

FCC REPORT

Applicant:	Schneider Electric
Address of Applicant:	320 Tech Park Drive Suite 100 LaVergne Tennessee 37086 United States
Equipment Under Test (E	EUT)
Product Name:	ZigBee Main Power Sensor
Model No.:	WISERCTPM200, QOWBMS200, QOWBMS60, WISERCTPM60
FCC ID:	2AC85WISERCTPM200
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247:2013
Date of sample receipt:	January 04, 2015
Date of Test:	January 04~08, 2015
Date of report issued:	January 08, 2015
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	January 08, 2015	Original

Remark: The report is class II permissive change report of FCC ID 2AC85WISERCTPM200, only add models QOWBMS200, QWBMS60, WISERCTPM60, change product name and add capacitor at X2 position of power input circuit part, no any changes at RF circuit, and all models are electrically identical, so only conducted emission and radiated emission test have been done.

Prepared By:	Sam. Gao	Date:	January 08, 2015
	Project Engineer		
Check By:	hank. yan	Date:	January 08, 2015
	Reviewer		

3 Contents

	Pa	ge
1	COVER PAGE	1
2	VERSION	. 2
3	CONTENTS	. 3
4	TEST SUMMARY	. 4
5	GENERAL INFORMATION	. 5
	5.1 CLIENT INFORMATION	. 5
	5.3 Test mode 5.4 Description of Support Units 5.5 Test Facility	. 6
6	5.6 Test Location TEST INSTRUMENTS LIST	
7	TEST RESULTS AND MEASUREMENT DATA	
	7.1 ANTENNA REQUIREMENT	10
	7.3.1 Radiated Emission Method 7.4 Spurious Emission	13
_	7.4.1 Radiated Emission Method	-
8	TEST SETUP PHOTO	23
9	EUT CONSTRUCTIONAL DETAILS	25

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Schneider Electric			
Address of Applicant:	320 Tech Park Drive Suite 100 LaVergne Tennessee 37086			
	United States			
Factory:	Computime Electronics (shenzhen) Company Limited			
Address of Factory:	Yuekenguangyu Industrial Park,Kangqiao Road 88#, Danzhutou Community, Nanwan Street Office Longgang District, Shenzhen, China			

5.2 General Description of EUT

• •••••••	
Product Name:	ZigBee Main Power Sensor
Model No.:	WISERCTPM200, QOWBMS200, QOWBMS60, WISERCTPM60
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	PCB Antenna
Antenna gain:	OdBi
Power supply:	AC 90-240V 50/60Hz 0.2A

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Char				Channel	Frequency		
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz
4	2420MHz	8	2440MHz	12	2460MHz	16	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
•	ne test voltage was tuned from 85% to 115% of the nominal rated supply worst case was under the nominal rated supply condition. So the report just a.

5.4 Description of Support Units

N/A

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS — Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. to ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testingand Calibration Laboratories) for the competence in the field of testing.

• FCC — Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China Tel: 0755-27798480

Fax: 0755-27798960

6 Test Instruments list

Radiated Emission:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2014	Mar. 27 2015	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 04 2014	Dec. 03 2015	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun. 30 2015	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 23 2014	Feb. 22 2015	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 27 2014	June 26 2015	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2014	Mar. 27 2015	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 29 2014	Mar. 28 2015	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2014	Mar. 28 2015	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2014	Mar. 28 2015	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 29 2014	Mar. 28 2015	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30 2015	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30 2015	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015	
16	Band filter	Amindeon	82346	GTS219	Mar. 29 2014	Mar. 28 2015	

Con	Conducted Emission:								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 01 2014	Jun. 30 2015			
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 01 2014	Jun. 30 2015			
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jul. 01 2014	Jun. 30 2015			
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 01 2014	Jun. 30 2015			
6	Coaxial Cable	GTS	N/A	GTS227	Jul. 01 2014	Jun. 30 2015			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

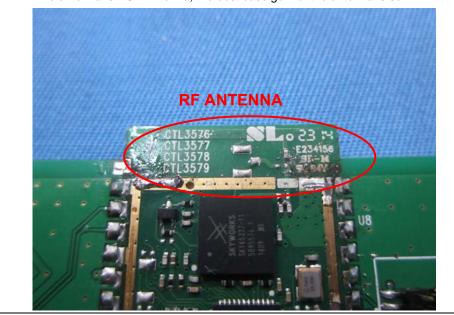
Gen	General used equipment:									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015				

