Allen Wang
Nice Nong

Theren Nie

TEST REPORT

FCC Part 22 Subpart H / Part 24 Subpart E

Report Reference No:: (CTL1611246101-WF
-------------------------	------------------

Compiled by: Allen Wang (position+printed name+signature) (File administrators)

Tested by: Nice Nong (position+printed name+signature) (Test Engineer)

Approved by: Ivan Xie (position+printed name+signature) (Manager)

Product Name: Wireless Infrared Scouting Camera

Model/Type reference: UM595-HD-3GV

List Model(s).....: /

Trade Mark.....: Covert

FCC ID...... 2AC8CUM595-HD-3GV

Applicant's name: UOVision Technology (HONGKONG) Co., Ltd

Address of applicant...... UNIT A3, 9/F SILVER INTERNATIONAL TOWER, 707-713
NATHAN ROAD, MONGKOK, KOWLOON, HONGKONG

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification:

Standard FCC CFR Title 47 Part 2, Part 22H and Part 24E

EIA/TIA 603-D: 2010 KDB 971168 D01

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of Receipt...... Jun. 08, 2017

Date of Test Date Jun. 09, 2017–Jul. 07, 2017

Data of Issue.....: Jul. 08, 2017

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

V1.0 Page 2 of 38 Report No.: CTL1611246101-WF

TEST REPORT

Test Report No. : CTL1611246101-WF Jul. 08, 2017

Date of issue

Equipment under Test : Wireless Infrared Scouting Camera

Model /Type : UM595-HD-3GV

Listed Models : /

Applicant : UOVision Technology (HONGKONG) Co., Ltd

Address : UNIT A3, 9/F SILVER INTERNATIONAL TOWER,

707-713 NATHAN ROAD, MONGKOK,

KOWLOON, HONGKONG

Manufacturer : UOVision Technology (Shenzhen) Co., Ltd.

Address 3rd Floor, East Wing, the 4th Building, ZhongGuan

HongHualing Industrial Zone, 1268# Liuxian BLVD,

Nanshan District, Shenzhen, CHN 518055

N N N	W///	
Test result	Pass *	

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions			Report No.	Remark
Version 1.0	Initial Test Report Release	2017-07-08	CTL1611246101-WF	Tracy Qi

Report No.: CTL1611246101-WF

Contents

1 SI	UMMARY				
1.1	TEST STANDARDS				
1.2	TEST DESCRIPTION				
1.3	TEST DESCRIPTION				
	STATEMENT OF THE MEASUREMENT UNCERTAINTY				
1.4	STATEMENT OF THE MEASUREMENT UNCERTAINTY				
2 G	GENERAL INFORMATION				
2.1	Environmental conditions	7			
2.1	GENERAL DESCRIPTION OF EUT				
2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY				
2.4	EQUIPMENTS USED DURING THE TEST				
2.5	RELATED SUBMITTAL(S) / GRANT (S)	8			
2.6	Modifications	8			
3 TI	EST CONDITIONS AND RESULTS	g			
3.1	Output Power	C			
3.2	Occupied Bandwidth				
3.3	BAND EDGE COMPLIANCE				
3.4	Spurious Emission	19			
3.5	Frequency Stability under Temperature & Voltage Variations	20			
/ TI	EST SETUD DUOTOS OF THE FUT	21			

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

<u>ANSI C63.26-2015</u> American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 ©	Pass
Peak-to-Average Ratio	Part 24.232 (d)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability	Part 2.1055 Part 22.355 Part 24.235	Pass

V1.0 Page 6 of 38 Report No.: CTL1611246101-WF

1.2 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. Quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:	Wireless Infrared Scouting Camera			
Model/Type reference:	UM595-HD-3GV			
Power supply:	DC 6.0V from battery			
CDMA				
Operation Band:	BC0 TX: 824.70 MHz ~ 848.31 MHz BC1 TX:1851.25 MHz ~ 1908.75 MHz BC0 RX: 869.70 MHz ~ 893.31 MHz BC1 RX: 1931.25 MHz ~ 1988.75 MHz			
Supported Type:	CDMA200 1x RTT/CDMA2000 1xEv-DO - Revision A			
Modilation Type:	QPSK			
Antenna type:	External antenna			
Antenna gain:	5dBi			

Note: For more details, refer to the user's manual of the EUT.

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.

Test Frequency:

restricquency.					
Cellula	ır Band	PCS Band			
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1013	1013 824.70		1851.25		
384	836.52	600	1880.00		
777	848.31	1175	1908.75		

