly twice the used RBW.

The following plots show triggered measurements in the time domain with a RBW of 6.25 kHz (3-dB filter). A decrease of this power level of 3 dB can be correlated to a frequency error of a half RBW (3.125 kHz). Therefore the frequency error is less than \pm 3.125 kHz as long as the power level is in the 3 dB range. This criteria was taken as worst case condition to show compliance.

Limits:

FCC 47 CFR § 90.214

Transient Frequency Behavior for Equipment Designed to Operate on 25 kH Channels

For 25 kHz channels							
Transient periods	Maximum frequency difference	Frequency range 150 – 174 MHz	Frequency range 421 - 512 MHz				
t ₁ (ms)	±25.0 kHz	5.0 ms	10.0 ms				
t ₂ (ms)	±12.5 kHz	20.0 ms	25.0 ms				
t ₃ (ms)	±25.0 kHz	5.0 ms	10.0 ms				

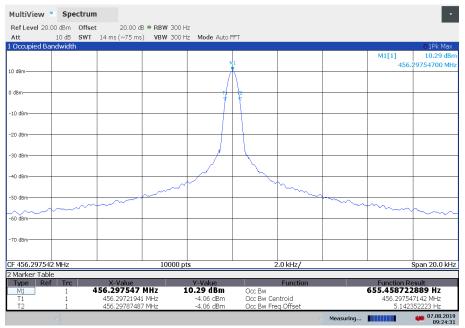
t₁ is the time period immediately following t_{on}.

Result:

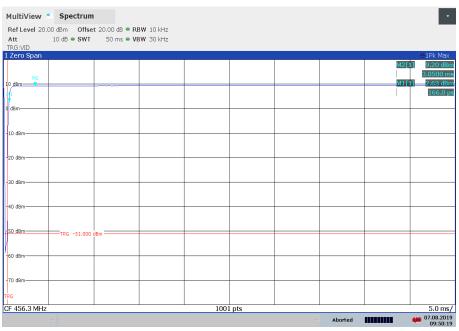
Confirm that during periods t ₁ and t ₃ the frequency difference does not exceed the value of one cannel separation	Passed
Confirm that during period t ₂ the frequency difference does not exceed half a cannel separation	Passed
Confirm that during periods t ₂ to t ₃ the frequency difference does not exceed the frequency error limit	Passed

Test scenario	Lowest channel	Middle channel	Highest channel
The frequency stabilizes within the required frequency tolerance range after switching on the transmitter during period t ₁ after:	3.05 ms	3.35 ms	1.51 ms
Maximum power deviation during t ₂ : (power deviation below 3 dB conforms a frequency deviation below ± 3.125 kHz)	0.19 dB	0.28 dB	0.17 dB
Switch off time (t ₃):	0.55 ms	0.58 ms	0.75 ms

© CTC advanced GmbH Page 26 of 55


t₂ is the time period immediately following t₁.

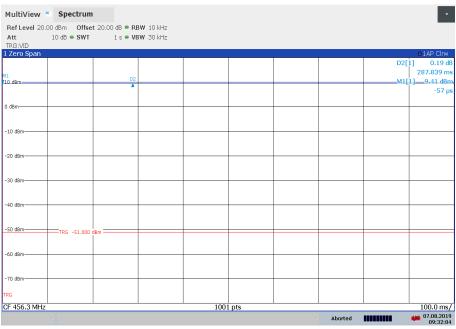
t₃ is the time period from the instant when the transmitter is turned off until toff.