7 Test results and Measurement Data

7.1 Antenna requirement

	Standard requirement:	FCC Part15 C Section 15.203 /247(c)
--	-----------------------	-------------------------------------

15.203 requirement:

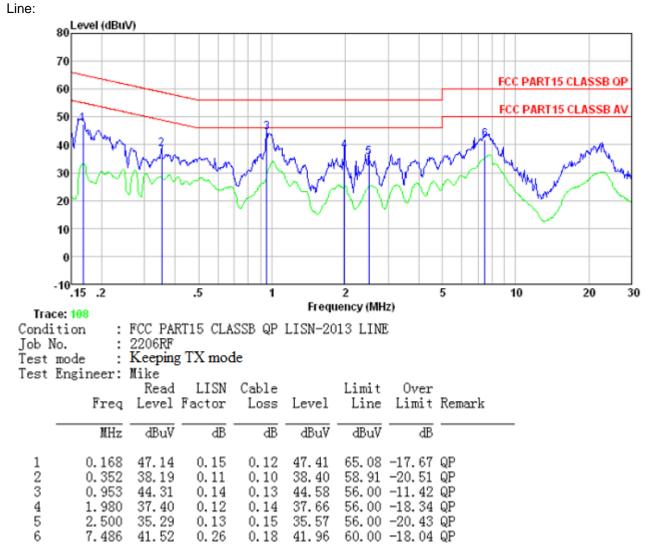

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

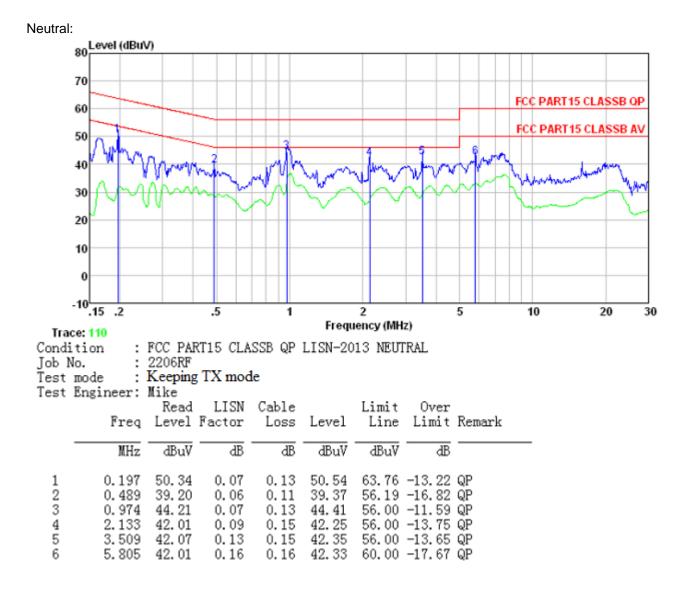
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB Antenna, the best case gain of the antenna is 0dBi



7.2 Conducted Emissions


• •								
	Test Requirement:	FCC Part15 C Section 15.207						
	Test Method:	ANSI C63.4:2003						
	Test Frequency Range:	150KHz to 30MHz						
	Class / Severity:	Class B						
	Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
	Limit:		Limit (d	IBuV)				
		Frequency range (MHz)	Quasi-peak	Average				
		0.15-0.5	66 to 56*	56 to 46*				
		0.5-5	56	46				
		5-30	60	50				
		* Decreases with the logarithm of the frequency.						
	Test setup:	Reference Plane		_				
		AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	rer				
	Test procedure:	the main power throug N.). This provides a 50 ng equipment. also connected to the n/50uH coupling imped o the block diagram of	oohm/50uH coupling main power through a lance with 50ohm					
		 photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
	Test Instruments:	Refer to section 6.0 for details						
	Test mode:	Refer to section 5.3 for details						
	Test results:	Pass						
		•						

Measurement data

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Band edges

7.3.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 20	03						
Test Frequency Range:	All of the restric	t bands were	e tested, only	the worst b	and's (2310MHz to			
	2500MHz) data	was showed						
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
		Peak	1MHz	3MHz	Peak			
	Above 1GHz	RMS	1MHz	3MHz	Average			
Limit:	Freque	ncy	/m @3m)	Value				
	Above 1		54.0	00	Average			
	Above 1	GHZ	74.0	00	Peak			
Test setup:	EUT Turn 0.8m Antenna Tower Horn Antenna Spectrum Analyzer Amplifier							
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. 							
Test Instruments:	Refer to section							
Test mode:	Refer to section	5.3 for detai	ls					
Test results:	Pass							