2.4 Equipments Used during the Test

Test Equipment			Calibration Date	Calibration Due Date				
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2017/06/02	2018/06/01			
Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2017/06/02	2018/06/01			
EMI Test Receiver	R&S	ESCI	103710	2017/06/02	2018/06/01			
Spectrum Analyzer	Agilent	E4407B	MY45108355	2017/06/02	2018/06/01			
Controller	EM Electronics	Controller EM 1000	N/A	2017/05/21	2018/05/20			
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2017/05/19	2018/05/18			
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062014	2017/05/19	2018/05/18			
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2017/05/19	2018/05/18			
Amplifier	Agilent	8349B	3008A02306	2017/05/19	2018/05/18			
Amplifier	Amplifier Agilent		2944A10176	2017/05/19	2018/05/18			
Temperature/Humi dity Meter	Gangxing	CTH-608	02	2017/05/20	2018/05/19			
Radio Communication Tester	R&S	CMU200	115419	2017/05/22	2018/05/21			
High-Pass Filter	€ K&L	9SH10-2700/X1 2750-O/O	N/A	2017/05/20	2018/05/19			
High-Pass Filter	6 K&L	41H10-1375/U1 2750-O/O	N/A	2017/05/20	2018/05/19			
RF Cable	HUBER+SUHN ER	RG214	N/A	2017/05/20	2018/05/19			
Climate Chamber	ESPEC	EL-10KA	A20120523	2017/05/20	2018/05/19			
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2017/05/20	2018/05/19			
Directional Coupler	Agilent	87300B	3116A03638	2017/05/20	2018/05/19			
2.5 Related Submittal(s) / Grant (s) This submittal(s) (test report) is intended for FCC ID: 2AC8CUM595-HD-3GV filing to comply with of								

2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AC8CUM595-HD-3GV filing to comply with of the FCC Part 22 and Part 24 Rules.

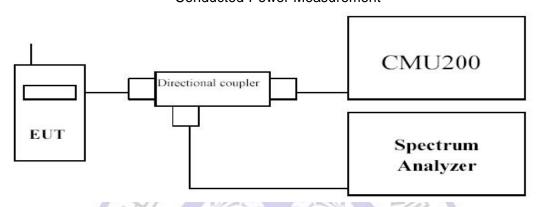
2.6 Modifications

No modifications were implemented to meet testing criteria.

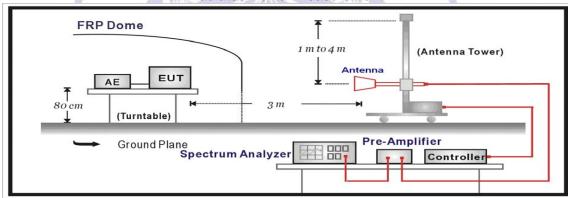
V1.0 Page 9 of 38 Report No.: CTL1611246101-WF

3 TEST CONDITIONS AND RESULTS

3.1 Output Power


LIMIT

BC0: 7W BC1: 2W


The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

V1.0 Page 10 of 38 Report No.: CTL1611246101-WF

- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

V1.0 Page 11 of 38 Report No.: CTL1611246101-WF

TEST RESULTS

Conducted Measurement:

EUT Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Peak-to-Average Ratio (dB)	Limit (dBm)	Result
CDMA 1xRTT,	1013	824.7	23.15	/		
BC0, CELL	384	836.52	23.22	/	38.45	Pass
BAND	777	848.31	23.19	/		
CDMA2000	1013	824.7	23.41	/		
EVDO REV A	384	836.52	23.25	/	38.45	Pass
850MHz BAND	777	848.31	23.32	/		
CDMA2000	25	1851.25	23.20	3.15		
1xRTT, BC1,	xRTT, BC1, 600		23.26	3.26	33.01	Pass
PCS BAND	1175	1908.75	23.21	3.45		
CDMA2000	25	1851.25	23.19	3.22		
EVDO REV A 1900MHz	600	1880.00	23.22	3.56	33.01	Pass
BAND	1175	1908.75	23.23	3.74		

Note:

- 1. maximum PK burst power=maximum Avg. burst power+Peak-to-Average Ratio.
- 2. The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.
- 3. This device was tested under all R.C.s and S.O.s. The worst case is reported with RC1/SO55 for 1xRTT and FTAP Rate 2Slot 307.2 kbps/RETAP Rate 2048 bits for EVDO Rev.A with 'All Up' power control bits.

Pesting Technolog

Radiated Measurement:

Note: 1. The field strength of radiation emission was measured in the following position: EUT stand-up position (Zaxis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis was reported.

Note: 2 We test the H direction and V direction and V direction is worse.

CDMA 1xRTT, BC0, CELL BAND

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1013	-14.55	2.42	8.45	2.15	36.82	26.15	38.45	12.30	V
384	-13.77	2.46	8.45	2.15	36.82	26.89	38.45	11.56	V
777	-14.08	2.53	8.36	2.15	36.82	26.42	38.45	12.03	V

CDMA2000 EVDO REV A 850MHz BAND

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1013	-14.49	2.42	8.45	2.15	36.82	26.21	38.45	12.24	V
384	-14.11	2.46	8.45	2.15	36.82	26.55	38.45	11.90	V
777	-14.18	2.53	8.36	2.15	36.82	26.32	38.45	12.13	V

CDMA2000 1xRTT, BC1, PCS BAND

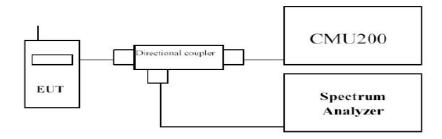
Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
25	-15.28	3.41	10.24	33.6	25.15	33.01	7.86	V
600	-14.10	3.49	10.24	33.6	26.25	33.01	6.76	V
1175	-14.30	3.55	10.23	33.6	25.98	33.01	7.03	V

CDMA2000 EVDO REV A 1900MHz BAND

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
25	-14.99	3.41	10.24	33.6	25.44	33.01	7.57	V
600	-14.21	3.49	10.24	33.6	26.14	33.01	6.87	V
1175	-14.04	3.55	10.23	33.6	26.24	33.01	6.77	V

Remark:

- 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 2. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.