Plots:

Plot 1: Lowest channel - Carrier

09:24:32 07.08.2019

Plot 2: Lowest channel – Switch on (zoomed)



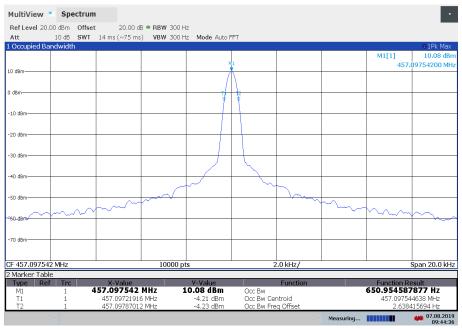
09:50:19 07.08.2019

© CTC advanced GmbH Page 27 of 55

Plot 3: Lowest channel - Operating

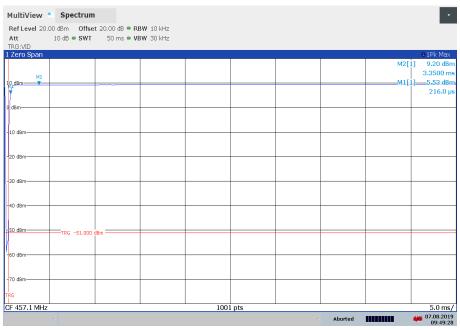
09:32:04 07.08.2019

Plot 4: Lowest channel – Switch off (zoomed)



09:33:30 07.08.2019

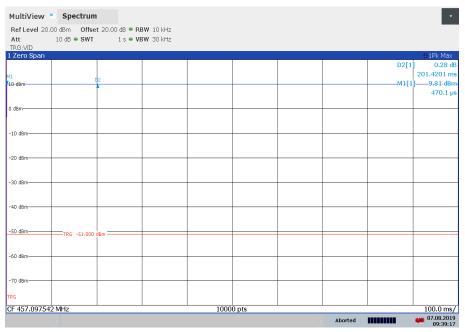
© CTC advanced GmbH Page 28 of 55



Plot 5: Middle channel - Carrier

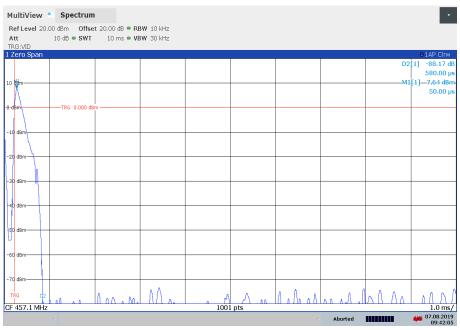
09:44:36 07.08.2019

Plot 6: Middle channel – Switch on (zoomed)



09:49:28 07.08.2019

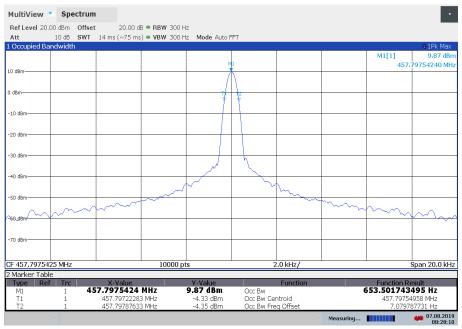
© CTC advanced GmbH Page 29 of 55



Plot 7: Middle channel - Operating

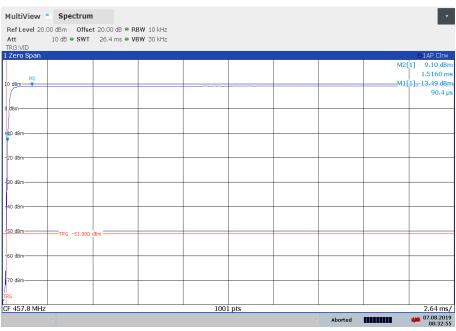
09:39:18 07.08.2019

Plot 8: Middle channel – Switch off (zoomed)



09:42:05 07.08.2019

© CTC advanced GmbH Page 30 of 55



Plot 9: Highest channel - Carrier

08:28:10 07.08.2019

Plot 10: Highest channel – Switch on (zoomed)

08:32:55 07.08.2019

© CTC advanced GmbH Page 31 of 55

Plot 11: Highest channel - Operating

08:41:43 07.08.2019

Plot 12: Highest channel – Switch off (zoomed)

09:21:44 07.08.2019

© CTC advanced GmbH Page 32 of 55

10.5 Frequency stability

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	30 Hz		
Video bandwidth:	300 Hz		
Span:	5 kHz		
Trace mode:	Max. hold		
Test setup:	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC 47 CFR § 90.217