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

(lowest and highest hequencies) data was showed.									
Test channe	el:			240	2405MHz				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2390.00	25.78	27.59	5.38	0.00	58.75	74.00	-15.25	Horizontal	
2400.00	37.77	27.58	5.39	0.00	70.74	90.20	-19.46	Horizontal	
2405.00	77.23	27.57	5.40	0.00	110.20			Horizontal	
2390.00	25.13	27.59	5.38	0.00	58.10	74.00	-15.90	Vertical	
2400.00	34.82	27.58	5.39	0.00	67.79	86.69	-18.90	Vertical	
2405.00	73.72	27.57	5.40	0.00	106.69			Vertical	
	1								

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	14.83	27.59	5.38	0.00	47.80	54.00	-6.20	Horizontal
2390.00	13.89	27.59	5.38	0.00	46.86	54.00	-7.14	Vertical

Test channel:

2475MHz

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
2483.50	31.25	27.53	5.47	0.00	64.25	74.00	-9.75	Horizontal
2500.00	24.79	27.55	5.49	0.00	57.83	74.00	-16.17	Horizontal
2483.50	28.27	27.53	5.47	0.00	61.27	74.00	-12.73	Vertical
2500.00	24.11	27.55	5.49	0.00	57.15	74.00	-16.85	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
2483.50	18.31	27.53	5.47	0.00	51.31	54.00	-2.69	Horizontal
2500.00	11.80	27.55	5.49	0.00	44.84	54.00	-9.16	Horizontal
2483.50	15.42	27.53	5.47	0.00	48.42	54.00	-5.58	Vertical
2500.00	11.13	27.55	5.49	0.00	44.17	54.00	-9.83	Vertical

Test channel: 2480MHz

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	28.15	27.53	5.47	0.00	61.15	74.00	-12.85	Horizontal
2500.00	24.94	27.55	5.49	0.00	57.98	74.00	-16.02	Horizontal
2483.50	25.46	27.53	5.47	0.00	58.46	74.00	-15.54	Vertical
2500.00	24.28	27.55	5.49	0.00	57.32	74.00	-16.68	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	17.49	27.53	5.47	0.00	50.49	54.00	-3.51	Horizontal
2500.00	13.18	27.55	5.49	0.00	46.22	54.00	-7.78	Horizontal
2483.50	12.61	27.53	5.47	0.00	45.61	54.00	-8.39	Vertical
2500.00	11.30	27.55	5.49	0.00	44.34	54.00	-9.66	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.4 Spurious Emission

7.4.1 Radiated Emission Method

FCC Part15 C Section 15.209					
ANSI C63.4: 200	3				
30MHz to 25GHz	2				
Measurement Dis	stance: 3m				
Frequency	Detector	RBW	VBW	Value	
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak	
	Peak	1MHz	3MHz	Peak	
Above ronz	RMS	1MHz	3MHz	Average	
Frequer	ю	Limit (dBuV/	/m @3m)	Value	
30MHz-88	MHz	40.0	0	Quasi-peak	
88MHz-216	6MHz	43.50		Quasi-peak	
216MHz-96	0MHz	46.00		Quasi-peak	
960MHz-1	GHz	54.00		Quasi-peak	
		54.00		Average	
	2112	74.0	0	Peak	
The second se					
	ANSI C63.4: 200 30MHz to 25GHz Measurement Dis Frequency 30MHz-1GHz Above 1GHz Above 1GHz Frequent 30MHz-88 88MHz-216 216MHz-96 960MHz-1 Above 1C Below 1GHz EUT Turn 0.8m Table 0.8m	ANSI C63.4: 2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz Peak RMS Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Below 1GHz Below 1GHz	ANSI C63.4: 2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz RMS 1MHz Frequency Limit (dBuV/ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Below 1GHz EUT 4m 4m 4m 4m 4m 4m 4m 4m 4m 4m	ANSI C63.4: 2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Above 1GHz RMS 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 74.00 Below 1GHz Further and the second secon	

