FCC RF Test Report

APPLICANT : Espressif Systems (Shanghai) Co.,Ltd.

EQUIPMENT: 2.4GHz Wi-Fi & BT loT Module

BRAND NAME : ESPRESSIF

MODEL NAME : ESP32-C6-MINI-1

FCC ID : 2AC7Z-ESPC6MINI1

STANDARD : 47 CFR Part 15 Subpart C §15.247
CLASSIFICATION : (DTS) Digital Transmission System

TEST DATE(S) : May 26, 2023 ~ Aug. 29, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Report No.: FR330803C

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 1 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

TABLE OF CONTENTS

1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	
	1.8	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	9
3	TEST	RESULT	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Peak Output Power Measurement	15
	3.3	Power Spectral Density Measurement	16
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Spurious Emission Measurement in the Restricted Band	
	3.6	AC Conducted Emission Measurement	31
	3.7	Antenna Requirements	33
4	LIST	OF MEASURING EQUIPMENT	34
5	UNCE	ERTAINTY OF EVALUATION	35
API	PENDI	X A. CONDUCTED TEST RESULTS	
API	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PENDI	X C. RADIATED SPURIOUS EMISSION	

APPENDIX D. DUTY CYCLE PLOTS

APPENDIX E. SETUP PHOTOGRAPHS

Report Template No.: BU5-FR15C Version 2.0

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR330803C	Rev. 01	Initial issue of report	Sep. 01, 2023

Sporton International Inc. (Kunshan)Page Number: 3 of 35TEL: +86-512-57900158Report Issued Date: Sep. 01, 2023FCC ID: 2AC7Z-ESPH2MINI1Report Version: Rev. 01

Report Template No.: BU5-FR15C Version 2.0

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.82 dB at 2483.500 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 9.03 dB at 0.499 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 4 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

1 General Description

1.1 Applicant

Espressif Systems (Shanghai) Co.,Ltd.

Suite 204, Block 2, 690 Bibo Road, Zhang Jiang Hi-Tech Park, Shanghai, China

1.2 Manufacturer

Espressif Systems (Shanghai) Co.,Ltd.

Suite 204, Block 2, 690 Bibo Road, Zhang Jiang Hi-Tech Park, Shanghai, China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment 2.4GHz Wi-Fi & BT IoT Module				
Brand Name	ESPRESSIF			
Model Name	ESP32-C6-MINI-1			
FCC ID	2AC7Z-ESPC6MINI1			
SN Code	Conducted: 404cca400f68 Conduction: 404cca400f28 Radiation: 404cca400edc			
HW Version	V1.0			
SW Version	v1.1.3.4			
EUT Stage Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2405 MHz ~ 2480 MHz			
Number of Channels	16			
Channel Spacing	5 MHz			
Carrier Frequency of Each Channel	2405 MHz, 2410MHz,, 2480MHz			
Maximum Output Power to Antenna	ZigBee: 20.05 dBm (0.1012 W)			
Maximum Output Power to Antenna	Thread: 6.84 dBm (0.0048 W)			
Antenna Type / Gain	PCB Antenna type with gain 3.96 dBi			
Type of Modulation	O-QPSK			

Note: For Thread & ZigBee mode, the whole testing has assessed only ZigBee mode by referring to their higher conducted power.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

Sporton International Inc. (Kunshan)Page Number: 5 of 35TEL: +86-512-57900158Report Issued Date: Sep. 01, 2023FCC ID: 2AC7Z-ESPH2MINI1Report Version: Rev. 01

Report Template No.: BU5-FR15C Version 2.0

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China				
	TEL: +86-512-57900158				
	Sporton Site No.	FCC Designation No.	FCC Test Firm		
Test Site No.	Sporton Site No.	rec besignation No.	Registration No.		
rest one NO.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309		

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	TH01-KS	SPORTON	FCC 15C-15E Test Tools Ver10.0_210607	10.0
2.	03CH05-KS	AUDIX	E3	6.2009-8-24al
3.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

Report Template No.: BU5-FR15C Version 2.0

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	11	2405	19	2445
	12	2410	20	2450
	13	2415	21	2455
2400-2483.5 MHz	14	2420	22	2460
2400-2463.5 IVITZ	15	2425	23	2465
	16	2430	24	2470
	17	2435	25	2475
	18	2440	26	2480

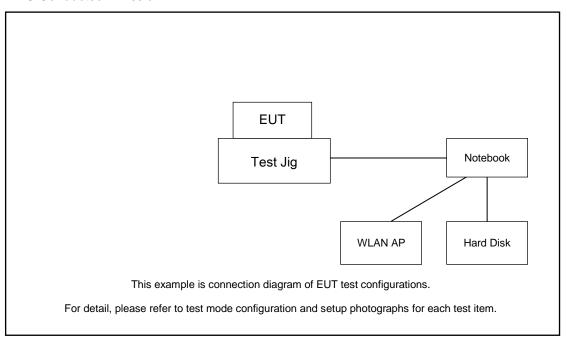
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

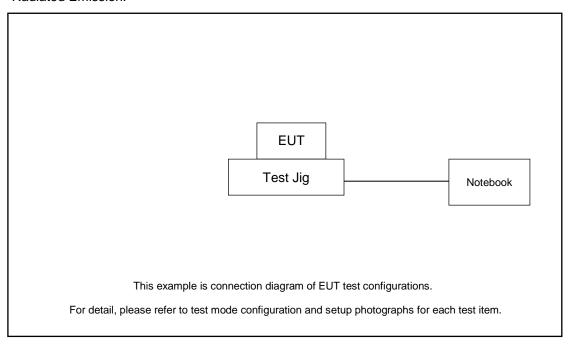
The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
rest item	250kbps / Zigbee
	Mode 1: Zigbee Tx CH11_2405 MHz
Conducted	Mode 2: Zigbee Tx CH18_2440 MHz
TCs	Mode 3: Zigbee Tx CH25_2475 MHz
	Mode 4: Zigbee Tx CH26_2480 MHz
	Mode 1: Zigbee Tx CH11_2405 MHz
Radiated	Mode 2: Zigbee Tx CH18_2440 MHz
TCs	Mode 3: Zigbee Tx CH25_2475 MHz
	Mode 4: Zigbee Tx CH26_2480 MHz
AC	Mode 1: Thread TV + WI ANT ink(2.4G) + charging from test lig
Conducted	Mode 1: Thread TX + WLAN Link(2.4G) + charging from test Jig Mode 2: Zigbee TX + WLAN Link(2.4G) + charging from test Jig
Emission	Widde 2. Zigbee 17 + WEAN LINK(2.40) + Charging nom lest Jig

Note: The worst case of conducted emission is mode 1; only the test data of it was reported.


Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 7 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01


Report Template No.: BU5-FR15C Version 2.0

2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 8 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

Support Unit used in test configuration and system 2.4

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
		Lenovo	G480	QDS-BRCM1050I	N/A	shielded cable DC
1.	Notebook					O/P 1.8m ,
''	NOTEDOOK					Unshielded AC I/P
						cable 1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Hard DISK	WD	C6B	N/A	N/A	N/A
4.	Test Jig	N/A	N/A	N/A	N/A	N/A

EUT Operation Test Setup 2.5

For Zigbee function, the engineering test program was provided and enabled to make EUT continuous transmit.

2.6 **Measurement Results Explanation Example**

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.80 dB.