V1.0 Page 13 of 38 Report No.: CTL1611246101-WF

3.2 Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (MHz)	-26dB bandwidth (MHz)
	1013	824.70	1.2822	1.432
CDMA 1xRTT, BC0, CELL BAND	384	836.52	1.2735	1.433
3	777	848.31	1.2816	1.444
CDMA2000 EVDO	1013	824.70	1.2747	1.431
REV A 850MHz	384	836.52	1.2812	1.447
BAND	777	848.31	1.2781	1.440
	25	1851.25	1.2789	1.461
CDMA2000 1xRTT, BC1, PCS BAND	600	1880.00	1.2700	1.422
- ,	1175	1908.75	1.2747	1.432
CDMA2000 EVDO	25	1851.25	1.2764	1.448
REV A 1900MHz	600	1880.00	1.2713	1.427
BAND	1175	1908.75	1.2769	1.434

Transmit Freg Error

x dB Bandwidth

1.444 MHz

Channel 777

Transmit Freq Error

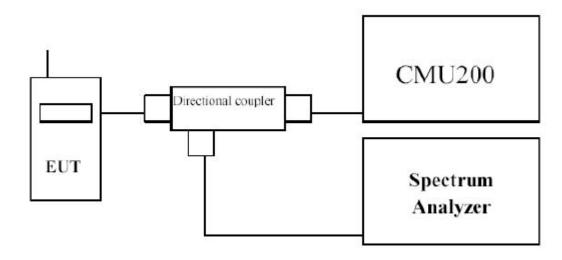
x dB Bandwidth

12.269 kHz 1.440 MHz

Channel 777

More

Report No.: CTL1611246101-WF

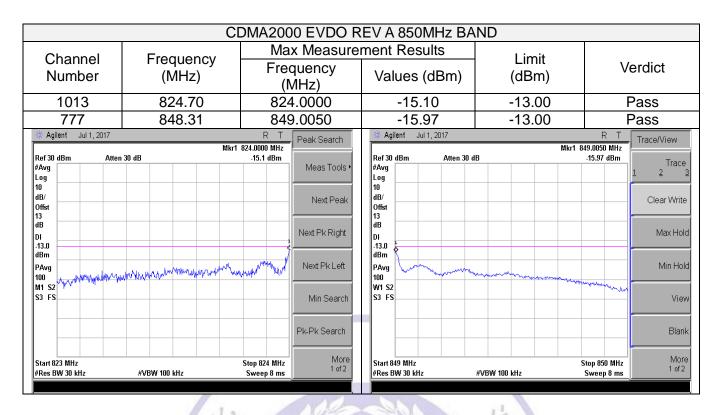

Report No.: CTL1611246101-WF

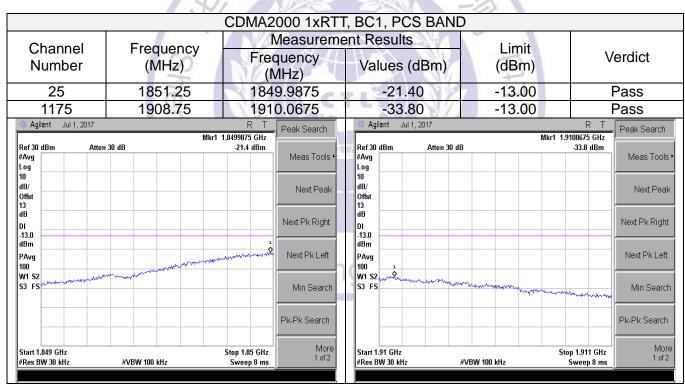
3.3 Band Edge compliance

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION



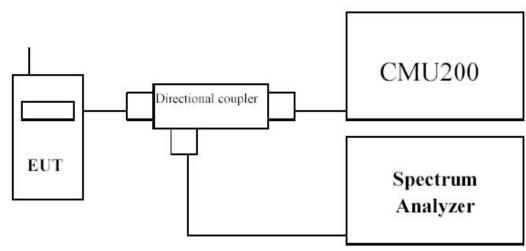

TEST PROCEDURE

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

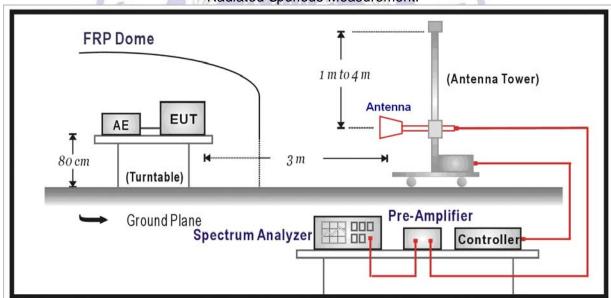
TEST RESULTS

		CDMA 1xRT	Γ, BC0, CELL BAN	ID		
Channel	Frequency	Max Meas	urement Results	Limit		
Number	(MHz)	Frequency (MHz)	Values (dBm		Verdict	
1013	824.70	824.0000	-14.45	-13.00	Pass	
777	848.31	849.0025	-15.49	-13.00	Pass	
∰ Agilent Jul 1, 2017	M	R T Peak Sear	h # Agilent Jul 1, 2017	Mkr1	R T Peak Se	earch
#Avg Log	n 30 dB	-14.45 dBm Meas To	DIS► #Avg Log	n 30 dB	-15.49 dBm Meas	Tools •
10 dB/ Offst		Next P	10 dB/ Offst		Next	t Peak