	EUT Turn Table Antenna Tower Horn Antenna Spectrum Analyzer Amplifier
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
33.45	45.71	14.31	0.59	30.08	30.53	40.00	-9.47	Vertical
45.06	39.07	15.55	0.72	30.02	25.32	40.00	-14.68	Vertical
65.57	39.30	12.44	0.90	29.88	22.76	40.00	-17.24	Vertical
114.92	52.41	13.31	1.32	29.60	37.44	43.50	-6.06	Vertical
120.28	47.67	12.38	1.36	29.57	31.84	43.50	-11.66	Vertical
938.83	33.27	23.34	4.99	29.10	32.50	46.00	-13.50	Vertical
31.40	33.70	14.32	0.57	30.09	18.50	40.00	-21.50	Horizontal
65.57	34.10	12.44	0.90	29.88	17.56	40.00	-22.44	Horizontal
98.83	34.49	15.10	1.18	29.70	21.07	43.50	-22.43	Horizontal
118.60	41.56	12.69	1.35	29.58	26.02	43.50	-17.48	Horizontal
172.00	38.11	11.10	1.70	29.31	21.60	43.50	-21.90	Horizontal
938.83	32.99	23.34	4.99	29.10	32.22	46.00	-13.78	Horizontal

Above 1GHz

Test channel	Test channel: Lowest								
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4810.00	42.45	31.79	8.61	32.09	50.76	74.00	-23.24	Vertical	
7215.00	48.66	36.15	11.66	31.99	64.48	74.00	-9.52	Vertical	
9620.00	44.56	38.01	14.14	31.60	65.11	74.00	-8.89	Vertical	
12025.00	*					74.00		Vertical	
14430.00	*					74.00		Vertical	
4810.00	36.65	31.79	8.61	32.09	44.96	74.00	-29.04	Horizontal	
7215.00	46.72	36.15	11.66	31.99	62.54	74.00	-11.46	Horizontal	
9620.00	41.35	38.01	14.14	31.60	61.90	74.00	-12.10	Horizontal	
12025.00	*					74.00		Horizontal	
14430.00	*					74.00		Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4810.00	29.44	31.79	8.61	32.09	37.75	54.00	-16.25	Vertical	
7215.00	35.54	36.15	11.66	31.99	51.36	54.00	-2.64	Vertical	
9620.00	31.43	38.01	14.14	31.60	51.98	54.00	-2.02	Vertical	
12025.00	*					54.00		Vertical	
14430.00	*					54.00		Vertical	
4810.00	23.78	31.79	8.61	32.09	32.09	54.00	-21.91	Horizontal	
7215.00	33.64	36.15	11.66	31.99	49.46	54.00	-4.54	Horizontal	
9620.00	28.23	38.01	14.14	31.60	48.78	54.00	-5.22	Horizontal	
12025.00	*					54.00		Horizontal	
14430.00	*					54.00		Horizontal	

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			Mido	lle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	44.58	31.85	8.66	32.12	52.97	74.00	-21.03	Vertical
7320.00	43.46	36.41	11.72	31.89	59.70	74.00	-14.30	Vertical
9760.00	41.90	38.35	14.25	31.62	62.88	74.00	-11.12	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	39.04	31.85	8.66	32.12	47.43	74.00	-26.57	Horizontal
7320.00	45.59	36.41	11.72	31.89	61.83	74.00	-12.17	Horizontal
9760.00	38.77	38.35	14.25	31.62	59.75	74.00	-14.25	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	31.56	31.85	8.66	32.12	39.95	54.00	-14.05	Vertical
7320.00	30.33	36.41	11.72	31.89	46.57	54.00	-7.43	Vertical
9760.00	28.76	38.35	14.25	31.62	49.74	54.00	-4.26	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	26.14	31.85	8.66	32.12	34.53	54.00	-19.47	Horizontal
7320.00	32.49	36.41	11.72	31.89	48.73	54.00	-5.27	Horizontal
9760.00	25.65	38.35	14.25	31.62	46.63	54.00	-7.37	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Remark:

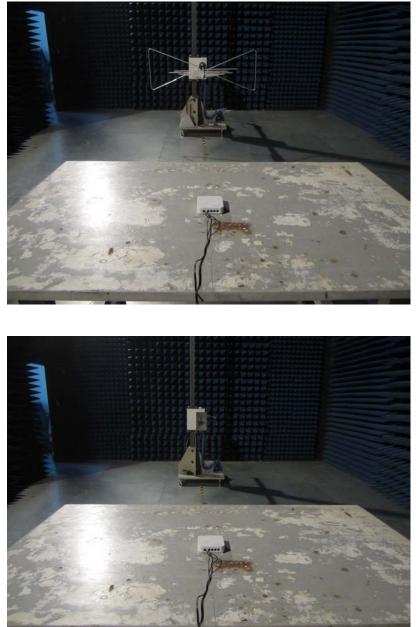
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. *"*"*, means this data is the too weak instrument of signal is unable to test.