Offset(dB) = RF cable loss(dB).= 5.80(dB)

Report Version : Rev. 01

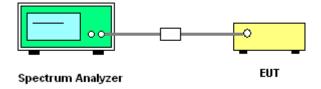
Report Template No.: BU5-FR15C Version 2.0

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

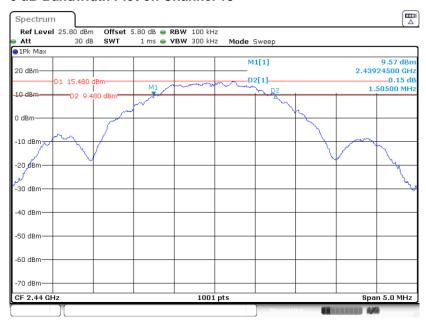
3.1.4 Test Setup

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 10 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.1.5 Test Result of 6dB Bandwidth


Test data refer to Appendix A.

6 dB Bandwidth Plot on Channel 11

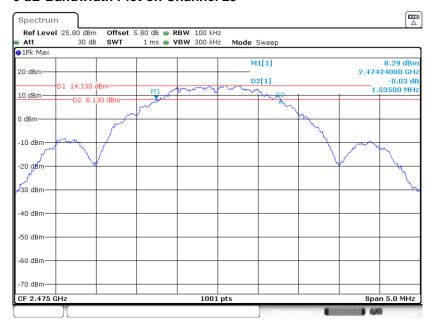
Date: 28.AUG.2023 08:48:55

6 dB Bandwidth Plot on Channel 18

Date: 28.AUG.2023 08:55:05

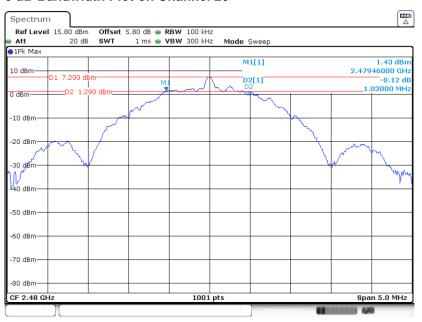
Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

FCC ID: 2AC7Z-ESPH2MINI1


Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15C Version 2.0

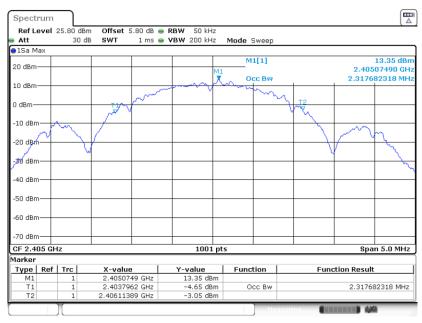

: 11 of 35

6 dB Bandwidth Plot on Channel 25

Date: 29.AUG.2023 10:22:08

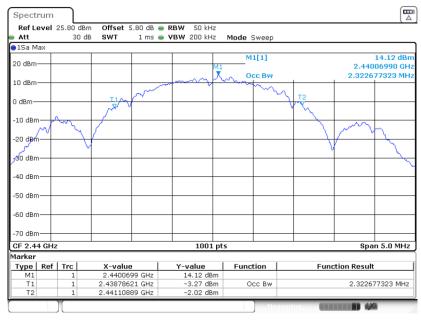
6 dB Bandwidth Plot on Channel 26

Date: 26.MAY.2023 09:50:44


TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 12 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

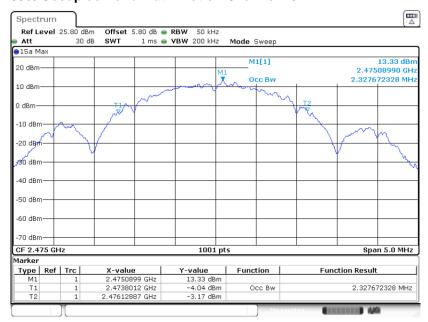
3.1.6 Test Result of 99% Occupied Bandwidth


Test data refer to Appendix A.

99% Bandwidth Plot on Channel 11

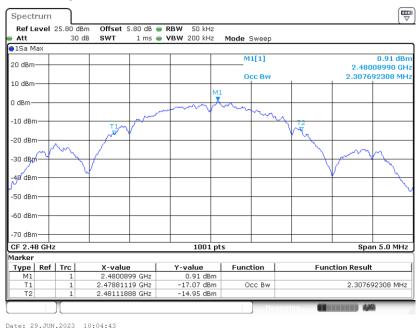
Date: 28.AUG.2023 08:53:32

99% Occupied Bandwidth Plot on Channel 18



Date: 28.AUG.2023 08:57:52

Sporton International Inc. (Kunshan)Page Number: 13 of 35TEL: +86-512-57900158Report Issued Date: Sep. 01, 2023FCC ID: 2AC7Z-ESPH2MINI1Report Version: Rev. 01


Report Template No.: BU5-FR15C Version 2.0

99% Occupied Bandwidth Plot on Channel 26

Date: 29.AUG.2023 10:25:04

99% Occupied Bandwidth Plot on Channel 26

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158

FCC ID: 2AC7Z-ESPH2MINI1

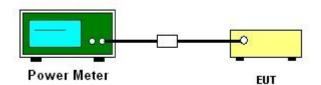
Page Number : 14 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1
 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

3.2.6 Test Result of Average Output Power (Reporting Only)

Test data refers to Appendix A.

Sporton International Inc. (Kunshan)

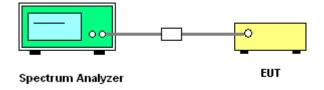
TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 15 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158


FCC ID: 2AC7Z-ESPH2MINI1

Page Number : 16 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

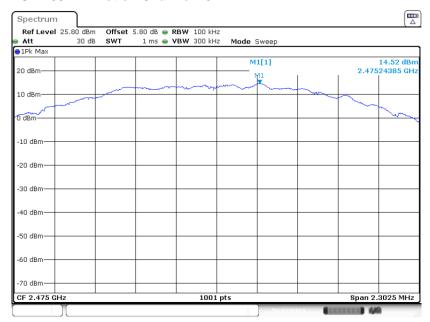

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 11

Date: 28.AUG.2023 08:49:33

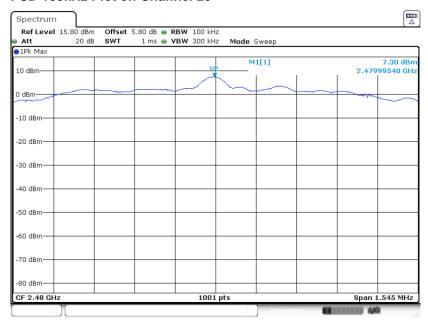
PSD 100kHz Plot on Channel 18

Date: 28.AUG.2023 08:55:43


Sporton International Inc. (Kunshan) TEL: +86-512-57900158

FCC ID: 2AC7Z-ESPH2MINI1

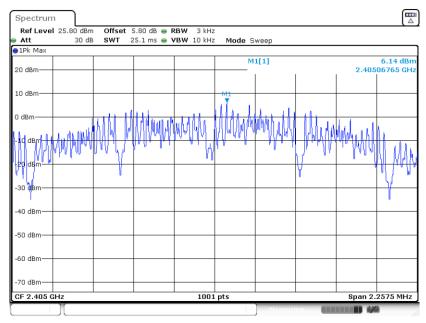
Page Number : 17 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01