No restriction

Results:

Temperature	Deviation (kHz)	Deviation (ppm)	Deviation (kHz)	Deviation (ppm)	Deviation (kHz)	Deviation (ppm)
	Low channel		Middle channel		High channel	
-20 °C	-2.35	-5.16	-2.53	-5.54	-2.37	-5.18
-10 °C	-2.45	-5.37	-2.36	-5.17	-2.31	-5.05
0 °C	-2.33	-5.12	-2.27	-4.98	-2.37	-5.19
10 °C	-2.44	-5.35	-2.31	-5.07	-2.43	-5.31
20 °C (V nom)	-2.46	-5.40	-2.38	-5.22	-2.48	-5.41
30 °C	-2.49	-5.47	-2.44	-5.34	-2.49	-5.45
40 °C	-2.51	-5.51	-2.48	-5.44	-2.49	-5.45
50 °C	-2.50	-5.49	-2.49	-5.46	-2.52	-5.50
Voltage	Deviation (kHz)	Deviation (ppm)	Deviation (kHz)	Deviation (ppm)	Deviation (kHz)	Deviation (ppm)
85 %	-2.47	-5.41	-2.39	-5.23	-2.47	-5.39
115 %	-2.46	-5.40	-2.39	-5.24	-2.47	-5.40

© CTC advanced GmbH Page 33 of 55

10.6 Transmitter spurious emissions conducted

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz		
Video bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz		
Span:	See plots		
Trace-Mode:	Max. hold		
Test setup:	See sub clause 6.3 B		
Measurement uncertainty	See sub clause 8		

Limits:

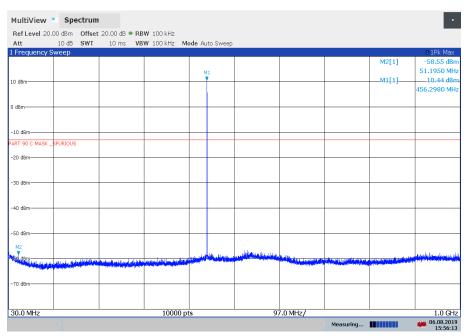
FCC 47 CFR § 90.210 (d)

Emission Mask C

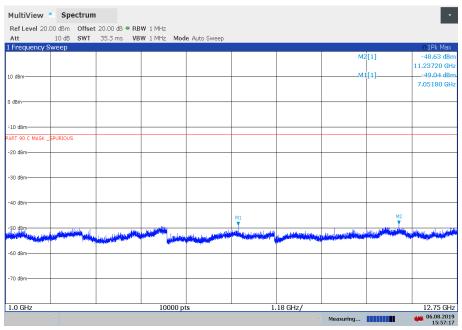
For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

a) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Results:


Spurious Emission Level								
Harmonic	Ch. low Freq. (MHz)	Level [dBm]	Harmonic	Ch. mid Freq. (MHz)	Level [dBm]	Harmonic	Ch. high Freq. (MHz)	Level [dBm]
2		All detected spurious emissions are more than 10 dB below the limit	2			2		All detected
3			3		All detected	3		
4			4		spurious emissions	4		spurious emissions
5			5		are more	5		are more
6			6		than 10 dB below the	6		than 10 dB below the
7			7		limit.	7		limit.
8			8			8		
Measurement uncertainty				± 3dB				

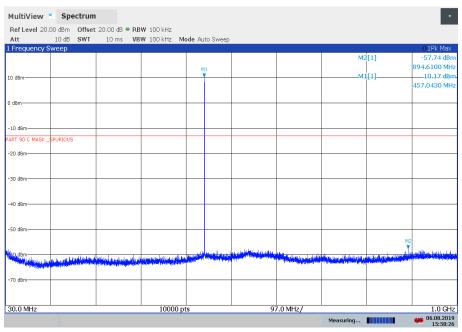
© CTC advanced GmbH Page 34 of 55


Plots:

Plot 1: 30 MHz to 1 GHz Lowest channel

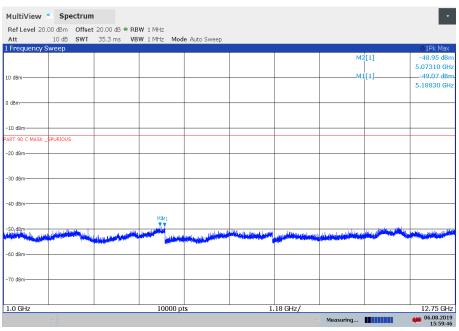
15:56:13 06.08.2019

Plot 2: 1GHz to 12.75 GHz Lowest channel



15:57:17 06.08.2019

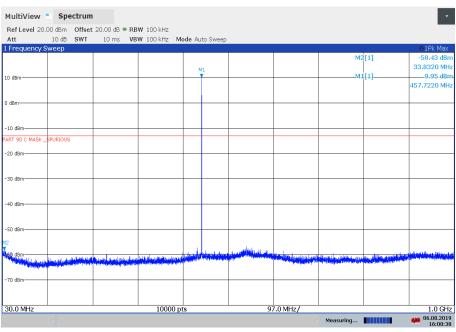
© CTC advanced GmbH Page 35 of 55



Plot 3: 30 MHz to 1 GHz Middle channel

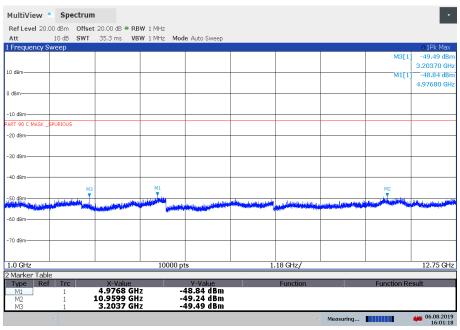
15:58:26 06.08.2019

Plot 4: 1GHz to 12.75 GHz Middle channel



15:59:46 06.08.2019

© CTC advanced GmbH Page 36 of 55



Plot 5: 30 MHz to 1 GHz Highest channel

16:00:39 06.08.2019

Plot 6: 1GHz to 12.75 GHz Highest channel

16:01:19 06.08.2019

© CTC advanced GmbH Page 37 of 55

10.7 Transmitter spurious emissions (radiated) above 1 GHz

Measurement:

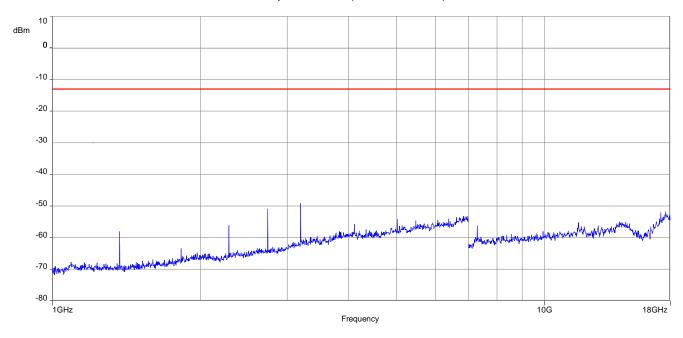
Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz				
Video bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz				
Span:	See plots				
Trace mode:	Max. hold				
Test setup:	See sub clause 6.2 A				
Measurement uncertainty	See sub clause 8				

Limits:

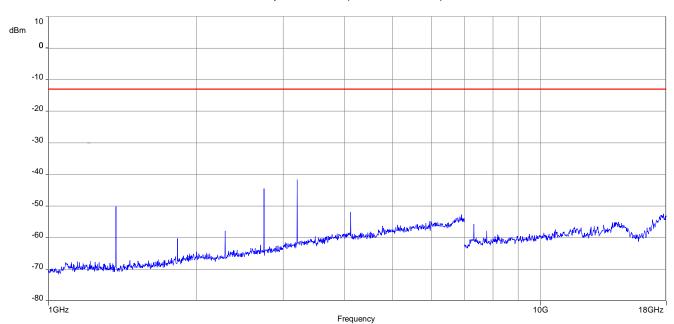
FCC 47 CFR § 90.210 (d)