Test channel	:			High	lighest (2475MHz)					
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4950.00	40.18	31.91	8.71	32.16	48.64	74.00	-25.36	Vertical		
7425.00	45.50	36.56	11.79	31.80	62.05	74.00	-11.95	Vertical		
9900.00	35.01	38.81	14.35	31.85	56.32	74.00	-17.68	Vertical		
12375.00	*					74.00		Vertical		
14850.00	*					74.00		Vertical		
4950.00	39.06	31.91	8.71	32.16	47.52	74.00	-26.48	Horizontal		
7425.00	45.10	36.56	11.79	31.80	61.65	74.00	-12.35	Horizontal		
9900.00	30.70	38.81	14.35	31.85	52.01	74.00	-21.99	Horizontal		
12375.00	*					74.00		Horizontal		
14850.00	*					74.00		Horizontal		
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4950.00	26.99	31.91	8.71	32.16	35.45	54.00	-18.55	Vertical		
7425.00	32.27	36.56	11.79	31.80	48.82	54.00	-5.18	Vertical		
9900.00	21.78	38.81	14.35	31.85	43.09	54.00	-10.91	Vertical		
12375.00	*					54.00		Vertical		
14850.00	*					54.00		Vertical		
4950.00	25.92	31.91	8.71	32.16	34.38	54.00	-19.62	Horizontal		
7425.00	31.89	36.56	11.79	31.80	48.44	54.00	-5.56	Horizontal		
9900.00	17.48	38.81	14.35	31.85	38.79	54.00	-15.21	Horizontal		
12375.00	*					54.00		Horizontal		
14850.00	*					54.00		Horizontal		

Test channel	:			High	Highest (2480MHz)					
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4960.00	34.79	31.93	8.73	32.16	43.29	74.00	-30.71	Vertical		
7440.00	30.16	36.59	11.79	31.78	46.76	74.00	-27.24	Vertical		
9920.00	29.98	38.81	14.38	31.88	51.29	74.00	-22.71	Vertical		
12400.00	*					74.00		Vertical		
14880.00	*					74.00		Vertical		
4960.00	38.56	31.93	8.73	32.16	47.06	74.00	-26.94	Horizontal		
7440.00	31.69	36.59	11.79	31.78	48.29	74.00	-25.71	Horizontal		
9920.00	29.17	38.81	14.38	31.88	50.48	74.00	-23.52	Horizontal		
12400.00	*					74.00		Horizontal		
14880.00	*					74.00		Horizontal		
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4960.00	21.66	31.93	8.73	32.16	30.16	54.00	-23.84	Vertical		
7440.00	16.97	36.59	11.79	31.78	33.57	54.00	-20.43	Vertical		
9920.00	16.78	38.81	14.38	31.88	38.09	54.00	-15.91	Vertical		
12400.00	*					54.00		Vertical		
14880.00	*					54.00		Vertical		
4960.00	25.49	31.93	8.73	32.16	33.99	54.00	-20.01	Horizontal		
7440.00	18.52	36.59	11.79	31.78	35.12	54.00	-18.88	Horizontal		
9920.00	15.98	38.81	14.38	31.88	37.29	54.00	-16.71	Horizontal		
12400.00	*					54.00		Horizontal		
14880.00	*					54.00		Horizontal		

Remark:


1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

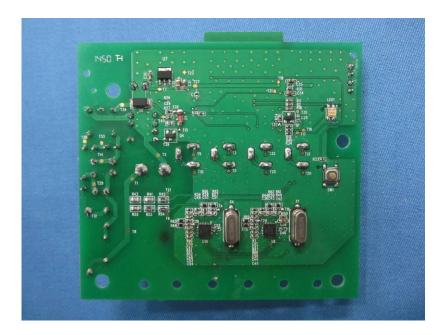
Project No.: GTSE141202206RF

Conducted Emission

9 EUT Constructional Details

Project No.: GTSE141202206RF

Project No.: GTSE141202206RF



Project No.: GTSE141202206RF

-----End-----