Report Template No.: BU5-FR15C Version 2.0

PSD 100kHz Plot on Channel 25

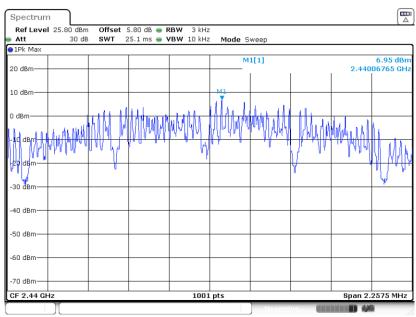
Date: 29.AUG.2023 10:22:46

PSD 100kHz Plot on Channel 26


Date: 26.MAY.2023 09:51:25

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 18 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

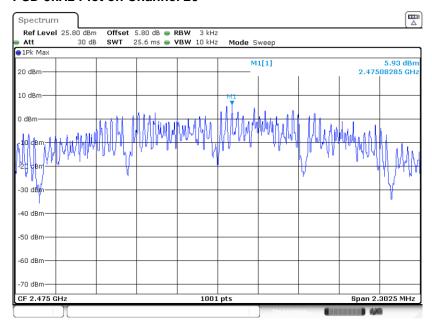
Report Template No.: BU5-FR15C Version 2.0


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 11

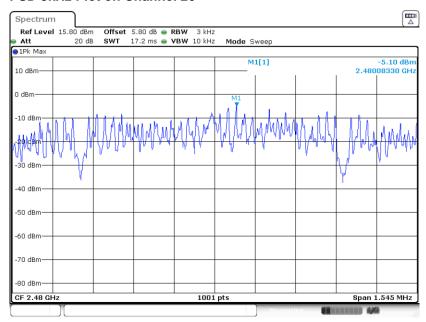
Date: 28.AUG.2023 08:49:14

PSD 3kHz Plot on Channel 18



Date: 28.AUG.2023 08:55:24

Sporton International Inc. (Kunshan)Page Number: 19 of 35TEL: +86-512-57900158Report Issued Date: Sep. 01, 2023FCC ID: 2AC7Z-ESPH2MINI1Report Version: Rev. 01


Report Template No.: BU5-FR15C Version 2.0

PSD 3kHz Plot on Channel 26

Date: 29.AUG.2023 10:22:27

PSD 3kHz Plot on Channel 26

Date: 26.MAY.2023 09:51:04

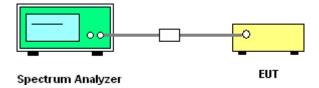
TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 20 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

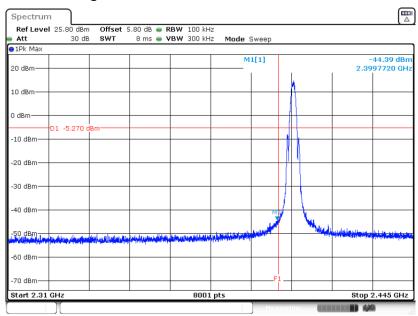
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

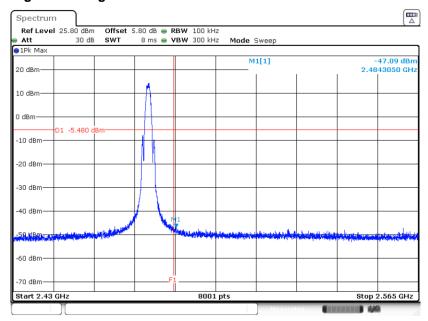
3.4.4 Test Setup

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158


FCC ID: 2AC7Z-ESPH2MINI1

Page Number : 21 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

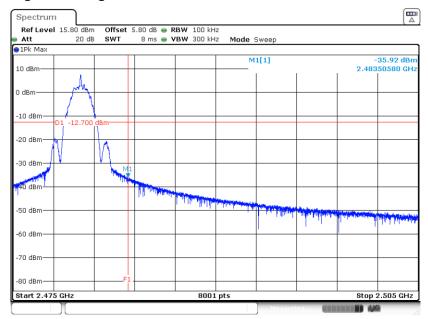

3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 11

Date: 28.AUG.2023 08:49:52

High Band Edge Plot on Channel 25

Date: 29.AUG.2023 10:23:04


Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 22 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

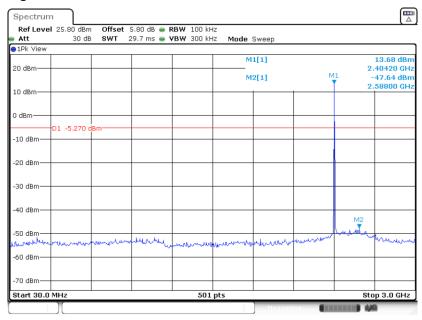
Report No.: FR330803C

Report Template No.: BU5-FR15C Version 2.0

High Band Edge Plot on Channel 26

Date: 26.MAY.2023 09:53:59

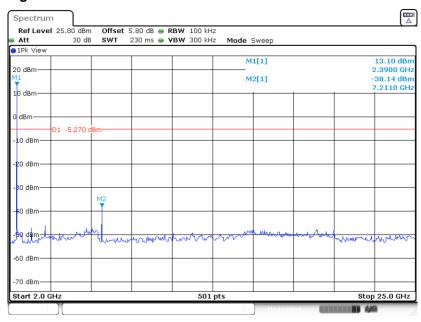
TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 23 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01


Report No.: FR330803C

Report Template No.: BU5-FR15C Version 2.0

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on


Zigbee Channel 11

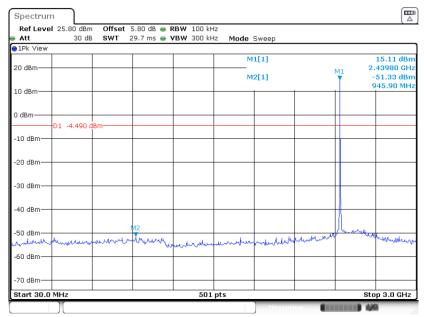
Date: 28.AUG.2023 08:50:13

Conducted Spurious Emission Plot on

Zigbee Channel 11

Date: 28.AUG.2023 08:50:33

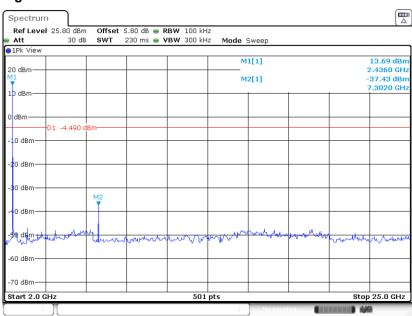
Sporton International Inc. (Kunshan) TEL: +86-512-57900158


FCC ID: 2AC7Z-ESPH2MINI1

Page Number : 24 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

Conducted Spurious Emission Plot on

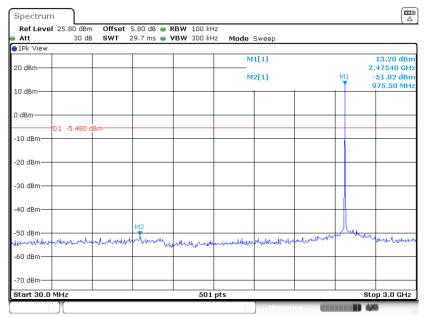

Zigbee Channel 18

Date: 28.AUG.2023 08:56:04

Conducted Spurious Emission Plot on

Zigbee Channel 18

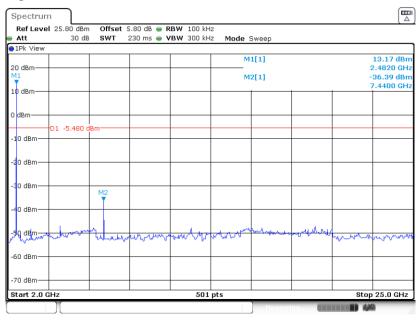
Date: 28.AUG.2023 08:56:24


Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 25 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