dB DI -13.0		Next Pk Ri	-13.0		Next Pk	Right
dBm PAvg 100	god with million shows the best of the second show the	Next Pk L	100	and the same of th	Next P	k Left
M1 52 S3 FS		Min Sea	W1 S2 S3 FS			Search
		Pk-Pk Sea	ch		Pk-Pk S	earch
Start 823 MHz #Res BW 30 kHz	#VBW 100 kHz		ore f 2 Start 849 MHz #Res BW 30 kHz	#VBW 100 kHz	Stop 850 MHz Sweep 8 ms	More 1 of 2

Channel	Fraguency	N	/leasureme	ent Results		Limit			
Number	Frequency (MHz)		quency //Hz)	Values (dB	m)	(dBm)	Verd	Verdict	
25	1851.25	184	9.9975	-22.03		-13.00	Pas	Pass	
1175	1908.75	191	0.0625	-33.74		-13.00	Pas	Pass	
* Agilent Jul 1, 2017		R T	Peak Search	# Agilent Jul 1, 2017	7	R			
Ref 30 dBm At #Avg Log	ten 30 dB	Mkr1 1.8499975 GHz -22.03 dBm	Meas Tools •	Ref 30 dBm // #Avg Log	Atten 30 dB	Mkr1 1.9	-33.74 dBm	leas Tools	
10 dB/ Offst 13			Next Peak	10 dB/ Offst 13				Next Peak	
dB DI -13.0			Next Pk Right	dB DI -13.0			Nex	t Pk Right	
dBm PAvg 100		and	Next Pk Left	dBm PAvg 100 W1 S2			Ne	ext Pk Left	
W1 S2 S3 FS	market and a		Min Search	S3 FS	mannen	market and the same of the sam	wannan a	Min Search	
			Pk-Pk Search				Pk-I	Pk Search	
Start 1.849 GHz #Res BW 30 kHz	#VBW 100 kHz	Stop 1.85 GHz Sweep 8 ms	More 1 of 2	Start 1.91 GHz #Res BW 30 kHz	#VBW 100		p 1.911 GHz Sweep 8 ms	More 1 of 2	


3.4 Spurious Emission

LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

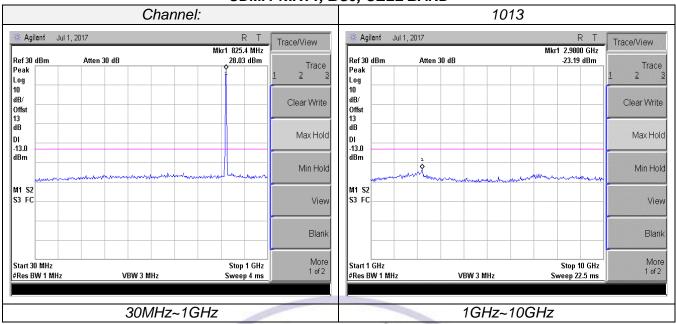
TEST PROCEDURE

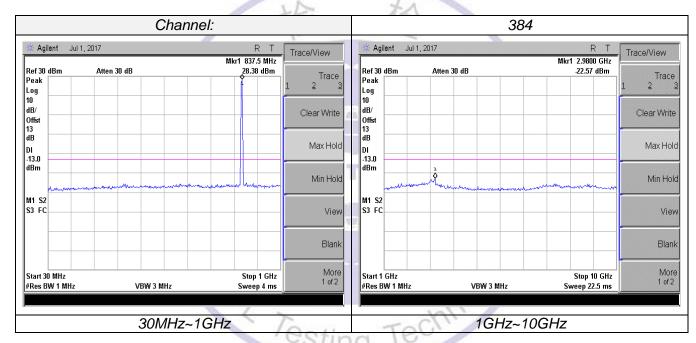
The EUT was setup according to EIA/TIA 603C

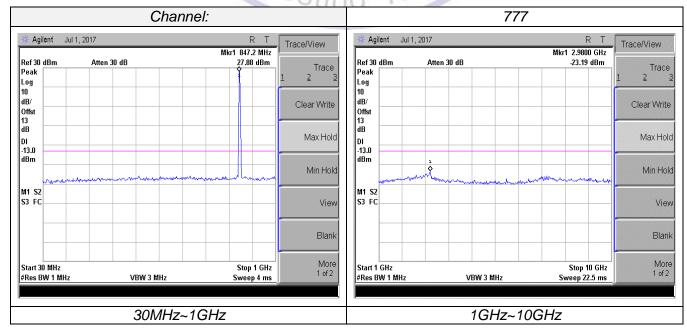
Conducted Spurious Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.