Emission Mask C

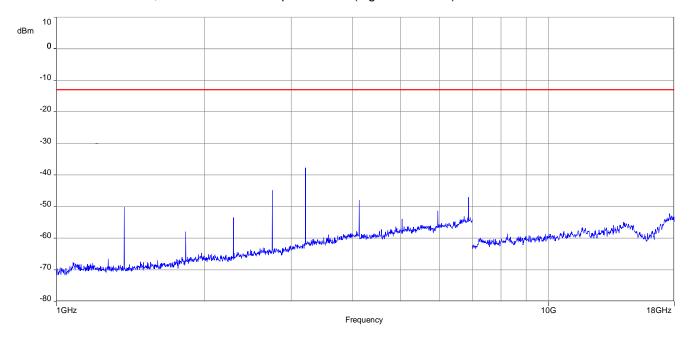
a) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.


Results:

Transmitter spurious emissions							
Lowest channel Middle channel Highest cha					lighest chann	nel	
Frequency	Detector	Level	Frequency Detector Level Frequency Detector Level				Level
All detected spurious emissions are more than 20 dB below the limit. All detected spurious emissions are more than 20 dB below the limit.						d spurious en in 20 dB belov	
	Measurement uncertainty ± 3 dB						


© CTC advanced GmbH Page 38 of 55

Plot 1: 1 GHz – 18 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 18 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 39 of 55

Plot 3: 1 GHz – 18 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 40 of 55

10.8 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

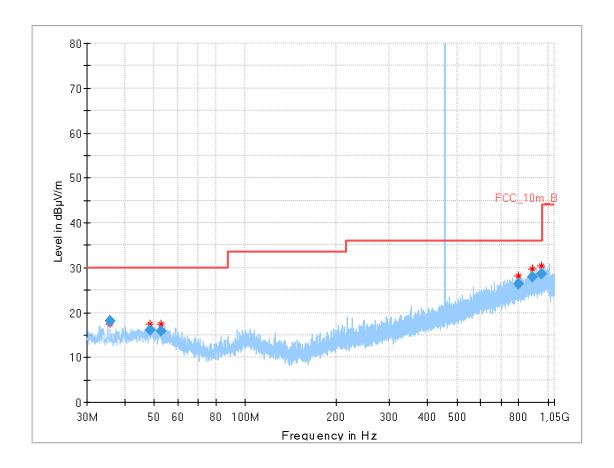
Measurement:

Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	DBPSK				
Test setup	See sub clause 6.1 A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC		
Band-edge Compliance of conducted and radiated emissions			

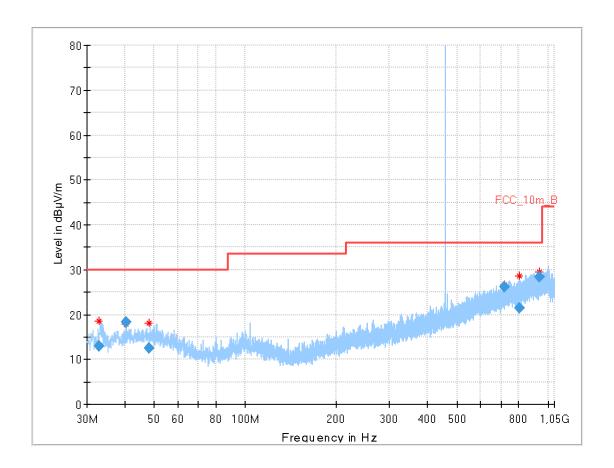
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 41 of 55

Plots:

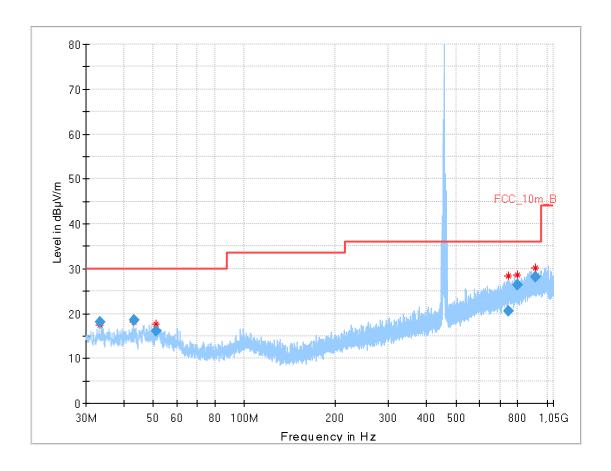
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
35.699	18.04	30.0	11.96	1000	120	101.0	٧	68.0	14
48.648	16.10	30.0	13.90	1000	120	101.0	٧	202.0	15
52.576	15.87	30.0	14.13	1000	120	101.0	٧	22.0	15
798.050	26.34	36.0	9.66	1000	120	98.0	Н	79.0	22
884.852	27.92	36.0	8.08	1000	120	170.0	٧	269.0	24
953.721	28.57	36.0	7.43	1000	120	170.0	٧	248.0	24

© CTC advanced GmbH Page 42 of 55

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
32.902	13.04	30.0	16.96	1000	120	148.0	٧	-9.0	13
40.404	18.33	30.0	11.67	1000	120	101.0	Н	-10.0	14
47.934	12.47	30.0	17.53	1000	120	101.0	٧	-21.0	15
717.890	26.08	36.0	9.92	1000	120	170.0	Н	112.0	22
806.053	21.41	36.0	14.59	1000	120	101.0	Н	22.0	22
935.825	28.46	36.0	7.54	1000	120	170.0	Н	292.0	24

© CTC advanced GmbH Page 43 of 55

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.361	18.16	30.0	11.84	1000	120	101.0	٧	181.0	14
43.082	18.59	30.0	11.41	1000	120	101.0	Н	292.0	15
51.218	16.05	30.0	13.95	1000	120	170.0	٧	-21.0	15
743.459	20.62	36.0	15.38	1000	120	170.0	٧	2.0	22
800.538	26.42	36.0	9.58	1000	120	170.0	٧	1.0	22
915.447	28.14	36.0	7.86	1000	120	170.0	٧	259.0	24

© CTC advanced GmbH Page 44 of 55

10.9 Spurious emissions radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

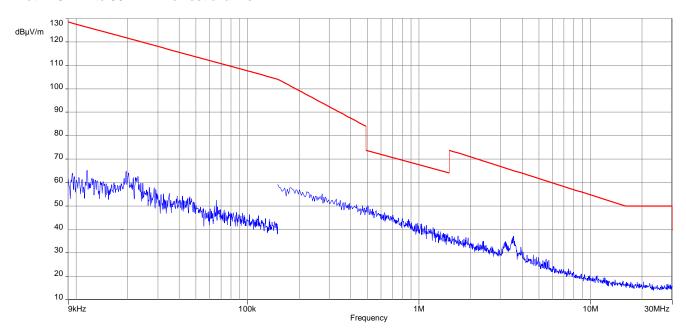
Measurement:

Measurement parameter						
Detector:	Peak / Quasi peak					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace mode:	Max hold					
Test setup:	See sub clause 6.2 B					
Measurement uncertainty	See sub clause 8					

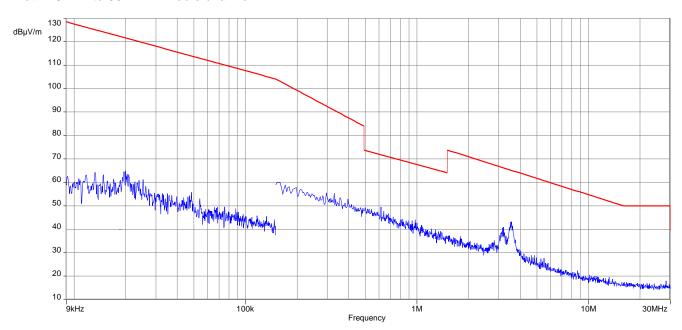
Limits:

FCC					
TX Spurious Emissions Radiated < 30 MHz					
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance			
0.009 – 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			

Results:

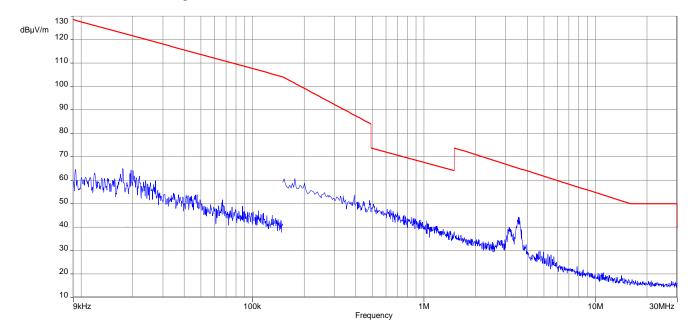

Transmitter spurious emissions								
Lowest channel			Middle channel			Highest channel		
Frequency	Detector	Level	Frequency	Detector	Level	Frequency	Detector	Level
No Spurious Emissions detected			No Spurious Emissions detected			No Spurious Emissions detected		

© CTC advanced GmbH Page 45 of 55



Plots: TX mode

Plot 1: 9 kHz to 30 MHz- Lowest channel


Plot 2: 9 kHz to 30 MHz- Middle channel

© CTC advanced GmbH Page 46 of 55

Plot 3: 9 kHz to 30 MHz- Highest channel

© CTC advanced GmbH Page 47 of 55

10.10 Receiver spurious emissions (radiated)

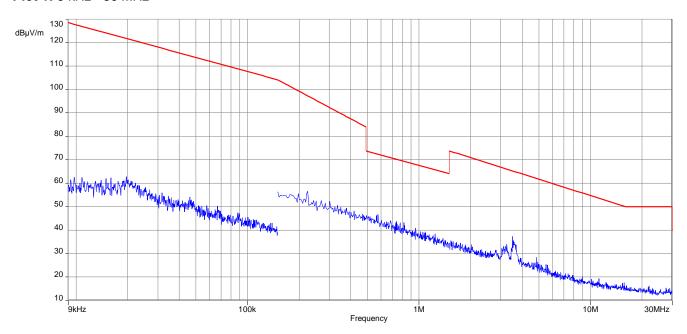
Measurement:

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Video bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz				
Resolution bandwidth:	f < 1 GHz : 100 kHz f ≥ 1GHz : 1 MHz				
Span:	See plots				
Trace mode:	Max. hold				
Test setup:	See sub clause 6.1 / 6.2 A & B				
Measurement uncertainty	See sub clause 8				

Limits:

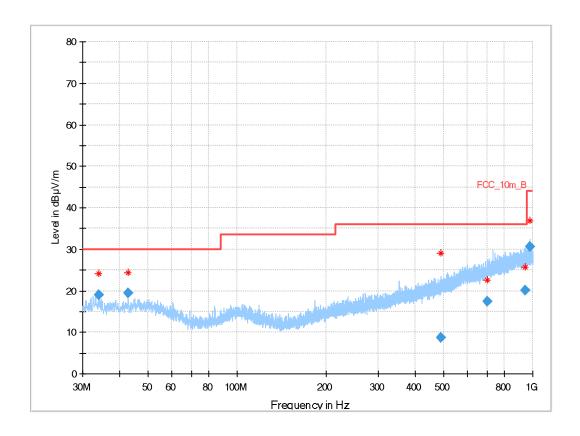
FCC 47 CFR § 15.209					
	Receiver spurious emission (radiated)				
Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)			
30 - 88	100	3			
88 - 216	150	3			
216 - 960	200	3			
above 960	500	3			

Results:


RX mode				
Spurious emissions (valid for all channels)				
Frequency	RBW	Detector	Power	
No Spurious Emissions detected.				