Conducted Spurious Emission Plot on


Zigbee Channel 25

Date: 29.AUG.2023 10:23:25

Conducted Spurious Emission Plot on

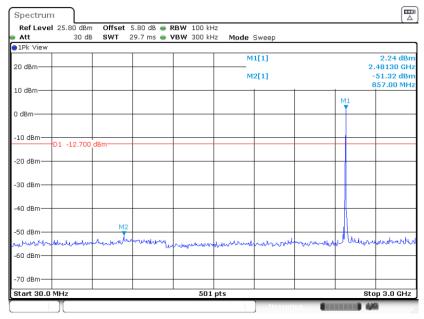
Zigbee Channel 25

Date: 29.AUG.2023 10:23:45

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 26 of 35

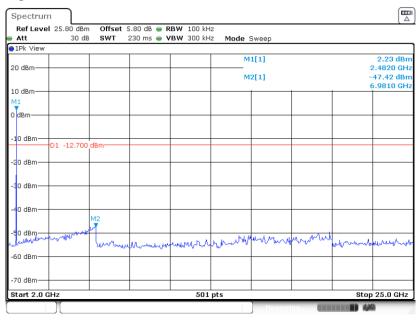
Report Issued Date : Sep. 01, 2023


Report Version : Rev. 01

Report No.: FR330803C

Report Template No.: BU5-FR15C Version 2.0

Conducted Spurious Emission Plot on


Zigbee Channel 26

Date: 26.MAY.2023 09:54:33

Conducted Spurious Emission Plot on

Zigbee Channel 26

Date: 26.MAY.2023 09:54:46

 Sporton International Inc. (Kunshan)
 Page Number
 : 27 of 35

 TEL: +86-512-57900158
 Report Issued Date
 : Sep. 01, 2023

 FCC ID: 2AC7Z-ESPH2MINI1
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.5 Spurious Emission Measurement in the Restricted Band

3.5.1 Limit of Spurious Emission Measurement in the Restricted Band

Emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

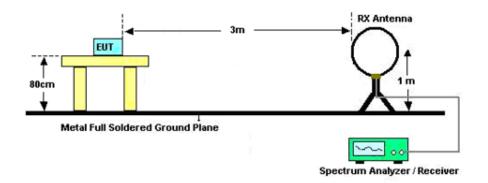
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.5.3 Test Procedures

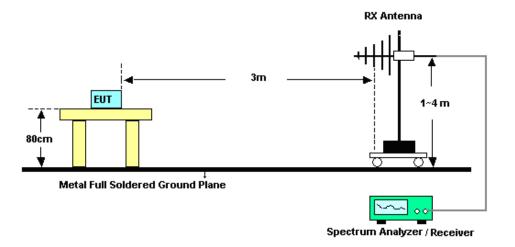
- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For conducted spurious emission measurement in the restricted band, the RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 7. For measurement below 1GHz, if the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;

Sporton International Inc. (Kunshan)Page Number: 28 of 35TEL: +86-512-57900158Report Issued Date: Sep. 01, 2023FCC ID: 2AC7Z-ESPH2MINI1Report Version: Rev. 01

Report Template No.: BU5-FR15C Version 2.0


(2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;

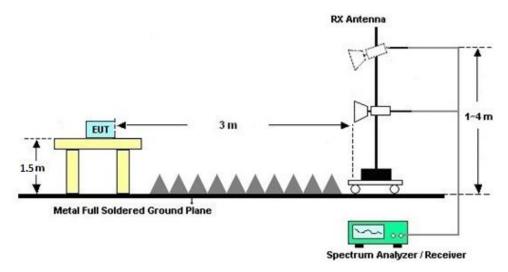
Report No.: FR330803C


- (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz



Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 29 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

3.5.6 Test Results of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Test Result of Cabinet Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.5.8 Duty Cycle

Please refer to Appendix D.

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1

Report Template No.: BU5-FR15C Version 2.0

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

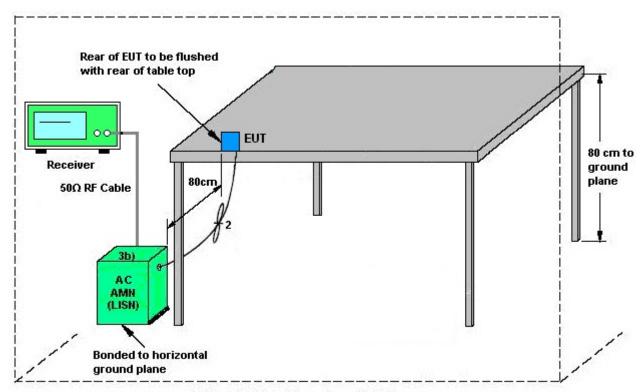
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBμV)
Frequency of emission (MH2)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Sporton International Inc. (Kunshan)Page Number: 31 of 35TEL: +86-512-57900158Report Issued Date: Sep. 01, 2023FCC ID: 2AC7Z-ESPH2MINI1Report Version: Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.6.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International Inc. (Kunshan)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 32 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPH2MINI1 Page Number : 33 of 35
Report Issued Date : Sep. 01, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 12, 2022	May 26, 2023~ Aug. 29, 2023	Oct. 11, 2023	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 05, 2023	May 26, 2023~ Aug. 29, 2023	Jan. 04, 2024	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 05, 2023	May 26, 2023~ Aug. 29, 2023	Jan. 04, 2024	Conducted (TH01-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 16, 2023	Jul. 10, 2023	May 15, 2024	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2022	Jul. 10, 2023	Oct. 12, 2023	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 16, 2023	Jul. 10, 2023	May 15, 2024	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2022	Jul. 10, 2023	Oct. 11, 2023	Conduction (CO01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 13, 2022	Aug. 01, 2023~ Aug. 28, 2023	Oct. 12, 2023	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Mar. 24, 2023	Aug. 01, 2023~ Aug. 28, 2023	Mar. 23, 2024	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 16, 2022	Aug. 01, 2023~ Aug. 28, 2023	Oct. 15, 2023	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Apr. 09, 2023	Aug. 01, 2023~ Aug. 28, 2023	Apr. 08, 2024	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218642	1GHz~18GHz	Apr. 06, 2023	Aug. 01, 2023~ Aug. 28, 2023	Apr. 05, 2024	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 08, 2023	Aug. 01, 2023~ Aug. 28, 2023	Jan. 07, 2024	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 06, 2023	Aug. 01, 2023~ Aug. 28, 2023	Jul. 05, 2024	Radiation (03CH05-KS)
Amplifier	EM	EM18G40GA	060852	18~40GHz	Jan. 05, 2023	Aug. 01, 2023~ Aug. 28, 2023	Jan. 04, 2024	Radiation (03CH05-KS)
high gain Amplifier	EM	EM01G18GA	060839	1Ghz-18Ghz	Oct. 12, 2022	Aug. 01, 2023~ Aug. 28, 2023	Oct. 11, 2023	Radiation (03CH05-KS)
Amplifier	EM	EM01G18GA	060833	1Ghz-18Ghz	Jan. 05, 2023	Aug. 01, 2023~ Aug. 28, 2023	Jan. 04, 2024	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Aug. 01, 2023~ Aug. 28, 2023	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Aug. 01, 2023~ Aug. 28, 2023	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Aug. 01, 2023~ Aug. 28, 2023	NCR	Radiation (03CH05-KS)

NCR: No Calibration Required

Sporton International Inc. (Kunshan) Page Number TEL: +86-512-57900158 Report Issued Date: Sep. 01, 2023 FCC ID: 2AC7Z-ESPH2MINI1