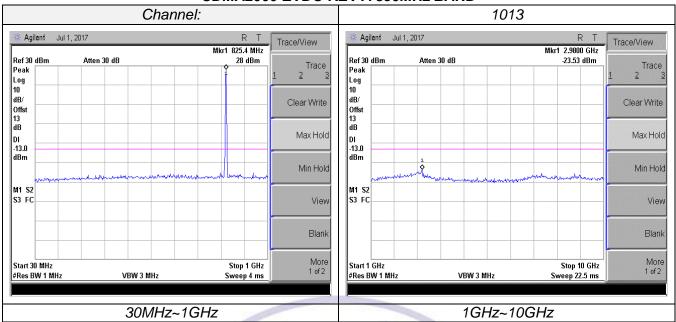
- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1MHz for Part 22 and 1MHz for Part 24, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

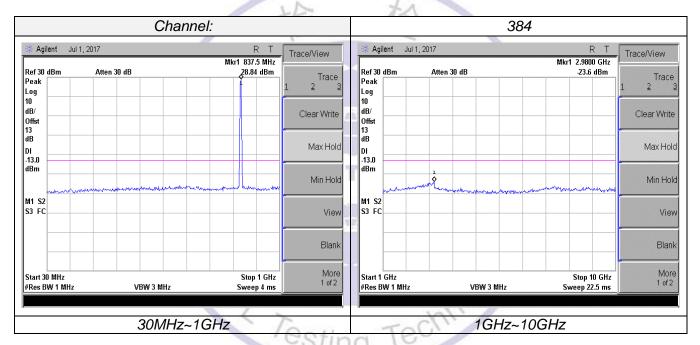

Radiated Spurious Measurement:

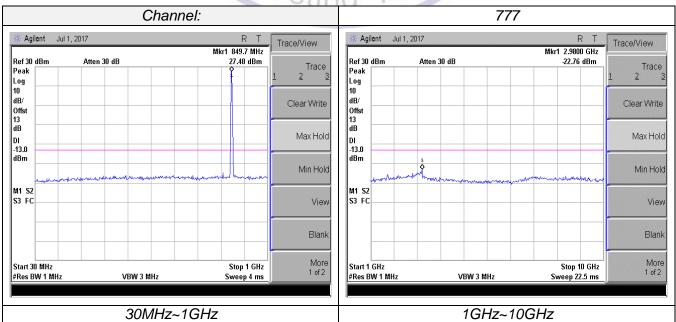

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.

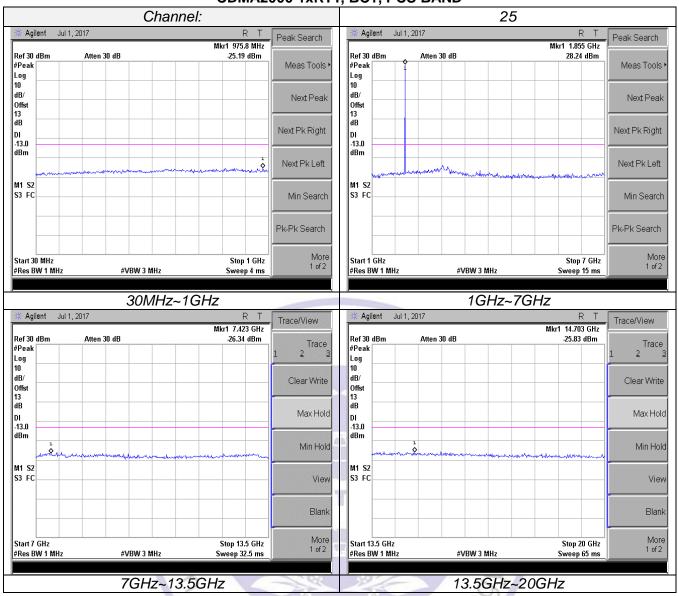

TEST RESULTS

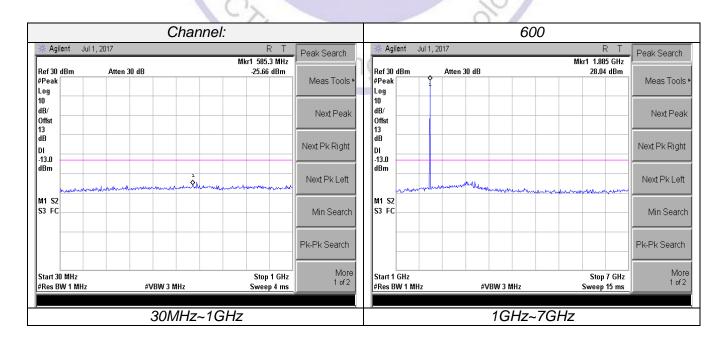
Conducted Measurement:

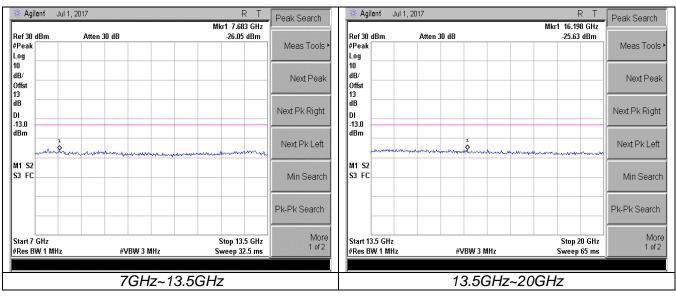

CDMA 1xRTT, BC0, CELL BAND

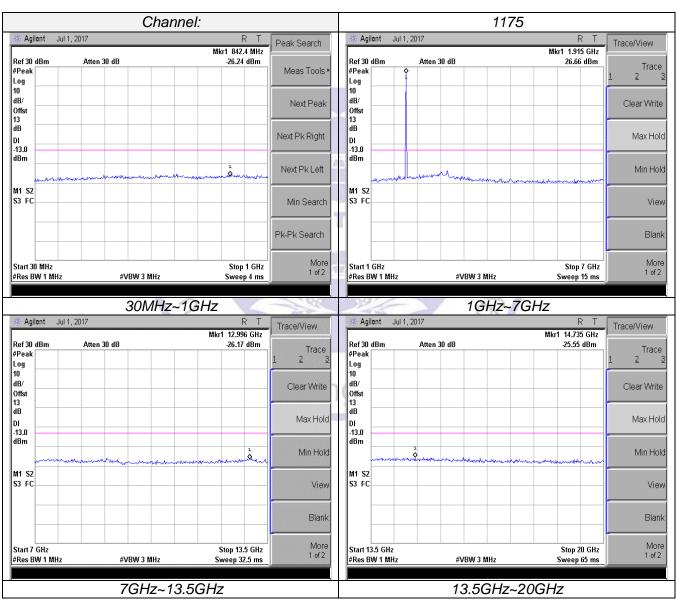




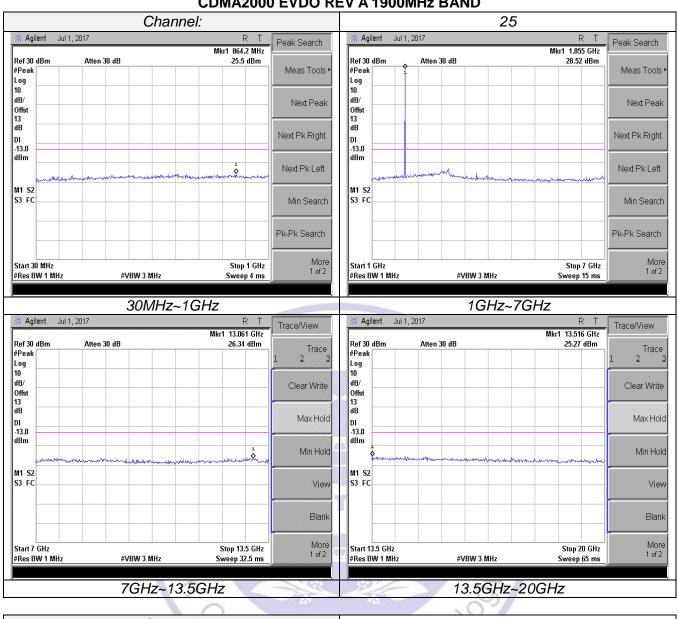

CDMA2000 EVDO REV A 850MHz BAND

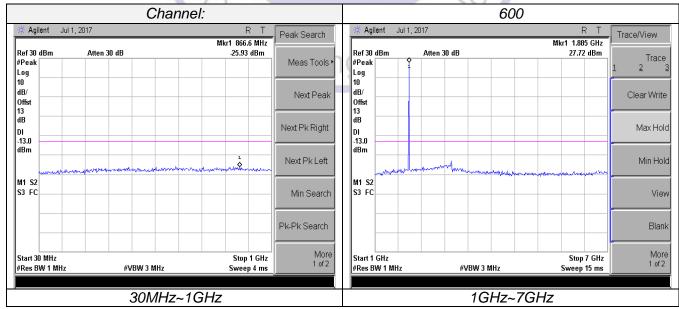


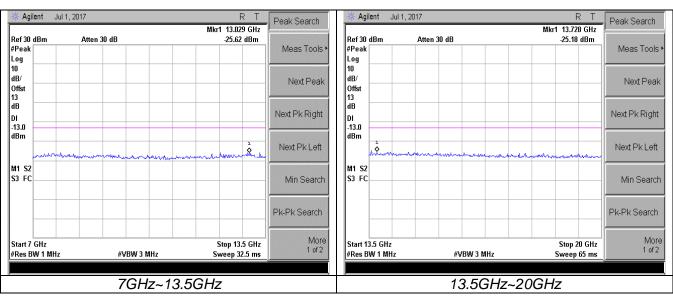


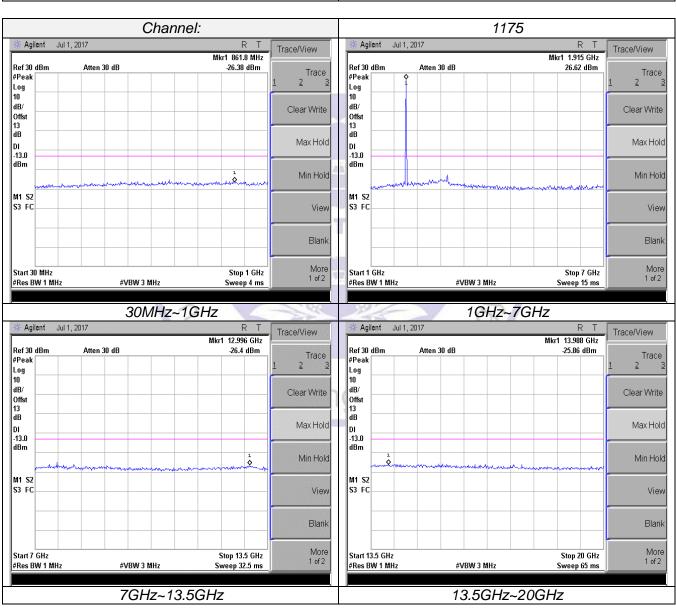


CDMA2000 1xRTT, BC1, PCS BAND









CDMA2000 EVDO REV A 1900MHz BAND

Radiated Measurement:

CDMA 1xRTT, BC0, CELL BAND

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1649.40	-30.83	3.00	3.00	9.58	-24.25	-13.00	11.25	Н
1013	2474.10	-35.72	3.47	3.00	10.72	-28.47	-13.00	15.47	Н
1013	1649.40	-29.93	3.00	3.00	9.68	-23.25	-13.00	10.25	V
	2474.10	-34.60	3.47	3.00	10.72	-27.35	-13.00	14.35	V
	1673.00	-31.03	3.14	3.00	9.61	-24.56	-13.00	11.56	Н
384	2509.50	-34.93	3.59	3.00	10.77	-27.75	-13.00	14.75	Н
304	1673.00	-30.03	3.14	3.00	9.61	-23.56	-13.00	10.56	V
	2509.50	-34.04	3.59	3.00	10.77	-26.86	-13.00	13.86	V
	1696.60	-30.96	3.26	3.00	9.77	-24.45	-13.00	11.45	Н