© CTC advanced GmbH Page 48 of 55

Plots:


Plot 1: 9 kHz - 30 MHz

© CTC advanced GmbH Page 49 of 55

Plot 2: 30 MHz – 1 GHz

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.904	18.93	30.0	11.07	1000	120	139.0	٧	139.0	14
42.853	19.37	30.0	10.63	1000	120	143.0	I	333.0	15
489.741	8.61	36.0	27.39	1000	120	104.0	٧	339.0	18
702.054	17.45	36.0	18.55	1000	120	170.0	Н	26.0	21
941.683	20.22	36.0	15.78	1000	120	170.0	٧	151.0	24
980.840	30.68	44.0	13.32	1000	120	170.0	٧	329.0	24

© CTC advanced GmbH Page 50 of 55

10.11 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The measurement is performed with the data rate producing the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter				
Detector:	Peak - Quasi peak / Average			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace mode:	Max hold			
Test setup:	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

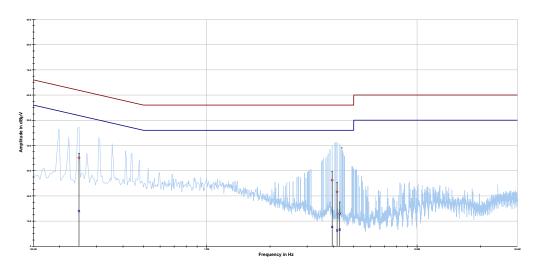
Limits:

FCC				
TX Spurious Emissions Conducted < 30 MHz				
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBμV/m)		
0.15 – 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 – 30.0	60	50		

^{*}Decreases with the logarithm of the frequency

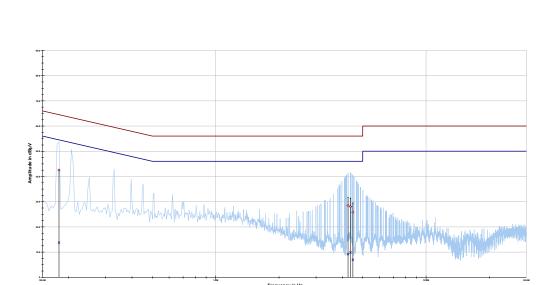
Results:

TX Spurious Emissions Conducted < 30 MHz [dBμV/m]				
F [MHz] Detector Level [dBµV/m]				
No peaks detected.				
Measurement uncertainty ± 3 dB				


© CTC advanced GmbH Page 51 of 55

Plots:

Plot 1: TX mode, 150 kHz to 30 MHz, phase line


Project ID: 1-7810/19-11-02

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.247012	35.09	26.77	61.857	13.95	39.28	53.228
3.948412	26.22	29.78	56.000	7.67	38.33	46.000
4.168556	21.59	34.41	56.000	6.27	39.73	46.000
4.291688	12.98	43.02	56.000	6.61	39.39	46.000

© CTC advanced GmbH Page 52 of 55

Plot 2: TX mode, 150 kHz to 30 MHz, neutral line

Quasi peak Margin Average Margin **Frequency Limit QP Limit AV** Average level quasi peak level dΒμV MHz dΒμV dB dΒμV dΒμV dB 0.179850 42.50 55.147 21.99 64.493 13.75 41.40 4.258106 28.50 27.50 56.000 9.14 36.86 46.000 4.373775 27.99 28.01 56.000 9.81 36.19 46.000 4.489444 25.77 30.23 56.000 6.96 39.04 46.000

Project ID: 1-7810/19-11-02

11 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 53 of 55

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 54 of 55

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-12-17

Annex C Accreditation Certificate - D-PL-12076-01-05

first page	last page
DAKKS Deutsche Akkreditierungsstelle	
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Mein 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory	
CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	
is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	
Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Aktreditierungsstelle (smbit (DAKS), Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of
	accreditation attested by DAkK5. The accreditation was granted pursuant to the Act on the Accreditation Body (AkK5rellerG) of 31 July 2009 [Federal Law Gazette In 2.625] and the Regulation (FC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). DAkKs is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IACs). The signatories to these agreements recognise set on their 3 accreditations.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.	The up-to-date state of membership can be retrieved from the following websites: E4: www.european-accreditation.org LIAC: www.libc.org LIAF: www.laf.nu
Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 11.01.2019 Plankfurt am Main, 11.01.2019 Plankfurt am Main, 11.01.2019	
the small product	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 55 of 55