: Rev. 01 Report Version

Report Template No.: BU5-FR15C Version 2.0

: 34 of 35

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty	
Conducted Power	±0.46 dB	
Conducted Emissions	±2.26 dB	
Occupied Channel Bandwidth	±0.1 %	
Conducted Power Spectral Density	±0.88 dB	

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	0.04.ID
of 95% (U = 2Uc(y))	2.94dB

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	6.28dB	
of 95% (U = 2Uc(y))	0.2005	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.88dB	
of 95% (U = 2Uc(y))	4.00UD	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.26dB
---	--------

----- THE END -----

 Sporton International Inc. (Kunshan)
 Page Number
 : 35 of 35

 TEL: +86-512-57900158
 Report Issued Date
 : Sep. 01, 2023

 FCC ID: 2AC7Z-ESPH2MINI1
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15C Version 2.0

Appendix A. Conducted Test Results

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158
FCC ID: 2AC7Z-ESPC6MINI1

Page Number : A1 of A1

Report Number : FR330803C

Thread Low Energy

Test Engineer:	Gene Wang	Temperature:	20~26	°C
Test Date:	2023/5/26~2023/8/29	Relative Humidity:	40~51	%

Power setting							
CH 11	10						
CH 18	10						
CH 26	10						

TEST RESULTS DATA

Peak Power Table

Mod.	Data Rate	NTX	СН.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
Thread	250K	1	11	2405	5.59	30.00	3.96	9.55	36.00	Pass
Thread	250K	1	18	2440	6.82	30.00	3.96	10.78	36.00	Pass
Thread	250K	1	26	2480	6.84	30.00	3.96	10.80	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
Thread	250K	1	11	2405	0.16	4.23
Thread	250K	1	18	2440	0.16	5.29
Thread	250K	1	26	2480	0.16	5.40

Report Number : FR330803C

Zigbee Low Energy

Test Engineer:	Gene Wang	Temperature:	20~26	°C
Test Date:	2023/5/26~2023/8/29	Relative Humidity:	40~51	%

Power setting						
CH 11	15					
CH 18	15					
CH 25	15					
CH 26	10					

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

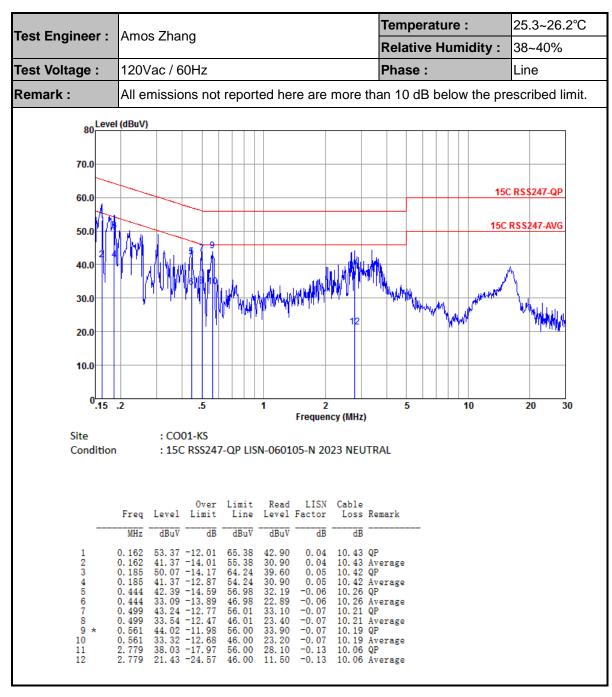
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
Zigbee	250K	1	11	2405	2.32	1.51	0.50	Pass
Zigbee	250K	1	18	2440	2.32	1.51	0.50	Pass
Zigbee	250K	1	25	2475	2.33	1.54	0.50	Pass
Zigbee	250K	1	26	2480	2.31	1.03	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
Zigbee	250K	1	11	2405	19.34	30.00	3.96	23.30	36.00	Pass
Zigbee	250K	1	18	2440	20.05	30.00	3.96	24.01	36.00	Pass
Zigbee	250K	1	25	2475	19.51	30.00	3.96	23.47	36.00	Pass
Zigbee	250K	1	26	2480	6.88	30.00	3.96	10.84	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
Zigbee	250K	1	11	2405	0.16	18.08	
Zigbee	250K	1	18	2440	0.16	18.69	
Zigbee	250K	1	25	2475	0.16	18.42	
Zigbee	250K	1	26	2480	0.16	5.43	


TEST RESULTS DATA

Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
Zigbee	250K	1	11	2405	14.73	6.14	3.96	8.00	Pass
Zigbee	250K	1	18	2440	15.51	6.95	3.96	8.00	Pass
Zigbee	250K	1	25	2475	14.52	5.93	3.96	8.00	Pass
Zigbee	250K	1	26	2480	7.30	-5.10	3.96	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1

Temperature: 25.3~26.2°C Test Engineer: Amos Zhang **Relative Humidity:** 38~40% Test Voltage: 120Vac / 60Hz Phase: Neutral Remark: All emissions not reported here are more than 10 dB below the prescribed limit. 80 Level (dBuV) 70.0 15C RS\$247-QP 60.0 15C RSS247-AVG 50.0 30.0 20.0 10.0 20 2 30 Frequency (MHz) : CO01-KS Site Condition : 15C RSS247-QP LISN-060105-L 2023 LINE Over Limit Read LISN Cable Line Level Factor Loss Remark Freq Level Limit dBuV dB MHz dBuV dB dBuV dB 55. 18 -10. 69 43. 38 -12. 49 46. 65 -17. 33 32. 65 -21. 34 46. 64 -11. 34 46. 64 -11. 34 40. 94 -12. 16 44. 68 -11. 33 36. 98 -9. 03 45. 45 -10. 55 37. 37 -18. 63 37. 37 -18. 63 22. 17 -23. 83 44. 70 32. 90 36. 20 22. 20 36. 20 30. 50 34. 50 26. 80 65. 87 55. 87 63. 98 0. 05 0. 05 0. 03 10.43 QP 10.43 Average 10.42 QP 53. 98 63. 10 53. 10 56. 01 46. 01 56. 00 10.42 Average 10.41 QP 0.191 0.03 0. 213 0. 499 0. 03 10.41 Average 10.21 QP 10.21 Average 10.21 Average 10.19 QP 10.19 Average 10.06 QP 10.06 Average 35. 30 25. 80 27. 40 12. 20 -0. 04 -0. 04 0.555 10 0.555 2. 765 2. 765 56.00 46.00 -0.09

Note:

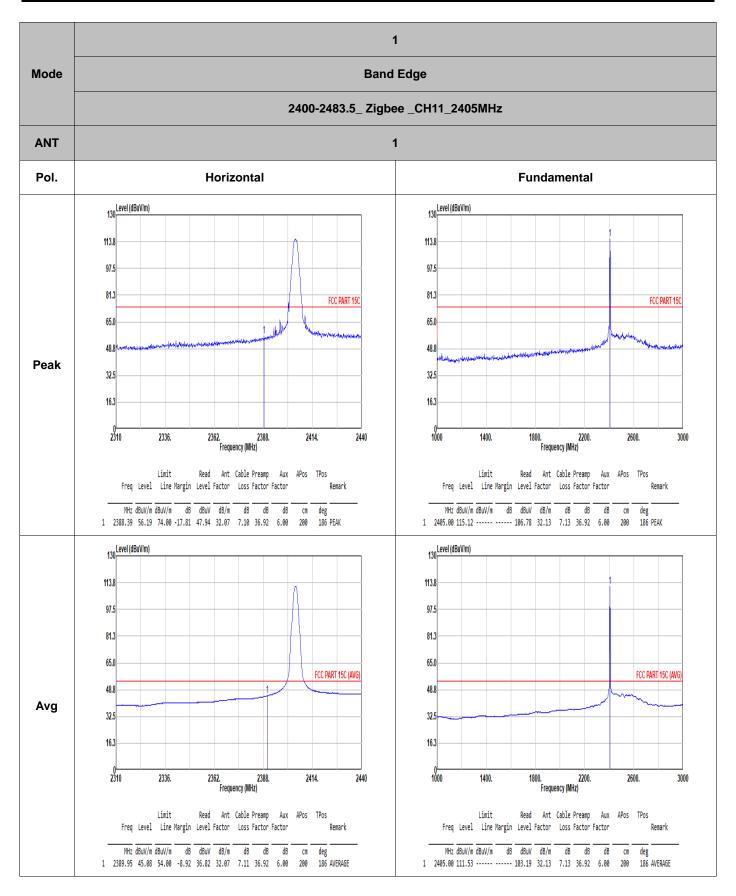
- 1. Level($dB\mu V$) = Read Level($dB\mu V$) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1

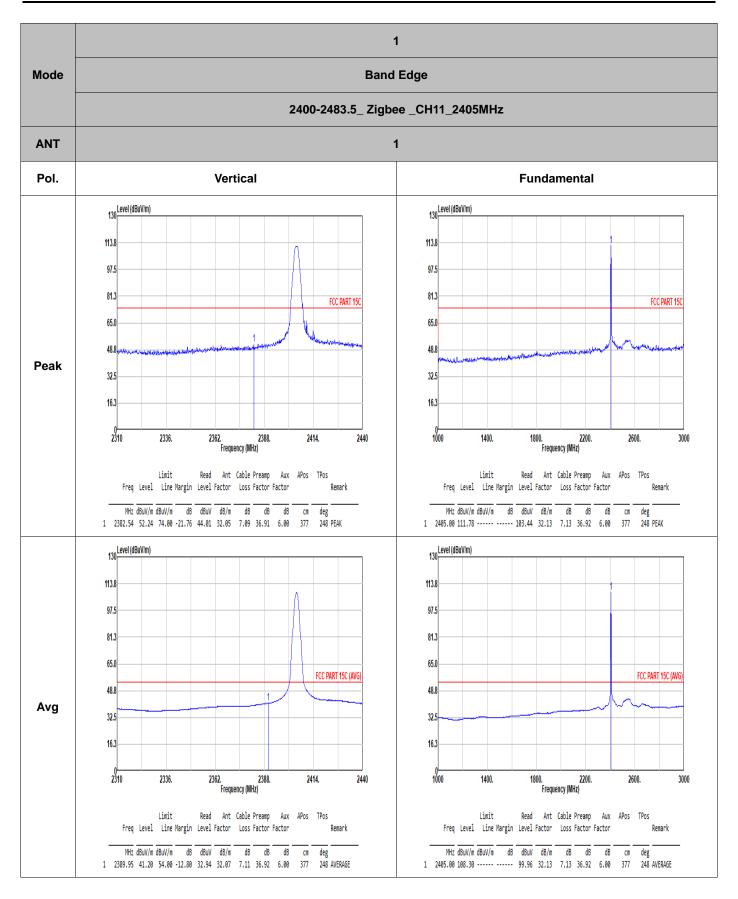
Appendix C. Radiated Spurious Emission Test Data

Test Engineer :	Carry Xu	Relative Humidity :	41~42%
rest Engineer.		Temperature :	22~23℃

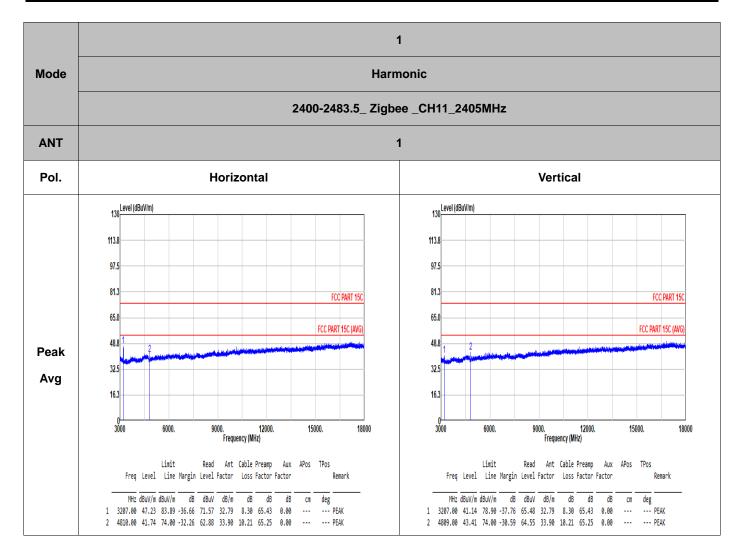
Radiated Spurious Emission Test Modes


Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Zigbee	11	2405	250Kbps	-	-
Mode 2	2400-2483.5	1	Zigbee	18	2440	250Kbps	-	-
Mode 3	2400-2483.5	1	Zigbee	25	2475	250Kbps	-	-
Mode 4	2400-2483.5	1	Zigbee	26	2480	250Kbps	-	-
Mode 5	2400-2483.5	1	Zigbee	25	2475	250Kbps	-	LF

Sporton International Inc.(Kunshan)
TEL: +86-512-57900158
FCC ID: 2AC7Z-ESPC6MINI1


Summary of each worse mode

Mode	Modulation	Ch.	Freq.	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Zigbee	11	2389.95	45.08	54.00	-8.92	Н	AVERAGE	Pass	Band Edge
1	Zigbee	11	4810.00	41.74	74.00	-32.26	Н	PEAK	Pass	Harmonic
2	Zigbee	18	-	-	-	-	-	-	-	Band Edge
2	Zigbee	18	4880.00	43.78	74.00	-30.22	Н	PEAK	Pass	Harmonic
3	Zigbee	25	2483.50	52.18	54.00	-1.82	Н	AVERAGE	Pass	Band Edge
3	Zigbee	25	4950.00	44.51	74.00	-29.49	V	PEAK	Pass	Harmonic
4	Zigbee	26	2483.50	48.87	54.00	-5.13	Н	AVERAGE	Pass	Band Edge
4	Zigbee	26	7440.00	41.16	74.00	-32.84	Н	PEAK	Pass	Harmonic
5	Zigbee	25	239.52	35.8	46.00	-10.20	Н	PEAK	Pass	LF


SPORTON LAB. FCC RF Test Report

SPORTON LAB. FCC RF Test Report

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1

Limit

Freq Level Line Margin Level Factor Loss Factor Factor

4880.00 43.78 74.00 -30.22 64.86 33.90 10.30 65.28 0.00

MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 3253.50 46.01 85.36 -39.35 70.40 32.75 8.36 65.50 0.00 ---

3 7320.00 41.71 74.00 -32.29 59.76 35.70 12.72 66.47 0.00 --- --- PEAK

Read Ant Cable Preamp Aux APos TPos

--- PEAK

--- PEAK

2 Mode Harmonic 2400-2483.5_ Zigbee _CH18_2440MHz **ANT** 1 Pol. Horizontal **Vertical** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 97.5 97.5 81.3 81.3 FCC PART 15C FCC PART 150 65.0 65.0 FCC PART 15C (AVG) FCC PART 15C (AVG 48.8 48.8 Peak 32.5 32.5 Avg 16.3 16.3 6000. 12000. 15000. 18000 0 3000 6000. 15000. 18000 Frequency (MHz) 12000. Frequency (MHz)