777	2544.90	-35.89	3.69	3.00	10.89	-28.69	-13.00	15.69	Н
111	1696.60	-30.38	3.26	3.00	9.77	-23.87	-13.00	10.87	V
	2544.90	-34.83	3.69	3.00	10.89	-27.63	-13.00	14.63	V

CDMA2000 EVDO REV A 850MHz BAND

Channel	Frequency	P _{Mea}	P _{cl}	Diatance	G _a Antenna	Peak EIRP	Limit	Margin	Polarization
Charmer	(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	FUIAIIZALIUII
	1649.40	-31.47	3.00	3.00	9.58	-24.89	-13.00	11.89	Н
1013	2474.10	-35.91	3.47	3.00	10.72	-28.66	-13.00	15.66	Н
1013	1649.40	-30.13	3.00	3.00	9.68	-23.45	-13.00	10.45	V
	2474.10	-34.51	3.47	3.00	10.72	-27.26	-13.00	14.26	V
	1673.00	-31.21	3.14	3.00	9.61	-24.74	-13.00	11.74	Н
384	2509.50	-34.76	3.59	3.00	10.77	-27.58	-13.00	14.58	Н
304	1673.00	-29.68	3.14	3.00	9.61	-23.21	-13.00	10.21	V
	2509.50	-33.70	3.59	3.00	10.77	-26.52	-13.00	13.52	V
	1696.60	-30.98	3.26	3.00	9.77	-24.47	-13.00	11.47	Н
777	2544.90	-35.56	3.69	3.00	10.89	-28.36	-13.00	15.36	Н
'''	1696.60	-30.30	3.26	3.00	9.77	-23.79	-13.00	10.79	V
	2544.90	-34.35	3.69	3.00	10.89	-27.15	-13.00	14.15	V