Limit

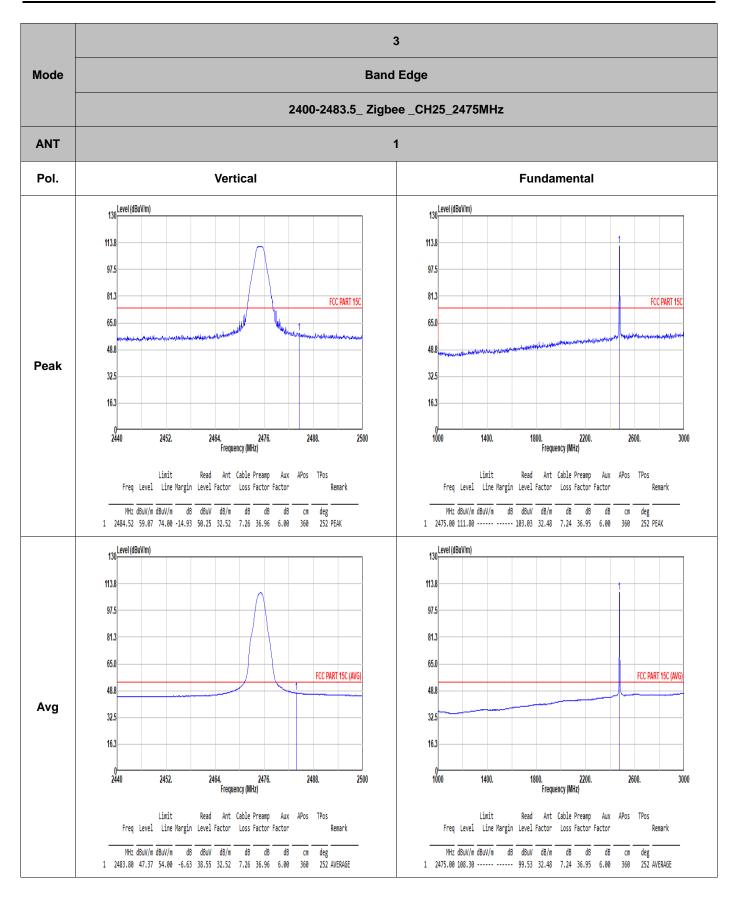
MHz dBuV/m dBuV/m dB dBuV dB/m

Freq Level Line Margin Level Factor Loss Factor Factor

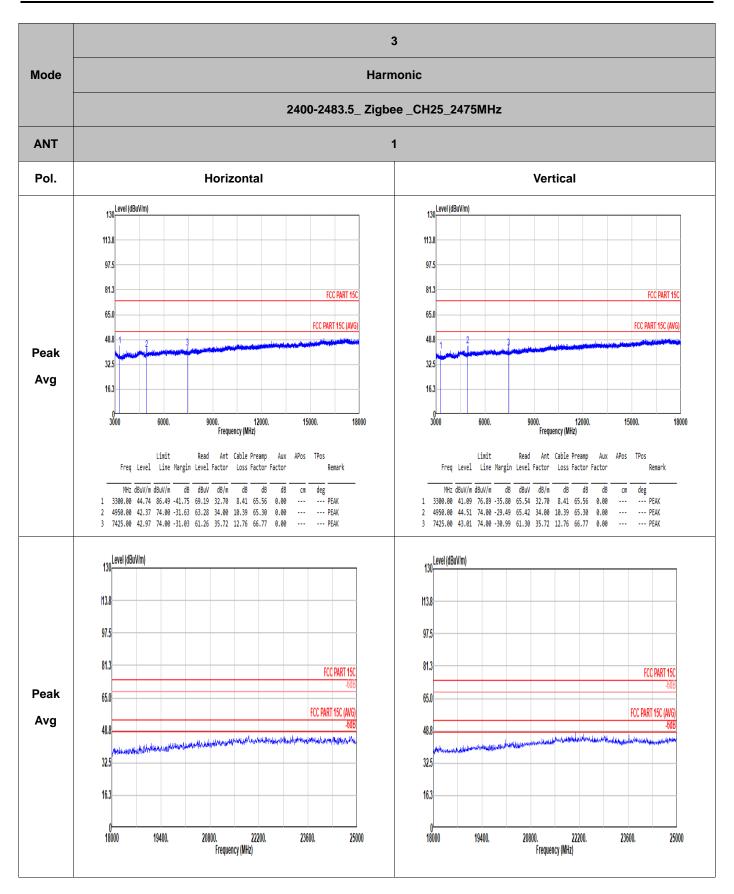
2 7320.00 42.33 74.00 -31.67 60.38 35.70 12.72 66.47 0.00 --- --- PEAK

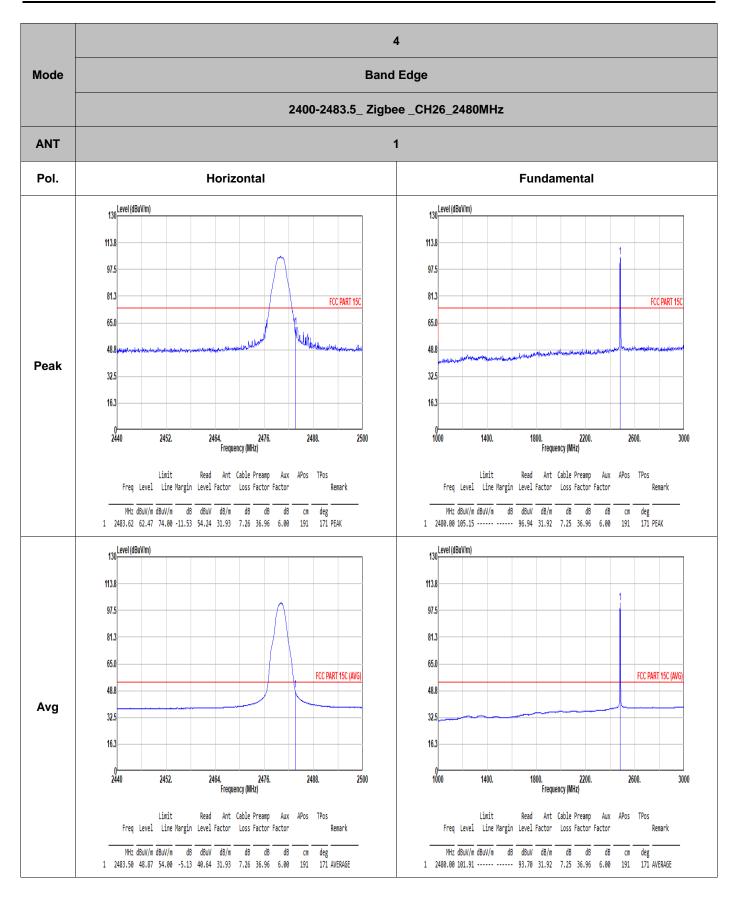
1 4880.00 40.56 74.00 -33.44 61.64 33.90 10.30 65.28 0.00

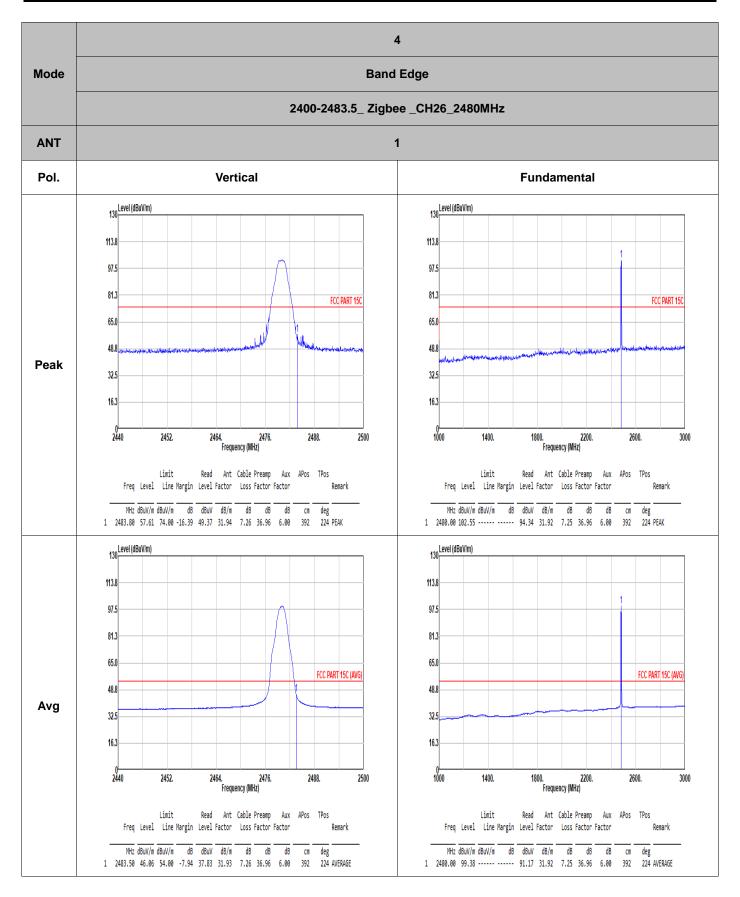
Read Ant Cable Preamp Aux APos TPos


cm deg

dB dB


3 Mode **Band Edge** 2400-2483.5_ Zigbee _CH25_2475MHz 1 **ANT** Pol. Horizontal **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 150 FCC PART 150 65.0 65.0 48.8 48.8 Peak 32.5 32.5 16.3 16.3 0<u>--</u> 2440 1000 4. 2476. Frequency (MHz) 0, 2200. Frequency (MHz) 2452. 2488. 1400. 3000 2500 Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Remark Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 2483.98 63.92 74.00 -10.08 55.10 32.52 7.26 36.96 6.00 141 185 PEAK 1 2475.00 118.14 ----- 109.37 32.48 7.24 36.95 6.00 141 185 PEAK 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 65.0 65.0 FCC PART 15C (AVG FCC PART 15C (AVG 48.8 Avg 32.5 32.5 16.3 16.3 0<u>--</u> 2440 1000 2452. 4. 2476. Frequency (MHz) 2488. 1400. 2500 1800. 2200. 2600. 3000 Frequency (MHz) Read Ant Cable Preamp Aux APos TPos Read Ant Cable Preamp Aux APos TPos Limit Limit Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB CM deg 1 2483.50 52.18 54.00 -1.82 43.36 32.52 7.26 36.96 6.00 141 185 AVERAGE 1 2475.00 114.67 ----- 105.90 32.48 7.24 36.95 6.00 141 185 AVERAGE




TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1

FCC RF Test Report Report No.: FR330803C

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1 SPORTON LAB. FCC RF Test Report

Mode Harmonic 2400-2483.5_ Zigbee _CH26_2480MHz **ANT** 1 Pol. Horizontal **Vertical** 130 Level (dBuV/m) 130 Level (dBuV/m) 97.5 97.5 81.3 81.3 FCC PART 15C FCC PART 150 65.0 65.0 FCC PART 15C (AVG FCC PART 15C (AVG 48.8 48.8 Peak 32.5 32.5 Avg 16.3 16.3 0 3000 3000 6000. 15000. 18000 6000. 15000. 18000 12000. 12000. Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor

| MHz dBuV/m dBuV/m d8 dBuV dB/m dB dB dB cm deg | 1 4960.00 39.94 74.00 -34.06 61.05 33.80 10.40 65.31 0.00 --- --- PEAK

2 7440.00 41.16 74.00 -32.84 59.59 35.60 12.78 66.81 0.00 --- --- PEAK

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1 MHz dBuV/m dBuV/m dB dBuV dB/m dB

1 4960.00 39.77 74.00 -34.23 60.88 33.80 10.40 65.31 0.00 --- PEAK

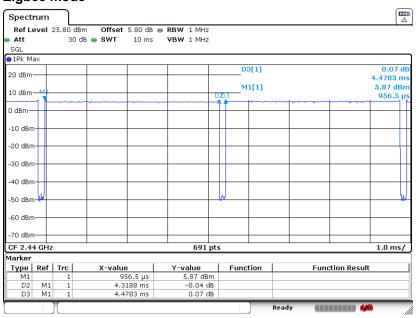
2 7440.00 41.04 74.00 -32.96 59.47 35.60 12.78 66.81 0.00 --- --- PEAK

dB

cm deg

5 Mode LF 2400-2483.5_ Zigbee _CH25_2475MHz 1 **ANT** Pol. Horizontal Vertical 70.0 60.0 FCC PART 150 FCC PART 150 30.0 30.0 Peak QP -10.0 700. 800. 200. 500. 100. 300. Frequency (MHz) Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
Freq Level Limit Line Level Factor Loss Factor Remark Pol/Phas MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dBuV/m dBuV dB/m dB dB MHz dBuV/m cm cm deg deg 32.91 21.22 -18.78 40.00 26.42 26.98 0.76 32.94 79.47 22.28 -17.72 40.00 29.05 24.68 1.32 32.77 239.52 25.53 -20.47 46.00 24.00 31.15 2.36 32.78 560.59 31.09 -14.91 46.00 24.02 31.15 2.36 32.78 560.59 31.09 -14.91 46.00 24.02 35.76 3.61 33.10 631.40 27.18 -18.62 46.00 19.09 37.25 3.83 32.09 976.72 30.13 -23.87 54.00 16.66 39.95 4.78 31.26 | 30.00 | 20.77 -19.23 | 40.00 | 10.41 | 42.67 | 0.71 | 33.02 | 95.96 | 28.45 -15.05 | 43.50 | 32.36 | 27.49 | 1.47 | 32.87 | 239.52 | 35.80 -10.20 | 46.00 | 40.40 | 25.82 | 2.36 | 32.78 | 631.40 | 25.73 -20.27 | 46.00 | 21.27 | 33.62 | 38.83 | 32.99 | 749.74 | 28.39 -17.61 | 46.00 | 21.16 | 35.38 | 4.19 | 32.79 | 976.72 | 30.44 -23.56 | 54.00 | 19.69 | 37.23 | 4.78 | 31.26 | --- Peak
--- Peak
--- Peak
--- Peak
--- Peak
--- Peak --- Peak
--- Peak
--- Peak
--- Peak
--- Peak
--- Peak HORIZONT HORIZONT HORIZONT HORIZONT VERTICAL VERTICAL VERTICAL VERTICAL

HORIZONT HORIZONT


TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1

VERTICAL VERTICAL

Appendix D. Duty Cycle Plots

Mode	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Zigbee	96.44	4.319	0.232	0.24KHz

Zigbee mode

TEL: +86-512-57900158 FCC ID: 2AC7Z-ESPC6MINI1