CDMA 1xRTT, BC1, PCS BAND

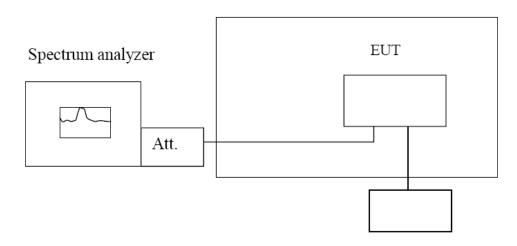
1	COMA IXITI, BOI, I CO DAND								
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3702.50	-33.67	4.25	3.00	12.34	-25.58	-13.00	12.58	Н
25	5553.75	-38.03	4.97	3.00	13.52	-29.48	-13.00	16.48	Н
25	3702.50	-32.56	4.25	3.00	12.34	-24.47	-13.00	11.47	V
	5553.75	-35.81	4.97	3.00	13.52	-27.26	-13.00	14.26	V
	3760.00	-33.62	4.38	3.00	12.34	-25.66	-13.00	12.66	Н
600	5640.00	-38.04	5.01	3.00	13.58	-29.47	-13.00	16.47	Н
800	3760.00	-32.21	4.38	3.00	12.34	-24.25	-13.00	11.25	V
	5640.00	-35.90	5.01	3.00	13.58	-27.33	-13.00	14.33	V
	3817.50	-33.81	4.49	3.00	12.45	-25.85	-13.00	12.85	Н
1175	5726.25	-37.66	5.26	3.00	13.66	-29.26	-13.00	16.26	Н
1175	3817.50	-32.94	4.49	3.00	12.45	-24.98	-13.00	11.98	V
	5726.25	-36.15	5.26	3.00	13.66	-27.75	-13.00	14.75	V

CDMA2000 EVDO REV A 1900MHz BAND

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3702.50	-33.45	4.25	3.00	12.34	-25.36	-13.00	12.36	Н
25	5553.75	-38.20	4.97	3.00	13.52	-29.65	-13.00	16.65	Н
25	3702.50	-32.93	4.25	3.00	12.34	-24.84	-13.00	11.84	V
	5553.75	-35.70	4.97	3.00	13.52	-27.15	-13.00	14.15	V
	3760.00	-33.94	4.38	3.00	12.34	-25.98	-13.00	12.98	Н
600	5640.00	-38.41	5.01	3.00	13.58	-29.84	-13.00	16.84	Н
000	3760.00	-32.48	4.38	3.00	12.34	-24.52	-13.00	11.52	V
	5640.00	-36.35	5.01	3.00	13.58	-27.78	-13.00	14.78	V
	3817.50	-33.52	4.49	3.00	12.45	-25.56	-13.00	12.56	Н
1175	5726.25	-37.65	5.26	3.00	13.66	-29.25	-13.00	16.25	Н
1175	3817.50	-32.74	4.49	3.00	12.45	-24.78	-13.00	11.78	V
	5726.25	-35.86	5.26	3.00	13.66	-27.46	-13.00	14.46	V

Remark:

- EIRP=P_{Mea}(dBm)-P_{cl}(dB) +G_a(dBi)
 We were not recorded other points as values lower than limits.
- 3. Margin = Limit EIRP


3.5 Frequency Stability under Temperature & Voltage Variations

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Temperature Chamber

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

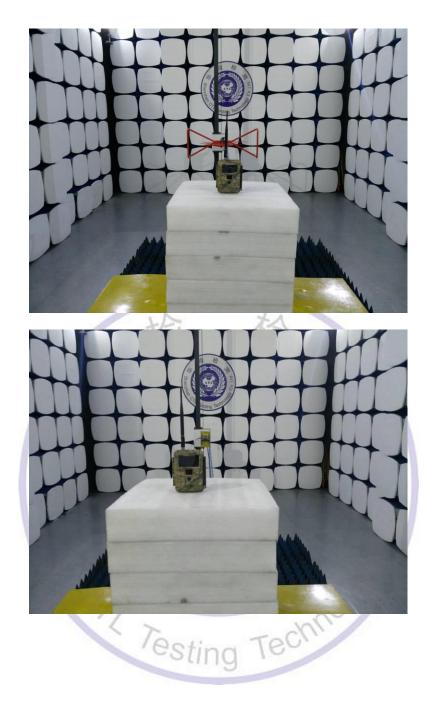
Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.


TEST RESULTS

Reference	ce Frequency:Cell E	Band Middle cha	nnel=384 freque	ency=836.52Mh	łz
Voltage (V)	Temperature (°C)	Frequer	ncy error	Limit (ppm)	Result
voitage (v)	remperature (c)	Hz	ppm	Limit (ppin)	Result
	-30	70.17	0.084		
	-20	68.23	0.082		
	-10	70.23	0.084		
	0	69.53	0.083		
6.00	10	81.28	0.097		
	20	44.50	0.053	2.5	Pass
	30	72.18	0.086		
	40	65.75	0.079		
	50	72.34	0.086		
5.10	25	63.78	0.076		
End point 4.50	25	37.49	0.045		

Referen	ce Frequency: PCS	Band Middle ch	annel=600 fre	quency=1880MHz	<u>z</u>
Voltago (\/)	Temperature	Frequer	ncy error	Limit (nnm)	Result
Voltage (V)	(℃)	Hz	ppm	Limit (ppm)	Resuit
	-30	92.42	0.049	1	
	-20	43.82	0.023	-i	
	-10	66.80	0.036	7	
	0 0	68.17	0.036		
6.00	10	93.54	0.050	Within the	
	20	34.01	0.018	authorized frequency	Pass
	30	39.38	0.021	block	
	40	44.81	0.024	8	
	50	96.37	0.051	0	
5.10	25	37.83	0.020		
End point 4.50	25	70.72	0.038		

4 Test Setup Photos of the EUT

V1.0

5 External and Internal Photos of the EUT

